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Abstract

Query answering in Answer Set Programming (ASP) is usuallyesl by computing (a subset of) the
cautious consequences of a logic program. This task is ctatipoally very hard, and there are programs
for which computing cautious consequences is not viableasonable time. However, current ASP solvers
produce the (whole) set of cautious consequences only anithef their computation. This paper reports
on strategies for computing cautious consequences, aismirting anytime algorithms able to produce
sound answers during the computation.
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1 Introduction

Answer Set Programming (ASP) is a declarative languagerfondedge representation and rea-
soning(Niemela 1999; Marek and Truszczyhski 1999; Ihiec2002| Baral 2003; Gelfond and Kahl 2014).
In ASP, knowledge concerning an application domain is eaddsy a logic program whose se-
mantics is given by a set of stable modéls (Gelfond and Litsd991), also referred to as an-
swer sets. As for other nonmonotonic formalisms, the regpknowledge base can be queried
according to two possible modes of reasoning, usually redeto as brave (or credulous) and
cautious (or skeptical). Brave reasoning provides ansteeitse input query that are witnessed
by some stable model of the knowledge base. For cautiousnizas instead, answers have to
be witnessed by all stable models. Cautious reasoning 08&r nowledge bases has relevant
applications in various fields ranging from Databases tdfigidl Intelligence. Among them
are consistent query answering (Arenas et al. 2003), deggration (Eiter 2005), and ontology-
based reasoning (Eiter et al. 2008).

A common practice in ASP is to reduce query answering to tmepedation of a subset of
the cautious consequences of a logic progtam (Leone et@F) 2@here cautious consequences
are atoms belonging to all stable models. As an example,drctimtext of Consistent Query
Answering (CQA), consider an inconsistent dataliagehere in relatiorR= {(1,1,1),(1,2,1),
(2,2,2),(2,2,3),(3,2,2),(3,3,3)} the second argument is required to functionally depend on
the first. Given a querg overD, CQA amounts to computing answerspfthat are true in all
repairs of the original database. Roughly, a repair is asi@wiof the original database that is
maximal and satisfies its integrity constraints. In the epl@mrepairs can be modeled by the
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following ASP rules:

ROUI(anlazl) — R(anlaZl)7 R(an2722)a Yl #YZa NROUI(an2722) (1)
Rin(X7YaZ) — R(an7 2)7 NROUI(X7YaZ) (2)

where [1) detects inconsistent pairs of tuples and guespésstto remove in order to restore
consistency, whild{2) defines the repaired relation asghefsuples that have not been removed.
The first and third arguments 8 can thus be retrieved by means of the following query rule:

whose consistent answers are tuples of the fgxrg) such thatQ(x,z) belongs to all stable
models. In this case the answefi4,1),(2,2),(2 3)}.

Cautious reasoning has been implemented by two ASP sohargly DLV (Leone et al. 2006)
and clasp.(Gebser et al. 2012a), as a variant of their stadidielsearch algorithms. In a nutshell,
DLV and clasp compute stable models of a given program by mega two-phase process. The
first phase is actually implemented by a possibly exterrethimtiator producing a ground ver-
sion of the input program. The ground program is then prazkby the second phase, which
actually searches for stable models. Cautious reasonimbeabtained by reiterating the stable
model search step according to a specific solving stratdgy procedure implemented by DLV
searches for stable models and computes their interseatiooh eventually results in the set of
cautious consequences of the input program. At each stéye @bimputation, the intersection of
the identified stable models represents an overestimate gbiution, which however is not pro-
vided as output by DLV. The procedure implemented by claginislar, but the overestimate is
outputted and used to further constrain the computatiofadi) the overestimate is considered a
constraint of the logic program, so that the next computalstmodel is guaranteed to improve
the current overestimate.

It is important to note that cautious reasoning is a resogeceanding task, which is often not
affordable to complete in reasonable time. As a matter a@f fathese cases current ASP solvers
do not produce any sound cautious consequence, as alsodrestimate produced by clasp can
only guarantee that some atoms do not belong to the solutiginteresting to observe that
query answering is addressed differently in other logiggpronming languages. For example,
Prolog queries having infinitely many answers are commontatige presence of uninterpreted
function symbols. Prolog systems are thus designed to peodnderestimates of the complete,
possibly infinite solution, which actually represent sowamgwers to the input query. In fact,
underestimates are useful in practice, especially in tse<an which waiting for termination is
not affordable, and this may be the case even if terminasignaranteed. It is thus natural to ask
whether underestimates can be computed also in the coritagi

The paper provides insights in this respect, showing thderestimates can actually be ob-
tained by improving algorithms employed by ASP systemsdapéing to ASP théerative con-
sistency testinglgorithm for computing backbones of propositional thes[Marques-Silva et al. 2010).
The paper also introduces a modified version of this lastralgo that takes advantage of restarts
and heuristic values for faster improvement of underegémaAn interesting aspect of the al-
gorithms analyzed in this paper is that underestimatesraduped during the computation of
the complete solution. The computation can thus be stopitleel @vhen a sufficient number of
cautious consequences have been produced, or when no ngeramproduced after a specified
amount of time. Such algorithms are referred to as anytintledriterature. The empirical com-
parison of these algorithms highlights that they could balmioed in a parallel implementation
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to converge faster to the complete solution. Actually, sopaf-concept implementation of the
parallel approach is also presented in the paper to confiswtmjecture.

2 Preliminaries

Syntax and semantics of propositional ASP programs ardhbirgroduced in this section. A
quick overview of the main steps of stable model search i @ported in order to provide
the reader with essential knowledge on a process that ishugeatbt substantially modified by
the algorithms analyzed in this paper. (For complementatrnpductory material on ASP see
Gelfond and Lifschitz 1991; Baral 2003; Gelfond and Kahl 201

SyntaxA normal logic program consists of a set of rules of the follagvform:
o < a1,---,am,~am1;---,~an 4)

where eaclay (i =0,...,n)is apropositional atom in a fixed, countable.gét~ denotesiegation
as failure andn > m> 0. For a ruler of the form [4), atonay is calledheadof r, denotedH (r);
conjunctionay, ..., a8m,~am1,--.,~an iSs namedoodyof r; sets{ay,...,am} and{am1,...,an}
are denote®* (r) andB (r), respectively. Aconstraintis a rule of the form{(4) such thag = 1,
where l is a fixed atom ing7.

SemanticsAn interpretation is a subset of7 \ {_L}. | is a model of a rule, denoted =, if
H(r) € | wheneveB™(r) C 1 andB~(r)Nl = 0. Itis a model of a program, denoted = P, if it
is a model of all rules if*. The definition of stable model is based on a notion of progedunct
(Gelfond and Lifschitz 1991): LeP be a normal logic program, aridan interpretation. The
reduct ofP w.r.t.1, denoted®, is obtained fronP by deleting each rulesuch thaB=(r)NI #0,
and removing negated atoms in the remaining rules. An ingémponl is a stable model o if

| |= P! and there is nd C | such thatl = P'. Let SM(P) denote the set of stable modelshf
If SM(P) # 0 thenP is coherent. An atoma € &/ is a cautious consequence of a progiRiih a
belongs to all stable models Bf The set of cautious consequence®a$ denotedCC(P).

Example 1

The following is a (ground) program equivalent to the oneorégd in Sectionll:

Roul(la 1’ 1) « NROUI(]-’ 2’ 1); Rin(17 17 1) «— NRout(L 17 1); Q(la 1) « Rin(17 1 1) ( 727 2) )
Roul(la 2’ 1) « NROUI(]-’ 1’ 1); Rin(17 27 1) «— NRout(L 27 1); Q( 1) « Rin(172 1) ( 27 3) )
Rou(3,2,2) + ~Rout(3,3,3); Rin(3,2,2) + ~Roul(3,2,2); Q(3,2) + Rin(3,2,2); Q(2,2) +;
Roul(sa 3’ 3) « NROUI(?” 2’ 2); Rin(37 37 3) «— NRout(37 37 3); Q( 3) « Rin(373 3) ( ) )

The program above has four stable models:

)

1' | U{Rout(L 17 1) ROUI(3 2 2)1 Rln(l 2 1)1 Rin(3a 31 3)1 Q(373)}!
2' | U{Rout(L 27 1) t(3 21 2)1 Rln(l 1 1)1 Rin(3a 31 3)1 Q(373)}!
3' | U{ROUI(:L 17 1) ROUI(3 3 3)1 Rln(l 2 1)1 Rin(3a 21 2)1 Q(37 2)}!
4.1 U{Rout(L 27 1) Rout(?’ 3 3)7 Rm(l 1 1)7 Rin(?’a 27 2)7 Q(37 2)}
wherel = {Rin(2,2,2), Rin(2,2,3),Q(1,1),Q(2,2), Q(2,3)} is the set of cautious consequences.

Stable model searclGGiven a normal ASP program, its stable models can be computed by
means of an algorithm similar to the DPLL backtracking skaigorithm [[Davis et al. 1962)
adopted by SAT solvers. In this algorithm, atoms are astextiaith a truth value among true,
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false and undefined. Moreover, atoms are associated withrsegative integer callddvel Ac-
tually, the backtracking search is usually precedesiimplificationtechnique< (Eén and Biere 2005).
Simplifications include polynomial time algorithms thatifientify atoms whose truth value is
deterministically implied by the input program, (ii) stggthen and remove rules, and (iii) elimi-
nate atoms by means of rule rewriting. Then, the nondetéstidisearch starts choosibganch-
ing atomsaccording to some heuristic, propagating consequencésé tchoices until either a
stable model is found, or a conflict is detected. The leved@ated with an atoma is the depth
of the search tree in whichhas been either chosen or determined, where atoms assigiigd b
have level 0. The propagation step is polynomial, and cpmeds to unit propagation in SAT
solvers. When a conflict is found, previous choices and tteisequences are unrolled until con-
sistency is restored (backjumping; Gaschnig 1979). Modelvers analyze conflicts in order to
learn constraints that are implicit in the original progrand inhibit future explorations of the
same (conflictual) branch of the search tree. This learrgm corresponds to clause learning in
SAT (Zhang et al. 2001), and is usually complemented wittrisa techniques that control the
number of learned constraints, and possibly restart thepotetion in order to explore different
branches of the search tree. Restart policies are basecdeoifisgequences of thresholds that
guarantee termination of the algorithm (Gomes et al. 1988ylet al. 19983).

3 Computation of Cautious Consequences

Several strategies for computing cautious consequencesgifen program are reported in
this section. Some of these strategies aim at solving thblgmo producing overestimates of
the solution, which are improved and eventually result ia et of cautious consequences
of the input program. Among them are the algorithms implet@eiy the ASP solvers DLV
(Alviano et al. 2011) and clasp_(Gebser et al. 2012a), resede called enumeration of mod-
elsandoverestimate reductioim the following. Other strategies can in addition producersl
answers during the computation of the complete solutions {providing underestimates also
when termination is not affordable in reasonable time. Ohthese strategies igerative co-
herence testingan adaptation of an algorithm computing backbones of mitipoal formulas
(Marques-Silva et al. 2010). To the best of our knowledgeymewious attempt to bring such an
algorithm in ASP is reported in the literature. A variant loistalgorithm, namelyterative par-
tial coherence testings also introduced here. Finally, a strategy for obtainimglerestimates
from enumeration of models and overestimate reductionesegnted, which can also be used
to improve the other algorithms. More in detail, the alguris considered here have a common
skeleton, reported as Algorithith 1. They receive as inpubggmP and a set of atom® rep-
resenting answer candidates of a query, and produce astittper the largest subset Qfthat
only contains cautious consequencedpin caseP is coherent, orl. whenP is incoherent.
Initially, the underestimate) and the overestimat® are set to 0 an€), respectively (line 1).

A coherence test d? is then performed (lines 2—4) by calling function CompugditModel,
which actually implements stable model search as desciib8dctior 2. (To simplify the pre-
sentation, branching atoms are assumed to be assignedstérédh value.) The first argument
of the function is a prograr®. The second argument is a set of learned constraints, which i
initially empty. The third argument is a s€tof atoms used to restrict branching atoms of level
1. The function returns eithérin case a stable modebf P is found, orL otherwise. Note that
L is returned not only wheR is incoherent, but in general when each stable mbdtlef P is
such thaC C M. Similarly, whenl is returned, stable modEkatisfiesC Z I. WhenC = <7, the
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Algorithm 1: CautiousReasoning

Input :aprogranP and a set of atom®@
Output: atoms inQ that are cautious consequence$pbr |

1U:=0; 0:=Q; L:=0;

2 | := ComputeStableModé¥ L, «7);
3 if | = L then

4 L return L;

5 O:=0nl;

6 whileU #Odo
L // Enumeration0fModels or other procedure

7 returnU;

Procedure EnumerationOfModels (A1) ProcedureOverestimateReduction  (A2)

1 P:=PuU Constraint(); 1 P:=PuU ConstraintQ);
2 | := ComputeStableModd¥ L, .7); 2 | := ComputeStableModé¥ L, .<7);
3 if I = L then 3 if | = L then
a | U:=0; a | U:=0;
5 else 5 else
6 P :=P\ ConstraintQ);
6 LO::OHI; 7 LO::OHI;

Procedure IterativeCoherenceTesting (A3) Procedure lterativePartialCoherTest (A4)

1 a:=0neOfO\U); 1 a:=0neOfO\U);

2 | := ComputeStableModd¥ L, {a}); 2 | := ComputeUpToNextRestaR(L, {a});
3 if I = Lthen 3 if I = L then

a | U:=Uu{a}h a | U:=Uu{a}h

5 else 5 elseif | # RESTARThen

6 | 0:=0nl; 6 | O0:=0nl;

Function ComputeStableMod&]P: program, L: learned constraints, C: set of atoms)

Global variables: the underestimatd
1 repeat
2 U:=UU{ac Q|LcontainsL « ~a};
3 | := ComputeUpToNextRestaR(L, OneOfC));
4 until | # RESTART
5 returnl;

conditionC ¢ | is trivially satisfied becauseC < \ { L} by definition of interpretation. When
C = {a} for some atona, instead, this function results in an incremental stabld@hsearch in
whichais forced to be false (Eén and Sérensson 2003b).

The first stable model found improves the overestimate @neit this point, estimates are
improved according to different strategies until they ageat (line 6). EnumerationOfModels
adds toP a constraint that eliminates the last stable model fountk (fi). In fact, function
Constraint{ay, ...,an}) returns a singleton of the forfil <+ a,...,a,}. The algorithm then
searches for a new stable model (line 2) to improve the otierate (line 6). If no new stable
model exists, the underestimate is set equal to the overa#i(lines 3—4), thus terminating the
computation. OverestimateReduction is similar, but thest@int added is obtained from the
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current overestimate (line 1). In this way, when a new staiméel is found, an improvement of
the overestimate is guaranteed, and the constraint caribeeé accordingly (lines 6 and 1).

The strategy implemented by IterativeCoherenceTestingatso improve the underestimate
many times during its computation. In fact, one cautioussegmence candidate is selected by
calling function OneOf (line 1). This candidate is then doaised to be false and a stable model
is searched (line 2). If none is found then the underesticetebe increased (lines 3—4). Other-
wise, the overestimate can be improved (lines 5-6). ItexBtrtialCoherenceTesting is similar,
but forces falsity of a candidate only up to the next restare$ 1-2). In fact, ComputeStable-
Model is replaced by ComputeUpToNextRestart, a functian searches for a stable model but
also terminates when a restart occurs, in which case itngtie valueRESTARTIn this way,
the algorithm can select the most promising candidate aéteh restart.

Variants of these four algorithms can be obtained by reptaftinction ComputeStableModel
with function ComputeStableModeglwhich actually implements stable model search, but also
improves the current underestimate after each restaetZlin

Theorem 1

LetP be a program an@ C .«7 a set of atoms. CautiousReasonipgl) terminates after finitely
many steps and returr@NCC(P) if P is coherent; otherwise, it returns. Moreover,U C
QNCC(P) C Oholds at each step of computation. The claim holds for alaves of Algorithm 1.

4 Implementation and Experiment

We implemented the algorithms introduced in the previoetiee in order to analyze their per-
formances. Details on the implementation, on the testedtiaarks, and on the obtained results
are reported in this section.

4.1 Implementation

Algorithms described in Sectidn 3 are implemented in an exmntal branch of the ASP solver
WASP (Alviano et al. 2013), distributed under the Apache [&6nse. Source codes can be
downloaded from the brancfueriesof the public GIT repositorittps://github.com/alviano/wasp.git

WASP implements ASP solving with backjumping (Gaschnig9)9léarning|(Zhang et al. 2001)
and restarts (Gomes et al. 1998). More in detail, the brafidASP used in this experiment
implements support propagation via program complefioarfer and Maratea 2004), branching
heuristics and deletion strategy inspired by MiniSAT (Bé S6rensson 2003a), and simplifi-
cations via subsumption and atom elimination techniqueteasribed by Eén and Biere (2005).
(Actually, atom elimination, called variable eliminationSAT, is not applied on atoms involved
in queries.) In the followingA2, A3, A4 will denote WASP running Algorithm 1 with proce-
dures OverestimateReduction, IterativeCoherence Tgstird IterativePartialCoherenceTesting,
respectivelyA2*, A3*, A4* will instead denote the variants using procedure Compat#&todei.
Procedure EnumerationOfModels is not considered in théysisasince it is significantly out-
performed by the other strategies in general.

We also implemented a proof-of-concept prototype of a pelraystem, in the following re-
ferred to agnulti. It consists of a master controller implemented in Pythat tdoordinates the
execution and the exchange of information of two instande&/&SP. In particular, estimates
and learned constraints of size at most two are exchangedr kexperimentnulti runsA2* and
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A4*, butAd* in this case does not perform the first coherence check @nésf Algorithm 1) in
order to avoid a redundant computation. Other combinatidadgorithms are possible, but not
considered in our analysis. Results foulti average real time over three runs.

4.2 Benchmark settings

We compared the implemented algorithms on three benchmaok®sponding to different ap-
plications of cautious reasoning, briefly described below.

Multi-Context Systems Querying (MC8)ulti-context systemd (Brewka and Eiter 2007) are a
formalism for interlinking heterogeneous knowledge basa#led contexts, using bridge rules
that model the flow of information among contexts. Testcasahis benchmark are roughly
those of the third ASP competition (Calimeri et al. 2014) eneheach context is modeled by a
normal logic program under the stable model semantics. \W&ky made the testcases harder
by requiring the computation of all pairs of the fofma) such that atona is true in context,
while in the original testcases a single pair of that form imaslved in the query. The benchmark
contains 53 of the 73 instances submitted to the third ASPpetition. We in fact excluded
instances corresponding to incoherent theories, whictsalkeed by the first coherence test in
around 6 seconds on the average, and always in less thandidsec

Consistent Query Answering (CQA3 a well-known application of ASR _(Arenas et al. 2003;

Manna et al. 2013) described in Secfidn 1. We consideredghetmark proposed by Kolaitis et al. (2013),
and in particular quer@3 encoded according to the rewritings/by Manna ét al.. The lrmack

contains 13 randomly-generated databases of increagieagamging from 1000 to 7000 tuples

per relation. Each relation contains around 30% of primasy\Kolations.

SAT Backbones (SBBjhe backbone of a propositional formupais the set of literals that are
true in all models ofy. Wheng¢ is a set of clauses over variables. .., v, (n > 1), satisfiability
of ¢ can be modeled in ASP by rulés«— ~f; and f; «+ ~t; (i = 1,...,n), and introducing a
constraint for each clause . Backbone computation thus corresponds to the computation
cautious consequences of an ASP program. The benchmadin®80 industrial instances used
in the SAT Challenge 2012 (Jarvisalo et al. 2012).

The experiment was run on a Mac Pro equipped with two 3 GHZ Keen X5365 (quad
core) processors, with 4 MB of L2 cache and 16 GB of RAM, rugridebian Linux 7.3 (ker-
nel ver. 3.2.0-4-amd64). Binaries were generated with tN&J&++ compiler 4.7.3-4 shipped
by Debian. The parallel controller was interpreted by PgtB8d3.2. Time and memory limits
were set to 600 seconds and 8 GB, respectively. Performaasengasured using the tool Run-
Lim (http://fmv.jku.at/runlin}. All instances were grounded by gringo 3.0.5 (Gebser éx(dl1),
whose execution time is not included in our analysis becauséocus is on propositional pro-
grams. We however report that the grounding time was oftentlean 1 second, with a peak of
around 5 seconds for the largest 10 instances of MCS.

4.3 Discussion of the results

The performance of the algorithms for computing cautiouseguences introduced in Sec{ion 3
can be studied from several perspectives. On the one handiaweto know which solution
performs better and in which cases. On the other hand, watmested in analyzing the rate at
which each algorithm produces sound answers.
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mmmm Simplifications == First coherence test
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(a) Sound answers (b) Candidates reduction

Fig. 1. Sound answers and candidates reduction from sicgtiifins and from first coherence
test

Overall performanceTable[1 summarizes the number of solved instances and @&/araging
times. In particular, the first two columns report the totainber of instances (#) and the num-
ber of instances that are solved by all solverg J#respectively; the remaining columns report
the number of solved instances within the time-out (sdhg, average running times on solved
instances (t) and on instances solved by all algorithgad.(€omparing the single-process ap-
proaches, we note tha#* solves more instances and is also the fastest on averageinsthnces
solved by all algorithms, even if the performanceé’8f is comparableAd* andA3* outperform
A2* in MCS, and are faster also in CQA. On the other ha#i,performs well in SBB, solving
one instance more thadB* andA4*, and being faster on the average. Note that, as expected, if
one considers both the number of solved instances and mitime, A2, A3, andA4 perform as
A2*, A3*, andA4*, respectively. Concerningulti, it provides in general the best performance.

Detailed analysisAn important feature of the algorithms analyzed in this pap¢he ability to
produce both sound answers and overestimates during theutation. Figur&]l reports, for each
benchmark, the average percentage of (a) sound answensceobdnd (b) candidates reduction
within the initial steps of the computation. In particulare plot the effects of simplifications
and of the first coherence test. The improvement of the otierate reported in Figuie 1(b) is
significant. The first steps of the computation are able tacedhe number of candidates of at
least 51% (in MCS) up to around 75% (in CQA). Simplificatioms already very effective in
CQA, where candidates are reduced of around 45%. It is irapbtd note that the reduction of
candidates at this stage applies to all algorithms, whilmd@nswers are produced only by any-
time algorithms. This is effective in practice, as shownigure/1(a)). Indeed, anytime algorithms
print from 40% (in SBB) to 90% (in CQA) of sound answers alneatter simplifications, which
requires few seconds on the average. The first coherendartisr improves the underestimate,
which ranges from 52% (in MCS) to around 91% (in CQA). Howewsr observe that the first
coherence test may require some time (25s on the averagdfiristances, with a peak of
193s), which motivated the starred variants. In fact, sthuariants can produce underestimates
at each restart, not only when a coherence test is compketaahlly, A2*, A3* andA4* improve
progressively the underestimate up to around an addit@or#l before the first stable model is
found, which is desirable on hard instances.

Table 1. Average running time and number of solved instances

A2* A3* A4* multi
# #y|sol. t tal ‘&)L t tan |sol. t tay |sol. t tan
MCS 53 23|23 181.9 181.939 254.1 102.640 261.6 102.440 1779 69.7
CQA 13 12|12 118.8 118.813 895 62113 89.2 61.413 137.2 51.0
SBB 20 14|15 534 41914 65.7 657914 521 52117 988 51.2
Total 86 49 |50 1180 1142| 66 1364 76.8]67 1343 721|70 1380 573
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Fig. 2. Overestimate and underestimate improvement desiegution

In order to further confirm the above observations, we amaigzaletail the behavior of the
algorithms after simplifications. In particular, Figlide @ts both the number of sound answers
(line below) and the number of candidate answers (line gbover time. In particular, Fig-
ure[2(Db) is devoted to the starred algorithms on an instahtG$, whereas Figure 2(a) plots
the behavior of the basic algorithms on the same instancs, ftie note thaA3 andA4 perform
similarly and outperforn®2, which timed out. NotablyA2* can produce the underestimate (see
the bottom line in Figurg 2(p)) whereAg can only print the overestimate (there is no underesti-
mate line forA2 in Figurg 2(d)). In generah3 andA4 are able to improve their estimates better
thanA2. Note that there is a point in the plots for each improveréestimates, and lines are
very dense on MCS instances. This confirms that MCS instammes a huge number of stable
models that can be rapidly computed. We observed an analdgghavior for CQA. Plots for
SBB instances on Figufe 2[c) and Fig[ire P(d) have, instgedss lines, confirming that stable
model search is harder for this benchmark. Neverthelessttired algorithms can rapidly pro-
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Fig. 3. Sound answers and candidates reduction after $iogpion

duce most of the sound answers. A deeper look at Figuré 2¢gjestis thafA2 is much faster
than bothA3 andA4 in solving this instance. In fact, it improves the ovemastie faster than any
other algorithm. Figurg 2() and Figdre 2(f) focusmnlti and its components. In Figure 2(f),
multi is faster and improves estimates better tA2h andA4*. In contrastmulti is slower than
A2* in Figure[2(€). A possible cause is the information exchargeng processes that modifies
the program handled b§2* with constraints produced b43*, which in this case results in an
harder instance also for th&@* process. Note thahulti has a non-deterministic behavior due to
its parallel nature. Indeed, information exchanged mayiterdnt in different runs.

More insights on the general behavior of the algorithms artbn-deterministic part of the
computation can be obtained by looking at Fidure 3. In paldic Figuré 3(3) reports the average
percentage of sound answers produafdr the simplification stepwhile candidates reduction
is shown on Figurg 3(bA3 is not shown in the figure because it performs similarl#36in this
perspective. The same holds 8t andA4*. We point out that all bars refer to sound answers and
candidates remaining after simplifications, alsoA@r As a general observatiof2 prints sound
answers only at the end of the computation, while other &lyos are anytime. Consequently,
A2 does not provide sound answers as soon as the other afgsyriéls shown on Figufe 3|a).
Basically,A2 can print something in the first 10s only for easy instangbfie A2* improves a lot
in this respect. For exampla2* outputs around 14% of sound answers already in the first 10s of
computation in MCS, whilé&2 produces no output. Nonethelea8; andA4* perform generally
better tharA2*. The difference betweefi3* andA4* emerges only in SBB, where finding stable
models is harder. In particular, by looking at Figre Bfe); produces more sound answers than
A3*, whereasA3* is more effective in reducing the number of candidates one{@(b). Note
that A4* may change the candidate to test at each restart, and in plerimentation it selects
the one with the largest value of activity (which very roughieans the one that was involved
more often in conflicts). On the other har&B* insists on the same candidate until the end of
a stable model search. As a consequeAdé,has more chances to find inconsistent branches
and, therefore, to improve the underestimate. On the cgn#&* has more chances to find a
stable model and, thus, to improve the overestimate. Tlgjgests thaf4* should be preferred,
since it outputs sound answers more frequently, and alsausec as discussed abo¥d;" is
faster thanA3* on the average (see Taljle 1). Concernimgti, we observe that it outperforms
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Fig. 4. Time performance of algorithms for computing undérsates

the alternatives on CQA and SBB, while it is less effectivgpimting sound answers on the
average for SBB instances. This is due to the presence oftherdm this benchmark that spoils
the average. That outlier can be explained by the alreadysied non-deterministic behavior
of multi. Analogous considerations can be done for the reductioamdidates on Figufe 3(b).

Another perspective on the behavior of the various algoritlttan be obtained by looking at
Figure[4. Here are reported, for each benchmark, two varizfrthe classical cactus plot. Recall
that, in a cactus plot, the x-axis reports the number of irsta that are solved within the time
reported on the y-axis. Here we consider variants where®x-gxis is the number of instances
for which an algorithm printed 25% (resp. 100%) of sound arswithin the time reported on
the y-axis. We point out that anytime solvers can print 100%oand answers before the timeout,
even if termination is not reached within the allotted tirReyure[4 confirms thaf2 is slower
than anytime algorithms in printing sound answers. It isli@sting to note that the anytird@*
improves sensiblA2 in all benchmarks, especially at the beginning of the cdatmn. We also
observe thadd* is slightly preferable toA3*, and multi is the fastest solution. Note that the
differences are more evident in the plots on the left that$am the first 25% of sound answers.
Finally, we confirm thaA2* is the fastest single-process implementation in SBB. Nwaless,
A3* andA4* print more sound answers also in non-terminating instances

To sum up, anytime algorithms are convenient in practiceabgse they determine several
sound answers already in the first steps of computation. fticpkar, the starred variants are
preferable A4* leading the group) because they provide sound answers asasquossible and
are thus effective also in non-terminating instances.|inhe parallel system combining4*
with A2* is the best variant overall.

5 Related Work

The computation of cautious consequences in ASP is a feavaikable in two solvers, namely
DLV (Maratea et al. 2008) and clasp (Gebser et al. 2012a) aldwrithm implemented by DLV
is enumeration of models, while clasp implements overeggmeduction. Our implementation
differs from these solvers especially with respect to thpotproduced during the computation
of cautious consequences. In fact, DLV does not print anypnfof estimation during the com-
putation, and clasp only prints overestimates. Our implaatén, instead, is anytime and thus
prints both underestimates and overestimates during timpetation. Underestimates provide
sound answers also when termination is not affordable isoregble time, and are thus of practi-
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cal importance for hard problems. It is interesting to obs¢hat among the strategies supported
by our implementation there i&2*, an anytime variant of the algorithm used by clasp that per-
formed very well on two of our three benchmarks. We also nweDLV and clasp feature brave
reasoning, which is not currently supported by our impletagon.

Clasp, being a parallel ASP solver (Gebser et al. 2012k), alpports the parallel computa-
tion of cautious consequences by means of the overestimdetion algorithm. Our proposal
is different, as it is based on the combination of two diffé¢ralgorithms, namely iterative par-
tial coherence testing and overestimate reduction, faraied) both estimates at the same time.
However, we observe that our parallel implementation iscmfaof-concept prototype obtained
by combining two instances of WASP (properly modified to shelrort learned constraints and
answer estimates) controlled by a Python script. It is ael/i® show the benefits of combining
two different algorithms, while a more efficient implemetida is subject of future work.

The computation of cautious consequences of a ground progreelated to the problem of
backbone computations of propositional formulas (Mareidg et al. 2010; Slaney and Walsh 2001).
In fact, the backbone of a propositional formglas the set of literals that are true in all models
of ¢. Several algorithms for computing backbones of propasitidormulas are based on vari-
ants of the iterative consistency testing algorithm (MasySilva et al. 2010; Janota et al. 2014),
which essentially corresponds to the iterative coheregsténg algorithm analyzed in this paper.
Backbone search algorithms usually feature additionaltiegies for removing candidates to be
tested, such amplicant reductiorandcore-based chunkinfRavi and Somenzi 2004). Most of
the implicant reduction techniques are not applicable tanad ASP programs because of the
intrinsic minimality of stable models. For example, backbgearch algorithms can reduce their
overestimate by removing all unassigned variables wheradig) model is found; in our set-
ting, ASP solvers always terminate with a complete assignin@@ore-based chunking, instead,
requires a portfolio of algorithms$ (Janota et al. 2014) idesrto be effective, which is beyond
the scope of this paper.

Note that all considered algorithms work on ground progra@mnbinations with query op-
timization techniques such as magic sets (Greco|2003; Advéand Faber 2011) are possible but
not the focus of the paper.

6 Conclusion

Several algorithms for computing cautious consequencASBfprograms were analyzed in this
paper. At the time of this writing, ASP solvers do not implemhanytime algorithms, which
means that computation must terminate in order to olgamecautious consequences. On the
other hand, the computation of cautious consequencesiiaisimthe computation of backbones
of propositional theories, for which anytime algorithmsedast. We adapted one of these algo-
rithms to cautious reasoning, showing that underestintatede effectively obtained in reason-
able time also for hard instances. Moreover, we introducgelreeral strategy to obtain anytime
variants of existing algorithms such as those implemenyeldlly/ and clasp. All algorithms as
well as a proof-of-concept parallel implementation werplemented in the solver WASP. Our
empirical evaluation highlights that sound answers areprdable within the first seconds of
computation in many cases. Moreover, the performance opé#nallel system is encouraging
and leaves space for future work on this subject.
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Appendix A Proof of Theorem[dl

The proof is split into several lemmas usiRgL;,U;,O;,l; to denote the content of variables
P,L,U,O,I at sted of computationi(> 0). More in detail, in Lemmal1 we will first show that un-
derestimates form an increasing sequence and, on the ggivarestimates form a decreasing
sequence. Then, in Lemina 2 we will prove properties of stmioléels of programg UL; (i > 0).
Correctness of estimates will be shown in Lemindd 3—4, amditetion of the algorithms in
Lemmdb. Finally, in Lemmia 6 we will extend the proof to vatgnsing ComputeStableModel

Lemmal
U; C U1 andO; 1 € G C Qfor eachi > 0.
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Proof

VariableU is initially empty. EnumerationOfModels and OverestinReeuction reassigd only
once. lterativeCoherenceTesting and UnderestimateRedwdways enlarge the set stored.n
by means of set union (line 4). Concerning variablet is initially equal toQ and restricted at
each reassignment by means of set intersection (line 7 ferédtimateReduction; line 6 for the
other procedures). [J

Lemma 2
SM(P+1ULit1) € SM(R UL;) for eachi > 0. For lterativeCoherenceTesting and IterativePar-
tialCoherenceTesting we also ha®®|(P1 ULi;+1) = SM(R UL;) for eachi > 0.

Proof

VariableP is reassigned only by EnumerationOfModels and OverestiReduction, where con-
straints are added to the previous program. Constraintongnremove stable models (as a
consequence of the Splitting Set Theorem by Lifschitz amth@ul1994). On the other hand,
learned constraints stored in variablare implicit in the program stored by variatiteand thus
cannot change its semantics[]

Lemma 3
O D QNCC(P) for eachi > 0.

Proof

The base case is true becaBge= Q. Assume the claim is true for sonmie> 0 and consider
Oi11 = OiNliy1, whereli; 1 € SM(R UL;). By i applications of Lemma]2, we obtaln ; €
SM(PyULyp), i.e.,li+1 € SM(P). We can thus concludee O; \ O;, 1 impliesa ¢ CC(P), and we
are done. OJ

Lemma 4
Ui € QNCC(P) for eachi > 0.

Proof
The base case is true becallge= 0. Assume the claim is true for some 0 and consided; ;.
If Ui, 1 = U then the claim is true. Otherwise, we distinguish two cases.

For IterativeCoherenceTesting and IterativePartial Gamee TestindJ; .1 = U;U{a} for some
a € O;\ Ui. Moreover, there is nd € SM(R UL;) such thata ¢ M becausd; ;1 = L. From
Lemmd2, we can conclude that there isMa SM(P) such thata ¢ M, i.e.,a € CC(P). Since
a€ 0;\U;, we havea € O; and thusa € Q by Lemmd1. Thereforg € QNCC(P) and we are
done.

For EnumerationOfModels and OverestimateReductipn; = O; and the algorithm termi-
nates. Exactlyi + 1 constraints were added ® one for each stable model & found, i.e.,
l1,...,li. Moreover);;1 = L holds. Assume by contradiction that therais O; \ CC(P). Hence,
there isM € SM(P) such thata ¢ M. Moreoverac I (j = 1,...,i) and thusM is a model of
all constraints added at line 1. Consequeniilyis a stable model of, U L;, which contradicts
liqi=1. O
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Lemma 5
Algorithm[ terminates after finitely many steps.

Proof

When EnumerationOfModels is used, termination is guasghbecaus® has a finite number
of stable models. OverestimateReduction eitherdetgual toO, or reduce®, which initially

is equal toQ, a finite set. IterativeCoherenceTesting either increbises reduce®, and thus
terminates becau<@ is finite andU; C O; holds for each > 0 by Lemmag¢3 andl 4. Termina-
tion of IterativePartialCoherenceTesting is guarantéeestarts are properly delayed during the
computation, as it must be done already for guaranteeingnetion of stable model search [

Lemma 6
Underestimates produced by ComputeStableMoala sound.

Proof
Follows by the fact that contains constraints that are implicit in the program stdrg variable
P. O
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