
ar
X

iv
:1

40
5.

36
08

v2
 [

cs
.L

O
]

 1
2

Fe
b

20
23

ON CASCADE PRODUCTS OF ANSWER SET PROGRAMS

CHRISTIAN ANTIĆ

Abstract. Describing complex objects by elementary ones is a common strategy in mathe-
matics and science in general. In their seminal 1965 paper, Kenneth Krohn and John Rhodes
showed that every finite deterministic automaton can be represented (or “emulated”) by a
cascade product of very simple automata. This led to an elegant algebraic theory of automata
based on finite semigroups (Krohn-Rhodes Theory). Surprisingly, by relating logic programs
and automata, we can show in this paper that the Krohn-Rhodes Theory is applicable in
Answer Set Programming (ASP). More precisely, we recast the concept of a cascade product
to ASP, and prove that every program can be represented by a product of very simple pro-
grams, the reset and standard programs. Roughly, this implies that the reset and standard
programs are the basic building blocks of ASP with respect to the cascade product. In a
broader sense, this paper is a first step towards an algebraic theory of products and networks
of nonmonotonic reasoning systems based on Krohn-Rhodes Theory, aiming at important
open issues in ASP and AI in general.

1. Introduction

Describing complex objects by elementary ones is a common strategy in mathematics and
science in general. For instance, the fundamental theorem of number theory states that ev-
ery natural number can be (uniquely) represented by its prime factors. Similarly, in their
seminal 1965 paper “Algebraic theory of machines, I. Prime decomposition theorem for finite
semigroups and machines”, Kenneth Krohn and John Rhodes showed that every finite deter-
ministic automaton can be represented (or “emulated”) by a cascade product of very simple
automata. This led to an elegant algebraic theory of automata based on finite semigroups
(Krohn-Rhodes Theory) and, more recently, to an algebraic theory of networks of automata
(cf. Dömösi & Nehaniv, 2005).

Answer Set Programming (ASP) (Gelfond & Lifschitz, 1991), on the other hand, has be-
come a prominent knowledge representation and reasoning (KR&R) formalism over the last
two decades, with a wide range of applications in AI-related subfields such as, e.g., nonmono-
tonic reasoning, diagnosis, and planning (cf. Brewka, Eiter, & Truszczynski, 2011b).

In this paper, we aim at combining these two vivid areas of research and will show that,
surprisingly, the Krohn-Rhodes Theory is applicable in ASP. More precisely, we recast the
concept of a cascade product to ASP, and prove that every program can be represented by
a product of reset programs R = {1 ← not1} and n-standard programs Sn consisting only
of rules of the simple form i ← j, notk (cf. Theorem 11). Roughly, this implies that the
reset and standard programs are the basic building blocks of ASP with respect to the cascade
product and, strikingly, while the reset and standard programs do not possess any interesting
declarative meaning (the reset program is inconsistent and the standard programs have only
the empty answer set), their interaction can “emulate” any given program. In other words, the

1

http://arxiv.org/abs/1405.3608v2

2 CHRISTIAN ANTIĆ

product semantics emerges from the interplay of its (simple) factors and allows for arbitrary
complex behavior.

To the best of our knowledge, this is the first paper applying the Krohn-Rhodes Theory
to logic programming. In a broader sense, it is a first step towards an algebraic theory of
products and networks of nonmonotonic reasoning systems based on Krohn-Rhodes Theory,
with far-reaching potential application areas including some important open issues in ASP
and AI in general (cf. the discussion in Section 6).

The rest of the paper is structured as follows. In Section 2, we present the basic definitions
and results concerning ASP and automata. In Section 3, we introduce the concept of a
programmable automaton, and show that the distinguished reset and standard automata
are programmable in this sense. In Section 4, the main part of this paper, we recast the
concept of a cascade product to ASP and prove that every program can be (homomorphically)
represented by reset and standard programs. In Section 5, we study the more restricted type
of isomorphic representation and provide a complete class of programs with respect to it;
moreover, we show that positive tight programs are isomorphically representable by reset
programs. Finally, in Section 6, we conclude with a discussion on interesting lines for future
research.

2. Preliminaries

We assume that the reader is familiar with the concept of a partially ordered set and that
of a (complete) lattice. Following (Gécseg, 1986), we denote by [n], n ≥ 0, the set {1, . . . , n}.
We denote, for k ≥ 1 and i ≥ 0, the least residue of i modulo n by i mod n. For a set X, we
denote by ∣X ∣ the cardinality of X. Given a function f ∶ X × Y → Z, we denote by f(. , y)
the function from X into Z mapping each x ∈ X to f(x, y) ∈ Z, and we denote by lfp f(. , y)
the least fixpoint of f(. , y). We denote the power set of X by P(X).

2.1. Answer Set Programs. We briefly recall the syntax and answer set semantics (Gelfond
& Lifschitz, 1991) of nonmonotonic logic programs in an operator-based setting (cf. Denecker,
Marek, & Truszczyński, 2000).
Syntax. In the sequel, Γ will denote a finite nonempty set of propositional atoms. A (normal
logic) program P over some ΓP is a finite nonempty set of rules of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm, m ≥ k ≥ 0,(1)

where a, b1, . . . , bm ∈ ΓP and not denotes negation-as-failure. For convenience, we define
for a rule r of the form ((1)), H(r) = a, B+(r) = {b1, . . . , bk}, B

−(r) = {bk+1, . . . , bm}, and
B(r) = B+(r) ∪B−(r). We call r a fact, if B(r) = ∅; and we call r positive if B−(r) = ∅. We
say that P is positive if every rule r ∈ P is positive, and we call P tight if there is a mapping
ℓ from ΓP into the nonnegative integers such that for each rule r in P , ℓ(H(r)) > ℓ(b) for
every b ∈ B+(r).
Semantics. An interpretation of P is any subset I ⊆ ΓP and we denote the set of all in-
terpretations of P by IP = P(ΓP). Define the 4-valued immediate consequence operator
ΨP ∶ IP × IP → IP by

ΨP (I, J) = {H(r) ∶ r ∈ P,B
+(r) ⊆ I,B−(r) ∩ J = ∅}.

Intuitively, ΨP (I, J) contains the heads H(r) of all rules r in P where the positive part of
the body evaluates to true in I, and the negative part evaluates to true in J . Given some
I ∈ IP , it is well-known that ΨP (. , I) is monotone on the complete lattice IP ordered by ⊆,

ON CASCADE PRODUCTS OF ANSWER SET PROGRAMS 3

1 2

σ0
σ1

σ1

σ0

1

2 3

n

σ0

σ0 σ0, σ2

σ0, σ2

σ0, σ2σ0, σ2

σ1, σ2

σ2

σ1

σ1

σ1

σ1

σ1

Figure 1. The (two-state) reset automaton R and the n-standard automaton Sn.

and hence has a least fixpoint denoted by lfp ΨP (. , I). We say that I ∈ IP is an answer set
of P , or a ΨP -answer set, if I = lfp ΨP (. , I).

2.2. Krohn-Rhodes Theory. In this section, we recall some basic definitions and results
of Krohn-Rhodes Theory by mainly following the lines of (Gécseg, 1986, Chapters 1–3).

An automaton A = (Q,Σ, δ) consists of a finite set Q of states, a finite nonempty set Σ,
called the input alphabet, and a mapping δ ∶ Q ×Σ→ Q called the transition function.

Given two automata A = (Q,Σ, δ) and A′ = (Q′,Σ′, δ′), we say that A′ is a subautomaton
of A if Q′ ⊆ Q, Σ′ ⊆ Σ, and δ′ is the restriction of δ to Q′ × Σ′. A pair h = (h1, h2) of
surjective mappings h1 ∶ Q→ Q′, h2 ∶ Σ → Σ′ is a homomorphism of A onto A′ if h1(δ(q, x)) =
δ′(h1(q), h2(x)), for every q ∈ Q,x ∈ Σ. The pair h is an isomorphism if h1 and h2 are bijective
homomorphisms, and we say that A is isomorphic to A′ if there exists an isomorphism h of
A onto A′. If Σ = Σ′, then we omit h2 and define h = h1.

An equivalence relation ∼ on Q is a congruence relation of A if q ∼ q′ implies δ(q, x) ∼
δ(q′, x), for all q, q′ ∈ Q and x ∈ Σ. We denote the congruence class of q ∈ Q with respect to
∼ by q/∼, and define the quotient automaton A/∼ = (Q/∼,Σ, δ/∼) by δ/∼(q/∼, x) = δ(q, x)/∼ for
all q ∈ Q and x ∈ Σ. Conversely, given a homomorphism h = (h1, h2) of A onto A′, we mean
by the congruence relation of A induced by h the binary relation ∼ on Q given by q ∼ q′ if
h1(q) = h1(q

′).
The following automata will play a central role throughout the rest of the paper (cf. Figure

1):

(1) Define the (two-state) reset automaton R = ([2],{σ0, σ1}, δR) by δR(i, σ0) = 1, and
δR(i, σ1) = 2, for all i ∈ [2].

(2) We call an automaton S = ([n],{σ0, σ1, σ2}, δS), n > 1, standard if δS satisfies the
following conditions, for all i ∈ [n]:
(a) δS(i, σ0) = i;
(b) δS(i, σ1) = (i mod n) + 1;

(c) δS(i, σ2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2 if i = 1,

1 if i = 2,

i otherwise.
We denote the n-state standard automaton by Sn.

The following operators on arbitrary classes A of automata will be useful:

4 CHRISTIAN ANTIĆ

(1) S(A) denotes the set of subautomata of automata from A;
(2) H(A) denotes the homomorphic images of automata from A;
(3) I(A) denotes the isomorphic images of automata from A.

We will write XY(A) for X(Y(A)), where X and Y are operators from above.
We now define the cascade product for automata, which is also known as the wreath (Krohn

& Rhodes, 1965) or α0-product (Gécseg, 1986) in the literature.

Definition 1 (Cascade Automata Product). For some k > 0, let Ai = (Qi,Σi, δi), i ∈ [k], be
a family of automata, and let Σ be an alphabet. A feedforward function for A1, . . . ,Ak is a
mapping ψ ∶ (Q1 × . . . ×Qk) ×Σ→ Σ1 × . . . ×Σk with

ψ((q1, . . . , qk), σ) = (ψ1((q1, . . . , qk), σ), . . . , ψk((q1, . . . , qk), σ))

where the component feedforward function ψi, i ∈ [k], is a mapping from (Q1×. . .×Qk)×Σ into
Σi. In the sequel, we omit those arguments qj, j ∈ [k], ψi does not depend on. The cascade
(or loop-free) automata product of A1, . . . ,Ak with respect to ΣA = Σ and some feedforward
function ψA

A = (QA,ΣA, δA) = A1 ⋉ . . . ⋉Ak [ΣA, ψA]

is given by QA = Q1 × . . . ×Qk where ψi, i ∈ [k], is independent of its j
th component, j ∈ [k],

whenever j ≥ i. Finally, we define the transition function δA ∶ QA ×ΣA → QA by

δA((q1, . . . , qk), σ) = (δ1(q1, ψ1(σ)), . . . , δk(qk, ψk((q1, . . . , qk−1), σ))).

Definition 2. We say that an automaton A homomorphically (resp., isomorphically) repre-
sents an automaton A′ if A′ ∈HS({A}) (resp., A′ ∈ IS({A})). Moreover, we say that a class
A of automata is homomorphically (resp., isomorphically) complete with respect to the cas-
cade automata product if every automaton A can be homomorphically (resp., isomorphically)
represented by a cascade automata product of automata from A.

The following result is a consequence of the Krohn-Rhodes decomposition theorem (Krohn
& Rhodes, 1965), and it will be of great importance for our main Theorem 11.

Theorem 3. [cf. (Gécseg, 1986), Theorem 2.1.5] Let A be an automaton with n > 1 states.
Then, A can be homomorphically represented by a cascade automata product of reset and
n-state standard automata over the same input alphabet as A.

We now turn to isomorphic completeness. Let Tn = ([n],Σn, δn), n ≥ 1, such that Σn is the
set of all mappings σ ∶ [n]→ [n], and δn(j, σ) = σ(j), for all j ∈ [n].

Theorem 4. [cf. (Gécseg, 1986), Theorem 3.2.1] A class A of automata is isomorphically
complete with respect to the cascade automata product iff for every n ≥ 1, there exists some
A ∈ A such that Tn can be embedded into a cascade automata product A [Σ, ψ], consisting of
a single factor.

3. Programmable Automata

In this section, we relate programs and automata and prove in Theorem 8 that the distin-
guished automata given in Section 2.2 can be “realized” by programs. This connection will
serve as the basis for the rest of the paper, and for the main Theorem 11 in particular.

Given some program P , we define its characteristic automaton AP = (QP ,ΣP , δP) by
QP = ΣP = IP and δP = ΨP . In the sequel, we will not distinguish between the operator ΨP

and the characteristic automaton AP = (IP ,IP ,ΨP), i.e., we will refer to AP simply by ΨP

and will call ΨP the characteristic automaton of P (cf. Figure 2).

ON CASCADE PRODUCTS OF ANSWER SET PROGRAMS 5

∅

{a} {b}

{a, b}

{a, b}

{a} {b}

∅{a}

∅
{b}

{a, b}

{b}

{a, b}

∅

{a}

∅

{a, b}

{b}{a}

Figure 2. The characteristic automaton ΨB of the program B = {a ←
not b; b ← nota}.

Definition 5. We say that an automaton A is homomorphically (resp., isomorphically) pro-
grammable if there exists some program P such that ΨP homomorphically (resp., isomor-
phically) represents A, that is, A ∈ HS({ΨP }) (resp., A ∈ IS({ΨP })). We then say that P
homomorphically (resp., isomorphically) programs A.

We illustrate this concept with an example; in Theorem 8 we will see that the reset au-
tomaton R and the n-state standard automaton Sn, n > 1, are isomorphically programmable.

Example 6. Define the elevator automaton E = ([2],{σ0, σ1}, δE) by δE(1, σ0) = 1, δE(1, σ1) =
2, and δE(2, σ0) = δE(2, σ1) = 2 (cf. Dömösi & Nehaniv, 2005, p.45). On the other hand, define
the elevator program E by E = {e ← e; e ← not e}. Then, h = (h1, h2) defined by h1(∅) = 1,
h1({e}) = 2, h2({e}) = σ0, and h2(∅) = σ1 is an isomorphism of (the automaton) ΨE onto E;
hence, E isomorphically programs E.

For convenience, in the sequel we occasionally denote atoms by nonnegative integers.

Definition 7. The reset program R over ΓR = [1] consists of the following single rule:

1← not1.

The n-standard program (or n-program) Sn over Γn = [n]∪{3}, n > 1, consists of the following
rules, for all i ∈ [n] and j ∈ [n], j > 2:

i← i, not 1, 1← 2, not 3,

(i mod n) + 1← i, not 2, 2← 1, not 3,

j ← j, not 3.

Note that the reset program R is inconsistent, i.e., has no ΨR-answer sets, and for every
n > 1, the n-program Sn has the ΨSn

-answer set ∅.

6 CHRISTIAN ANTIĆ

Theorem 8. The reset program R and the n-standard program Sn isomorphically program
the reset automaton R and the n-state standard automaton Sn, n > 1, respectively.

Proof. Define hR,1 ∶ IR → [2] and hR,2 ∶ IR → {σ0, σ1} by hR,1(∅) = 1, hR,1({1}) = 2,
hR,2(∅) = σ1, and hR,2({1}) = σ0. A straightforward computation shows that hR = (hR,1, hR,2)
is an isomorphism of ΨR onto R; i.e., we have

hR,1(ΨR(I, J)) = δR(hR,1(I), hR,2(J)), for all I, J ∈ IR.

Hence, R ∈ IS({ΨR}).
For the second part, let Ψ′Sn

= (I ′Sn
,I ′′Sn

,Ψ′Sn
) be the subautomaton of ΨSn

given by

I ′Sn
= {{i} ∶ i ∈ [n]} ⊆ ISn

, I ′′Sn
= {{2,3},{1,3}, {1, 2}} ⊆ ISn

, and Ψ′Sn
equals ΨSn

restricted

to I ′Sn
× I ′′Sn

. Define hSn,1 ∶ I
′

Sn
→ [n] by hSn,1({i}) = i, for all i ∈ [n]; and hSn,2 ∶ I

′′

Sn
→

{σ0, σ1, σ2} by hSn,2({2,3}) = σ0, hSn,2({1,3}) = σ1, and hSn,2({1,2}) = σ2. Then, h =
(hSn,1, hSn,2) is an isomorphism of Ψ′Sn

onto Sn; i.e., we have

hSn,1(Ψ
′

Sn
({i}, J)) = δSn

(hSn,1({i}), hSn ,2(J)), for all i ∈ [n] and J ∈ I ′′Sn
.

Hence, Sn ∈ IS({ΨSn
}). �

4. Cascade Products and Homomorphic Representations

In this section, we recast the concept of a cascade automata product presented in Section
2.2 (cf. Definition 1) to the setting of ASP and study homomorphic representations.

Definition 9 (Cascade Program Product). Let P1, . . . , Pk, k > 1, be a family of programs
over some alphabets ΓP1

, . . . ,ΓPk
, respectively, and let IP be some finite nonempty set. A

feedforward function for P1, . . . , Pk is a mapping ψP ∶ (IP1
× . . . × IPk

) × IP → IP1
× . . . × IPk

with

ψP((I1, . . . , Ik),J) = (ψP,1((I1, . . . , Ik),J), . . . , ψP,k((I1, . . . , Ik),J))

where the component feedforward function ψP,i, i ∈ [k], is a mapping from (IP1
×. . .×IPk

)×IP
into IPi

. In the sequel, we omit those arguments Ij, j ∈ [k], ψP,i does not depend on. The
(cascade or loop-free program) product of P1, . . . , Pk with respect to IP and some feedforward
function ψP

P = P1 ⋉ . . . ⋉ Pk [IP, ψP]

is given by its component feedforward functions ψP,i, i ∈ [k], which are independent of their

jth component, j ∈ [k], whenever j ≥ i. Finally, we define the characteristic automaton
ΨP = (QP,ΣP,ΨP) of P by QP = IP1

× . . . × IPk
, ΣP = IP, and ΨP ∶ (IP1

× . . . × IPk
) × IP →

IP1
× . . . × IPk

with

ΨP((I1, . . . , Ik),J) = (ΨP1
(I1, ψP,1(J)), . . . ,ΨPk

(Ik, ψP,k((I1, . . . , Ik−1),J))).

Intuitively, a cascade program product is a collection of programs which are connected to
each other and exchange (local) information via a feedforward function, where each component
program may depend only on the preceding components and on the global input; every state-
transition of the characteristic automaton of the product is then the result of the simultaneous
local state-transitions of the characteristic automata of its component programs.

Formally, a product is not a program according to the definition given in Section 2.1.
However, we can relate products and programs as follows (cf. Definition 2).

ON CASCADE PRODUCTS OF ANSWER SET PROGRAMS 7

Definition 10. We say that a cascade program product P homomorphically (resp., isomor-
phically) represents a program P if ΨP homomorphically (resp., isomorphically) represents
ΨP , that is, ΨP ∈ HS({ΨP}) (resp., ΨP ∈ IS({ΨP})). Moreover, we say that a class P of
programs is homomorphically (resp., isomorphically) complete with respect to the cascade pro-
gram product if every program P can be homomorphically (resp., isomorphically) represented
by a cascade program product of programs from P.

We now make the relation between products and programs more explicit. In the context
of logic programming, representation (or “emulation”) means semantic equivalence (mod-
ulo some encoding). According to Definition 10, a product P = P1 ⋉ . . . ⋉ Pk [IP, ψP],
k > 1, represents a program P if the characteristic automaton ΨP represents the charac-
teristic automaton ΨP (in the sense of Section 2.2); that is, if there exists a subautomaton
Ψ′

P
= (I ′P1

× . . . × I ′Pk
,I ′

P
,Ψ′

P
) of ΨP and a congruence relation ∼ on I ′P1

× . . . × I ′Pk
such that

Ψ′
P
/∼ is isomorphic to ΨP . Intuitively, every interpretation I ∈ IP of P then corresponds to

a congruence class of k-tuples from I ′P1
× . . . × I ′Pk

; if the representation is isomorphic, then I

can be identified with a single k-tuple (I ′1, . . . , I
′

k) and in this case we can imagine (I ′1, . . . , I
′

k)
to be an “encoding” of I.

Interestingly enough, by the forthcoming Theorem 11, we can assume that only reset and
standard programs occur as factors in the product P. That is, Theorem 11 roughly implies
that by knowing the reset program R and all the n-programs Sn, n > 1, and by knowing how
to form the cascade program product, we essentially know all programs; viz., the reset and
standard programs are the basic building blocks of ASP with respect to the cascade program
product.

We are now ready to state the main theorem of this paper.

Theorem 11. Every program P over some alphabet ΓP , with ∣ΓP ∣ =m, can be homomorphi-
cally represented by a cascade program product P of reset and 2m-standard programs.

Proof. According to Definition 10, we have to show that there exists some product P such
that ΨP homomorphically represents ΨP . Since ΨP has 2m states, Theorem 3 yields a cascade
automata product AP = A1 ⋉ . . . ⋉ Ak [IP , ψP], for some k > 0, consisting of reset and 2m-
standard automata homomorphically representing ΨP . Note that AP has the same input
alphabet IP as ΨP . Define the product P = P1 ⋉ . . . ⋉ Pk [IP, ψP] as follows: (i) for every
i ∈ [k], if Ai is the reset automaton R (resp., 2m-standard automaton S2m), then Pi is the
reset program R (resp., 2m-standard program S2m); (ii) IP is the input alphabet IP of AP and
ΨP ; (iii) ψP is a mapping from (IP1

× . . .×IPk
)×IP into IP1

× . . .×IPk
where IPi

, i ∈ [k], is IR
(resp., I2m) if Pi is the reset program R (resp., 2m-standard program S2m), and ψP,i coincides
with ψP,i on the appropriate subset of IP1

× . . .×IPk
modulo the isomorphisms defined in the

proof of Theorem 8. Then, it follows from Theorem 8 that ΨP isomorphically represents AP

and, by transitivity of representation, it homomorphically represents ΨP , which proves our
theorem. �

It is worth noting that the proof of Theorem 11 yields a product P whose characteristic
automaton ΨP has the same input alphabet IP as the characteristic automaton ΨP of P .
Therefore, we can characterize the answer sets of P by ΨP as follows. Roughly, the product
semantics of P emerges as an interaction of its (simple) factors P1, . . . , Pk with respect to
P . More precisely, by the remarks given above, there exists a quotient subautomaton Ψ′

P
/∼

of ΨP which is isomorphic to ΨP and which has the same input alphabet as ΨP . Let h ∶
I ′P1
× . . .×I ′Pk

→ IP be the corresponding homomorphism of Ψ′
P
onto ΨP inducing ∼; we order

8 CHRISTIAN ANTIĆ

(I ′P1
× . . . × I ′Pk

)/∼ by (I1, . . . , Ik)/∼ ⊆h (I
′

1, . . . , I
′

k)/∼ if h(I1, . . . , Ik) ⊆ h(I
′

1, . . . , I
′

k). Then,

((I ′P1
× . . . × I ′Pk

)/∼,⊆h) is isomorphic (as a lattice) to (IP ,⊆), and we say that I ∈ IP is a

Ψ′
P
/∼-answer set if I = h(lfp Ψ′

P
/∼(. , I)). Then, we have the following correspondence:

I is a ΨP -answer set⇔ I is a Ψ′P/∼-answer set.(2)

By Theorem 11, we can assume that in the right hand side of (2), only reset and 2m-standard
programs occur.

We illustrate these concepts by giving some examples.

Example 12. Let A = {a ←} be a program consisting of a single fact. We can interpret
A as a database storing some information represented by a. Observe that neither the reset
program R nor the 2-program S2 contains a fact. However, we verify that

A = R [IA, ψA] = {1← not 1} [IA, ψA]

defined by ψA(J) = ∅, for all J ∈ IA, isomorphically represents A. Define h ∶ IR → IA by
h(∅) = ∅ and h({1}) = {a}. We check that h is an isomorphism:

h(ΨA(I, J)) = h(ΨR(I,ψA(J))

= h(ΨR(I,∅))

= h({1})

= {a}

= ΨA(h(I), J)

holds for all I ∈ IR and J ∈ IA. Therefore, the congruence relation ∼ induced by h is the trivial
diagonal relation and ΨA/∼ is isomorphic to ΨA. Hence, ΨA ∈ IS({ΨA}). The calculation
above proves that {a} is the only ΨA-answer set or, equivalently, the only ΨA-answer set.
Intuitively, A “emulates” the storage of the fact a by ignoring the input J appropriately.
Generally, the program Am = {a1 ←; . . . ;am ←}, m ≥ 1, is isomorphically represented by
Am = R⋉. . .⋉R [IAm

, ψAm
] (withm factors) where ψAm,i((I1, . . . , Ii−1), J) = ∅, for all i ∈ [m],

I1, . . . , Ii−1 ∈ IR, and J ∈ IAm
. Here, an isomorphism is an arbitrary “binary encoding” h of

IAm
; e.g., h(I1, . . . , Im) = {ai ∈ IAm

∶ Ii = {1}, i ∈ [m]}.

Example 13. The program B = {a ← not b; b ← nota} (cf. Figure 2) is isomorphically
represented by the cascade program product

B = R ⋉R [IB , ψB] = {1 ← not 1} ⋉ {1 ← not 1} [IB , ψB]

defined by

ψB,1(∅) = ψB,1({a}) = ∅, ψB,2(I,∅) = ψB,2(I,{b}) = ∅,

ψB,1({b}) = ψB,1({a, b}) = {1}, ψB,2(I,{a}) = ψB,2(I,{a, b}) = {1},

for all I ∈ IR. Let h ∶ IR × IR → IB be the “binary encoding” of IB given by h(∅,∅) = ∅,
h({1},∅) = {a}, h(∅,{1}) = {b}, and h({1},{1}) = {a, b}. It is straightforward to verify that

ON CASCADE PRODUCTS OF ANSWER SET PROGRAMS 9

h is an isomorphism of ΨB onto ΨB. For instance, we compute:

h(ΨB((∅,∅),{a})) = h(ΨR(∅, ψB,1({a})),ΨR(∅, ψB,2(∅,{a})))

= h(ΨR(∅,∅),ΨR(∅,{1}))

= h({1},∅)

= {a}

= ΨB(h(∅,∅),{a}).

Hence, ΨB ∈ IS({ΨB}). By the remarks given above, I is a ΨB-answer set iff I is a ΨB-answer
set and, clearly, {a} and {b} are the only ones.

5. Isomorphic Representations

In this section, we study the more restricted type of isomorphic representation and provide
a complete class of programs with respect to it. Moreover, in Theorem 16 we show that every
positive tight program can be isomorphically represented by a cascade program product of
reset programs.

For some n ≥ 1, let σ1, . . . , σnn be an enumeration of the set of all mappings from [n] into
[n]. Define Tn over ΓTn

= [nn] to be the program consisting of the rules, for all j ∈ [n] and
k ∈ [nn]:

σk(j) ← j, notk.

As a consequence of Theorem 4, we obtain the following completeness result.

Theorem 14. The class of programs consisting of all Tn, n ≥ 1, is isomorphically complete
with respect to the cascade program product.

Proof. According to Theorem 4 and Definition 10, we have to show that for every n ≥ 1,
the automaton Tn = ([n],Σn, δn) can be embedded into a cascade automata product of ΨTn

with a single factor. Define ΨTn
= ΨTn

[ITn
, ψTn

] by ψTn
(J) = J , for all J ∈ ITn

. Define
the embedding h = (h1, h2), with h1 ∶ [n] → ITn

and h2 ∶ Σn → ITn
, by h1(j) = {j} and

h2(σk) = {1, . . . , k − 1, k + 1, . . . , nn}, k ∈ [nn]. Clearly, h1 and h2 are one-one, and the
following computation proves that h is indeed an embedding:

ΨTn
(h1(j), h2(σk)) = ΨTn

(h1(j), ψTn
(h2(σk)))

= ΨTn
(h1(j), h2(σk))

= ΨTn
({j},{1, . . . , k − 1, k + 1, . . . , nn})

= {σk(j)}

= h1(σk(j))

= h1(δn(j, σk))

holds for all j ∈ [n] and k ∈ [nn]. �

We now turn to the restricted class of positive (i.e., negation-free) tight programs.

Example 15. Consider the positive tight program C = {a ←; b ← a; c ← a, b}. The product
C = R ⋉R ⋉R [IC , ψC] given by

ψC,1(J) = ∅ ψC,2(I1, J) = {1} − I1 ψC,3((I1, I2), J) = {1} − (I1 ∩ I2)

10 CHRISTIAN ANTIĆ

for all I1, I2 ∈ IR and J ∈ IC , isomorphically represents C. Again, we define the isomorphism
h to be a “binary encoding” of IC where, e.g., ({1},∅,∅) is mapped to {a}, ({1},∅,{1}) is
mapped to {a, c} and so on. For instance, we can compute the least model I = {a, b, c} of C
as follows:

h(ΨC((∅,∅,∅), J)) = h(ΨR(∅,∅),ΨR(∅,{1}),ΨR(∅,{1})) = h({1},∅,∅) = {a}

h(ΨC(({1},∅,∅), J)) = h(ΨR({1},∅),ΨR(∅,∅),ΨR(∅,{1})) = h({1},{1},∅) = {a, b}

h(ΨC(({1},{1},∅), J)) = h(ΨR({1},∅),ΨR({1},∅),ΨR(∅,∅)) = h({1},{1},{1}) = I

h(ΨC(({1},{1},{1}), J)) = h(ΨR({1},∅),ΨR({1},∅),ΨR({1},∅)) = h({1},{1},{1}) = I

where J ∈ IC is arbitrary. The calculation shows that I is a ΨC-answer set or, equivalently,
a ΨC-answer set and, clearly, it is the only one.

Now consider the slightly different program C ′ = {a ←; b ← a; c ← a; c ← b}. Then, C ′ is
isomorphically represented by the product C′ = R ⋉R ⋉R [IC′ , ψC′] given by

ψC′,1(J) = ∅ ψC′,2(I1, J) = {1} − I1 ψC′,3((I1, I2), J) = {1} − (I1 ∪ I2)

for all I1, I2 ∈ IR and J ∈ IC′ . Let h be defined as before. Iterating ΨC′ bottom-up as above
yields, for all J ∈ IC′ :

h(ΨC′((∅,∅,∅), J)) = h(ΨR(∅,∅),ΨR(∅,{1}),ΨR(∅,{1})) = h({1},∅,∅) = {a}

h(ΨC′(({1},∅,∅), J)) = h(ΨR({1},∅),ΨR(∅,∅),ΨR(∅,∅)) = h({1},{1},{1}) = I

h(ΨC′(({1},{1},{1}), J)) = h(ΨR({1},∅),ΨR({1},∅),ΨR({1},∅)) = h({1},{1},{1}) = I

which shows that I is also a ΨC′-answer set or, equivalently, a ΨC′-answer set.

It is straightforward to generalize Example 15 to the general case.

Theorem 16. Every positive tight program P can be isomorphically represented by a cascade
program product of reset programs.

6. Discussion and Conclusion

In this paper, we applied the Krohn-Rhodes Theory (Krohn & Rhodes, 1965), presented
here following (Gécseg, 1986), to Answer Set Programming (ASP) (Gelfond & Lifschitz, 1991).
Particularly, we defined a cascade product for ASP and, by relating programs and automata,
showed that every program can be represented (or “emulated”) by a product of very simple
programs. We thus obtained nice theoretical results regarding the structure of ASP programs,
which can be straightforwardly generalized to wider classes of nonmonotonic reasoning for-
malisms. More precisely, as our concepts and results hinge on the operator ΨP , they can be
directly reformulated in the algebraic framework of Approximation Fixpoint Theory (AFT)
(Denecker et al., 2000), which captures, e.g., ordinary ASP, default and autoepistemic logic
(Denecker, Marek, & Truszczyński, 2003), and ASP with external sources (Antić, Eiter, &
Fink, 2013).

In a broader sense, this paper is a first step towards an algebraic theory of products and
networks of nonmonotonic reasoning systems, including ASP and other formalisms. More
precisely, we considered here only the very restricted (though powerful) kind of cascade prod-
uct; it corresponds to the α0-product in (Gécseg, 1986), and to the wreath product in finite
semigroup theory (Krohn & Rhodes, 1965). In the automata literature, however, many other
important products have been studied (for an overview see Dömösi and Nehaniv (2005)).
We believe that recasting these kinds of products to ASP will lead to interesting results.

References 11

Particularly, the notion of an asynchronous network (cf. Dömösi & Nehaniv, 2005, Chapter
7) seems very appealing from an ASP point of view, as current modular ASP formalisms
(e.g., Dao-Tran, Eiter, Fink, and Krennwallner (2009) cannot cope with asynchronous mod-
ule structures according to our knowledge. Moreover, as different formalisms can be unified
in the AFT-setting, heterogeneous networks in the vein of multi-context systems (cf. Brewka,
Eiter, & Fink, 2011a) arise naturally. Finally, our concept of a product semantics emerging
from the interaction of its simple factors (cf. Section 4) seems interesting from a general AI
perspective and we believe that it deserves a more intensive (and probably more intuitive)
study in future work.

Although the Krohn-Rhodes decomposition theorem (Krohn & Rhodes, 1965) is now almost
50 years old, implementations and feasible applications of the Krohn-Rhodes Theory emerged
only very recently (cf. Egri-Nagy & Nehaniv, 2005); reference our paper provides further
evidence that it is a valuable tool for knowledge representation and reasoning in AI (e.g.
Egri-Nagy, 2006), and implementations in the ASP-setting remain as future work.

References

Antić, C., Eiter, T., & Fink, M. (2013). HEX semantics via approximation fixpoint theory.
In Cabalar, P., & Son, T. C. (Eds.), LPNMR 2013, LNCS 8148, pp. 102–115.

Brewka, G., Eiter, T., & Fink, M. (2011a). Nonmonotonic multi-context systems: a flex-
ible approach for integrating heterogenous knowledge sources. In Balduccini, M., &
Son, T. C. (Eds.), Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning, pp. 233–258. Springer-Verlag, Berlin/Heidelberg.

Brewka, G., Eiter, T., & Truszczynski, M. (2011b). Answer set programming at a glance.
Communications of the ACM, 54 (12), 92–103.

Dao-Tran, M., Eiter, T., Fink, M., & Krennwallner, T. (2009). Modular nonmonotonic
logic programming revisited. In ICLP 2009, LNCS 5649, pp. 145–159. Springer-Verlag,
Berlin/Heidelberg.

Denecker, M., Marek, V., & Truszczyński, M. (2003). Uniform semantic treatment of default
and autoepistemic logics. Artificial Intelligence, 143 (1), 79–122.

Denecker, M., Marek, V., & Truszczyński, M. (2000). Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning. In Minker, J. (Ed.),
Logic-Based Artificial Intelligence, Vol. 597 of The Springer International Series in
Engineering and Computer Science, pp. 127–144, Norwell, Massachusetts. Kluwer Aca-
demic Publishers.

Dömösi, P., & Nehaniv, C. (2005). Algebraic Theory of Automata Networks: An Introduction.
SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial
and Applied Mathematics, Philadelphia, PA.

Egri-Nagy, A. (2006). Making sense of the sensory data—coordinate systems by hierarchical
decomposition. In Gabrys, B., Howlett, R. J., & Jain, L. C. (Eds.), KES 2006, Part III,
LNAI 4253, pp. 330–340. Springer-Verlag.

Egri-Nagy, A., & Nehaniv, C. (2005). Algebraic hierarchical decomposition of finite state
automata: comparison of implementations for Krohn-Rhodes theory. In Domaratzki,
M., Okhotin, A., Salomaa, K., & Yu, S. (Eds.), CIAA 2004, LNCS 3317. Springer-
Verlag, Berlin/Heidelberg.

Gécseg, F. (1986). Products of Automata. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin/Heidelberg.

12 References

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9 (3-4), 365–385.

Krohn, K., & Rhodes, J. (1965). Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical
Society, 116, 450–464.

	1. Introduction
	2. Preliminaries
	2.1. Answer Set Programs
	2.2. Krohn-Rhodes Theory

	3. Programmable Automata
	4. Cascade Products and Homomorphic Representations
	5. Isomorphic Representations
	6. Discussion and Conclusion
	References
	References

