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Abstract

Aggregation functions are widely used in answer set programming for representing and reasoning
on knowledge involving sets of objects collectively. Current implementations simplify the structure
of programs in order to optimize the overall performance. In particular, aggregates are rewritten into
simpler forms known as monotone aggregates. Since the evaluation of normal programs with mono-
tone aggregates is in general on a lower complexity level than the evaluation of normal programs
with arbitrary aggregates, any faithful translation function must introduce disjunction in rule heads
in some cases. However, no function of this kind is known. The paper closes this gap by introduc-
ing a polynomial, faithful, and modular translation for rewriting common aggregation functions into
the simpler form accepted by current solvers. A prototype system allows for experimenting with
arbitrary recursive aggregates, which are also supported in the recent version 4.5 of the grounder
GRINGO, using the methods presented in this paper.

KEYWORDS: answer set programming; polynomial, faithful, and modular translation; aggregation
functions.

1 Introduction

Answer set programming (ASP) is a declarative language for knowledge representation
and reasoning (Brewka et al. 2011). In ASP knowledge is encoded by means of logic
rules, possibly using disjunction and default negation, interpreted according to the stable
model semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991). Since its first
proposal, the basic language was extended by several constructs in order to ease the repre-
sentation of practical knowledge, and particular interest was given to aggregate functions
(Simons et al. 2002; Liu et al. 2010; Bartholomew et al. 2011; Faber et al. 2011; Ferraris
2011; Gelfond and Zhang 2014). In fact, aggregates allow for expressing properties on sets
of atoms declaratively, and are widely used for example to enforce functional dependen-
cies, where a rule of the form

⊥ ← R′(X), COUNT[Y : R(X,Y , Z)] ≤ 1
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constrains relation R to satisfy the functional dependency X → Y , where X ∪ Y ∪ Z is
the set of attributes of R, and R′ is the projection of R on X .

Among the several semantics proposed for interpreting ASP programs with aggregates,
two of them (Faber et al. 2011; Ferraris 2011) are implemented in widely-used ASP solvers
(Faber et al. 2008; Gebser et al. 2012). The two semantics agree for programs without
negated aggregates, and are thus referred indistinctly in this paper as F-stable model se-
mantics. It is important to observe that the implementation of F-stable model semantics is
incomplete in current ASP solvers. In fact, the grounding phase rewrites aggregates into
simpler forms known as monotone aggregates, and many common reasoning tasks on nor-
mal programs with monotone aggregates belong to the first level of the polynomial hierar-
chy, while in general they belong to the second level for normal programs with aggregates
(Faber et al. 2011; Ferraris 2011). Since disjunction is not introduced during the rewriting
of aggregates, this is already evidence that currently available rewritings can be correct
only if recursion is limited to convex aggregates (Liu and Truszczyński 2006), the largest
class of aggregates for which the common reasoning tasks still belong to the first level of
the polynomial hierarchy in the normal case (Alviano and Faber 2013).

However, non-convex aggregations may arise in several contexts while modeling com-
plex knowledge (Eiter et al. 2008; Eiter et al. 2012; Abseher et al. 2014). A minimalistic
example is provided by the ΣP2 -complete problem called Generalized Subset Sum (Berman
et al. 2002), where two vectors u and v of integers as well as an integer b are given, and
the task is to decide whether the formula ∃x∀y(ux + vy 6= b) is true, where x and y
are vectors of binary variables of the same length as u or v, respectively. For example, for
u = [1, 2], v = [2, 3], and b = 5, the task is to decide whether the following formula is true:
∃x1x2∀y1y2(1 ·x1 + 2 ·x2 + 2 · y1 + 3 · y2 6= 5). Any natural encoding of such an instance
would include an aggregate of the form SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5, and it is not
immediate how to obtain an equivalent program that comprises monotone aggregates only.

The aim of this paper is to overcome the limitations of current rewritings in order to pro-
vide a polynomial, faithful, and modular translation (Janhunen 2006) that allows to compile
logic programs with aggregates into equivalent logic programs that only comprise mono-
tone aggregates. The paper focuses on common aggregation functions such as SUM, AVG,
MIN, MAX, COUNT, EVEN, and ODD. Actually, all of them are mapped to possibly non-
monotone sums in Section 3.1, and non-monotonicity is then eliminated in Section 3.2.
The rewriting is further optimized in Section 3.3 by taking strongly connected compo-
nents of a refined version of the positive dependency graph into account. Crucial proper-
ties like correctness and modularity are established in Section 3.4, followed by the dis-
cussion of related work and conclusions. The proposed rewriting is implemented in a pro-
totype system (http://alviano.net/software/f-stable-models/), and is
also adopted in the recent version 4.5 of the grounder GRINGO. With the prototype, aggre-
gates are represented by reserved predicates, so that the grounding phase can be delegated
to DLV (Alviano et al. 2010) or GRINGO (Gebser et al. 2011). The output of a grounder is
then processed to properly encode aggregates for the subsequent stable model search, as
performed by CLASP (Gebser et al. 2012), CMODELS (Giunchiglia et al. 2006), or WASP

(Alviano et al. 2014).
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2 Background

Let V be a set of propositional atoms including ⊥. A propositional literal is an atom possi-
bly preceded by one or more occurrences of the negation as failure symbol ∼. An aggregate
literal, or simply aggregate, is of one of the following three forms:

AGG1[w1 : l1, . . . , wn : ln]� b COUNT[l1, . . . , ln]� b AGG2[l1, . . . , ln] (1)

where AGG1 ∈ {SUM, AVG,MIN,MAX}, AGG2 ∈ {EVEN, ODD}, n ≥ 0, b, w1, . . . , wn
are integers, l1, . . . , ln are propositional literals, and � ∈ {<,≤,≥, >,=, 6=}. (Note that
[w1 : l1, . . . , wn : ln] and [l1, . . . , ln] are multisets. This notation of propositional aggre-
gates differs from ASP-Core-2 (https://www.mat.unical.it/aspcomp2013/
ASPStandardization/) for ease of presentation.) A literal is either a propositional
literal, or an aggregate. A rule r is of the following form:

p1 ∨ · · · ∨ pm ← l1 ∧ · · · ∧ ln (2)

where m ≥ 1, n ≥ 0, p1, . . . , pm are propositional atoms, and l1, . . . , ln are literals. The
set {p1, . . . , pm} \ {⊥} is referred to as head, denoted by H(r), and the set {l1, . . . , ln} is
called body, denoted by B(r). A program Π is a finite set of rules. The set of propositional
atoms (different from ⊥) occurring in a program Π is denoted by At(Π), and the set of
aggregates occurring in Π is denoted by Ag(Π).

Example 1
Consider the following program Π1:

x1 ← ∼∼x1 x2 ← ∼∼x2 y1 ← unequal y2 ← unequal ⊥ ← ∼unequal

unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

As will be clarified after defining the notion of a stable model, Π1 encodes the instance of
Generalized Subset Sum introduced in Section 1. �

An interpretation I is a set of propositional atoms such that ⊥ /∈ I . Relation |= is
inductively defined as follows:

• for p ∈ V , I |= p if p ∈ I;
• I |= ∼l if I 6|= l;
• I |= SUM[w1 : l1, . . . , wn : ln]� b if

∑
i∈[1..n],I|=li wi � b;

• I |= AVG[w1 : l1, . . . , wn : ln] � b if m := |{i ∈ [1..n] | I |= li}|, m ≥ 1, and∑
i∈[1..n],I|=li

wi

m � b;
• I |= MIN[w1 : l1, . . . , wn : ln]� b if min({wi | i ∈ [1..n], I |= li} ∪ {+∞})� b;
• I |= MAX[w1 : l1, . . . , wn : ln]� b if max({wi | i ∈ [1..n], I |= li} ∪ {−∞})� b;
• I |= COUNT[l1, . . . , ln]� b if |{i ∈ [1..n] | I |= li}| � b;
• I |= EVEN[l1, . . . , ln] if |{i ∈ [1..n] | I |= li}| is an even number;
• I |= ODD[l1, . . . , ln] if |{i ∈ [1..n] | I |= li}| is an odd number;
• for a rule r of the form (2), I |= B(r) if I |= li for all i ∈ [1..n], and I |= r if
H(r) ∩ I 6= ∅ when I |= B(r);

• for a program Π, I |= Π if I |= r for all r ∈ Π.

For any expression π, if I |= π, we say that I is a model of π, I satisfies π, or π is
true in I . In the following, > will be a shorthand for ∼⊥, i.e., > is a literal true in all
interpretations.
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Example 2
Continuing with Example 1, the models of Π1, restricted to the atoms in At(Π1), are X ,
X ∪ {x1}, X ∪ {x2}, and X ∪ {x1, x2}, where X = {unequal , y1, y2}. �

The reduct of a program Π with respect to an interpretation I is obtained by remov-
ing rules with false bodies and by fixing the interpretation of all negative literals. More
formally, the following function is inductively defined:

• for p ∈ V , F (I, p) := p;
• F (I,∼l) := > if I 6|= l, and F (I,∼l) := ⊥ otherwise;
• F (I, AGG1[w1 : l1, . . . , wn : ln]�b) := AGG1[w1 : F (I, l1), . . . , wn : F (I, ln)]�b;
• F (I, COUNT[l1, . . . , ln]� b) := COUNT[F (I, l1), . . . , F (I, ln)]� b;
• F (I, AGG2[l1, . . . , ln]) := AGG2[F (I, l1), . . . , F (I, ln)];
• for a rule r of the form (2), F (I, r) := p1 ∨ · · · ∨ pm ← F (I, l1) ∧ · · · ∧ F (I, ln);
• for a program Π, F (I,Π) := {F (I, r) | r ∈ Π, I |= B(r)}.

Program F (I,Π) is the reduct of Π with respect to I . An interpretation I is a stable model
of a program Π if I |= Π and there is no J ⊂ I such that J |= F (I,Π). Let SM (Π) denote
the set of stable models of Π. Two programs Π,Π′ are equivalent with respect to a context
V ⊆ V , denoted Π ≡V Π′, if both |SM (Π)| = |SM (Π′)| and {I ∩ V | I ∈ SM (Π)} =

{I ∩V | I ∈ SM (Π′)}. An aggregate A is monotone (in program reducts) if J |= F (I, A)

implies K |= F (I, A), for all J ⊆ K ⊆ I ⊆ V , and it is convex (in program reducts) if
J |= F (I, A) andL |= F (I, A) impliesK |= F (I, A), for all J ⊆ K ⊆ L ⊆ I ⊆ V; when
either property applies, I |= A and J |= F (I, A) yield K |= F (I, A), for all J ⊆ K ⊆ I .

Example 3
Continuing with Example 2, the only stable model of Π1 is {x1, unequal , y1, y2}. Indeed,
the reduct F ({x1, unequal , y1, y2},Π1) is

x1 ← > y1 ← unequal y2 ← unequal

unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

and no strict subset of {x1, unequal , y1, y2} is a model of the above program. On the other
hand, the reduct F ({x2, unequal , y1, y2},Π1) is

x2 ← > y1 ← unequal y2 ← unequal

unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5

and {x2, y2} is a model of the above program. Similarly, it can be checked that {unequal ,
y1, y2} and {x1, x2, unequal , y1, y2} are not stable models of Π1. Further note that the
aggregate SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5 is non-convex. The aggregate is also
recursive, or not stratified, a notion that will be formalized later in Section 3.3. �

3 Compilation

Current ASP solvers (as opposed to grounders) only accept a limited set of aggregates, es-
sentially aggregates of the form (1) such that AGG1 is SUM, b, w1, . . . , wn are non-negative
integers, and � is ≥. The corresponding class of programs will be referred to as LPARSE-
like programs. Hence, compilations from the general language are required. More formally,
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what is needed is a polynomial-time computable function associating every program Π

with an LPARSE-like program Π′ such that Π ≡At(Π) Π′. To define such a translation is
nontrivial, and indeed most commonly used rewritings that are correct in the stratified case
are unsound for recursive aggregates.

Example 4
Consider program Π1 from Example 1 and the following program Π2, often used as an
intermediate step to obtain an LPARSE-like program:

x1 ← ∼∼x1 x2 ← ∼∼x2 y1 ← unequal y2 ← unequal ⊥ ← ∼unequal

unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5

unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] < 5

The two programs only minimally differ: the last rule of Π1 is replaced by two rules in Π2,
following the intuition that the original aggregate is true in an interpretation I if and only
if either I |= SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5 or I |= SUM[1 : x1, 2 : x2, 2 : y1,

3 : y2] < 5. However, the two programs are not equivalent. Indeed, it can be checked
that Π2 has no stable model, and in particular {x1, unequal , y1, y2} is not stable because
F ({x1, unequal , y1, y2},Π2) is

x1 ← > y1 ← unequal y2 ← unequal

unequal ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5

and {x1} is one of its models. �

Also replacing negative integers may change the semantics of programs.

Example 5
Let Π3 := {p← SUM[1 : p,−1 : q] ≥ 0, p← q, q ← p}. Its only stable model is {p, q}.
The negative integer is usually removed by means of a rewriting adapted from pseudo-
Boolean constraint solvers, which replaces each element w : l in (1) such that w < 0 by
−w : ∼l, and also adds −w to b. The resulting program in the example is {p← SUM[1 : p,

1 : ∼q] ≥ 1, p← q, q ← p}, which has no stable models. �

Actually, stable models cannot be preserved in general by rewritings such as those hinted
in the above examples unless the polynomial hierarchy collapses to its first level. In fact,
while checking the existence of a stable model is ΣP2 -complete for programs with atomic
heads, this problem is in NP for LPARSE-like programs with atomic heads, and disjunc-
tion is necessary for modeling ΣP2 -hard instances. It follows that, in order to be correct, a
polynomial-time compilation must possibly introduce disjunction when rewriting recursive
programs. This intuition is formalized in Section 3.2. Before, in Section 3.1, the structure
of input programs is simplified by mapping all aggregates to conjunctions of sums, where
comparison operators are either > or 6=. While > can be viewed as ≥ relative to an in-
cremented bound b + 1, negative integers as well as 6= constitute the remaining gap to
LPARSE-like programs.

3.1 Mapping to sums

The notion of strong equivalence (Lifschitz et al. 2001; Turner 2003; Ferraris 2011) will
be used in this section. Let π := l1 ∧ · · · ∧ ln be a conjunction of literals, for some
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n ≥ 0. A pair (J, I) of interpretations such that J ⊆ I is an SE-model of π if I |= π and
J |= F (I, l1)∧ · · · ∧F (I, ln). Two conjunctions π, π′ are strongly equivalent, denoted by
π ≡SE π′, if they have the same SE-models. Strong equivalence means that replacing π
by π′ preserves the stable models of any logic program.

Proposition 1 (Lifschitz et al. 2001; Turner 2003; Ferraris 2011)
Let π, π′ be two conjunctions of literals such that π ≡SE π′. Let Π be a program, and Π′

be the program obtained from Π by replacing any occurrence of π by π′. Then, it holds
that Π ≡V Π′ (where V is the set of all propositional atoms).

The following strong equivalences can be proven by showing equivalence with respect
to models, and by noting that ∼ is neither introduced nor eliminated:

(A) SUM[w1 : l1, . . . , wn : ln] < b ≡SE SUM[−w1 : l1, . . . ,−wn : ln] > −b
(B) SUM[w1 : l1, . . . , wn : ln] ≤ b ≡SE SUM[−w1 : l1, . . . ,−wn : ln] > −b− 1

(C) SUM[w1 : l1, . . . , wn : ln] ≥ b ≡SE SUM[w1 : l1, . . . , wn : ln] > b− 1

(D) SUM[w1 : l1, . . . , wn : ln] = b ≡SE SUM[w1 : l1, . . . , wn : ln] > b− 1 ∧
SUM[−w1 : l1, . . . ,−wn : ln] > −b− 1

For instance, given an interpretation I , (A) is based on the fact that
∑
i∈[1..n],I|=li wi < b

if and only if
∑
i∈[1..n],I|=li −wi > −b, so that I |= SUM[w1 : l1, . . . , wn : ln] < b if and

only if I |= SUM[−w1 : l1, . . . ,−wn : ln] > −b. Similar observations apply to (B)–(D),
and strong equivalences as follows hold for further aggregates:

(E) AVG[w1 : l1, . . . , wn : ln]� b ≡SE SUM[w1 − b : l1, . . . , wn − b : ln]� 0 ∧
SUM[1 : l1, . . . , 1 : ln] > 0

(F) MIN[w1 : l1, . . . , wn : ln] < b ≡SE SUM[1 : li | i ∈ [1..n], wi < b] > 0

(G) MIN[w1 : l1, . . . , wn : ln] ≤ b ≡SE SUM[1 : li | i ∈ [1..n], wi ≤ b] > 0

(H) MIN[w1 : l1, . . . , wn : ln] ≥ b ≡SE SUM[−1 : li | i ∈ [1..n], wi < b] > −1

(I) MIN[w1 : l1, . . . , wn : ln] > b ≡SE SUM[−1 : li | i ∈ [1..n], wi ≤ b] > −1

(J) MIN[w1 : l1, . . . , wn : ln] = b ≡SE SUM[1−n · (b−wi) : li | i ∈ [1..n], wi ≤ b] > 0

(K) MIN[w1 : l1, . . . , wn : ln] 6= b ≡SE SUM[n·(b−wi)−1 : li | i ∈ [1..n], wi ≤ b] > −1

(L) MAX[w1 : l1, . . . , wn : ln]� b ≡SE MIN[−w1 : l1, . . . ,−wn : ln] f(�) −b
where <

f7→ >, ≤ f7→ ≥, ≥ f7→ ≤, >
f7→ <, =

f7→ =, and 6= f7→ 6=
(M) COUNT[l1, . . . , ln]� b ≡SE SUM[1 : l1, . . . , 1 : ln]� b
(N) EVEN[l1, . . . , ln] ≡SE

∧
i∈[1..dn/2e] SUM[1 : l1, . . . , 1 : ln] 6= 2 · i− 1

(O) ODD[l1, . . . , ln] ≡SE

∧
i∈[0..bn/2c] SUM[1 : l1, . . . , 1 : ln] 6= 2 · i

Given a program Π, the successive application of (A)–(O), from the last to the first, gives
an equivalent program Π′ whose aggregates are sums with comparison operators > and 6=.

Example 6
Let Π4 := {p ∨ q ←, p← AVG[5 : p, 3 : p, 2 : q, 7 : q] ≥ 4}. By applying (E), the aggre-
gate becomes SUM[1 : p,−1 : p,−2 : q, 3 : q] ≥ 0 ∧ SUM[1 : p, 1 : p, 1 : q, 1 : q] > 0,
and an application of (C) yields SUM[1 : p,−1 : p,−2 : q, 3 : q] > −1 ∧ SUM[1 : p, 1 : p,

1 : q, 1 : q] > 0. Simplifying the latter expression leads to the program Π′4 := {p ∨ q ←,
p ← SUM[1 : q] > −1 ∧ SUM[2 : p, 2 : q] > 0}. Note that {p} is the unique stable model
of both Π4 and Π′4, so that Π4 ≡{p,q} Π′4. �
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3.2 Eliminating non-monotone aggregates

The structure of input programs can be further simplified by eliminating non-monotone
aggregates. Without loss of generality, we hereinafter assume aggregates to be of the form

SUM[w1 : l1, . . . , wn : ln]� b (3)

such that � ∈ {>, 6=}. For A of the form (3), by Lit(A) := {l1, . . . , ln} \ {⊥}, we
refer to the set of propositional literals (different from ⊥) occurring in A. Moreover, let
Σ(l, A) :=

∑
i∈[1..n],li=l

wi denote the weight of any l ∈ Lit(A). We write wLit∗(A) :=

[Σ(l, A) : l | l ∈ Lit(A),Σ(l, A) 6= 0], wLit+(A) := [Σ(l, A) : l | l ∈ Lit(A),

Σ(l, A) > 0], and wLit−(A) := [Σ(l, A) : l | l ∈ Lit(A),Σ(l, A) < 0] to distinguish the
(multi)sets of literals associated with non-zero, positive, or negative weights, respectively,
in A. For instance, letting A := SUM[1 : p,−1 : p,−2 : q, 3 : q] > −1, we have that
wLit∗(A) = wLit+(A) = [1 : q] and wLit−(A) = []. In the following, we call an
aggregate A of the form (3) non-monotone if {p ∈ V | (w : p) ∈ wLit−(A)} 6= ∅, or
if � is 6=, thus disregarding special cases in which A would still be monotone or convex.
(The rewritings presented below are correct also in such cases, but they do not exploit the
particular structure of an aggregate for avoiding the use of disjunction in rule heads.)

For an aggregateA of the form (3) such that� is> and a set V ⊆ V of atoms, we define
a rule with a fresh propositional atom aux as head and a monotone aggregate as body by:

aux ← SUM

wLit+(A) ∪
[−w : pF | (w : p) ∈ wLit−(A), p ∈ V ] ∪
[−w : ∼l | (w : l) ∈ wLit−(A), l /∈ V ]

 > b−
∑

(w:l)∈wLit−(A)

w (4)

Note that (4) introduces a fresh, hidden propositional atom pF (Eiter et al. 2005; Janhunen
and Niemelä 2012) for any p ∈ V associated with a negative weight in A. However, when
V = ∅, every (w : l) ∈ wLit−(A) is replaced by −w : ∼l, thus rewarding the falsity
of l rather than penalizing l, which is in turn compensated by adding −w to the bound b;
such a replacement preserves models (Simons et al. 2002), but in general not stable models
(Ferraris and Lifschitz 2005). By pos(A, V ), we denote the program including rule (4)
along with the following rules for every p ∈ V such that (w : p) ∈ wLit−(A):

pF ← ∼p (5)

pF ← aux (6)

p ∨ pF ← ∼∼aux (7)

Intuitively, any atom pF introduced in pos(A, V ) must be true whenever p is false, but also
when aux is true, so to implement the concept of saturation (Eiter and Gottlob 1995). Rules
(5) and (6) encode such an intuition. Moreover, rule (7) guarantees that at least one of p
and pF belongs to any model of reducts obtained from interpretations I containing aux . In
fact, pF represents the falsity of p in the reduct of rule (4) with respect to I in order to test
the satisfaction of the monotone aggregate in (4) relative to subsets of I . For a program Π,
the rewriting rew(Π, A, V ) is the union of pos(A, V ) and the program obtained from Π

by replacing any occurrence of A by aux . That is, rew(Π, A, V ) eliminates a (possibly)
non-monotone aggregate A with comparison operator > in favor of a monotone aggre-
gate and disjunction within the subprogram pos(A, V ). In this section, we further rely on
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V = V , i.e., saturation is applied to all atoms associated with negative weights in A, while
a refinement based on positive dependencies will be provided in the next section.

Example 7
Consider Π3 from Example 5 whose first rule is strongly equivalent to p ← SUM[1 : p,

−1 : q] > −1. For A := SUM[1 : p,−1 : q] > −1, the program pos(A,V) is as follows:

aux ← SUM[1 : p, 1 : qF ] > 0 qF ← ∼q qF ← aux q ∨ qF ← ∼∼aux

Moreover, we obtain rew(Π3, A,V) = pos(A,V) ∪ {p ← aux , p ← q, q ← p} as the
full rewriting of Π3 for A and V . One can check that no strict subset of {p, q, aux , qF } is
a model of rew(Π3, A,V) or the reduct F ({p, q, aux , qF }, rew(Π3, A,V)), respectively,
where the latter includes q ∨ qF ← >. In fact, SM (rew(Π3, A,V)) = {{p, q, aux , qF }}
and SM (Π3) = {{p, q}} yield that Π3 ≡{p,q} rew(Π3, A,V). �

We further extend the rewriting to an aggregate A := SUM[w1 : l1, . . . , wn : ln] 6= b by
considering two cases based on splitting A into A> := SUM[w1 : l1, . . . , wn : ln] > b and
A< := SUM[−w1 : l1, . . . ,−wn : ln] > −b. While A> is true in any interpretation I such
that

∑
i∈[1..n],I|=li wi > b, in view of the strong equivalence given in (A), I satisfies A<

if and only if
∑
i∈[1..n],I|=li wi < b. For a program Π and V ⊆ V , we let pos(A, V ) :=

pos(A>, V )∪ pos(A<, V ), and the rewriting rew(Π, A, V ) is the union of pos(A, V ) and
the program obtained from Π by replacing any occurrence of A by aux , where the fresh
propositional atom aux serves as the head of rules of the form (4) in both pos(A>, V ) and
pos(A<, V ). Note that pos(A, V ) also introduces fresh propositional atoms pF for any
p ∈ V such that (w : p) ∈ wLit∗(A). Again, an atom pF represents the falsity of p in the
reduct of rule (4) from either pos(A>, V ) or pos(A<, V ) with respect to interpretations I
containing aux , which allows for testing the satisfaction of monotone counterparts of A>
and A< relative to subsets of I .

Example 8
Consider program Π1 from Example 1, and letA := SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5.
Then, we obtain the following rewriting rew(Π1, A,V):

x1 ← ∼∼x1 x2 ← ∼∼x2 y1 ← unequal y2 ← unequal

⊥ ← ∼unequal aux ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5

unequal ← aux aux ← SUM[1 : xF1 , 2 : xF2 , 2 : yF1 , 3 : yF2 ] > 3

xF1 ← ∼x1 xF2 ← ∼x2 yF1 ← ∼y1 yF2 ← ∼y2

xF1 ← aux xF2 ← aux yF1 ← aux yF2 ← aux

x1 ∨ xF1 ← ∼∼aux x2 ∨ xF2 ← ∼∼aux y1 ∨ yF1 ← ∼∼aux y2 ∨ yF2 ← ∼∼aux

The only stable model of rew(Π1, A,V) is {x1, unequal , y1, y2, aux , x
F
1 , x

F
2 , y

F
1 , y

F
2 }. In

particular, note that x1 ← >, xF2 ← >, y1 ∨ yF1 ← >, and y2 ∨ yF2 ← > belong to the
reduct, and any choice between y1 and yF1 as well as y2 and yF2 leads to the satisfaction of
SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5 or SUM[1 : xF1 , 2 : xF2 , 2 : yF1 , 3 : yF2 ] > 3 along
with saturation. As a consequence, Π1 ≡{x1,x2,unequal,y1,y2} rew(Π1, A,V). �

The subprogram pos(A, V ) for A of the form (3) such that � ∈ {>, 6=} and V ⊆ V is
LPARSE-like. Moreover, the rewriting rew(Π, A, V ) can be iterated to eliminate all non-
monotone aggregates A from Π. Thereby, it is important to note that fresh propositional
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p q

SUM[1 : p,−1 : q] > −1

Π3 =


p← SUM[1 : p,−1 : q] > −1
p← q
q ← p

}
= Π′

3

Fig. 1. Dependency graphs considered in Example 9: the dashed arc belongs to GΠ3 , but not to GΠ′3
.

atoms introduced in pos(A1, V1) and pos(A2, V2) for A1 6= A2 are distinct. As hinted
in the above examples, rew(Π, A,V) preserves stable models of Π, which extends to an
iterated elimination of aggregates. Before formalizing respective properties in Section 3.4,
however, we refine rew(Π, A, V ) to subsets V of V based on positive dependencies in Π.

3.3 Refined rewriting

Given a program Π such that all aggregates in Ag(Π) are of the form (3) for � ∈ {>, 6=},
the (positive) dependency graph GΠ of Π consists of the vertices At(Π) ∪ Ag(Π) and
(directed) arcs (α, β) if either of the following conditions holds for α, β ∈ At(Π)∪Ag(Π):

• there is a rule r ∈ Π such that α ∈ H(r) and β ∈ B(r);
• α ∈ Ag(Π) is of the form (3) such that � is > and (w : β) ∈ wLit+(α);
• α ∈ Ag(Π) is of the form (3) such that � is 6= and (w : β) ∈ wLit∗(α).

That is, GΠ includes arcs from atoms in H(r) to positive literals in B(r) for rules r ∈ Π,
and from aggregates A ∈ Ag(Π) to atoms associated with a positive or non-zero weight
in A if the comparison operator of A is > or 6=, respectively. A strongly connected compo-
nent of GΠ, also referred to as component of Π, is a maximal subset C of At(Π) ∪ Ag(Π)

such that any α ∈ C reaches each β ∈ C via a path in GΠ. The set of propositional atoms
in the component of Π containing an aggregate A ∈ Ag(Π) is denoted by rec(Π, A) (or
rec(Π, A) := ∅ when A /∈ Ag(Π)). Then, the rewriting rew(Π, A, rec(Π, A)) restricts
saturation for fresh propositional atoms pF introduced in pos(A, rec(Π, A)) to atoms
p ∈ rec(Π, A) occurring in A.

Example 9
The dependency graph of program Π3 from Example 5 is shown in Fig. 1, where the first
rule of Π3 is identified with p ← SUM[1 : p,−1 : q] > −1. Let A denote the aggregate
SUM[1 : p,−1 : q] > −1. First of all, note that there is no arc connecting A to q because
(w : q) /∈ wLit+(A). However, A reaches q in GΠ3

via p, and since also q reaches A via p,
we have that rec(Π3, A) = {p, q}, and thus rew(Π3, A, rec(Π3, A)) = rew(Π3, A,V).

Now consider Π′3 := Π3 \ {q ← p}, whose dependency graph is obtained by removing
arc (q, p) from GΠ3 , i.e., the dashed arc in Fig. 1. Note that q does not reach A in GΠ′3

, and
therefore rec(Π′3, A) = {p}. In this case, rew(Π′3, A, rec(Π′3, A)) = {aux ← SUM[1 : p,

1 : ∼q] > 0, p ← aux , p ← q}, where SM (rew(Π′3, A, rec(Π′3, A))) = {{p, aux}} and
SM (Π′3) = {{p}} yield that Π′3 ≡{p,q} rew(Π′3, A, rec(Π′3, A)). �
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Example 10
Program Π1 from Example 1 has the components {x1}, {x2}, and {unequal , y1, y2, A}
for A := SUM[1 : x1; 2 : x2; 2 : y1; 3 : y2] 6= 5. Thus, rew(Π1, A, rec(Π1, A)) comprises
the following rules:

x1 ← ∼∼x1 x2 ← ∼∼x2 y1 ← unequal y2 ← unequal

⊥ ← ∼unequal aux ← SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5

unequal ← aux aux ← SUM[1 : ∼x1, 2 : ∼x2, 2 : yF1 , 3 : yF2 ] > 3

yF1 ← ∼y1 yF2 ← ∼y2

yF1 ← aux yF2 ← aux

y1 ∨ yF1 ← ∼∼aux y2 ∨ yF2 ← ∼∼aux

In contrast to rew(Π1, A,V) in Example 8, x1 and x2 are mapped to ∼x1 and ∼x2, rather
than xF1 and xF2 , in the rule aux ← SUM[1 : ∼x1, 2 : ∼x2, 2 : yF1 , 3 : yF2 ] > 3

from pos(SUM[−1 : x1,−2 : x2,−2 : y1,−3 : y2] > −5, rec(Π1, A)). Hence, the
reduct of rew(Π1, A, rec(Π1, A)) with respect to {x1, unequal , y1, y2, aux , y

F
1 , y

F
2 } in-

cludes aux ← SUM[1 : ⊥, 2 : >, 2 : yF1 , 3 : yF2 ] > 3 as well as x1 ← >, y1∨yF1 ← >, and
y2 ∨ yF2 ← >. As a consequence, any model containing yF1 or yF2 entails aux , and aux ←
SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5 yields aux when y1 and y2 are both true. In fact,
{x1, unequal , y1, y2, aux , y

F
1 , y

F
2 } is the only stable model of rew(Π1, A, rec(Π1, A)), so

that Π1 ≡{x1,x2,unequal,y1,y2} rew(Π1, A, rec(Π1, A)). �

The above examples illustrate that saturation can be restricted to atoms p sharing the
same component of Π with an aggregate A, where a fresh propositional atom pF is intro-
duced in pos(A, rec(Π, A)) when p has a negative or non-zero weight in A, depending on
whether the comparison operator ofA is> or 6=, respectively. That is, the refined rewriting
uses disjunction only if A is a recursive non-monotone aggregate. In turn, when A is non-
recursive or stratified (Faber et al. 2011), the corresponding subprogram pos(A, ∅) does
not introduce disjunction or any fresh propositional atom different from aux .

3.4 Properties

Our first result generalizes a property of models of reducts to programs with aggregates.

Proposition 2
Let Π be a program, I be a model of Π, and J ⊂ I be a model of F (I,Π). Then, there is
some component C of Π such that I ∩ (C \ J) 6= ∅ and I \ (C \ J) |= F (I,Π).

In other words, when any strict subset J of a model I of Π satisfies F (I,Π), then there
is a model K of F (I,Π) such that J ⊆ K ⊂ I and I \ K ⊆ C for some component C
of Π. For instance, the model {x1} of F ({x1, unequal , y1, y2},Π2), given in Example 4,
is such that {x1, unequal , y1, y2} \ {x1} ⊆ C for the component C := {unequal , y1, y2,

SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] > 5} of Π2.
For a program Π and A of the form (3) such that � ∈ {>, 6=}, rewritings rew(Π, A,V)

and rew(Π, A, rec(Π, A)) have been investigated above. In order to establish their cor-
rectness, we show that Π ≡At(Π) rew(Π, A, V ) holds for all subsets V of V such that
rec(Π, A) ⊆ V . To this end, let AtF (A, V ) := {pF | (pF ← aux ) ∈ pos(A, V )} denote
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the fresh, hidden atoms pF introduced in pos(A, V ). Given an interpretation I (such that
I ∩ ({aux} ∪AtF (A, V )) = ∅) and J ⊆ I , we define an extension of J relative to I by:

ext(J, I) :=


J ∪ {pF ∈ AtF (A, V ) | p /∈ I} if I 6|= A

J ∪ {pF ∈ AtF (A, V ) | p /∈ J} if I |= A and J 6|= F (I, A)

J ∪ {aux} ∪AtF (A, V ) if I |= A and J |= F (I, A)

For instance, considering A := SUM[1 : x1, 2 : x2, 2 : y1, 3 : y2] 6= 5, V := {unequal ,
y1, y2}, I := {x2, unequal , y1, y2}, and J := {x2, y2}, in view of I |= A and J 6|=
F (I, A), we obtain ext(I, I) = I ∪ {aux , yF1 , yF2 } and ext(J, I) = J ∪ {yF1 }.

For I and J as above, the following technical lemma yields ext(I, I) as the subset-
minimal model of reducts F (I ′, pos(A, V )) with respect to models I ′ of the subprogram
pos(A, V ) that extend I . Under the assumption that a nonempty difference I \ J remains
local to a component C of Π such that some atom in C depends on A, ext(J, I) further
constitutes the subset-minimal extension of J to a model of F (ext(I, I), pos(A, V )).

Lemma 1
Let Π be a program, A be an aggregate, and V be a set of propositional atoms such that
rec(Π, A) ⊆ V . Let I be an interpretation such that I ∩ ({aux} ∪ AtF (A, V )) = ∅ and
J ⊆ I . Then, the following conditions hold:

1. For any model I ′ of pos(A, V ) such that I ′ \ ({aux} ∪ AtF (A, V )) = I , we have that
ext(I, I) ⊆ I ′ and ext(I, I) |= F (I ′, pos(A, V )).

2. If J = I or I \ J ⊆ C for some component C of Π such that there is a rule r ∈ Π

with H(r) ∩ C 6= ∅ and A ∈ B(r), then ext(J, I) |= F (ext(I, I), pos(A, V )) and
ext(J, I) ⊆ J ′ for any model J ′ of F (ext(I, I), pos(A, V )) such that J ′ \ ({aux} ∪
AtF (A, V )) = J .

With the auxiliary result describing the formation of models of pos(A, V ) and its reducts
at hand, we can show the main result of this paper that the presented rewritings preserve
the stable models of a program Π.

Theorem 1
Let Π be a program, A be an aggregate, and V be a set of propositional atoms such that
rec(Π, A) ⊆ V . Then, it holds that Π ≡At(Π) rew(Π, A, V ).

The second objective is establishing the properties of a polynomial, faithful, and modular
translation (Janhunen 2006), i.e., a mapping that is polynomial-time computable, preserves
stable models (when auxiliary atoms are ignored), and can be computed independently on
parts of an input program. The faithfulness of rew(Π, A, V ) for any rec(Π, A) ⊆ V ⊆ V
is stated in Theorem 1. Moreover, since at most 3 · n additional rules (5)–(7) are intro-
duced in pos(A, V ) for A of the form (3), it is clear that rew(Π, A, V ) is polynomial-time
computable. This also holds when applying the strong equivalences (A)–(O) to replace
aggregates by conjunctions, where the worst cases (N) and (O) yield a quadratic blow-up.

Hence, the final condition to be addressed is modularity. Given that the refined rewrit-
ing rew(Π, A, rec(Π, A)) refers to the components of an entire program Π, this rewriting
cannot be done in parts. The unoptimized rewriting rew(Π, A,V), however, consists of
the subprogram pos(A,V), which is independent of Π, and otherwise merely replaces A
by aux in Π. Thus, under the assumption that A does not occur outside of Π (where it
cannot be replaced by aux ), rew(Π, A,V) complies with the modularity condition.
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Proposition 3
Let Π,Π′ be programs and A be an aggregate such that A /∈ Ag(Π′). Then, it holds that
rew(Π ∪Π′, A,V) = rew(Π, A,V) ∪Π′.

Note that A /∈ Ag(Π′) is not a restriction, given that an element w : ⊥ with an arbitrary
weight w can be added for obtaining a new aggregateA′ that is strongly equivalent toA. In
practice, however, one would rather aim at reusing a propositional atom aux that represents
the satisfaction of A instead of redoing the rewriting with another fresh atom aux ′.

4 Related work

Several semantics were proposed in the literature for interpreting ASP programs with ag-
gregates. Among them, F-stable model semantics (Faber et al. 2011; Ferraris 2011) was
considered in this paper because it is implemented by widely-used ASP solvers (Faber
et al. 2008; Gebser et al. 2012). Actually, the definition provided in Section 2 is slightly
different than those in (Faber et al. 2011; Ferraris 2011). In particular, the language consid-
ered in (Ferraris 2011) has a broader syntax allowing for arbitrary nesting of propositional
formulas. The language considered in (Faber et al. 2011), instead, does not explicitly al-
low the use of double negation, which however can be simulated by means of auxiliary
atoms. For example, in (Faber et al. 2011) a rule p ← ∼∼p must be modeled by using a
fresh atom pF and the following subprogram: {p← ∼pF , pF ← ∼p}. Moreover, in (Faber
et al. 2011) aggregates cannot contain negated literals, which can be simulated by auxiliary
atoms as well. On the other hand, negated aggregates are permitted in (Faber et al. 2011),
while they are not considered in this paper. Actually, programs with negated aggregates
are those for which (Ferraris 2011) and (Faber et al. 2011) disagree. As a final remark, the
reduct of (Faber et al. 2011) does not remove negated literals from satisfied bodies, which
however are necessarily true in all counter-models because double negation is not allowed.

Techniques to rewrite logic programs with aggregates into equivalent programs with
simpler aggregates were investigated in the literature right from the beginning (Simons
et al. 2002). In particular, rewritings into LPARSE-like programs, which differ from those
presented in this paper, were considered in (Liu and You 2013). As a general comment,
since disjunction is not considered in (Liu and You 2013), all aggregates causing a jump
from the first to the second level of the polynomial hierarchy are excluded a priori. This
is the case for aggregates of the form SUM(S) 6= b, AVG(S) 6= b, and COUNT(S) 6= b,
as noted in (Son and Pontelli 2007), but also for comparators other than 6= when negative
weights are involved. In fact, in (Liu and You 2013) negative weights are eliminated by a
rewriting similar to the one in (4), but negated literals are introduced instead of auxiliary
atoms, which may lead to counterintuitive results (Ferraris and Lifschitz 2005). A different
rewriting was presented in (Ferraris 2011), whose output are programs with nested expres-
sions, a construct that is not supported by current ASP systems. Other relevant rewriting
techniques were proposed in (Bomanson and Janhunen 2013; Bomanson et al. 2014), and
proved to be quite efficient in practice. However, these rewritings produce aggregate-free
programs preserving F-stable models only in the stratified case, or if recursion is limited
to convex aggregates. On the other hand, it is interesting to observe that the rewritings
of (Bomanson and Janhunen 2013; Bomanson et al. 2014) are applicable to the output of
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the rewritings presented in this paper in order to completely eliminate aggregates, thus
preserving F-stable models in general.

The rewritings given in Section 3 do not apply to other semantics whose stability checks
are not based on minimality (Pelov et al. 2007; Son and Pontelli 2007; Shen et al. 2014),
or whose program reducts do not contain aggregates (Gelfond and Zhang 2014). They also
disregard DL (Eiter et al. 2008) and HEX (Eiter et al. 2014) atoms, extensions of ASP for
interacting with external knowledge bases, possibly expressed in different languages, that
act semantically similar to aggregate functions.

As a final remark, the notion of a (positive) dependency graph given in Section 3.3
refines the concept of recursion through aggregates. In fact, many works (Alviano et al.
2011; Faber et al. 2011; Simons et al. 2002; Son and Pontelli 2007) consider an aggregate
as recursive as soon as aggregated literals depend on the evaluation of the aggregate. Ac-
cording to this simple definition, the aggregate in the following program is deemed to be
recursive: {p ← SUM[−1 : q] > −1, q ← p}. However, (negative) recursion through a
rule like p ← ∼q is uncritical for the computation of F-stable models, as it cannot lead to
circular support. In fact, the dependency graph introduced in Section 3.3 does not include
arcs for such non-positive dependencies, so that strongly connected components render
potential circular support more precisely. For example, the aforementioned program has
three components, namely {p}, {q}, and {SUM[−1 : q] > −1}. If the dependency of
SUM[−1 : q] > −1 on q were mistakenly considered as positive, the three components
would be joined into one, thus unnecessarily extending the scope of stability checks.

5 Conclusion

The representation of knowledge in ASP is eased by the availability of several constructs,
among them aggregation functions. As it is common in combinatorial problems, the struc-
ture of input instances is simplified in order to improve the efficiency of low-level rea-
soning. Concerning aggregation functions, the simplified form processed by current ASP
solvers is known as monotone, and by complexity arguments faithfulness of current rewrit-
ings is subject to specific conditions, i.e., input programs can only contain convex aggre-
gates. The (unoptimized) translation presented in this paper is instead polynomial, faithful,
and modular for all common aggregation functions, including non-convex instances of
SUM, AVG, and COUNT. Moreover, the rewriting approach extends to aggregation func-
tions such as MIN, MAX, EVEN, and ODD. The proposed rewritings are implemented in a
prototype system and also adopted in the recent version 4.5 of the grounder GRINGO.
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Appendix A Proofs

Proposition 4
The strong equivalences stated in (A)–(O) hold.

Proof
Let I be an interpretation. Given that the reducts with respect to I of expressions on both
sides of ≡V in (A)–(O) fix the same (negative) literals, it is sufficient to show equivalence.

(A) SUM[w1 : l1, . . . , wn : ln] < b is true in I if and only if∑
i∈[1..n],I|=li wi < b if and only if∑
i∈[1..n],I|=li −wi > −b if and only if

SUM[−w1 : l1, . . . ,−wn : ln] > −b is true in I .
(B) SUM[w1 : l1, . . . , wn : ln] ≤ b is true in I if and only if∑

i∈[1..n],I|=li wi ≤ b if and only if∑
i∈[1..n],I|=li −wi > −b− 1 if and only if

SUM[−w1 : l1, . . . ,−wn : ln] > −b− 1 is true in I .
(C) SUM[w1 : l1, . . . , wn : ln] ≥ b is true in I if and only if∑

i∈[1..n],I|=li wi ≥ b if and only if∑
i∈[1..n],I|=li wi > b− 1 if and only if

SUM[w1 : l1, . . . , wn : ln] > b− 1 is true in I .
(D) SUM[w1 : l1, . . . , wn : ln] = b is true in I if and only if∑

i∈[1..n],I|=li wi = b if and only if∑
i∈[1..n],I|=li wi > b− 1 and

∑
i∈[1..n],I|=li −wi > −b− 1 if and only if

SUM[w1 : l1, . . . , wn : ln] > b − 1 ∧ SUM[−w1 : l1, . . . ,−wn : ln] > −b− 1 is true
in I .

(E) AVG[w1 : l1, . . . , wn : ln]� b is true in I if and only if
m := |{i ∈ [1..n] | I |= li}|, m ≥ 1, and

∑
i∈[1..n],I|=li

wi

m � b if and only if
m := |{i ∈ [1..n] | I |= li}|, m ≥ 1, and

∑
i∈[1..n],I|=li wi �m · b if and only if

{i ∈ [1..n] | I |= li} 6= ∅ and
∑
i∈[1..n],I|=li(wi − b)� 0 if and only if

SUM[w1 − b : l1, . . . , wn − b : ln]� 0 ∧ SUM[1 : l1, . . . , 1 : ln] > 0 is true in I .
(F) MIN[w1 : l1, . . . , wn : ln] < b is true in I if and only if

min({wi | i ∈ [1..n], I |= li} ∪ {+∞}) < b if and only if
{i ∈ [1..n] | wi < b, I |= li} 6= ∅ if and only if
SUM[1 : li | i ∈ [1..n], wi < b] > 0 is true in I .

(G) MIN[w1 : l1, . . . , wn : ln] ≤ b is true in I if and only if
min({wi | i ∈ [1..n], I |= li} ∪ {+∞}) ≤ b if and only if
{i ∈ [1..n] | wi ≤ b, I |= li} 6= ∅ if and only if
SUM[1 : li | i ∈ [1..n], wi ≤ b] > 0 is true in I .

(H) MIN[w1 : l1, . . . , wn : ln] ≥ b is true in I if and only if
min({wi | i ∈ [1..n], I |= li} ∪ {+∞}) ≥ b if and only if
{i ∈ [1..n] | wi < b, I |= li} = ∅ if and only if
SUM[−1 : li | i ∈ [1..n], wi < b] > −1 is true in I .

(I) MIN[w1 : l1, . . . , wn : ln] > b is true in I if and only if
min({wi | i ∈ [1..n], I |= li} ∪ {+∞}) > b if and only if
{i ∈ [1..n] | wi ≤ b, I |= li} = ∅ if and only if
SUM[−1 : li | i ∈ [1..n], wi ≤ b] > −1 is true in I .



Theory and Practice of Logic Programming 17

(J) MIN[w1 : l1, . . . , wn : ln] = b is true in I if and only if
min({wi | i ∈ [1..n], I |= li} ∪ {+∞}) = b if and only if
{i ∈ [1..n] | wi = b, I |= li} 6= ∅ and {i ∈ [1..n] | wi < b, I |= li} = ∅ if and only if
SUM[1− n · (b− wi) : li | i ∈ [1..n], wi ≤ b] > 0 is true in I .

(K) MIN[w1 : l1, . . . , wn : ln] 6= b is true in I if and only if
min({wi | i ∈ [1..n], I |= li} ∪ {+∞}) 6= b if and only if
{i ∈ [1..n] | wi = b, I |= li} = ∅ or {i ∈ [1..n] | wi < b, I |= li} 6= ∅ if and only if
SUM[n · (b− wi)− 1 : li | i ∈ [1..n], wi ≤ b] > −1 is true in I .

(L) MAX[w1 : l1, . . . , wn : ln]� b is true in I if and only if
max({wi | i ∈ [1..n], I |= li} ∪ {−∞})� b if and only if
min({−wi | i ∈ [1..n], I |= li} ∪ {+∞}) f(�) −b if and only if
MIN[−w1 : l1, . . . ,−wn : ln] f(�) −b is true in I ,

where <
f7→ >, ≤ f7→ ≥, ≥ f7→ ≤, >

f7→ <, =
f7→ =, and 6= f7→ 6=.

(M) COUNT[l1, . . . , ln]� b is true in I if and only if
|{i ∈ [1..n] | I |= li}| � b if and only if
SUM[1 : l1, . . . , 1 : ln]� b is true in I .

(N) EVEN[l1, . . . , ln] is true in I if and only if
|{i ∈ [1..n] | I |= li}| is an even number if and only if
|{i ∈ [1..n] | I |= li}| 6= 2 · i′ − 1 for all i′ ∈ [1.. dn/2e] if and only if∧
i∈[1..dn/2e] SUM[1 : l1, . . . , 1 : ln] 6= 2 · i− 1 is true in I .

(O) ODD[l1, . . . , ln] is true in I if and only if
|{i ∈ [1..n] | I |= li}| is an odd number if and only if
|{i ∈ [1..n] | I |= li}| 6= 2 · i′ for all i′ ∈ [0.. bn/2c] if and only if∧
i∈[0..bn/2c] SUM[1 : l1, . . . , 1 : ln] 6= 2 · i is true in I .

Proposition 2
Let Π be a program, I be a model of Π, and J ⊂ I be a model of F (I,Π). Then, there is
some component C of Π such that I ∩ (C \ J) 6= ∅ and I \ (C \ J) |= F (I,Π).

Proof
For any components C1 6= C2 of Π, the existence of some path from α1 ∈ C1 to β2 ∈ C2

in GΠ implies that there is no path from any α2 ∈ C2 to β1 ∈ C1 in GΠ. Hence, since
J ⊂ I and GΠ is finite, there is some component C of Π such that I ∩ (C \ J) 6= ∅ and
β ∈ C \ J for any path from α ∈ C to β ∈ I \ J in GΠ. Consider any rule r ∈ F (I,Π)

such thatH(r)∩ (I \ (C \J)) = ∅. Then, I |= B(r) and I |= r yield thatH(r)∩I 6= ∅, so
that H(r)∩C 6= ∅. On the other hand, since J ⊆ I \ (C \ J), we have that H(r)∩ J = ∅,
which together with J |= r implies that J 6|= B(r). That is, there is some positive literal
β ∈ B(r) such that I |= β, J 6|= F (I, β), some α ∈ C has an arc to β in GΠ, and one of
the following three cases applies:

1. If β ∈ I \ J , then β ∈ C \ J , so that I \ (C \ J) 6|= B(r) and I \ (C \ J) |= r.
2. If β is an aggregate of the form (3) such that � is >, for any p ∈ I \ J such that
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(w : p) ∈ wLit+(β), we have that p ∈ C \ J because some α ∈ C has a path to p
in GΠ. Along with J ⊂ I , this in turn yields that∑

(w:p)∈wLit+(β),p∈I\(C\J)w =
∑

(w:p)∈wLit+(β),p∈Jw.

Moreover, J ⊆ I \ (C \ J) implies that∑
(w:p)∈wLit−(β),p∈I\(C\J)w ≤

∑
(w:p)∈wLit−(β),p∈Jw,

so that ∑
(w:p)∈wLit∗(β),p∈I\(C\J)w

=
∑

(w:p)∈wLit+(β),p∈I\(C\J)w +
∑

(w:p)∈wLit−(β),p∈I\(C\J)w

≤
∑

(w:p)∈wLit+(β),p∈Jw +
∑

(w:p)∈wLit−(β),p∈Jw

=
∑

(w:p)∈wLit∗(β),p∈Jw.

In view of J 6|= F (I, β), we further conclude that∑
(w:l)∈wLit∗(β),I\(C\J)|=F (I,l)w

=
∑

(w:p)∈wLit∗(β),p∈I\(C\J)w +
∑

(w:l)∈wLit∗(β),l/∈V,I|=lw

≤
∑

(w:p)∈wLit∗(β),p∈Jw +
∑

(w:l)∈wLit∗(β),l/∈V,I|=lw

=
∑

(w:l)∈wLit∗(β),J|=F (I,l)w

≤ b.

That is, I \ (C \ J) 6|= F (I, β), so that I \ (C \ J) 6|= B(r) and I \ (C \ J) |= r.
3. If β is an aggregate of the form (3) such that � is 6=, for any p ∈ I \ J such that

(w : p) ∈ wLit∗(β), we have that p ∈ C \J because some α ∈ C has a path to p in GΠ.
Along with J ⊂ I , this in turn yields that∑

(w:p)∈wLit∗(β),p∈I\(C\J)w =
∑

(w:p)∈wLit∗(β),p∈Jw.

In view of J 6|= F (I, β), we further conclude that∑
(w:l)∈wLit∗(β),I\(C\J)|=F (I,l)w

=
∑

(w:p)∈wLit∗(β),p∈I\(C\J)w +
∑

(w:l)∈wLit∗(β),l/∈V,I|=lw

=
∑

(w:p)∈wLit∗(β),p∈Jw +
∑

(w:l)∈wLit∗(β),l/∈V,I|=lw

=
∑

(w:l)∈wLit∗(β),J|=F (I,l)w

= b.

That is, I \ (C \ J) 6|= F (I, β), so that I \ (C \ J) 6|= B(r) and I \ (C \ J) |= r.

Since I\(C\J) |= r also holds for any rule r ∈ F (I,Π) such thatH(r)∩(I\(C\J)) 6= ∅,
we have shown that I \ (C \ J) |= F (I,Π).

Lemma 1
Let Π be a program, A be an aggregate, and V be a set of propositional atoms such that
rec(Π, A) ⊆ V . Let I be an interpretation such that I ∩ ({aux} ∪ AtF (A, V )) = ∅ and
J ⊆ I . Then, the following conditions hold:

1. For any model I ′ of pos(A, V ) such that I ′ \ ({aux} ∪ AtF (A, V )) = I , we have that
ext(I, I) ⊆ I ′ and ext(I, I) |= F (I ′, pos(A, V )).
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2. If J = I or I \ J ⊆ C for some component C of Π such that there is a rule r ∈ Π

with H(r) ∩ C 6= ∅ and A ∈ B(r), then ext(J, I) |= F (ext(I, I), pos(A, V )) and
ext(J, I) ⊆ J ′ for any model J ′ of F (ext(I, I), pos(A, V )) such that J ′ \ ({aux} ∪
AtF (A, V )) = J .

Proof
1. Let I ′ |= pos(A, V ) such that I ′ \ ({aux} ∪ AtF (A, V )) = I . Then, in view of
{pF ← ∼p | pF ∈ AtF (A, V )} ⊆ pos(A, V ), we have that {pF ∈ AtF (A, V ) |
p /∈ I} ⊆ I ′, so that I ′ |= {p ∨ pF ← ∼∼aux | pF ∈ AtF (A, V )}. Moreover, when
aux ∈ I ′, {pF ← aux | pF ∈ AtF (A, V )} ⊆ pos(A, V ) yields that AtF (A, V ) ⊆ I ′.
(>) For A of the form (3) such that � is >, let A′ be the body of rule (4) from
pos(A, V ). Then, we have that I ′ |= A′ if and only if∑

(w:l)∈wLit+(A),I|=lw −
∑

(w:l)∈wLit−(A),l/∈V,I 6|=lw

−
∑

(w:p)∈wLit−(A),p∈V,pF∈I′w > b−
∑

(w:l)∈wLit−(A)w.
(A1)

By adding
∑

(w:l)∈wLit−(A)w on both sides, (A1) yields∑
(w:l)∈wLit+(A),I|=lw +

∑
(w:l)∈wLit−(A),l/∈V,I|=lw

+
∑

(w:p)∈wLit−(A),p∈V,pF /∈I′w > b.
(A2)

Since {p ∈ V | (w : p) ∈ wLit−(A), pF /∈ I ′} ⊆ I , I |= A implies that (A2) holds
and {aux}∪AtF (A, V ) ⊆ I ′, but (A2) does not hold for I ′ = I ∪{pF ∈ AtF (A, V ) |
p /∈ I} otherwise. In either case, we have that ext(I, I) ⊆ I ′ and ext(I, I) |=
F (I ′, pos(A, V )), where ext(I, I) |= A′ if and only if I |= A.
( 6=) For A of the form (3) such that � is 6=, (A2) holds when I |= A>, where A> :=

SUM[w1 : l1, . . . , wn : ln] > b. Moreover, for A< := SUM[−w1 : l1, . . . ,−wn : ln] >

−b, let A′< be the body of rule (4) from pos(A<, V ). Then, we have that I ′ |= A′< if
and only if ∑

(w:l)∈wLit+(A),l/∈V,I 6|=lw −
∑

(w:l)∈wLit−(A),I|=lw

+
∑

(w:p)∈wLit+(A),p∈V,pF∈I′w >
∑

(w:l)∈wLit+(A)w − b.
(A3)

By subtracting
∑

(w:l)∈wLit+(A)w on both sides and multiplying with −1, (A3) yields∑
(w:l)∈wLit+(A),l/∈V,I|=lw +

∑
(w:l)∈wLit−(A),I|=lw

+
∑

(w:p)∈wLit+(A),p∈V,pF /∈I′w < b.
(A4)

Since {p ∈ V | (w : p) ∈ wLit+(A), pF /∈ I ′} ⊆ I , I |= A< implies that (A4) holds
and {aux}∪AtF (A, V ) ⊆ I ′, but (A4) does not hold for I ′ = I ∪{pF ∈ AtF (A, V ) |
p /∈ I} otherwise. In view of I |= A if and only if I |= A> or I |= A<, we further
conclude that ext(I, I) = I∪{aux}∪AtF (A, V ) ⊆ I ′ when I |= A, while neither (A2)
nor (A4) holds for I ′ = I ∪ {pF ∈ AtF (A, V ) | p /∈ I} = ext(I, I) when I 6|= A. In
either case, we have that ext(I, I) ⊆ I ′ and ext(I, I) |= F (I ′, pos(A, V )).

2. Assume that J = I or I \ J ⊆ C for some component C of Π such that there is a rule
r ∈ Π with H(r) ∩ C 6= ∅ and A ∈ B(r), and let J ′ |= F (ext(I, I), pos(A, V )) such
that J ′ \ ({aux} ∪ AtF (A, V )) = J . Then, in view of {pF ← > | pF ∈ AtF (A, V ),

p /∈ I} ⊆ F (ext(I, I), pos(A, V )), we have that {pF ∈ AtF (A, V ) | p /∈ I} ⊆ J ′.
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When I 6|= A, then F (ext(I, I), pos(A, V )) = {pF ← > | pF ∈ AtF (A, V ), p /∈ I},
ext(J, I) = J ∪ {pF ∈ AtF (A, V ) | p /∈ I} ⊆ J ′, and ext(J, I) |= F (ext(I, I),

pos(A, V )). Below assume that I |= A, so that {p ∨ pF ← > | pF ∈ AtF (A, V )} ⊆
F (ext(I, I), pos(A, V )) implies {pF ∈ AtF (A, V ) | p /∈ J} ⊆ J ′.
(>) For A of the form (3) such that � is >, let A′ be the body of rule (4) from
pos(A, V ). Then, (A2) yields that J ′ |= F (ext(I, I), A′) if and only if∑

(w:l)∈wLit+(A),l/∈V,I|=lw +
∑

(w:l)∈wLit−(A),l/∈V,I|=lw

+
∑

(w:p)∈wLit+(A),p∈Jw +
∑

(w:p)∈wLit−(A),p∈V,pF /∈J′w > b.
(A5)

Moreover, {p ∈ V | (w : p) ∈ wLit−(A), pF /∈ J ′} ⊆ J ⊆ I implies that∑
(w:p)∈wLit−(A),p∈V,pF /∈J′w ≥

∑
(w:p)∈wLit−(A),p∈V ∩Jw

≥
∑

(w:p)∈wLit−(A),p∈V ∩Iw.
(A6)

In view of the prerequisite that J = I or I \ J ⊆ C for some component C of Π such
that there is a rule r ∈ Π with H(r)∩C 6= ∅ and A ∈ B(r), if J ⊂ I , some α ∈ C has
an arc to A in GΠ. Along with rec(Π, A) ⊆ V , this yields that {p ∈ I \ J | (w : p) ∈
wLit+(A)} = ∅ or {p ∈ I \J | (w : p) ∈ wLit−(A)} ⊆ V . In the former case, I |= A,∑

(w:p)∈wLit+(A),p∈Jw =
∑

(w:p)∈wLit+(A),p∈Iw,
∑

(w:l)∈wLit−(A),l/∈V,J|=F (I,l)w ≥∑
(w:l)∈wLit−(A),l/∈V,I|=lw, and (A6) imply that J |= F (I, A) and (A5) hold. Moreover,

if {p ∈ I \ J | (w : p) ∈ wLit−(A)} ⊆ V , then
∑

(w:l)∈wLit−(A),l/∈V,J|=F (I,l)w =∑
(w:l)∈wLit−(A),l/∈V,I|=lw and (A6) yield that (A5) holds when J |= F (I, A), but

(A5) does not hold for J ′ = J ∪ {pF ∈ AtF (A, V ) | p /∈ J} otherwise. In view of
ext(I, I) |= A′ if and only if I |= A, we further conclude that ext(J, I) = J ∪{aux}∪
AtF (A, V ) ⊆ J ′ when J |= F (I, A), while (A5) does not hold for J ′ = J ∪ {pF ∈
AtF (A, V ) | p /∈ J} = ext(J, I) when J 6|= F (I, A). In either case, we have that
ext(J, I) ⊆ J ′ and ext(J, I) |= F (ext(I, I), pos(A, V )).
( 6=) For A of the form (3) such that � is 6=, (A5) holds when J |= F (I, A>), where
A> := SUM[w1 : l1, . . . , wn : ln] > b. Moreover, for A< := SUM[−w1 : l1, . . . ,

−wn : ln] > −b, let A′< be the body of rule (4) from pos(A<, V ). Then, (A4) yields
that J ′ |= F (ext(I, I), A′<) if and only if∑

(w:l)∈wLit+(A),l/∈V,I|=lw +
∑

(w:l)∈wLit−(A),l/∈V,I|=lw

+
∑

(w:p)∈wLit+(A),p∈V,pF /∈J′w +
∑

(w:p)∈wLit−(A),p∈Jw < b.
(A7)

Dual to (A6) above, {p ∈ V | (w : p) ∈ wLit+(A), pF /∈ J ′} ⊆ J implies that∑
(w:p)∈wLit+(A),p∈V,pF /∈J′w ≤

∑
(w:p)∈wLit+(A),p∈V ∩Jw. (A8)

In view of the prerequisite regarding I \ J and since rec(Π, A) ⊆ V , we have that
{p ∈ I \ J | (w : p) ∈ wLit∗(A)} ⊆ V . Hence,

∑
(w:l)∈wLit+(A),l/∈V,J|=F (I,l)w =∑

(w:l)∈wLit+(A),l/∈V,I|=lw and (A8) yield that (A7) holds when J |= F (I,A<), but
(A7) does not hold for J ′ = J ∪{pF ∈ AtF (A, V ) | p /∈ J} otherwise. Moreover, note
that ext(I, I) 6|= A′< implies that
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(w:l)∈wLit+(A),J|=F (I,l)w +

∑
(w:l)∈wLit−(A),J|=F (I,l)w

≥
∑

(w:l)∈wLit+(A),l/∈V,J|=F (I,l)w +
∑

(w:l)∈wLit−(A),J|=F (I,l)w

=
∑

(w:l)∈wLit+(A),l/∈V,I|=lw +
∑

(w:l)∈wLit−(A),J|=F (I,l)w

≥
∑

(w:l)∈wLit+(A),l/∈V,I|=lw +
∑

(w:l)∈wLit−(A),I|=lw

≥ b,

so that J 6|= F (I,A<). Similarly, for the body A′> of rule (4) from pos(A>, V ), since∑
(w:l)∈wLit−(A),l/∈V,J|=F (I,l)w =

∑
(w:l)∈wLit−(A),l/∈V,I|=lw, ext(I, I) 6|= A′> yields∑

(w:l)∈wLit+(A),J|=F (I,l)w +
∑

(w:l)∈wLit−(A),J|=F (I,l)w

≤
∑

(w:l)∈wLit+(A),J|=F (I,l)w +
∑

(w:l)∈wLit−(A),l/∈V,J|=F (I,l)w

=
∑

(w:l)∈wLit+(A),J|=F (I,l)w +
∑

(w:l)∈wLit−(A),l/∈V,I|=lw

≤
∑

(w:l)∈wLit+(A),I|=lw +
∑

(w:l)∈wLit−(A),l/∈V,I|=lw

≤ b,

so that J 6|= F (I, A>). In turn, J |= F (I, A>) implies ext(I, I) |= A′>, and
ext(I, I) |= A′< follows from J |= F (I, A<). In view of J |= F (I, A) if and only if
J |= F (I, A>) or J |= F (I, A<), J |= F (I, A) yields that ext(I, I) |= A′> and (A5)
or ext(I, I) |= A′< and (A7) hold, so that ext(J, I) = J ∪ {aux} ∪ AtF (A, V ) ⊆ J ′,
while neither (A5) nor (A7) holds for J ′ = J∪{pF ∈ AtF (A, V ) | p /∈ J} = ext(J, I)

when J 6|= F (I, A). In either case, we have that ext(J, I) ⊆ J ′ and ext(J, I) |=
F (ext(I, I), pos(A, V )).

Theorem 1
Let Π be a program, A be an aggregate, and V be a set of propositional atoms such that
rec(Π, A) ⊆ V . Then, it holds that Π ≡At(Π) rew(Π, A, V ).

Proof
(⇒) Let I ∈ SM (Π). Then, by Lemma 1, ext(I, I) |= F (ext(I, I), pos(A, V )) and
ext(I, I) ⊆ I ′ as well as ext(I, I) |= F (I ′, pos(A, V )) for any model I ′ of pos(A, V )

such that I ′ \ ({aux} ∪AtF (A, V )) = I . Since I |= Π and aux ∈ ext(I, I) if and only if
I |= A, this yields ext(I, I) |= rew(Π, A, V ) as well as ext(I, I) |= F (I ′, rew(Π, A, V ))

for any model I ′ of rew(Π, A, V ) such that I ′ \ ({aux} ∪ AtF (A, V )) = I , so that I ′ ∈
SM (rew(Π, A, V )) implies I ′ = ext(I, I).

Let J ′ ⊂ ext(I, I) such that ext(I, I) \ J ′ ⊆ C ′ for some component C ′

of rew(Π, A, V ), and assume that J ′ |= (F (I,Π) ∩ F (ext(I, I), rew(Π, A, V ))) ∪
F (ext(I, I), pos(A, V )). For J := J ′\({aux}∪AtF (A, V )), note that any path from α ∈
I \J to β ∈ I \J in Grew(Π,A,V ) that does not include aux is a path in GΠ as well, while it
maps to a path in GΠ (that includesA) otherwise. Hence, I \J ⊆ C for some component C
of Π, so that J ′ |= F (ext(I, I), pos(A, V )) yields J ⊂ I by Lemma 1. Since I ∈ SM (Π),
we have that J 6|= F (I,Π), while J ′ |= F (I,Π)∩F (ext(I, I), rew(Π, A, V )) implies J |=
F (I,Π)∩F (ext(I, I), rew(Π, A, V )) because At(F (I,Π))∩({aux}∪AtF (A, V )) = ∅.
That is, J 6|= F (I,Π) \ F (ext(I, I), rew(Π, A, V )), so that I |= B(r), J |= B(F (I, r)),
and H(r) ∩ J = ∅ for some rule r ∈ Π \ rew(Π, A, V ). For such a rule r, we
have that A ∈ B(r), and I |= r yields H(r) ∩ (I \ J) 6= ∅. Hence, by Lemma 1,
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ext(J, I) ⊆ J ′, where A ∈ B(r) together with I |= B(r) and J |= B(F (I, r))

imply aux ∈ ext(J, I). This means that J ′ |= (B(F (I, r)) \ {A}) ∪ {aux}, while
H(r) ∩ J ′ = H(r) ∩ J = ∅, so that F (ext(I, I), r′) ∈ F (ext(I, I), rew(Π, A, V ))

and J ′ 6|= F (ext(I, I), r′) for the rule r′ ∈ rew(Π, A, V ) that replaces A in r by aux .
We thus conclude that J ′ 6|= F (ext(I, I), rew(Π, A, V )) and {I ′ ∈ SM (rew(Π, A, V )) |
I ′ \ ({aux} ∪AtF (A, V )) = I} = {ext(I, I)}.

(⇐) Let I ′ ∈ SM (rew(Π, A, V )) and I := I ′ \ ({aux} ∪ AtF (A, V )). Then, by
Lemma 1, we have that ext(I, I) ⊆ I ′ and ext(I, I) |= F (I ′, pos(A, V )), which yields
ext(I, I) |= F (I ′, rew(Π, A, V )) and I ′ = ext(I, I). Moreover, I |= Π holds because
At(Π) ∩ ({aux} ∪AtF (A, V )) = ∅ and aux ∈ ext(I, I) if and only if I |= A.

Let J ⊂ I for some component C of Π, and assume that J |= F (I,Π) ∩ F (ext(I, I),

rew(Π, A, V )). For J ′ := ext(I, I) \ (I \ J), since ext(I, I) ∈ SM (rew(Π, A, V )) and
J ′ ⊂ ext(I, I), we have that J ′ 6|= F (ext(I, I), rew(Π, A, V )), while J |= F (I,Π) ∩
F (ext(I, I), rew(Π, A, V )) implies J ′ |= F (I,Π) ∩ F (ext(I, I), rew(Π, A, V )) because
At(F (I,Π))∩ ({aux}∪AtF (A, V )) = ∅ and J ′ \ ({aux}∪AtF (A, V )) = J . Moreover,
∅ ⊂ H(r)∩({aux}∪AtF (A, V )) ⊆ J ′ holds for any r ∈ F (ext(I, I), pos(A, V )), so that
J ′ |= F (ext(I, I), pos(A, V )). That is, J ′ 6|= F (ext(I, I), rew(Π, A, V )) \ (F (I,Π) ∪
F (ext(I, I), pos(A, V ))), so that ext(I, I) |= B(r′), J ′ |= B(F (ext(I, I), r′)), and
H(r′) ∩ J ′ = ∅ for some rule r′ ∈ rew(Π, A, V ) \ (Π ∪ pos(A, V )). For such a rule r′,
we have that aux ∈ B(r′), and ext(I, I) |= r′ yields H(r′) ∩ (I \ J) 6= ∅. Thus,
H(r) ∩ (I \ J) 6= ∅ and A ∈ B(r) for the rule r ∈ Π such that r′ replaces A in r by aux .
Hence, by Lemma 1, ext(J, I) |= F (ext(I, I), pos(A, V )), but ext(J, I) 6|= F (ext(I, I),

rew(Π, A, V )) in view of ext(J, I) ⊂ ext(I, I). Since ext(J, I) |= F (I,Π)∩F (ext(I, I),

rew(Π, A, V )) because At(F (I,Π))∩({aux}∪AtF (A, V )) = ∅ and ext(J, I)\({aux}∪
AtF (A, V )) = J , this means that aux ∈ ext(J, I), I |= A, J |= F (I, A), ext(J, I) 6|=
F (ext(I, I), r′), and J 6|= F (I, r) for rules r′ ∈ rew(Π, A, V ) \ (Π ∪ pos(A, V )) and
r ∈ Π as above. We thus conclude that J 6|= F (I,Π) and I ∈ SM (Π).

Proposition 3
Let Π,Π′ be programs and A be an aggregate such that A /∈ Ag(Π′). Then, it holds that
rew(Π ∪Π′, A,V) = rew(Π, A,V) ∪Π′.

Proof
The claim follows immediately by observing that rew(Π, A,V)∪Π′ ⊆ rew(Π∪Π′, A,V)

and rew(Π ∪Π′, A,V) \ rew(Π, A,V) ⊆ Π′.


