

Edinburgh Research Explorer

Checking termination of bottom-up evaluation of logic programs
with function symbols

Citation for published version:
Calautti, M, Greco, S, Spezzano, F & Trubitsyna, I 2015, 'Checking termination of bottom-up evaluation of
logic programs with function symbols', Theory and Practice of Logic Programming, vol. 15, no. 6, pp.
854–889. https://doi.org/10.1017/S1471068414000623

Digital Object Identifier (DOI):
10.1017/S1471068414000623

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Theory and Practice of Logic Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1017/S1471068414000623
https://doi.org/10.1017/S1471068414000623
https://www.research.ed.ac.uk/en/publications/32025134-db98-41da-ac24-c6145d43b850

TLP 00 (0): 1–36, 2014. C© Cambridge University Press 2014

doi:10.1017/S1471068414000623

1

Checking termination of bottom-up evaluation1

of logic programs with function symbols�2

MARCO CALAUTTI, SERGIO GRECO, FRANCESCA SPEZZANO and Q13
IRINA TRUBITSYNA4

DIMES, Università della Calabria, 87036 Rende (CS), Italy5
(e-mail: {calautti,greco,fspezzano,trubitsyna}@dimes.unical.it)6

submitted 7 December 2012; revised 26 March 2014; accepted 29 June 20147

Abstract8

Recently, there has been an increasing interest in the bottom-up evaluation of the semantics9
of logic programs with complex terms. The presence of function symbols in the program10
may render the ground instantiation infinite, and finiteness of models and termination of the11
evaluation procedure, in the general case, are not guaranteed anymore. Since the program12
termination problem is undecidable in the general case, several decidable criteria (called13
program termination criteria) have been recently proposed. However, current conditions are14
not able to identify even simple programs, whose bottom-up execution always terminates.15
The paper introduces new decidable criteria for checking termination of logic programs with16
function symbols under bottom-up evaluation, by deeply analyzing the program structure.17
First, we analyze the propagation of complex terms among arguments by means of the18
extended version of the argument graph called propagation graph. The resulting criterion,19
called Γ-acyclicity, generalizes most of the decidable criteria proposed so far. Next, we study20
how rules may activate each other and define a more powerful criterion, called safety. This21
criterion uses the so-called safety function able to analyze how rules may activate each other22
and how the presence of some arguments in a rule limits its activation. We also study the23
application of the proposed criteria to bound queries and show that the safety criterion is24
well-suited to identify relevant classes of programs and bound queries. Finally, we propose a25
hierarchy of classes of terminating programs, called k-safety, where the k-safe class strictly26
includes the (k-1)-safe class.27

28

KEYWORDS: Logic programming with function symbols, bottom-up execution, program29
termination, stable models30

1 Introduction31

Recently, there has been an increasing interest in the bottom-up evaluation of the32

semantics of logic programs with complex terms. Although logic languages under33

stable model semantics have enough expressive power to express problems in the34

second level of the polynomial hierarchy, in some cases function symbols make35

� This work refines and extends results from the conference paper (Greco et al. 2012).

2 M. Calautti et al.

languages compact and more understandable. For instance, several problems can be36

naturally expressed using list and set constructors, and arithmetic operators. The37

presence of function symbols in the program may render the ground instantiation38

infinite, and finiteness of models and termination of the evaluation procedure, in the39

general case, are not guaranteed anymore. Since the program termination problem40

is undecidable in the general case, several decidable sufficient conditions (called41

program termination criteria) have been recently proposed.42

The program termination problem has received a significant attention since the43

beginning of logic programming and deductive databases (Krishnamurthy et al.44

1996) and has recently received an increasing interest. A considerable body of work45

has been done on termination of logic programs under top-down evaluation (Schreye46

and Decorte 1994; Marchiori 1996; Ohlebusch 2001; Bonatti 2004; Codish et al.47

2005; Serebrenik and De Schreye 2005; Bruynooghe et al. 2007; Nguyen et al. 2007;48

Baselice et al. 2009; Schneider-Kamp et al. 2009a; Schneider-Kamp et al. 2009b;49

Nishida and Vidal 2010; Schneider-Kamp et al. 2010; Ströder et al. 2010; Voets50

and Schreye 2010; Brockschmidt et al. 2012; Liang and Kifer 2013). In this context,51

the class of finitary programs, allowing decidable (ground) query computation using52

a top-down evaluation, has been proposed in (Bonatti 2004; Baselice et al. 2009).53

Moreover, there are other research areas, such as these of term rewriting (Zantema54

1995; Ferreira and Zantema 1996; Arts and Giesl 2000; Sternagel and Middeldorp55

2008; Endrullis et al. 2008) and chase termination (Fagin et al. 2005; Marnette 2009;56

Meier et al. 2009; Greco and Spezzano 2010; Greco et al. 2011), whose results can57

be of interest to the logic program termination context.58

In this paper, we consider logic programs with function symbols under the stable59

model semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991) and thus,60

all the excellent works mentioned above cannot be straightforwardly applied to61

our setting. Indeed, the goal of top-down termination analysis is to detect, for a62

given program and query goal, sufficient conditions guaranteeing that the resolution63

algorithm terminates. On the other side, the aim of the bottom-up termination64

analysis is to guarantee the existence of an equivalent finite ground instantiation65

of the input program. Furthermore, as stated in (Schreye and Decorte 1994),66

even restricting our attention to the top-down approach, the termination of logic67

programs strictly depends on the selection and search rules used in the resolution68

algorithm. Considering the different aspects of term rewriting and termination69

of logic programs, we address readers to (Schreye and Decorte 1994) (pp. 204–70

207).71

In this framework, the class of finitely ground programs (FG) has been proposed72

in (Calimeri et al. 2008). The key property of this class is that stable models73

(answer sets) are computable as for each program P in this class, there exists74

a finite and computable subset of its instantiation (grounding), called intelligent75

instantiation, having precisely the same answer sets as P. Since the problem of76

deciding whether a program is in FG is not decidable, decidable subclasses, such as77

finite domain programs (Calimeri et al. 2008), ω-restricted programs (Syrjänen 2001),78

λ-restricted programs (Gebser et al. 2007b), and the most general one, argument-79

restricted programs (Lierler and Lifschitz 2009), have been proposed.80

Checking termination of the bottom-up evaluation of logic programs 3

Current techniques analyze how values are propagated among predicate arguments81

to detect whether a given argument is limited, i.e. whether the set of values which82

can be associated with the argument, also called active domain, is finite. However,83

these methods have limited capacity in comprehending that arguments are limited84

in the case where different function symbols appear in the recursive rules. Even the85

argument-restricted criterion, which is one the most general criteria, fails in such86

cases.87

Thus, we propose a new technique, called Γ-acyclicity, whose aim is to improve88

the argument-restricted criterion without changing the (polynomial) time complexity89

of the argument-restricted criterion. This technique makes use of the so-called90

propagation graph, that represents the propagation of values among arguments and91

the construction of complex terms during the program evaluation.92

Furthermore, since many practical programs are not recognized by current93

termination criteria, including the Γ-acyclicity criterion, we propose an even more94

general technique, called safety, which also analyzes how rules activate each other.95

The new technique allows us to recognize as terminating many classical programs,96

still guaranteeing polynomial time complexity.97

Example 198

Consider the following program P1 computing the length of a list stored in a fact99

of the form input(L):100

r0 : list(L) ← input(L).

r1 : list(L) ← list([X|L]).
r2 : count([], 0).

r3 : count([X|L], I + 1) ← list([X|L]), count(L, I).

where input is a base predicate defined by only one fact of the form101

input([a, b, ...]). ✷102

The safety technique, proposed in this paper, allows us to understand that P1 is103

finitely ground and, therefore, terminating under the bottom-up evaluation.104

Contribution.105

• We first refine the method proposed in (Lierler and Lifschitz 2009) by106

introducing the set of restricted arguments and we show that the complexity107

of finding such arguments is polynomial in the size of the given program.108

• We then introduce the class of Γ-acyclic programs, that strictly extends the109

class of argument-restricted programs. Its definition is based on a particular110

graph, called propagation graph, representing how complex terms in non-111

restricted arguments are created and used during the bottom-up evaluation.112

We also show that the complexity of checking whether a program is Γ-acyclic113

is polynomial in the size of the given program.114

• Next we introduce the safety function whose iterative application, starting115

from the set of Γ-acyclic arguments, allows us to derive a larger set of limited116

arguments, by analyzing how rules may be activated. In particular, we define117

the activation graph that represents how rules may activate each other and118

4 M. Calautti et al.

design conditions detecting rules whose activation cannot cause their head119

arguments to be non-limited.120

• Since new criteria are defined for normal logic programs without negation, we121

extend their application to the case of disjunctive logic programs with negative122

literals and show that the computation of stable models can be performed123

using current ASP systems, by a simple rewriting of the source program.124

• We propose the application of the new criteria to bound queries and show125

that the safety criterion is well suited to identify relevant classes of programs126

and bound queries.127

• As a further improvement, we introduce the notion of active paths of length128

k and show its applicability in the termination analysis. In particular, we129

generalize the safety criterion and show that the k-safety criteria define a130

hierarchy of terminating criteria for logic programs with function symbols.131

• Complexity results for the proposed techniques are also presented. More132

specifically, we show that the complexity of deciding whether a program P133

is Γ-acyclic or safe is polynomial in the size of P, whereas the complexity of134

deciding whether a program is k-safe, with k > 1 is exponential.135

A preliminary version of this paper has been presented at the 28th International136

Conference on Logic Programming (Greco et al. 2012). Although the concepts of137

Γ-acyclic program and safe program have been introduced in the conference paper,138

the definitions contained in the current version are different. Moreover, most of the139

theoretical results and all complexity results contained in this paper as well as the140

definition of k -safe program are new.141

Organization. The paper is organized as follows. Section 2 introduces basic notions142

on logic programming with function symbols. Section 3 presents the argument-143

restriction criterion. In Section 4 the propagation of complex terms among arguments144

is investigated and the class of Γ-acyclic programs is defined. Section 5 analyzes145

how rules activate each other and introduces the safety criterion. In Section 6146

the applicability of the safety criterion to (partially) ground queries is discussed.147

Section 7 presents further improvements extending the safety criterion. Finally, in148

Section 8 the application of termination criteria to general disjunctive programs149

with negated literals is presented.150

2 Logic Programs with Function symbols151

Syntax. We assume to have infinite sets of constants, variables, predicate symbols,152

and function symbols. Each predicate and function symbol g is associated with a153

fixed arity, denoted by ar(g), which is a non-negative integer for predicate symbols154

and a natural number for function symbols.155

A term is either a constant, a variable, or an expression of the form f(t1, . . . , tm),156

where f is a function symbol of arity m and the ti’s are terms. In the first two cases157

we say the term is simple while in the last case we say it is complex. The binary158

relation subterm over terms is recursively defined as follows: every term is a subterm159

of itself; if t is a complex term of the form f(t1, . . . , tm), then every ti is a subterm of160

Checking termination of the bottom-up evaluation of logic programs 5

t for 1 � i � m; if t1 is a subterm of t2 and t2 is a subterm of t3, then t1 is a subterm161

of t3. The depth d(u, t) of a simple term u in a term t that contains u is recursively162

defined as follows:163

d(u, u) = 0,

d(u, f(t1, ..., tm)) = 1 + max
i : ti contains u

d(u, ti).

The depth of term t, denoted by d(t), is the maximal depth of all simple terms164

occurring in t.165

An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity n and166

the ti’s are terms (we also say that the atom is a p-atom). A literal is either an atom167

A (positive literal) or its negation ¬A (negative literal).168

A rule r is of the form:169

A1 ∨ ... ∨ Am ← B1, ..., Bk ,¬C1, ...,¬Cn170

where m > 0, k � 0, n � 0, and A1, ..., Am, B1, ..., Bk , C1, ..., Cn are atoms. The171

disjunction A1 ∨ ... ∨ Am is called the head of r and is denoted by head(r); the172

conjunction B1, ..., Bk ,¬C1, ...,¬Cn is called the body of r and is denoted by body(r).173

The positive (resp. negative) body of r is the conjunction B1, ..., Bk (resp. ¬C1, ...,¬Cn)174

and is denoted by body+(r) (resp. body−(r)). With a slight abuse of notation we use175

head(r) (resp. body(r), body+(r), body−(r)) to also denote the set of atoms (resp.176

literals) appearing in the head (resp. body, positive body, negative body) of r. If177

m = 1, then r is normal; if n = 0, then r is positive. If a rule r is both normal and178

positive, then it is standard.179

A program is a finite set of rules. A program is normal (resp. positive, standard) if180

every rule in it is normal (resp. positive, standard). A term (resp. an atom, a literal,181

a rule, a program) is said to be ground if no variables occur in it. A ground normal182

rule with an empty body is also called a fact. For any atom A (resp. set of atoms,183

rule), var(A) denotes the set of variables occurring in A.184

We assume that programs are range restricted, i.e. for each rule, the variables185

appearing in the head or in negative body literals also appear in some positive body186

literal.187

The definition of a predicate symbol p in a program P consists of all rules in P188

with p in the head. Predicate symbols are partitioned into two different classes: base189

predicate symbols, whose definition can contain only facts (called database facts),190

and derived predicate symbols, whose definition can contain any rule. Database facts191

are not shown in our examples as they are not relevant for the proposed criteria.192

Given a program P, a predicate p depends on a predicate q if there is a rule r in193

P such that p appears in the head and q in the body, or there is a predicate s such194

that p depends on s and s depends on q. A predicate p is said to be recursive if it195

depends on itself, whereas two predicates p and q are said to be mutually recursive196

if p depends on q and q depends on p. A rule r is said to be recursive if its body197

contains a predicate symbol mutually recursive with a predicate symbol in the head.198

Given a rule r, rbody(r) denotes the set of body atoms whose predicate symbols are199

mutually recursive with the predicate symbol of an atom in the head. We say that200

r is linear if |rbody(r)| � 1. We say that a recursive rule r defining a predicate p is201

6 M. Calautti et al.

strongly linear if it is linear, the recursive predicate symbol appearing in the body202

is p and there are no other recursive rules defining p. A predicate symbol p is said203

to be linear (resp. strongly linear) if all recursive rules defining p are linear (resp.204

strongly linear).205

A substitution is a finite set of pairs θ = {X1/t1, ..., Xn/tn} where t1, ..., tn are terms206

and X1, ..., Xn are distinct variables not occurring in t1, . . . , tn. If θ = {X1/t1, ..., Xn/tn}207

is a substitution and T is a term or an atom, then Tθ is the term or atom obtained208

from T by simultaneously replacing each occurrence of Xi in T by ti (1 � i � n)—Tθ209

is called an instance of T . Given a set S of terms (or atoms), Sθ = {Tθ | T ∈ S}. A210

substitution θ is a unifier for a finite set of terms (or atoms) S if Sθ is a singleton. We211

say that a set of terms (or atoms) S unifies if there exists a unifier θ for S . Given two212

substitutions, θ = {X1/t1, . . . , Xn/tn} and ϑ = {Y1/u1, . . . , Ym/um}, their composition,213

denoted by θ ◦ ϑ, is the substitution obtained from the set {X1/t1ϑ, . . . , Xn/tnϑ,214

Y1/u1, . . . , Ym/um} by removing every Xi/tiϑ such that Xi = tiϑ and every Yj/uj such215

that Yj ∈ {X1, . . . , Xn}. A substitution θ is more general than a substitution ϑ if216

there exists a substitution η such that ϑ = θ ◦ η. A unifier θ for a set S of terms217

(or atoms) is called a most general unifier (mgu) for S if it is more general than any218

other unifier for S . The mgu is unique modulo renaming of variables.219

Semantics. Let P be a program. The Herbrand universe HP of P is the possibly220

infinite set of ground terms which can be built using constants and function symbols221

appearing in P. The Herbrand base BP of P is the set of ground atoms which can222

be built using predicate symbols appearing in P and ground terms of HP. A rule r′223

is a ground instance of a rule r in P if r′ can be obtained from r by substituting every224

variable in r with some ground term in HP. We use ground(r) to denote the set of225

all ground instances of r and ground(P) to denote the set of all ground instances of226

the rules in P, i.e. ground(P) = ∪r∈Pground(r). An interpretation of P is any subset227

I of BP. The truth value of a ground atom A w.r.t. I , denoted by valueI (A), is true228

if A ∈ I , false otherwise. The truth value of ¬A w.r.t. I , denoted by valueI (¬A), is229

true if A 	∈ I , false otherwise. The truth value of a conjunction of ground literals230

C = L1, ..., Ln w.r.t. I is valueI (C) = min({valueI (Li) | 1 � i � n})—here the ordering231

false < true holds—whereas the truth value of a disjunction of ground literals232

D = L1 ∨ ... ∨ Ln w.r.t. I is valueI (D)=max({valueI (Li) | 1 � i � n}); if n = 0, then233

valueI (C)= true and valueI (D)= false. A ground rule r is satisfied by I , denoted by234

I |= r, if valueI (head(r)) � valueI (body(r)); we write I 	|= r if r is not satisfied by I .235

Thus, a ground rule r with empty body is satisfied by I if valueI (head(r))= true. An236

interpretation of P is a model of P if it satisfies every ground rule in ground(P).237

A model M of P is minimal if no proper subset of M is a model of P. The set of238

minimal models of P is denoted by MM(P).239

Given an interpretation I of P, let PI denote the ground positive program derived240

from ground(P) by (i) removing every rule containing a negative literal ¬A in the241

body with A ∈ I , and (ii) removing all negative literals from the remaining rules.242

An interpretation I is a stable model of P if and only if I ∈ MM(PI) (Gelfond243

and Lifschitz 1988; Gelfond and Lifschitz 1991). The set of stable models of P is244

denoted by SM(P). It is well known that stable models are minimal models (i.e.245

Checking termination of the bottom-up evaluation of logic programs 7

SM(P) ⊆ MM(P)). Furthermore, minimal and stable model semantics coincide246

for positive programs (i.e. SM(P) = MM(P)). A standard program has a unique247

minimal model, called minimum model.248

Given a set of ground atoms S and a predicate g (resp. an atom A), S[g]249

(resp. S[A]) denotes the set of g-atoms (resp. ground atoms unifying with A) in S .250

Analogously, for a given set M of sets of ground atoms, we shall use the following251

notations M[g] = {S[g] | S ∈ M} and M[A] = {S[A] | S ∈ M}. Given a set of252

ground atoms S , and a set G of predicates symbols, then S[G] = ∪g∈GS[g].253

Argument graph. Given an n-ary predicate p, p[i] denotes the ith argument of p, for254

1 � i � n. If p is a base (resp. derived) predicate symbol, then p[i] is said to be a base255

(resp. derived) argument. The set of all arguments of a program P is denoted by256

args(P); analogously, argsb(P) and argsd(P) denote the sets of all base and derived257

arguments, respectively.258

For any program P and n-ary predicate p occurring in P, an argument p[i], with259

1 � i � n, is associated with the set of values it can take during the evaluation;260

this domain, called active domain of p[i], is denoted by AD(p[i]) = {ti|p(t1, . . . , tn) ∈261

M ∧ M ∈ SM(P)}. An argument p[i] is said to be limited iff AD(p[i]) is finite.262

The argument graph of a program P, denoted by G(P), is a directed graph whose263

nodes are args(P) (i.e. the arguments of P), and there is an edge from q[j] to p[i],264

denoted by (q[j], p[i]), iff there is a rule r ∈ P such that:265

1. an atom p(t1, ..., tn) appears in head(r),266

2. an atom q(u1, ..., um) appears in body+(r), and267

3. terms ti and uj have a common variable.268

Consider, for instance, program P1 of Example 1. G(P1) = (args(P1), E),269

where args(P1) = {input[1], list[1], count[1], count[2]}, whereas, considering the270

occurrences of variables in the rules of P1 we have that E = {(input[1],list[1]),271

(list[1],list[1]), (list[1],count[1]), (count[1],count[1]),272

(count[2],count[2])}.273

Labeled directed graphs. In the following we will also consider labeled directed274

graphs, i.e. directed graphs with labeled edges. In this case we represent an edge275

from a to b as a triple (a, b, l), where l denotes the label.276

A path π from a1 to bm in a possibly labeled directed graph is a non-empty277

sequence (a1, b1, l1), . . . , (am, bm, lm) of its edges s.t. bi = ai+1 for all 1 � i < m; if the278

first and last nodes coincide (i.e. a1 = bm), then π is called a cyclic path. In the case279

where the indication of the starting edge is not relevant, we will call a cyclic path a280

cycle.281

We say that a node a depends on a node b in a graph iff there is a path from b282

to a in that graph. Moreover, we say that a depends on a cycle π iff it depends on a283

node b appearing in π. Clearly, nodes belonging to cycle π depend on π.284

3 Argument ranking285

The argument ranking of a program has been proposed in (Lierler and Lifschitz286

2009) to define the class AR of argument-restricted programs.287

8 M. Calautti et al.

An argument ranking for a program P is a partial function φ from args(P) to288

non-negative integers, called ranks, such that, for every rule r of P, every atom289

p(t1, . . . , tn) occurring in the head of r, and every variable X occurring in a term ti, if290

φ(p[i]) is defined, then body+(r) contains an atom q(u1, . . . , um) such that X occurs291

in a term uj , φ(q[j]) is defined, and the following condition is satisfied:292

φ(p[i]) − φ(q[j]) � d(X, ti) − d(X, uj). (1)

A program P is said to be argument-restricted if it has an argument ranking assigning293

ranks to all arguments of P.294

Example 2295

Consider the following program P2, where b is a base predicate:296

r1 : p(f(X)) ← p(X), b(X).

r2 : t(f(X)) ← p(X).

r3 : s(X) ← t(f(X)).

This program has an argument ranking φ, where φ(b[1])= 0, φ(p[1])= 1, φ(t[1])= 2,297

and φ(s[1])= 1. Consequently, P2 is argument-restricted. ✷298

Intuitively, the rank of an argument is an estimation of the depth of terms that299

may occur in it. In particular, let d1 be the rank assigned to a given argument p[i]300

and let d2 be the maximal depth of terms occurring in the database facts. Then301

d1 + d2 gives an upper bound of the depth of terms that may occur in p[i] during302

the program evaluation. Different argument rankings may satisfy condition (1). A303

function assigning minimum ranks to arguments is denoted by φmin.304

Minimum ranking. We define a monotone operator Ω that takes as input a function305

φ over arguments and gives as output a function over arguments that gives an upper306

bound of the depth of terms.307

More specifically, we define Ω(φ)(p[i]) as308

max(max{D(p(t1, . . . , tn), r, i, X) | r ∈ P ∧ p(t1, . . . , tn) ∈ head(r) ∧ X occurs in ti}, 0)

where D(p(t1, . . . , tn), r, i, X) is defined as309

min{d(X, ti) − d(X, uj) + φ(q[j]) | q(u1, . . . , um) ∈ body+(r) ∧ X occurs in uj}.

In order to compute φmin we compute the fixpoint of Ω starting from the function310

φ0 that assigns 0 to all arguments. In particular, we have:311

φ0(p[i]) = 0;

φk(p[i]) = Ω(φk−1)(p[i]) = Ωk(φ0)(p[i]).

The function φmin is defined as follows:312313

φmin(p[i]) =

{

Ωk(φ0)(p[i]) if ∃k (finite) s.t. Ωk(φ0)(p[i]) = Ω∞(φ0)(p[i])

undefined otherwise

314

We denote the set of restricted arguments of P as AR(P) = {p[i] | p[i] ∈ args(P)∧315

φmin(p[i]) is defined}. Clearly, from definition of φmin, it follows that all restricted316

arguments are limited. Observe that P is argument-restricted iff AR(P) = args(P).317

Checking termination of the bottom-up evaluation of logic programs 9

Example 3318

Consider again program P2 from Example 2. The following table shows the first319

four iterations of Ω starting from the base ranking function φ0:

φ0 φ1 = Ω(φ0) φ2 = Ω(φ1) φ3 = Ω(φ2) φ4 = Ω(φ3)

b[1] 0 0 0 0 0
p[1] 0 1 1 1 1
t[1] 0 1 2 2 2
s[1] 0 0 0 1 1

320
Since Ω(φ3) = Ω(φ2), further applications of Ω provide the same result. Consequently,321

φmin coincides with φ3 and defines ranks for all arguments of P2. ✷322

Let M = |args(P)| × dmax, where dmax is the largest depth of terms occurring in323

the heads of rules of P. One can determine whether P is argument-restricted by324

iterating Ω starting from φ0 until:325

(1) one of the values of Ωk(φ0) exceeds M, in such a case P is not argument-326

restricted;327

(2) Ωk+1(φ0) = Ωk(φ0), in such a case φmin coincides with φk , φmin is total, and P328

is argument-restricted.329

Observe that if the program is not argument-restricted the first condition is verified330

with k � M × |args(P)| � M2, as at each iteration the value assigned to at least331

one argument is changed. Thus, the problem of deciding whether a given program332

P is argument-restricted is in PTime. In the following section we will show that the333

computation of restricted arguments can be done in polynomial time also when P334

is not argument-restricted (see Proposition 1).335

4 Γ-acyclic programs336

In this section we exploit the role of function symbols for checking program337

termination under bottom-up evaluation. Starting from this section, we will consider338

standard logic programs. Only in Section 8 we will refer to general programs, as339

it discusses how termination criteria defined for standard programs can be applied340

to general disjunctive logic programs with negative literals. We also assume that if341

the same variable X appears in two terms occurring in the head and body of a342

rule respectively, then at most one of the two terms is a complex term and that the343

nesting level of complex terms is at most one. As we will see in Section 8, there is344

no real restriction in such an assumption as every program could be rewritten into345

an equivalent program satisfying such a condition.346

The following example shows a program admitting a finite minimum model, but347

the argument-restricted criterion is not able to detect it. Intuitively, the definition348

of argument-restricted programs does not take into account the possible presence349

10 M. Calautti et al.

of different function symbols in the program that may prohibit the propagation of350

values in some rules and, consequently, guarantee the termination of the bottom-up351

computation.352

Example 4353

Consider the following program P4:354

r0 : s(X) ← b(X).

r1 : r(f(X)) ← s(X).

r2 : q(f(X)) ← r(X).

r3 : s(X) ← q(g(X)).

where b is a base predicate symbol. The program is not argument-restricted since355

the argument ranking function φmin cannot assign any value to r[1], q[1], and s[1].356

However the bottom-up computation always terminates, independently from the357

database instance. ✷358

In order to represent the propagation of values among arguments, we introduce359

the concept of labeled argument graphs. Intuitively, it is an extension of the argument360

graph where each edge has a label describing how the term propagated from one361

argument to another changes. Arguments that are not dependent on a cycle can362

propagate a finite number of values and, therefore, are limited.363

Since the active domain of limited arguments is finite, we can delete edges ending in364

the corresponding nodes from the labeled argument graph. Then, the resulting graph,365

called propagation graph, is deeply analyzed to identify further limited arguments.366

Definition 1 (Labeled argument graph)367

Let P be a program. The labeled argument graph GL(P) is a labeled directed graph368

(args(P), E) where E is a set of labeled edges defined as follows. For each pair of369

nodes p[i], q[j] ∈ args(P) such that there is a rule r with head(r) = p(v1, . . . , vn),370

q(u1, . . . , um) ∈ body(r), and terms uj and vi have a common variable X, there is an371

edge (q[j], p[i], α) ∈ E such that372

• α = ǫ if uj = vi = X,373

• α = f if uj = X and vi = f(..., X, ...),374

• α = f if uj = f(..., X, ...) and vi = X. ✷375

In the definition above, the symbol ǫ denotes the empty label which concatenated376

to a string does not modify the string itself, that is, for any string s, sǫ = ǫs = s.377

The labeled argument graph of program P4 is shown in Figure 1 (left). The edges378

of this graph represent how the propagation of values occurs. For instance, edge379

(b[1], s[1], ǫ) states that a term t is propagated without changes from b[1] to s[1] if380

rule r0 is applied; analogously, edge (s[1], r[1], f) states that starting from a term t381

in s[1] we obtain f(t) in r[1] if rule r1 is applied, whereas edge (q[1], s[1], g) states382

that starting from a term g(t) in q[1] we obtain t in s[1] if rule r3 is applied.383

Given a path π in GL(P) of the form (a1, b1, α1), . . . , (am, bm, αm), we denote with384

λ(π) the string α1 ... αm. We say that π spells a string w if λ(π) = w. Intuitively, the385

string λ(π) describes a sequence of function symbols used to compose and decompose386

complex terms during the propagation of values among the arguments in π.387

Checking termination of the bottom-up evaluation of logic programs 11

F
ig

.
1
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 1. (Colour online) Labeled argument graphs of programs P4 (left) and P5 (right).

Example 5388

Consider program P5 derived from program P4 of Example 4 by replacing rule389

r2 with the rule q(g(X)) ← r(X). The labeled argument graph GL(P5) is reported390

in Figure 1 (right). Considering the cyclic path π = (s[1], r[1], f), (r[1], q[1], g),391

(q[1], s[1], g), λ(π) = fgg represents the fact that starting from a term t in s[1] we392

may obtain the term f(t) in r[1], then we may obtain term g(f(t)) in q[1], and term393

f(t) in s[1], and so on. Since we may obtain a larger term in s[1], the arguments394

depending on this cyclic path may not be limited.395

Consider now program P4, whose labeled argument graph is shown in396

Figure 1 (left), and the cyclic path π′ = (s[1], r[1], f), (r[1], q[1], f), (q[1], s[1], g).397

Observe that starting from a term t in s[1] we may obtain term f(t) in r[1]398

(rule r1), then we may obtain term f(f(t)) in q[1] (rule r2). At this point the399

propagation in this cyclic path terminates since the head atom of rule r2 containing400

term f(X) cannot match with the body atom of rule r3 containing term g(X). The401

string λ(π′) = ffg represents the propagation described above. Observe that for this402

program all arguments are limited. ✷403

Let π be a path from p[i] to q[j] in the labeled argument graph. Let λ̂(π) be the404

string obtained from λ(π) by iteratively eliminating pairs of the form αα until the405

resulting string cannot be further reduced. If λ̂(π) = ǫ, then starting from a term t in406

p[i] we obtain the same term t in q[j]. Consequently, if λ̂(π) is a non-empty sequence407

of function symbols fi1 , fi2 , . . . , fik , then starting from a term t in p[i] we may obtain408

a larger term in q[j]. For instance, if k = 2 and fi1 and fi2 are of arity one, we409

may obtain fi2 (fi1(t)) in q[j]. Based on this intuition we introduce now a grammar410

ΓP in order to distinguish the sequences of function symbols used to compose and411

decompose complex terms in a program P, such that starting from a given term we412

obtain a larger term.413

Given a program P, we denote with FP = {f1, ..., fm} the set of function symbols414

occurring in P, whereas FP = {f | f ∈ FP} and TP = FP ∪ FP.415

Definition 2416

Let P be a program, the grammar ΓP is a 4-tuple (N,TP, R, S), where N = {S, S1, S2}417

is the set of non-terminal symbols, S is the start symbol, and R is the set of418

production rules defined below:419

1. S → S1 fi S2, ∀fi ∈ FP;420

2. S1 → fi S1 fi S1 | ǫ, ∀fi ∈ FP;421

3. S2 → S1 S2 | fi S2 | ǫ, ∀fi ∈ FP. ✷422

The language L(ΓP) is the set of strings generated by ΓP.423

12 M. Calautti et al.

Example 6424

Let FP = {f, g, h} be the set of function symbols occurring in a program P. Then425

strings f, fgg, ggf, fgghh, fhggh belong to L(ΓP) and represent, assuming that426

f is a unary function symbol, different ways to obtain term f(t) starting from427

term t. ✷428

Note that only if a path π spells a string w ∈ L(ΓP), then starting from a given429

term in the first node of π we may obtain a larger term in the last node of π.430

Moreover, if this path is cyclic, then the arguments depending on it may not be431

limited. On the other hand, all arguments not depending on a cyclic path π spelling432

a string w ∈ L(ΓP) are limited.433

Given a program P and a set of arguments S recognized as limited by a specific434

criterion, the propagation graph of P w.r.t. S, denoted by ∆(P,S), consists of the435

subgraph derived from GL(P) by deleting edges ending in a node of S. Although we436

can consider any set S of limited arguments, in the following we assume S = AR(P)437

and, for the simplicity of notation, we denote ∆(P, AR(P)) as ∆(P). Even if more438

general termination criteria have been defined in the literature, here we consider439

the AR criterion since it is the most general among those so far proposed having440

polynomial time complexity.441

Definition 3 (Γ-acyclic arguments and Γ-acyclic programs)442

Given a program P, the set of its Γ-acyclic arguments, denoted by ΓA(P), consists443

of all arguments of P not depending on a cyclic path in ∆(P) spelling a string of444

L(ΓP). A program P is called Γ-acyclic if ΓA(P) = args(P), i.e. if there is no cyclic445

path in ∆(P) spelling a string of L(ΓP). We denote the class of Γ-acyclic programs446

ΓA. ✷447

Clearly, AR(P) ⊆ ΓA(P), i.e. the set of restricted arguments is contained in448

the set of Γ-acyclic arguments. As a consequence, the set of argument-restricted449

programs is a subset of the set of Γ-acyclic programs. Moreover, the containment450

is strict, as there exist programs that are Γ-acyclic, but not argument-restricted.451

For instance, program P4 from Example 4 is Γ-acyclic, but not argument-restricted.452

Indeed, all cyclic paths in ∆(P4) do not spell strings belonging to the language453

L(ΓP4
).454

The importance of considering the propagation graph instead of the labeled455

argument graph in Definition 3 is shown in the following example.456

Example 7457

Consider program P7 below obtained from P4 by adding rules r4 and r5.458

r0 : s(X) ← b(X).

r1 : r(f(X)) ← s(X).

r2 : q(f(X)) ← r(X).

r3 : s(X) ← q(g(X)).

r4 : n(f(X)) ← s(X), b(X).

r5 : s(X) ← n(X).

The corresponding labeled argument graph GL(P7) and propagation graph ∆(P7)459

are reported in Figure 2. Observe that arguments n[1] and s[1] are involved in460

Checking termination of the bottom-up evaluation of logic programs 13

F
ig

.
2
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 2. (Colour online) Labeled argument graph (left) and propagation graph (right) of
program P7.

the red cycle in the labeled argument graph GL(P7) spelling a string of L(ΓP7
).461

At the same time this cycle is not present in the propagation graph ∆(P7) since462

AR(P7) = {b[1], n[1]} and the program is Γ-acyclic. ✷463

Theorem 1464

Given a program P,465

1. all arguments in ΓA(P) are limited;466

2. if P is Γ-acyclic, then P is finitely ground.467

Proof468

(1) As previously recalled, arguments in AR(P) are limited. Let us now show that469

all arguments in ΓA(P) \ AR(P) are limited too. Suppose by contradiction that470

q[k] ∈ ΓA(P) \ AR(P) is not limited. Observe that depth of terms that may471

occur in q[k] depends on the paths in the propagation graph ∆(P) that ends472

in q[k]. In particular, this depth may be infinite only if there is a path π from473

an argument p[i] to q[k] (not necessarily distinct from p[i]), such that λ̂(π) is474

a string of an infinite length composed by symbols in FP . But this is possible475

only if this path contains a cycle spelling a string in L(ΓP). Thus we obtain476

contradiction with Definition 3.477

(2) From the previous proof, it follows that every argument in the Γ-acyclic478

program can take values only from a finite domain. Consequently, the set of all479

possible ground terms derived during the grounding process is finite and every480

Γ-acyclic program is finitely ground.481

�482

From the previous theorem we can also conclude that all Γ-acyclic programs483

admit a finite minimum model, as this is a property of finitely ground484

programs.485

We conclude by observing that since the language L(ΓP) is context-free, the486

analysis of paths spelling strings in L(ΓP) can be carried out using pushdown487

automata.488

As ΓP is context free, the language L(ΓP) can be recognized by means of a489

pushdown automaton M = ({q0, qF}, TP,Λ, δ, q0, Z0, {qF}}), where q0 is the initial490

state, qF is the final state, Λ = {Z0} ∪ {Fi|fi ∈ FP} is the stack alphabet, Z0 is the491

initial stack symbol, and δ is the transition function defined as follows:492

1. δ(q0, fi, Z0) = (qF , FiZ0), ∀fi ∈ FP,493

2. δ(qF , fi, Fj) = (qF , FiFj), ∀fi ∈ FP,494

14 M. Calautti et al.

3. δ(qF , fj , Fj) = (qF , ǫ), ∀fi ∈ FP.495

The input string is recognized if after having scanned the entire string the496

automaton is in state qF and the stack contains at least one symbol Fi.497

A path π is called:498

• increasing, if λ̂(π) ∈ L(ΓP),499

• flat, if λ̂(π) = ǫ,500

• failing, otherwise.501

It is worth noting that λ(π) ∈ L(ΓP) iff λ̂(π) ∈ L(ΓP) as function λ̂ emulates the502

pushdown automaton used to recognize L(ΓP). More specifically, for any path π503

and relative string λ(π) we have that:504

• if π is increasing, then the pushdown automaton recognizes the string λ(π) in505

state qF and the stack contains a sequence of symbols corresponding to the506

symbols in λ̂(π) plus the initial stack symbol Z0;507

• if π is flat, then the pushdown automaton does not recognize the string λ(π);508

moreover, the entire input string is scanned, but the stack contains only the509

symbol Z0;510

• if λ̂(π) is failing, then the pushdown automaton does not recognize the string511

λ(π) as it goes in an error state.512

Complexity. Concerning the complexity of checking whether a program is Γ-acyclic,513

we first introduce definitions and results that will be used hereafter. We start by514

introducing the notion of size of a logic program.515

We assume that simple terms have constant size and, therefore, the size of a516

complex term f(t1, . . . , tk), where t1, . . . , tk are simple terms, is bounded by O(k).517

Analogously, the size of an atom p(t1, . . . , tn) is given by the sum of the sizes of the518

ti’s, whereas the size of a conjunction of atoms (resp. rule, program) is given by the519

sum of the sizes of its atoms. That is, we identify for a program P the following520

parameters: nr is the number of rules of P, nb is the maximum number of atoms521

in the body of rules of P, ap is the maximum arity of predicate symbols occurring522

in P, and af is the maximum arity of function symbols occurring in P. We assume523

that the size of P, denoted by size(P), is bounded by O(nr × nb × ap × af). Finally,524

since checking whether a program is terminating requires to read the program, we525

assume that the program has been already scanned and stored using suitable data526

structures. Thus, all the complexity results presented in the rest of the paper do527

not take into account the cost of scanning and storing the input program. We first528

introduce a tighter bound for the complexity of computing AR(P).529

Proposition 1530

For any program P, the time complexity of computing AR(P) is bounded by531

O(|args(P)|3).532

Proof533

Assume that n = |args(P)| is the total number of arguments of P. First, it is534

important to observe the connection between the behavior of operator Ω and the535

Checking termination of the bottom-up evaluation of logic programs 15

F
ig

.
3
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 3. (Colour online) Propagation graph ∆(P).

structure of the labeled argument graph GL(P). In particular, if the applications of536

the operator Ω change the rank of an argument q[i] from 0 to k, then there is a path537

from an argument to q[i] in GL(P), where the number of edges labeled with some538

positive function symbol minus the number of edges labeled with some negative539

function symbol is at least k. Given a cycle in a labeled argument graph, let us call540

it affected if the number of edges labeled with some positive function symbol is541

greater than the number of edges labeled with some negative function symbol.542

If an argument is not restricted, it is involved in or depends on an affected cycle.543

On the other hand, if after an application of Ω the rank assigned to an argument544

exceeds n, this argument is not restricted (Lierler and Lifschitz 2009). Recall that545

we are assuming that dmax = 1 and, therefore, M = n × dmax = n.546

Now let us show that after 2n2 + n iterations of Ω all not restricted arguments547

exceed rank n. Consider an affected cycle and suppose that it contains k arguments,548

whereas the number of arguments depending on this cycle, but not belonging to it549

is m. Obviously, k + m � n. All arguments involved in this cycle change their rank550

by at least one after k iterations of Ω. Thus their ranks will be greater than n + m551

after (n + m + 1) × k iterations. The arguments depending on this cycle, but not552

belonging to it, need at most another m iterations to reach the rank greater than n.553

Thus all unrestricted arguments exceed the rank n in (n+m+ 1) × k+m iterations554

of Ω. Since (n + m + 1) × k + m = nk + mk + (k + m) � 2n2 + n, the restricted555

arguments are those that at step 2n2 + n do not exceed rank n. It follows that the556

complexity of computing AR(P) is bounded by O(n3) because we have to do O(n2)557

iterations and, for each iteration we have to check the rank of n arguments. �558

In order to study the complexity of computing Γ-acyclic arguments of a program559

we introduce a directed (not labeled) graph obtained from the propagation graph.560

Definition 4 (Reduction of ∆(P))561

Given a program P, the reduction of ∆(P) is a directed graph ∆R(P) whose nodes562

are the arguments of P and there is an edge (p[i], q[j]) in ∆R(P) iff there is a path563

π from p[i] to q[j] in ∆(P) such that λ̂(π) ∈ FP. ✷564

The reduction ∆R(P) of the propagation graph ∆(P) from Figure 3 is shown in565

Figure 4. It is simple to note that for each path in ∆(P) from node p[i] to node q[j]566

spelling a string of L(ΓP) there exists a path from p[i] to q[j] in ∆R(P) and vice567

versa. As shown in the lemma below, this property always holds.568

Lemma 1569

Given a program P and arguments p[i], q[j] ∈ args(P), there exists a path in ∆(P)570

from p[i] to q[j] spelling a string of L(ΓP) iff there is a path from p[i] to q[j] in571

∆R(P).572

16 M. Calautti et al.
F
ig

.
4
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 4. (Colour online) Reduction ∆R(P) of propagation graph ∆(P)

Proof573

(⇒) Suppose there is a path π from p[i] to q[j] in ∆(P) such that λ(π) ∈ L(ΓP).574

Then λ̂(π) is a non-empty string, say f1, . . . , fk , where fi ∈ FP for i ∈ [1, . . . , k].575

Consequently, π can be seen as a sequence of subpaths π1, . . . , πk , such that λ̂(πi) = fi576

for i ∈ [1, . . . , k]. Thus, from the definition of the reduction of ∆(P), there is a path577

from p[i] to q[j] in ∆R(P) whose length is equal to |λ̂(π)|.578

(⇐) Suppose there is a path (n1, n2) . . . (nk , nk+1) from n1 to nk+1 in ∆R(P). From the579

definition of the reduction of ∆(P), for each edge (ni, ni+1) there is a path, say πi,580

from ni to ni+1 in ∆(P) such that λ̂(πi) ∈ FP. Consequently, there is a path from n1581

to nk+1 in ∆(P), obtained as a sequence of paths π1, . . . , πk whose string is simply582

λ(π1), . . . , λ(πk). Since λ̂(πi) ∈ FP implies that λ(πi) ∈ L(ΓP), for every 1 � i � k, we583

have that λ(π1), . . . , λ(πk) belongs also to L(ΓP). �584

Proposition 2585

Given a program P, the time complexity of computing the reduction ∆R(P) is586

bounded by O(|args(P)|3 × |FP|).587

Proof588

The construction of ∆R(P) can be performed as follows. First, we compute all the589

paths π in ∆(P) such that |λ̂(π)| � 1. To do so, we use a slight variation of the Floyd–590

Warshall’s transitive closure of ∆(P) which is defined by the following recursive591

formula. Assume that each node of ∆(P) is numbered from 1 to n = |args(P)|, then592

we denote with path(i, j, α, k) the existence of a path π from node i to node j in ∆(P)593

such that λ̂(π) = α, |α| � 1 and π may go only through nodes in {1, . . . , k} (except594

for i and j).595

The set of atoms path(i, j, α, k), for all values 1 � i, j � n, can be derived iteratively596

as follows:597

• (base case: k = 0) path(i, j, α, 0) holds if there is an edge (i, j, α) in ∆(P),598

• (inductive case: 0 < k � n) path(i, j, α, k) holds if599

— path(i, j, α, k − 1) holds, or600

— path(i, k, α1, k − 1) and path(k, j, α2, k − 1) hold, α = α1α2 and |α| � 1.601

Note that in order to compute all the possible atoms path(i, j, α, k), we need to602

first initialize every base atom path(i, j, α, 0) with cost bounded by O(n2 × |FP|), as603

this is the upper bound for the number of edges in ∆(P). Then, for every 1 � k � n,604

we need to compute all paths, path(i, j, α, k), thus requiring a cost bounded by605

O(n3 × |FP|) operations. The whole procedure will require O(n3 × |FP|) operations.606

Since we have computed all possible paths π in ∆(P) such that |λ̂(π)| � 1, we can607

Checking termination of the bottom-up evaluation of logic programs 17

obtain all the edges (i, j) of ∆R(P) (according to Definition 4) by simply selecting608

the atoms path(i, j, α, k) with α ∈ FP, whose cost is bounded by O(n2 × |FP|). Then,609

the time complexity of constructing ∆R(P) is O(n3 × |FP|). �610

Theorem 2611

The complexity of deciding whether a program P is Γ-acyclic is bounded by612

O(|args(P)|3 × |FP|).613

Proof614

Assume that n = |args(P)| is the total number of arguments of P. To check615

whether P is Γ-acyclic it is sufficient to first compute the set of restricted arguments616

AR(P) which requires time O(n3) from Proposition 1. Then, we need to construct617

the propagation graph ∆(P), for which the maximum number of edges is n2 ×618

(|FP| + |FP| + 1), then it can be constructed in time O(n2 × |FP|) (recall that we are619

not taking into account the cost of scanning and storing the program). Moreover,620

starting from ∆(P), we need to construct ∆R(P), which requires time O(n3 × |FP|)621

(cf. Proposition 2) and then, following Lemma 1, we need to check whether ∆R(P)622

is acyclic. Verifying whether ∆R(P) is acyclic can be done by means of a simple623

traversal of ∆R(P) and checking if a node is visited more than once. The complexity624

of a depth-first traversal of a graph is well known to be O(|E|) where E is the set of625

edges of the graph. Since the maximum number of edges of ∆R(P) is by definition626

n2 × |FP|, the traversal of ∆R(P) can be done in time O(n2 × |FP|). Thus, the whole627

time complexity is still bounded by O(n3 × |FP|). �628

Corollary 1629

For any program P, the time complexity of computing ΓA(P) is bounded by630

O(|args(P)|3 × |FP|).631

Proof632

Straightforward from the proof of Theorem 2. �633

As shown in the previous theorem, the time complexity of checking whether a634

program P is Γ-acyclic is bounded by O(|args(P)|3 × |FP|), which is strictly related635

to the complexity of checking whether a program is argument-restricted, which is636

O(|args(P)|3). In fact, the new proposed criterion performs a more accurate analysis637

on how terms are propagated from the body to the head of rules by taking into638

account the function symbols occurring in such terms. Moreover, if a logic program639

P has only one function symbol, the time complexity of checking whether P is640

Γ-acyclic is the same as the one required to check if it is argument-restricted.641

5 Safe programs642

The Γ-acyclicity termination criterion presents some limitations, since it is not able643

to detect when a rule can be activated only a finite number of times during the644

bottom-up evaluation of the program. The next example shows a simple terminating645

program which is not recognized by the Γ-acyclicity termination criterion.646

18 M. Calautti et al.

Example 8647

Consider the following logic program P8:648

r1 : p(X, X) ← b(X).

r2 : p(f(X), g(X)) ← p(X, X).

where b is base predicate. As the program is standard, it has a (finite) unique minimal649

model, which can be derived using the classical bottom-up fixpoint computation650

algorithm. Moreover, independently from the set of base facts defining b, the651

minimum model of P8 is finite and its computation terminates. ✷652

Observe that the rules of program P8 can be activated at most n times, where n653

is the cardinality of the active domain of the base predicate b. Indeed, the recursive654

rule r2 cannot activate itself since the newly generated atom is of the form p(f(·), g(·))655

and does not unify with its body.656

As another example consider the recursive rule q(f(X)) ← q(X), t(X) and the657

strongly linear rule p(f(X), g(Y)) ← p(X, Y), t(X) where t[1] is a limited argument. The658

activation of these rules is limited by the cardinality of the active domain of t[1].659

Thus, in this section, in order to define a more general termination criterion we660

introduce the safety function which, by detecting rules that can be executed only a661

finite number of times, derives a larger set of limited arguments of the program. We662

start by analyzing how rules may activate each other.663

Definition 5 (Activation graph)664

Let P be a program and let r1 and r2 be (not necessarily distinct) rules of P. We665

say that r1 activates r2 iff head(r1) and an atom in body(r2) unify. The activation666

graph Σ(P) = (P, E) consists of the set of nodes denoting the rules of P and the set667

of edges (ri, rj), with ri, rj ∈ P, such that ri activates rj . ✷668

Example 9669

Consider program P8 of Example 8. The activation graph of this program contains670

two nodes r1 and r2 and an edge from r1 to r2. Rule r1 activates rule r2 as the head671

atom p(X, X) of r1 unifies with the body atom p(X, X) of r2. Intuitively, this means672

that the execution of the first rule may cause the second rule to be activated. In fact,673

the execution of r1 starting from the database instance D = {b(a)} produces the new674

atom p(a, a). The presence of this atom allows the second rule to be activated, since675

the body of r2 can be made true by means of the atom p(a, a), producing the new676

atom p(f(a), g(a)). It is worth noting that the second rule cannot activate itself since677

head(r2) does not unify with the atom p(X, X) in body(r2). ✷678

The activation graph shows how rules may activate each other, and, consequently,679

the possibility to propagate values from one rule to another. Clearly, the active680

domain of an argument p[i] can be infinite only if p is the head predicate of a rule681

that may be activated an infinite number of times. A rule may be activated an infinite682

number of times only if it depends on a cycle of the activation graph. Therefore, a683

rule not depending on a cycle can only propagate a finite number of values into its684

head arguments. Another important aspect is the structure of rules and the presence685

of limited arguments in their body and head atoms. As discussed at the beginning686

Checking termination of the bottom-up evaluation of logic programs 19

F
ig

.
5
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 5. (Colour online) Activation (left) and propagation (right) graphs of program P10.

of this section, rules q(f(X)) ← q(X), t(X) and p(f(X), g(Y)) ← p(X, Y), t(X), where t[1]687

is a limited argument, can be activated only a finite number of times. In fact, as688

variable X in both rules can be substituted only by values taken from the active689

domain of t[1], which is finite, the active domains of q[1] and p[1] are finite as690

well, i.e. q[1] and p[1] are limited arguments. Since q[1] is limited, the first rule can691

be applied only a finite number of times. In the second rule we have predicate p692

of arity two in the head, and we know that p[1] is a limited argument. Since the693

second rule is strongly linear, the domains of both head arguments p[1] and p[2]694

grow together each time this rule is applied. Consequently, the active domain of p[2]695

must be finite as well as the active domain of p[1] and this rule can be applied only696

a finite number of times.697

We now introduce the notion of limited term, that will be used to define a function,698

called safety function, that takes as input a set of limited arguments and derives a699

new set of limited arguments in P.700

Definition 6 (Limited terms)701

Given a rule r = q(t1, . . . , tm) ← body(r) ∈ P and a set A of limited arguments, we702

say that ti is limited in r (or r limits ti) w.r.t. A if one of the following conditions703

holds:704

1. every variable X appearing in ti also appears in an argument in body(r) belonging705

to A, or706

2. r is a strongly linear rule such that:707

(a) for every atom p(u1, ..., un) ∈ head(r) ∪ rbody(r), all terms u1, ..., un are either708

simple or complex;709

(b) var(head(r)) = var(rbody(r)),710

(c) there is an argument q[j] ∈ A. ✷711

Definition 7 (Safety function)712

For any program P, let A be a set of limited arguments of P and let Σ(P) be713

the activation graph of P. The safety function Ψ(A) denotes the set of arguments714

q[i] ∈ args(P) such that for all rules r = q(t1, . . . , tm) ← body(r) ∈ P, either r does715

not depend on a cycle π of Σ(P) or ti is limited in r w.r.t. A. ✷716

Example 10717

Consider the following program P10:718

r1 : p(f(X), g(Y)) ← p(X, Y), b(X).

r2 : q(f(Y)) ← p(X, Y), q(Y).

where b is base predicate. Let A = ΓA(P) = {b[1], p[1]}. The activation and the719

propagation graphs of this program are reported in Figure 5. The application of720

20 M. Calautti et al.

the safety function to the set of limited arguments A gives Ψ(A) = {b[1], p[1], p[2]}.721

Indeed:722

• b[1] ∈ Ψ(A) since b is a base predicate which does not appear in the head723

of any rule; consequently all the rules with b in the head (i.e. the empty set)724

trivially satisfy the conditions of Definition 7.725

• p[1] ∈ Ψ(A) because the unique rule with p in the head (i.e. r1) satisfies the726

first condition of Definition 6, that is, r1 limits the term f(X) w.r.t. A in the727

head of rule r1 corresponding to argument p[1].728

• Since r1 is strongly linear and the second condition of Definition 6 is satisfied,729

p[2] ∈ Ψ(A) as well. ✷730

The following proposition shows that the safety function can be used to derive731

further limited arguments.732

Proposition 3733

Let P be a program and let A be a set of limited arguments of P. Then, all734

arguments in Ψ(A) are also limited.735

Proof736

Consider an argument q[i] ∈ Ψ(A), then for every rule r = q(t1, . . . , tn) ← body(r)737

either r does not depend on a cycle of Σ(P) or ti is limited in r w.r.t. A.738

Clearly, if r does not depend on a cycle of Σ(P), it can be activated a finite739

number of times as it is not ‘effectively recursive’ and does not depend on rules740

which are effectively recursive.741

Moreover, if ti is limited in r w.r.t. A, we have that either:742

743

(1) The first condition of Definition 6 is satisfied (i.e. every variable X appearing744

in ti also appears in an argument in body(r) belonging to A). This means that745

variables in ti can be replaced by a finite number of values.746

(2) The second condition of Definition 6 is satisfied. Let p(t1, ..., tn) = head(r), the747

condition that all terms t1, ..., tn must be simple or complex guarantees that, if terms748

in head(r) grow, then they grow all together (Conditions 2.a and 2.b). Moreover, if749

the growth of a term tj is blocked (Condition 2.c), the growth of all terms (including750

ti) is blocked too.751

Therefore, if one of the two conditions is satisfied for all rules defining q, the active752

domain of q[i] is finite. �753

Unfortunately, as shown in the following example, the relationship A ⊆ Ψ(A) does754

not always hold for a generic set of arguments A, even if the arguments in A are755

limited.756

Example 11757

Consider the following program P11:758

r1 : p(f(X), Y) ← q(X), r(Y).

r2 : q(X) ← p(X, Y).

r3 : t(Y) ← r(Y).

r4 : s(Y) ← t(Y).

r5 : r(Y) ← s(Y).

Checking termination of the bottom-up evaluation of logic programs 21

F
ig

.
6
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 6. (Colour online) Activation graph of program P11.

Its activation graph Σ(P11) is shown in Figure 6, whereas the set of restricted759

arguments is AR(P11) = ΓA(P11) = {r[1], t[1], s[1], p[2]}. Considering the set A =760

{p[2]}, we have that the safety function Ψ({p[2]}) = ∅. Therefore, the relation761

A ⊆ Ψ(A) does not hold for A = {p[2]}.762

Moreover, regarding the set A′ = ΓA(P11) = {r[1], t[1], s[1], p[2]}, we have763

Ψ(A′) = {r[1], t[1], s[1], p[2]} = A′, i.e. the relation A′ ⊆ Ψ(A′) holds. ✷764

The following proposition states that if we consider the set A of Γ-acyclic765

arguments of a given program P, the relation A ⊆ Ψ(A) holds.766

Proposition 4767

For any logic program P:768

1. ΓA(P) ⊆ Ψ(ΓA(P));769

2. Ψi(ΓA(P)) ⊆ Ψi+1(ΓA(P)) for i > 0.770

Proof771

(1) Suppose that q[k] ∈ ΓA(P). Then q[k] ∈ AR(P) or q[k] does not depend on a772

cycle in ∆(P) spelling a string of L(ΓP). In both cases q[k] can depend only on773

arguments in ΓA(P). If q[k] does not depend on any argument, then it does not774

appear in the head of any rule and, consequently, q[k] ∈ Ψ(ΓA(P)). Otherwise,775

the first condition of Definition 6 is satisfied and q[k] ∈ Ψ(ΓA(P)).776

(2) We prove that Ψi(ΓA(P)) ⊆ Ψi+1(ΓA(P)) for i > 0 by induction. We start777

by showing that Ψi(ΓA(P)) ⊆ Ψi+1(ΓA(P)) for i = 1, i.e. that the relation778

Ψ(ΓA(P)) ⊆ Ψ(Ψ(ΓA(P))) holds. In order to show this relation we must show779

that for every argument q[k] ∈ P if q[k] ∈ Ψ(ΓA(P)), then q[k] ∈ Ψ(Ψ(ΓA(P)).780

Consider q[k] ∈ Ψ(ΓA(P)). Then, q[k] satisfies Definition 7 w.r.t. A = ΓA(P).781

From comma one of this proof it follows that ΓA(P) ⊆ Ψ(ΓA(P)), consequently782

q[k] satisfies Definition 7 w.r.t. A = Ψ(ΓA(P)) too and so, q[k] ∈ Ψ(Ψ(ΓA(P))).783

Suppose that Ψk(ΓA(P)) ⊆ Ψk+1(ΓA(P)) for k > 0. In order to show784

that Ψk+1(ΓA(P)) ⊆ Ψk+2(ΓA(P)) we must show that for every argument785

q[k] ∈ P if q[k] ∈ Ψk+1(ΓA(P)), then q[k] ∈ Ψk+2(ΓA(P)). Consider786

q[k] ∈ Ψk+1(ΓA(P)). Then q[k] satisfies Definition 7 w.r.t. A = Ψk(ΓA(P)). Since787

Ψk(ΓA(P)) ⊆ Ψk+1(ΓA(P)), q[k] satisfies Definition 7 w.r.t. A = Ψk+1(ΓA(P))788

too. Consequently, q[k] ∈ Ψk+2(ΓA(P)).789

�790

Observe that we can prove in a similar way that AR(P) ⊆ Ψ(AR(P)) and that791

Ψi(AR(P)) ⊆ Ψi+1(AR(P)) for i > 0.792

22 M. Calautti et al.

Definition 8 (Safe arguments and safe programs)793

For any program P, safe(P) = Ψ∞(ΓA(P)) denotes the set of safe arguments of P.794

A program P is said to be safe if all arguments are safe. The class of safe programs795

will be denoted by SP. ✷796

Clearly, for any set of arguments A ⊆ ΓA(P), Ψi(A) ⊆ Ψi(ΓA(P)). Moreover,797

as shown in Proposition 4, when the starting set is ΓA(P), the sequence798

ΓA(P), Ψ(ΓA(P)),Ψ2(ΓA(P)), . . . is monotone and there is a finite n = O(|args(P)|)799

such that Ψn(ΓA(P)) = Ψ∞(ΓA(P)). We can also define the inflactionary version800

of Ψ as Ψ̂(A) = A ∪ Ψ(A), obtaining that Ψ̂i(ΓA(P)) = Ψi(ΓA(P)), for all natural801

numbers i. The introduction of the inflactionary version guarantees that the sequence802

A, Ψ̂(A), Ψ̂2(A), . . . is monotone for every set A of limited arguments. This would803

allow us to derive a (possibly) larger set of limited arguments starting from any set804

of limited arguments.805

Example 12806

Consider again program P8 of Example 8. Although AR(P8) = ∅, the program P8 is807

safe as Σ(P8) is acyclic.808

Consider now the program P10 of Example 10. As already shown in Example809

10, the first application of the safety function to the set of Γ-acyclic arguments of810

P10 gives Ψ(ΓA(P10)) = {b[1], p[1], p[2]}. The application of the safety function to811

the obtained set gives Ψ(Ψ(ΓA(P10))) = {b[1], p[1], p[2], q[1]}. In fact, in the unique812

rule defining q, term f(Y), corresponding to the argument q[1], is limited in r w.r.t.813

{b[1], p[1], p[2]} (i.e. the variable Y appears in body(r) in a term corresponding to814

argument p[2] and argument p[2], belonging to the input set, is limited). At this815

point, all arguments of P10 belong to the resulting set. Thus, safe(P10) = args(P10),816

and we have that program P10 is safe. ✷817

We now show results on the expressivity of the class SP of safe programs.818

Theorem 3819

The class SP of safe programs strictly includes the class ΓA of Γ-acyclic programs820

and is strictly contained in the class FG of finitely ground programs.821

Proof822

(ΓA � SP). From Proposition 4 it follows that ΓA ⊆ SP. Moreover, ΓA � SP823

as program P10 is safe but not Γ-acyclic.824

(SP � FG). From Proposition 3 it follows that every argument in the safe program825

can take values only from a finite domain. Consequently, the set of all possible826

ground terms derived during the grounding process is finite and the program is827

finitely ground. Moreover, we have that the program P16 of Example 16 is finitely828

ground, but not safe. �829

As a consequence of Theorem 3, every safe program admits a finite minimum830

model.831

Complexity. We start by introducing a bound on the complexity of constructing the832

activation graph.833

Checking termination of the bottom-up evaluation of logic programs 23

Proposition 5834

For any program P, the activation graph Σ(P) can be constructed in time O(n2
r ×835

nb × (ap × af)
2), where nr is the number of rules of P, nb is the maximum number836

of body atoms in a rule, ap is the maximum arity of predicate symbols and af is the837

maximum arity of function symbols.838

Proof839

To check whether a rule ri activates a rule rj we have to determine if an atom B840

in body(rj) unifies with the head-atom A of ri. This can be done in time O(nb × u),841

where u is the cost of deciding whether two atoms unify, which is quadratic in the842

size of the two atoms (Venturini Zilli 1975), that is u = O((ap × af)
2) as the size of843

atoms is bounded by ap × af (recall that the maximum depth of terms is 1). In order844

to construct the activation graph we have to consider all pairs of rules and for each845

pair we have to check if the first rule activates the second one. Therefore, the global846

complexity is O(n2
r × nb × u) = O(n2

r × nb × (ap × af)
2). �847

We recall that given two atoms A and B, the size of a mgu θ for {A,B} can848

be, in the worst case, exponential in the size of A and B, but the complexity of849

deciding whether a unifier for A and B exists is quadratic in the size of A and B850

(Venturini Zilli 1975).851

Proposition 6852

The complexity of deciding whether a program P is safe is O((size(P))2+|args(P)|3×853

|FP|).854

Proof855

The construction of the activation graph Σ(P) can be done in time O(n2
r × nb ×856

(ap × af)
2), where nr is the number of rules of P, nb is the maximum number of857

body atoms in a rule, ap is the maximum arity of predicate symbols, and af is the858

maximum arity of function symbols (cf. Proposition 5).859

The complexity of computing ΓA(P) is bounded by O(|args(P)|3 × |FP|) (cf.860

Theorem 2).861

From Definition 7 and Proposition 4 it follows that the sequence ΓA(P), Ψ(ΓA(P)),862

Ψ2(ΓA(P)), . . . is monotone and converges in a finite number of steps bounded863

by the cardinality of the set args(P). The complexity of determining rules not864

depending on cycles in the activation graph Σ(P) is bounded by O(n2
r), as it can865

be done by means of a depth-first traversal of Σ(P), which is linear in the number866

of its edges. Since checking whether the conditions of Definition 6 hold for all867

arguments in P is in O(size(P)), checking such conditions for at most |args(P)|868

steps is O(|args(P)| × size(P)). Thus, the complexity of checking all the conditions869

of Definition 7 for all steps is O(n2
r + |args(P)| × size(P)).870

Since, n2
r × nb × (ap × af)

2 = O((size(P))2), |args(P)| = O(size(P)) and n2
r =871

O((size(P))2), the complexity of deciding whether P is safe is O((size(P))2 +872

|args(P)|3 × |FP|). �873

24 M. Calautti et al.

6 Bound queries and examples874

In this section we consider the extension of our framework to queries. This is an875

important aspect as in many cases, the answer to a query is finite, although the876

models may have infinite cardinality. This happens very often when the query goal877

contains ground terms.878

6.1 Bound queries879

Rewriting techniques, such as magic-set, allow bottom-up evaluators to efficiently880

compute (partially) ground queries, that is queries whose query goal contains ground881

terms. These techniques rewrite queries (consisting of a query goal and a program)882

such that the top-down evaluation is emulated (Beeri and Ramakrishnan 1991;883

Greco 2003; Greco et al. 2005; Alviano et al. 2010). Labelling techniques similar to884

magic-set have been also studied in the context of term rewriting (Zantema 1995).885

Before presenting the rewriting technique, let us introduce some notations.886

A query is a pair Q = 〈q(u1, .., un),P〉, where q(u1, .., un) is an atom called query887

goal and P is a program. We recall that an adornment of a predicate symbol888

p with arity n is a string α ∈ {b, f}∗ such that |α| = n1. The symbols b and f889

denote, respectively, bound and free arguments. Given a query Q = 〈q(u1, .., un),P〉,890

MagicS(Q) = 〈qα(u1, .., un),MagicS(q(u1, .., un),P)〉 indicates the rewriting of Q, where891

MagicS(q(u1, .., un),P) denotes the rewriting of rules in P w.r.t. the query goal892

q(u1, .., un) and α is the adornment associated with the query goal.893

We assume that our queries 〈G,P〉 are positive, as the rewriting technique is here894

applied to 〈G, st(P)〉 to generate the positive program which is used to restrict the895

source program (see Section 8).896

Definition 9897

A query Q = 〈G,P〉 is safe if P or MagicS(G,P) is safe. ✷898

It is worth noting that it is possible to have a query Q=〈G,P〉 such that P is safe,899

but the rewritten program MagicS(G,P) is not safe and vice versa.900

Example 13901

Consider the query Q = 〈p(f(f(a))), P13〉, where P13 is defined below:902

p(a).

p(f(X))←p(X).

P13 is not safe, but if we rewrite the program using the magic-set method, we obtain903

the safe program:904

magic pb(f(f(a))).

magic pb(X) ← magic pb(f(X)).

pb(a) ← magic pb(a).

pb(f(X)) ← magic pb(f(X)), pb(X).

1 Adornments of predicates, introduced to optimize the bottom-up computation of logic queries, are
similar to mode of usage defined in logic programming to describe how the arguments of a predicate p
must be restricted when an atom with predicate symbol p is called.

Checking termination of the bottom-up evaluation of logic programs 25

Consider now the query Q = 〈p(a),P′
13〉, where P′

13 is defined as follows:905

p(f(f(a))).

p(X)←p(f(X)).

The program is safe, but after the magic-set rewriting we obtain the following906

program:907

magic pb(a).

magic pb(f(X)) ← magic pb(X).

pb(f(f(a))) ← magic pb(f(f(a))).

pb(X) ← magic pb(X), pb(f(X)).

which is not recognized as safe because it is not terminating. ✷908

Thus, we propose to first check if the input program is safe and, if it does not909

satisfy the safety criterion, to check the property on the rewritten program, which is910

query-equivalent to the original one.911

We recall that for each predicate symbol p with arity n, the number of adorned912

predicates pα1 ...αn could be exponential and bounded by O(2n). However, in practical913

cases only few adornments are generated for each predicate symbol. Indeed, rewriting914

techniques are well consolidated and widely used to compute bound queries.915

6.2 Examples916

Let us now consider the application of the technique described above to some917

practical examples. Since each predicate in the rewritten query has a unique918

adornment, we shall omit them.919

Example 14920

Consider the query 〈reverse([a, b, c, d], L), P14〉, where P14 is defined by the following921

rules:922

r0 : reverse([], []).

r1 : reverse([X|Y], [X|Z]) ← reverse(Y, Z).

The equivalent program P ′
14, rewritten to be computed by means of a bottom-up923

evaluator, is:924

ρ0 : m reverse([a, b, c, d]).

ρ1 : m reverse(Y) ← m reverse([X|Y]).
ρ2 : reverse([], []) ← m reverse([]).

ρ3 : reverse([X|Y], [X|Z]) ← m reverse([X|Y]), reverse(Y, Z).

Observe that P ′
14 is not argument-restricted. In order to check Γ-acyclicity and safety925

criteria, we have to rewrite rule ρ3 having complex terms in both the head and the926

body. Thus we add an additional predicate b1 defined by rule ρ4 and replace ρ3 by927

ρ′
3.928

ρ′
3 : reverse([X|Y], [X|Z]) ← b1(X, Y, Z).

ρ4 : b1(X, Y, Z) ← m reverse([X|Y]), reverse(Y, Z).

The obtained program, denoted P ′′
14, is safe but not Γ-acyclic. ✷929

26 M. Calautti et al.

Example 15930

Consider the query 〈length([a, b, c, d], L), P15〉, where P15 is defined by the following931

rules:932

r0 : length([], 0).

r1 : length([X|T], I + 1) ← length(T, I).

The equivalent program P ′
15, is rewritten to be computed by means of a bottom-up933

evaluator as follows2 :934

ρ0 : m length([a, b, c, d]).

ρ1 : m length(T) ← m length([X|T]).
ρ2 : length([], 0) ← m length([]).

ρ3 : length([X|T], I + 1) ← m length([X|T]), length(T, I).

Also in this case, it is necessary to split rule ρ3 into two rules to avoid having935

function symbols in both the head and the body, as shown below:936

ρ′
3 : length([X|T], I + 1) ← b1(X, T, I).

ρ4 : b1(X, T, I) ← m length1(X, T), length(T, I).

The obtained program, denoted P ′′
15, is safe but not Γ-acyclic. ✷937

We conclude this section pointing out that the queries in the two examples above938

are not recognized as terminating by most of the previously proposed techniques,939

including AR. We also observe that many programs follow the structure of programs940

presented in the examples above. For instance, programs whose aim is the verification941

of a given property on the elements of a given list, have the following structure:942

verify([], []).

verify([X|L1], [Y|L2]) ← property(X, Y), verify(L1, L2).

Consequently, queries having a ground argument in the query goal are terminating.943

7 Further improvements944

The safety criterion can be improved further as it is not able to detect that in the945

activation graph, there may be cyclic paths that are not effective or can only be946

activated a finite number of times. The next example shows a program which is947

finitely ground, but recognized as terminating by the safety criterion.948

Example 16949

Consider the following logic program P16 obtained from P8 by adding an auxiliary950

predicate q:951

r1 : p(X, X) ← b(X).

r2 : q(f(X), g(X)) ← p(X, X).

r3 : p(X, Y) ← q(X, Y).

P16 is equivalent to P8 w.r.t. predicate p. ✷952

2 Observe that program P ′
15 is equivalent to program P1 presented in the Introduction, assuming that

the base predicate input is defined by a fact input([a, b, c, d]).

Checking termination of the bottom-up evaluation of logic programs 27

F
ig

.
7
-C

o
lo

u
r

o
n
li
n
e,

B
/
W

in
p
ri
n
t

Fig. 7. (Colour online) k-restricted activation graphs: Σ1(P16) (left), Σ2(P16) (center), Σ3(P16)
(right).

Although the activation graph Σ(P16) contains a cycle, the rules occurring in the953

cycle cannot be activated an infinite number of times. Therefore, in this section we954

introduce the notion of active paths and extend the definitions of activation graphs955

and safe programs.956

Definition 10 (Active path)957

Let P be a program and k � 1 be a natural number. The path (r1, r2), . . . , (rk , rk+1)958

is an active path in the activation graph Σ(P) iff there is a set of unifiers θ1, . . . , θk ,959

such that960

• head(r1) unifies with an atom from body(r2) with unifier θ1;961

• head(ri)θi−1 unifies with an atom from body(ri+1) with unifier θi for i ∈ [2, ..., k].962

We write r1 �k rk+1 if there is an active path of length k from r1 to rk+1 in Σ(P). ✷963

Intuitively, (r1, r2), . . . , (rk , rk+1) is an active path if r1 transitively activates rule964

rk+1, that is if the head of r1 unifies with some body atom of r2 with mgu θ1, then965

the head of the rule r2θ1 unifies with some body atom of r3 with mgu θ2, then the966

head of the rule r3θ2 unifies with some body atom of r4 with mgu θ3, and so on967

until the head of the rule rkθk−1 unifies with some body atom of rk+1 with mgu θk .968

Definition 11 (k-restricted activation graph)969

Let P be a program and k � 1 be a natural number, the k-restricted activation graph970

Σk(P) = (P, E) consists of a set of nodes denoting the rules of P and a set of edges971

E defined as follows: there is an edge (ri, rj) from ri to rj iff ri �k rj , i.e. iff there is972

an active path of length k from ri to rj . ✷973

Example 17974

The k-restricted activation graphs for the program of Example 16, with k ∈ [1, ..., 3],975

are reported in Figure 7. ✷976

Obviously, the activation graph presented in Definition 5 is 1-restricted. We next977

extend the definition of safe function by referring to k-restricted activation graphs,978

instead of the (1-restricted) activation graph.979

Definition 12 (k-safety function)980

For any program P and natural number k � 1, let A be a set of limited arguments981

of P. The k-safety function Ψk(A) denotes the set of arguments q[i] ∈ args(P) such982

that for all rules r = q(t1, . . . , tm) ← body(r) ∈ P, either r does not depend on a cycle983

π of Σj(P), for some 1 � j � k, or ti is limited in r w.r.t. A. ✷984

28 M. Calautti et al.

Observe that the k-safety function Ψk is defined as a natural extension of the985

safety function Ψ by considering all the j-restricted activation graphs, for 1 � j � k.986

Note that the 1-restricted activation graph coincides with the standard activation987

graph and, consequently, Ψ1 coincides with Ψ.988

Definition 13 (k-safe arguments)989

For any program P, safek(P) = Ψ∞
k (ΓA(P)) denotes the set of k-safe arguments of990

P. A program P is said to be k-safe if all arguments are k-safe. ✷991

Example 18992

Consider again the logic program P16 from Example 16. Σ2(P16) contains the unique993

cycle (r3, r3); consequently, q[1] and q[2] appearing only in the head of rule r2994

are 2-safe. By applying iteratively operator Ψ2 to the set of limited arguments995

{b[1], q[1], q[2]}, we derive that also p[1] and p[2] are 2-safe. Since safe2(P16) =996

args(P16), we have that P16 is 2-safe. Observe also that Σ3(P16) does not contain any997

edge and, therefore, all arguments are 3-safe. ✷998

For any natural number k > 0, SPk denotes the class of k-safe logic programs,999

that is the set of programs P such that safek(P) = args(P). The following proposition1000

states that the classes of k-safe programs define a hierarchy where SPk � SPk+1.1001

Proposition 71002

The class SPk+1 of (k + 1)-safe programs strictly extends the class SPk of k-safe1003

programs, for any k � 1.1004

Proof1005

(SPk ⊆ SPk+1) It follows straightforwardly from the definition of k-safe function.1006

(SPk 	= SPk+1) To show that the containment is strict, consider the program P161007

from Example 16 for k = 1 and the following program Pk for k > 1:1008

r0 : q1(f(X), g(X)) ← p(X, X).

r1 : q2(X, Y) ← q1(X, Y).

. . .

rk−1 : qk(X, Y) ← qk−1(X, Y).

rk : p(X, Y) ← qk(X, Y).

It is easy to see that Pk is in SPk+1, but not in SPk . �1009

Recall that the minimal model of a standard program P can be characterized in1010

terms of the classical immediate consequence operator TP defined as follows. Given1011

a set I of ground atoms, then1012

TP(I) = {Aθ | ∃r : A ← A1, . . . , An ∈ P and ∃θ s.t. Aiθ ∈ I for every 1 � i � n}

where θ is a substitution replacing variables with constants. Thus, TP takes as input1013

a set of ground atoms and returns as output a set of ground atoms; clearly, TP is1014

monotonic. The ith iteration of TP (i � 1) is defined as follows: T1
P (I) = TP(I)1015

and Ti
P(I) = TP(Ti−1

P (I)) for i > 1. It is well known that the minimum model of1016

P is equal to the fixed point T∞
P(∅).1017

A rule r is fired at run-time with a substitution θ at step i if head(r)θ ∈ T i
P(∅) −1018

T i−1
P (∅). Moreover, we say that r is fired (at run-time) by a rule s if r is fired with a1019

Checking termination of the bottom-up evaluation of logic programs 29

substitution θ at step i, s is fired with a substitution σ at step i − 1, and head(s)σ ∈1020

body(r)θ. Let P be a program whose minimum model is M = MM(P) = T∞
P (∅),1021

M[[r]] denotes the set of facts which have been inferred during the application of1022

the immediate consequence operator using rule r, that is the set of facts head(r)θ1023

such that, for some natural number i, head(r)θ ∈ T i
P(∅) − T i−1

P (∅); M[[r]] if infinite1024

iff r is fired an infinite number of times. Clearly, if a rule s fires at run-time a rule1025

r, then the activation graph contains an edge (s, r). An active sequence of rules is a1026

sequence of rules r1, . . . , rn such that ri fires at run-time rule ri+1 for i ∈ [1, ..., n − 1].1027

Theorem 41028

Let P be a logic program and let r be a rule of P. If M[[r]] is infinite, then, for1029

every natural number k, r depends on a cycle of Σk(P).1030

Proof1031

Let nr be the number of rules of P and let N = nr × k. If M[[r]] is infinite we have1032

that there is an active sequence of rules r′
0, r

′
1, . . . , r

′
i , . . . , r

′
N such that r′

N coincides1033

with r. This means that1034

r′
0 �

k r′
k , r

′
k �

k r′
2k , . . . , r

′
j×k �

k r′
(j+1)×k , . . . , r

′
(nr−1)×k �

k r′
N ,

i.e. that the k-restricted activation graph Σk(P) contains path π = (r′
0, r

′
k),1035

(r′
k , r

′
2k), . . . , (r

′
j×k , r

′
(j+1)×k), . . . , (r

′
(nr−1)×k , r). Observe that the number of rules involved1036

in π is nr + 1 and is greater than the number of rules of P. Consequently, there is a1037

rule occurring more than once in π, i.e. π contains a cycle. Therefore, r depends on1038

a cycle of Σk(P). �1039

As shown in Example 18, in some cases the analysis of the k-restricted1040

activation graph is enough to determine the termination of a program. Indeed,1041

let cyclicR(Σk(P)) be the set of rules r in P s.t. r depends on a cycle in Σk(P), the1042

following results hold.1043

Corollary 21044

A program P is terminating if ∀r ∈ P, ∃k s.t. r 	∈ cyclicR(Σk(P)).1045

Proof1046

Straightforward from Theorem 4. �1047

Obviously, if there is a k such that for all rules r ∈ P r 	∈ cyclicR(Σk(P)), P is1048

terminating. We conclude this section showing that the improvements here discussed1049

increase the complexity of the technique which is not polynomial anymore.1050

Proposition 81051

For any program P and natural number k > 1, the activation graph Σk(P) can be1052

constructed in time exponential in the size of P and k.1053

Proof1054

Let (r1, r2) · · · (rk , rk+1) be an active path of length k in Σ(P). Consider a pair (ri, ri+1)1055

and two unifying atoms Ai = head(ri) and Bi+1 ∈ body(ri+1) (with 1 � i � k), the1056

size of an mgu θ for Ai and Bi+1, represented in the standard way (cf. Section 2),1057

can be exponential in the size of the two atoms. Clearly, the size of Aiθ and Bi+1θ1058

30 M. Calautti et al.

can also be exponential. Consequently, the size of Ai+1θ which is used for the next1059

step, can grow exponentially as well. Moreover, since in the computation of an1060

active path of length k we apply k mgu’s, the size of terms can grow exponentially1061

with k. �1062

Observe that for the computation of the 1-restricted argument graph it is sufficient1063

to determine if two atoms unify (without computing the mgu), whereas for the1064

computation of the k-restricted argument graphs, with k > 1, it is necessary to1065

construct all the mgu’s and to apply them to atoms.1066

8 Computing stable models for disjunctive programs1067

In this section we discuss how termination criteria, defined for standard programs,1068

can be applied to general disjunctive logic programs. First, observe that we have1069

assumed that whenever the same variable X appears in two terms occurring,1070

respectively, in the head and body of a rule, at most one of the two terms is a1071

complex term and that the nesting level of complex terms is at most one. There is1072

no real restriction in such an assumption as every program could be rewritten into1073

an equivalent program satisfying such a condition. For instance, a rule r′ of the form1074

p(f(g(X)), h(Y, Z)) ← p(f(X), Y), q(h(g(X), l(Z)))

is rewritten into the set of ‘flatten’ rules below:1075

p(f(A), h(Y, Z)) ← b1(A, Y, Z)

b1(g(X), Y, Z) ← b2(X, Y, Z)

b2(X, Y, Z) ← b3(X, Y, g(X), l(Z))

b3(X, Y, B, C) ← p(f(X), Y), q(h(B, C))

where b1, b2 and b3 are new predicate symbols, whereas A, B and C are new variables1076

introduced to flat terms with depth greater than 1.1077

More specifically, let d(p(t1, . . . , tn)) = max{d(t1), . . . , d(tn)} be the depth of atom1078

p(t1, . . . , tn) and d(A1, . . . , An) = max{d(A1), . . . , d(An)} be the depth of a conjunction1079

of atoms A1, . . . , An, for each standard rule r we generate a set of ‘flatten’ rules,1080

denoted by flat(r) whose cardinality is bounded by O(d(head(r)) + d(body(r)).1081

Therefore, given a standard program P, the number of rules of the rewritten program1082

is polynomial in the size of P and bounded by1083

O

(

∑

r∈P

d(head(r)) + d(body(r))

)

.

Concerning the number of arguments in the rewritten program, for a given rule1084

r we denote with nl(r, h, i) (resp. nl(r, b, i)) the number of occurrences of function1085

symbols occurring at the same nesting level i in the head (resp. body) of r and1086

with nf(r) = max{nl(r, t, i) | t ∈ {h, b} ∧ i > 1}. For instance, considering the above1087

rule r′, we have that nl(r′, h, 1) = 2 (function symbols f and h occur at nesting1088

level 1 in the head), nl(r′, h, 2) = 1 (function symbol g occurs at nesting level 2 in1089

the head), nl(r′, b, 1) = 2 (function symbols f and h occur at nesting level 1 in the1090

Checking termination of the bottom-up evaluation of logic programs 31

head), nl(r′, b, 2) = 2 (function symbols g and l occur at nesting level 2 in the head).1091

Consequently, nf(r′) = 2.1092

The rewriting of the source program results in a ‘flattened’ program with |flat(r)|−11093

new predicate symbols. The arity of every new predicate in flat(r) is bounded by1094

|var(r)| + nf(r). Therefore, the global number of arguments in the flattened program1095

is bounded by1096

O

(

args(P) +
∑

r∈P

(

|var(r)| + nf(r)
)

)

.

The termination of a disjunctive program P with negative literals can be1097

determined by rewriting it into a standard logic program st(P) such that every1098

stable model of P is contained in the (unique) minimum model of st(P), and then1099

by checking st(P) for termination.1100

Definition 14 (Standard version)1101

Given a program P, st(P) denotes the standard program, called standard version,1102

obtained by replacing every disjunctive rule r = a1 ∨ · · · ∨ am ← body(r) with m1103

standard rules of the form ai ← body+(r), for 1 � i � m.1104

Moreover, we denote with ST (P) the program derived from st(P) by replacing1105

every derived predicate symbol q with a new derived predicate symbol Q. ✷1106

The number of rules in the standard program st(P) is equal to
∑

r∈P |head(r)|,1107

where |head(r)| denotes the number of atoms in the head of r.1108

Example 191109

Consider program P19 consisting of the two rules1110

p(X) ∨ q(X) ← r(X),¬a(X).
r(X) ← b(X),¬q(X).

where p, q and r are derived (mutually recursive) predicates, whereas a and b are1111

base predicates. The derived standard program st(P19) is as follows:1112

p(X) ← r(X).

q(X) ← r(X).

r(X) ← b(X). ✷1113

Lemma 21114

For every program P, every stable model M ∈ SM(P) is contained in the minimum1115

model MM(st(P)).1116

Proof1117

From the definition of stable models we have that every M ∈ SM(P) is the minimal1118

model of the ground positive program PM . Consider now the standard program1119

P′ derived from PM by replacing every ground disjunctive rule r = a1 ∨ · · · ∨1120

an ← body(r) with m ground normal rules ai ← body(r). Clearly, M ⊆ MM(P′).1121

Moreover, since P′ ⊆ st(P), we have that MM(P′) ⊆ MM(st(P)). Therefore,1122

M ⊆ MM(st(P)). �1123

32 M. Calautti et al.

The above lemma implies that for any logic program P, if st(P) is finitely ground1124

we can restrict the Herbrand base and only consider head (ground) atoms q(t)1125

such that q(t) ∈ MM(st(P)). This means that, after having computed the minimum1126

model of st(P), we can derive a finite ground instantiation of P, equivalent to the1127

original program, by considering only ground atoms contained in MM(st(P)).1128

We next show how the original program P can be rewritten so that, after having1129

computed MM(st(P)), every grounder tool easily generates an equivalent finitely1130

ground program. The idea consists in generating, for any disjunctive program P1131

such that st(P) satisfies some termination criterion (e.g. safety), a new equivalent1132

program ext(P). The computation of the stable models of ext(P) can be carried out1133

by considering the finite ground instantiation of ext(P) (Leone et al. 2002; Simons1134

et al. 2002; Gebser et al. 2007a).1135

For any disjunctive rule r = q1(u1) ∨ · · · ∨ qk(uk) ← body(r), the conjunction of1136

atoms Q1(u1), ..., Qk(uk) will be denoted by headconj(r).1137

Definition 15 (Extended program)1138

Let P be a disjunctive program and let r be a rule of P, then, ext(r) denotes the1139

(disjunctive) extended rule head(r) ← headconj(r), body(r) obtained by extending the1140

body of r, whereas ext(P) = {ext(r) | r ∈ P} ∪ ST (P) denotes the (disjunctive)1141

extended program obtained by extending the rules of P and adding (standard) rules1142

defining the new predicates. ✷1143

Example 201144

Consider the program P19 of Example 19. The extended program ext(P19) is as1145

follows:1146

p(X) ∨ q(X) ← P(X), Q(X), r(X),¬a(X).
r(X) ← R(X), b(X),¬q(X).
P(X) ← R(X).

Q(X) ← R(X).

R(X) ← b(X). ✷1147

The following theorem states that P and ext(P) are equivalent w.r.t. the set of1148

predicate symbols in P.1149

Theorem 51150

For every program P, SM(P)[SP] = SM(ext(P))[SP], where SP is the set of1151

predicate symbols occurring in P.1152

Proof1153

First, we recall that ST (P) ⊆ ext(P) and assume that N is the minimum model of1154

ST (P), i.e. N = MM(ST (P)).1155

• We first show that for each S ∈ SM(ext(P)), M = S − N is a stable model1156

for P, that is M ∈ SM(P).1157

Let us consider the ground program P′′ obtained from ext(P)S by first1158

deleting every ground rule r = head(r) ← headconj(r), body(r) such that1159

N 	|= headconj(r) and then by removing from the remaining rules, the1160

conjunction headconj(r). Observe that the sets of minimal models for ext(P)S1161

Checking termination of the bottom-up evaluation of logic programs 33

and P′′ coincide, i.e. MM(ext(P)S) = MM(P′′). Indeed, for every r in ext(P)S ,1162

if N 	|= headconj(r), then the body of r is false and thus r can be removed as it1163

does not contribute to infer head atoms. On the other hand, if N |= headconj(r),1164

the conjunction headconj(r) is trivially true, and can be safely deleted from1165

the body of r.1166

Therefore, M ∪ N ∈ MM(P′′). Moreover, since P′′ = (P ∪ ST (P))S = PM ∪1167

ST (P)N , we have that M ∈ MM(PM), that is M ∈ SM(P).1168

• We now show that for each M ∈ SM(P), (M ∪ N) ∈ SM(ext(P)).1169

Let us assume that S = M ∪ N. Since M ∈ MM(PM) we have that S ∈1170

SM(P ∪ ST (P)), that is S ∈ MM((P ∪ ST (P))S). Consider the ground1171

program P′ derived from (P ∪ ST (P))S by replacing every rule disjunctive1172

r = head(r) ← body(r) such that M |= body(r) with ext(r) = head(r) ←1173

headconj(r), body(r). Also in this case we have that MM(P ∪ ST (P))S) =1174

MM(P′) as S |= body(r) iff S |= body(ext(r)). This, means that S is a stable1175

model for ext(P).1176

�1177

9 Conclusion1178

In this paper we have proposed a new approach for checking, on the basis of1179

structural properties, termination of the bottom-up evaluation of logic programs with1180

function symbols. We have first proposed a technique, called Γ-acyclicity, extending1181

the class of argument-restricted programs by analyzing the propagation of complex1182

terms among arguments using an extended version of the argument graph. Next,1183

we have proposed a further extension, called safety, which also analyzes how rules1184

can activate each other (using the activation graph) and how the presence of some1185

arguments in a rule limits its activation. We have also studied the application of1186

the techniques to partially ground queries and have proposed further improvements1187

which generalize the safety criterion through the introduction of a hierarchy of1188

classes of terminating programs, called k-safety, where each k-safe class strictly1189

includes the (k-1)-safe class.1190

Although our results have been defined for standard programs, we have shown1191

that they can also be applied to disjunctive programs with negative literals, by1192

simply rewriting the source programs. The semantics of the rewritten program is1193

‘equivalent’ to the semantics of the source one and can be computed by current1194

answer set systems. Even though our framework refers to the model theoretic1195

semantics, we believe that the results presented here go beyond the ASP community1196

and could be of interest also for the (tabled) logic programming community (e.g.1197

tabled Prolog community).1198

Acknowledgements1199

The authors would like to thank the anonymous reviewers for their valuable1200

comments and suggestions.1201

34 M. Calautti et al.

References1202

Alviano, M., Faber, W. and Leone, N. 2010. Disjunctive asp with functions: Decidable1203
queries and effective computation. Theory and Practice of Logic Programming 10, 4–6,1204
497–512.1205

Arts, T. and Giesl, J. 2000. Termination of term rewriting using dependency pairs. Theoretical1206
Computer Science 236, 1–2, 133–178.1207

Baselice, S., Bonatti, P. A. and Criscuolo, G. 2009. On finitely recursive programs. Theory1208
and Practice of Logic Programming 9, 2, 213–238.1209

Beeri, C. and Ramakrishnan, R. 1991. On the power of magic. Journal of Logic1210
Programming 10, 1–4, 255–299.1211

Bonatti, P. A. 2004. Reasoning with infinite stable models. Artificial Intelligence 156, 1,1212
75–111.1213

Brockschmidt, M., Musiol, R., Otto, C. and Giesl, J. 2012. Automated termination proofs1214
for java programs with cyclic data. In Proc. of 24th International Conference on Computer1215
Aided Verification, P. Madhusudan and Sanjit A. Seshia, Eds. Lecture Notes in Computer1216
Science, vol. 7358. Springer-Verlag, Berlin, 105–122.1217

Bruynooghe, M., Codish, M., Gallagher, J. P., Genaim, S. and Vanhoof, W. 2007.1218
Termination analysis of logic programs through combination of type-based norms. ACM1219
Transactions on Programming Languages and Systems 29, 2.1220

Calimeri, F., Cozza, S., Ianni, G. and Leone, N. 2008. Computable functions in ASP: Theory1221
and implementation. In Proc. of 24th International Conference on Logic Programming1222
(ICLP), M. G. de la Banda and E. Pontelli, Eds. Lecture Notes in Computer Science,1223
vol. 5366. Springer-Verlag, Berlin, 407–424.1224

Codish, M., Lagoon, V. and Stuckey, P. J. 2005. Testing for termination with monotonicity1225
constraints. In Proc. of 21st International Conference on Logic Programming (ICLP), M.1226
Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. Springer-1227
Verlag, Berlin, 326–340.1228

Endrullis, J., Waldmann, J. and Zantema, H. 2008. Matrix interpretations for proving1229
termination of term rewriting. Journal of Automated Reasoning 40, 2–3, 195–220.1230

Fagin, R., Kolaitis, P. G., Miller, R. J. and Popa, L. 2005. Data exchange: semantics and1231
query answering. Theoretical Computer Science 336, 1, 89–124.1232

Ferreira, M. C. F. and Zantema, H. 1996. Total termination of term rewriting. Applicable1233
Algebra in Engineering, Communication and Computing 7, 2, 133–162.1234

Gebser, M., Kaufmann, B., Neumann, A. and Schaub, T. 2007a. clasp : A conflict-driven1235
answer set solver. In Proc. of 9th International Conference on Logic Programming and1236
Nonmonotonic Reasoning (LPNMR), C. Baral, G. Brewka and J. Schlipf, Eds. Lecture1237
Notes in Computer Science, vol. 4483. Springer-Verlag, Berlin, 260–265.1238

Gebser, M., Schaub, T. and Thiele, S. 2007b. Gringo : A new grounder for answer set1239
programming. In Proc. of 9th International Conference on Logic Programming and1240
Nonmonotonic Reasoning (LPNMR), C. Baral, G. Brewka and J. Schlipf, Eds. Lecture1241
Notes in Computer Science, vol. 4483. Springer-Verlag, Berlin, 266–271.1242

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In1243
Proc. of 5th International Conference and Symposium on Logic Programming (ICLP/SLP),1244
R. A. Kowalski and K. A. Bowen, Eds. Series in Logic Programming, vol. 2. MIT Press,1245
Cambridge, MA, 1070–1080.1246

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive1247
databases. New Generation Computing 9, 3/4, 365–386.1248

Greco, G., Greco, S., Trubitsyna, I. and Zumpano, E. 2005. Optimization of bound1249
disjunctive queries with constraints. Theory and Practice of Logic Programming 5, 6, 713–1250
745.1251

Checking termination of the bottom-up evaluation of logic programs 35

Greco, S. 2003. Binding propagation techniques for the optimization of bound disjunctive1252
queries. IEEE Transactions on Knowledge and Data Engineering 15, 2, 368–385.1253

Greco, S. and Spezzano, F. 2010. Chase termination: A constraints rewriting approach.1254
Proceedings of the VLDB Endowment (PVLDB) 3, 1, 93–104.1255

Greco, S., Spezzano, F. and Trubitsyna, I. 2011. Stratification criteria and rewriting1256
techniques for checking chase termination. Proceedings of the VLDB Endowment1257
(PVLDB) 4, 11, 1158–1168.1258

Greco, S., Spezzano, F. and Trubitsyna, I. 2012. On the termination of logic programs with1259
function symbols. In Proc. of International Conference on Logic Programming (Technical1260
Communications). 323–333. Q21261

Krishnamurthy, R., Ramakrishnan, R. and Shmueli, O. 1996. A framework for testing1262
safety and effective computability. Journal of Computer and System Sciences 52, 1, 100–124.1263

Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi, T., Eiter, T., Gottlob, G., Ianni,1264
G., Ielpa, G., Koch, K., Perri, S. and Polleres, A. 2002. The DLV system. In Proc. of 8th1265
European Conference on Logics in Artificial Intelligence (JELIA), S. Flesca, S. Greco, G.1266
Ianni and N. Leonne, Eds. Lecture Notes in Computer Science, vol. 2424. Springer-Verlag,1267
Berlin, 537–540.1268

Liang, S. and Kifer, M. 2013. A practical analysis of non-termination in large logic programs.1269
Theory and Practice of Logic Programming 13, 4–5, 705–719.1270

Lierler, Y. and Lifschitz, V. 2009. One more decidable class of finitely ground programs.1271
In Proc. of 25th International Conference on Logic Programming (ICLP), P. M. Hill and1272
D. S. Warren, Eds. Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, Berlin,1273
489–493.1274

Marchiori, M. 1996. Proving existential termination of normal logic programs. In Proc. of 5th1275
International Conference on Algebraic Methodology and Software Technology, M. Wirsing1276
and M. Nivat, Eds. Lecture Notes in Computer Science, vol. 1101. Springer-Verlag, Berlin,1277
375–390.1278

Marnette, B. 2009. Generalized schema-mappings: From termination to tractability. In Proc.1279
of 28th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems1280
(PODS). ACM, New York, NY, 13–22.1281

Meier, M., Schmidt, M. and Lausen, G. 2009. On chase termination beyond stratification.1282
CoRR abs/0906.4228.1283

Nguyen, M. T., Giesl, J., Schneider-Kamp, P. and Schreye, D. D. 2007. Termination analysis1284
of logic programs based on dependency graphs. In Proc. of 17th International Symposium1285
on Logic-Based Program Synthesis and Transformation (LOPSTR), A. King, Ed. Lecture1286
Notes in Computer Science, vol. 4915. Springer-Verlag, Berlin, 8–22.1287

Nishida, N. and Vidal, G. 2010. Termination of narrowing via termination of rewriting.1288
Applicable Algebra in Engineering, Communication and Computing 21, 3, 177–225.1289

Ohlebusch, E. 2001. Termination of logic programs: Transformational methods revisited.1290
Applicable Algebra in Engineering, Communication and Computing 12, 1/2, 73–116.1291

Schneider-Kamp, P., Giesl, J. and Nguyen, M. T. 2009b. The dependency triple framework1292
for termination of logic programs. In Proc. of 19th International Symposium on Logic-Based1293
Program Synthesis and Transformation (LOPSTR), D. D. Schreye, Ed. Lecture Notes in1294
Computer Science, vol. 6037. Springer-Verlag, Berlin, 37–51.1295

Schneider-Kamp, P., Giesl, J., Serebrenik, A. and Thiemann, R. 2009a. Automated1296
termination proofs for logic programs by term rewriting. ACM Transactions on1297
Computational Logic 11, 1.1298

Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A. and Thiemann, R. 2010.1299
Automated termination analysis for logic programs with cut. Theory and Practice of Logic1300
Programming 10, 4–6, 365–381.1301

36 M. Calautti et al.

Schreye, D. D. and Decorte, S. 1994. Termination of logic programs: The never-ending1302
story. Journal of Logic Programming 19/20, 199–260.1303

Serebrenik, A. and De Schreye, D. 2005. On termination of meta-programs. Theory and1304
Practice of Logic Programming 5, 3, 355–390.1305

Simons, P., Niemela, I. and Soininen, T. 2002. Extending and implementing the stable model1306
semantics. Artificial Intelligence 138, 1–2, 181–234.1307

Sternagel, C. and Middeldorp, A. 2008. Root-labeling. In Proc. of 19th International1308
Conference on Rewriting Techniques and Applications, A. Voronkov, Ed. Lecture Notes in1309
Computer Science, vol. 5117. Springer-Verlag, Berlin, 336–350.1310

Ströder, T., Schneider-Kamp, P. and Giesl, J. 2010. Dependency triples for improving1311
termination analysis of logic programs with cut. In Proc. of 20th International Symposium on1312
Logic-Based Program Synthesis and Transformation (LOPSTR), M. Alpuente, Ed. Lecture1313
Notes in Computer Science, vol. 6564. Springer-Verlag, Berlin, 184–199.1314

Syrjänen, T. 2001. Omega-restricted logic programs. In Proc. of 6th International Conference1315
on Logic Programming and Nonmonotonic Reasoning (LPNMR), T. Eiter, W. Faber and1316
M. L. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 2173. Springer-Verlag,1317
Berlin, 267–279.1318

Venturini Zilli, M. 1975. Complexity of the unification algorithm for first-order expressions.1319
CALCOLO 12, 4, 361–371.1320

Voets, D. and Schreye, D. D. 2010. Non-termination analysis of logic programs using1321
types. In Proc. of 20th International Symposium on Logic-Based Program Synthesis and1322
Transformation (LOPSTR), M. Alpuente, Ed. Lecture Notes in Computer Science,1323
vol. 6564. Springer-Verlag, Berlin, 133–148.1324

Zantema, H. 1995. Termination of term rewriting by semantic labelling. Fundamenta1325
Informaticae 24, 1/2, 89–105.1326

