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Abstract

In the Declarative Networking paradigm, Datalog-like languages are used to express dis-
tributed computations. Whereas recently formal operational semantics for these languages
have been developed, a corresponding declarative semantics has been lacking so far. The
challenge is to capture precisely the amount of nondeterminism that is inherent to dis-
tributed computations due to concurrency, networking delays, and asynchronous commu-
nication. This paper shows how a declarative, model-based semantics can be obtained by
simply using the well-known stable model semantics for Datalog with negation. We show
that the model-based semantics matches previously proposed formal operational seman-
tics.

To appear in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: Dedalus, Datalog, stable model semantics, distributed system, asynchronous
communication

1 Introduction

Cloud environments have emerged as a modern way to store and manipulate data

(Zhang et al. 2010; Cavage 2013). For our purposes, a cloud is a distributed system

that should produce output as the result of some computation. We use the common

term “node” as a synonym for an individual computer or server in a network.

In recent years, logic programming has been proposed as an attractive foundation

for distributed and cloud programming, building on work in declarative networking
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(Loo et al. 2009). The essential idea in declarative networking, is that the program-

mer uses a high-level declarative language (like Datalog) to specify only what has

to happen, and not exactly how. For example, the programmer could specify only

that certain messages are generated in reply to other messages; the exact technical

details to send (and possibly resend) messages over transmission protocols are filled

in by some runtime engine. This frees the programmer from thinking in low-level

terms that distract from the actual meaning of the specific program at hand. In par-

ticular, complex distributed algorithms and protocols can be expressed in relatively

few lines of code (Jim 2001; Alvaro et al. 2009; Hellerstein 2010b). Besides the in-

terest in declarative networking, we are also seeing a more general resurgence of

Datalog (with negation) (de Moor et al. 2011; Huang et al. 2011). Moreover, issues

related to data-oriented distributed computing are receiving attention at database

theory conferences (Hellerstein 2010a; Ameloot et al. 2011; Abiteboul et al. 2011;

Ameloot and Van den Bussche 2012; Zinn et al. 2012).

One of the latest languages proposed in declarative networking is Dedalus (Alvaro et al. 2009;

Alvaro et al. 2011; Hellerstein 2010b), a Datalog-inspired language that has influ-

enced other recent language designs for distributed and cloud computing such as

Webdamlog (Abiteboul et al. 2011) and Bloom (Alvaro et al. 2011).

Model-based semantics In this paper, we describe the meaning of distributed Datalog

programs using a model-based semantics. This approach contrasts with most pre-

vious work in declarative networking, where the meaning of programs was typically

described with an operational semantics (Deutsch et al. 2006; Navarro and Rybalchenko 2009;

Grumbach and Wang 2010; Ameloot et al. 2011), with a few exceptions (Lobo et al. 2012;

Ma et al. 2013).

There are several important motivations for a model-based semantics of a dis-

tributed program. First, we can better separate the program structure, i.e., the

rules, from the (distributed) implementation that may change over time. For exam-

ple, consider rules that generate messages. These rules can be implemented with

asynchronous communication, but how we evaluate them across machines is eventu-

ally just a physical performance decision. Said differently, the point of message rules

is not to model a physical phenomenon, but rather to admit a wider array of physical

implementations than a local evaluation strategy. Model-based interpretations of a

program admit all such implementations, and can perhaps suggest some new ones.

Second, we can investigate the need for time: we can think about when temporal

delay is needed for expressivity, rather than when it is imposed upon us by some

implementation detail like physical separation of nodes. In this context we mention

the CRON conjecture by Hellerstein, that relates causality on messages to the na-

ture of the computations in which those messages participate (Hellerstein 2010b;

Ameloot and den Bussche 2014). We elaborate on causality below.

Concretely, our approach will be to model a distributed program with Datalog un-

der the stable model semantics (Gelfond and Lifschitz 1988) because this semantics

is widely used in logic programming. Following the language Dedalus (Alvaro et al. 2009;

Alvaro et al. 2011; Hellerstein 2010b), we express the functionality of the distributed

program with three kinds of rules: “deductive rules” for local computation, “in-
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ductive rules” for persisting memory across local computation steps, and, “asyn-

chronous rules” for representing message sending. The asynchronous rules will non-

deterministically choose the arrival times of messages (Krishnamurthy and Naqvi 1988;

Saccà and Zaniolo 1990).

However, using only the above rules is not sufficient, as this still allows stable

models that express undesirable computations, where messages can be sent “into

the past”. Therefore, each program is augmented with a set of rules that express

causality on the messages. Causality stands for the physical constraint that an effect

can only happen after its cause. Applied to message delivery, this intuitively means

that a sent message can only be delivered in the future, not in the past. The rules

for causality reason from the perspective of the local times of each node, which is a

justified approach since there is no common “global clock” in a distributed environ-

ment (Attiya and Welch 2004). As a second improvement, we also introduce rules

to ensure that only a finite number of messages arrive at each local step of a node,

as occurs in a real distributed system. Applying the stable model semantics to the

augmented Datalog programs constitutes our modeling of a distributed (Datalog)

program.

On another note, it is already well-known that for finite input domains, the com-

bination of Datalog and stable model semantics allows for expressing all problems in

NP (Marek and Truszczynski 1999). However, it is not yet clear what can be repre-

sented when infinite input domains are considered. From this perspective, our work

demonstrates that the stable model semantics is indeed also suitable for modeling

distributed programs, whose execution is unbounded in time. Here, time would be

provided as an infinite input.

Correctness As we have motivated above, our goal is to describe the workings

of a distributed system declaratively, so that new insights can emerge from this

perspective. Hence, it is important to verify that the model-based semantics really

corresponds to the execution of a distributed program.

To this end, we additionally formalize the execution of a distributed Datalog pro-

gram by means of an operational semantics (Deutsch et al. 2006; Navarro and Rybalchenko 2009;

Grumbach and Wang 2010; Ameloot et al. 2011). This second semantics is defined

as a transition system. The transition system is infinite because nodes run in-

definitely and keep sending messages. In addition, the transition system is highly

nondeterministic, because nodes work concurrently and messages can be delayed.

We establish rigorously a correspondence between the features of the operational

semantics and the features of the proposed model-based semantics. To formulate

our result, we describe each operational execution by a structure that we call a

trace, which includes for each node in the network the detailed information about

the local steps it has performed and about the messages it has sent and received. For

our distributed Datalog programs, we show that such operational traces correspond

to the set of stable models.

Outline This paper is organized as follows. First, Section 2 discusses related work.

Section 3 gives preliminaries. Next, Section 4 represents distributed Datalog pro-
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grams under the model-based semantics; this section is based on Dedalus, a Datalog-

like language. Section 5 justifies the intuitions of the model-based semantics by

establishing an equivalence with an operational semantics. Section 6 finishes with

the conclusion.

2 Related Work

The work of Lobo et al. (2012) is closely related to our work. For a Dedalus-inspired

language, they give a model-theoretic semantics based on answer set programming,

i.e., stable models. To define this semantics, they syntactically translate the rules

of their language to Datalog, where all literals are given an explicit location and

time variable, to represent the data that each node has during each local time.

This translation resembles the model-theoretic semantics for distributed Datalog

programs in this paper. To enforce natural execution properties in their seman-

tics, like causality, Lobo et al. specify auxiliary rules in the syntactical translation.

The work of Lobo et al. (2012) does not yet mention the connection between the

model-theoretic semantics and desired executions of a distributed system, i.e., an

operational semantics.

Extending the work of Lobo et al, the work of Ma et al. (2013) formalizes a

distributed system as a composition of I/O automata (Lynch 1996). An operational

execution of such a system is a sequence of valid transitions, called a trace. Global

properties of the system can be analyzed by translating it into a logic program, to

which an answer set solver can be applied. Ma et al. mention that operational traces

of the system correspond to answer sets of the logic program, and that this provides

a formal foundation for the analysis tools based on answer set programming. Thus,

the work of Ma et al. (2013) indicates a practical benefit of having a correspondence

between a declarative and operational semantics for languages used in declarative

networking. As mentioned above, we also establish a similar correspondence in

the current paper, for our distributed Datalog programs. We note, however, a few

differences between our work and that of Ma et al. First, in the work of Ma et al,

the message buffer of a node has a maximum size. In our operational semantics,

the buffers are unbounded. Moreover, Ma et al. construct their logic programs for

a fixed range of timestamps. In our declarative, model-based semantics, time is

given as an infinite input to a Datalog program whose rules are independent of a

fixed time range. Lastly, our work devotes much attention to rigorously showing the

correspondence between the declarative and operational semantics, whereas this is

not elaborated in the work of Ma et al.

Also in the setting of distributed systems, Interlandi et al. (2013) give a Dedalus-

inspired language for describing synchronous systems. In such systems, the nodes

of the network proceed in rounds and the messages can not be arbitrarily delayed.

During each round, the nodes share the same global clock. Interlandi et al. specify an

operational semantics for their language, based on relational transducer networks

(Ameloot et al. 2013). They also show that this operational semantics coincides

with a model-theoretic semantics of a single holistic Datalog program. It should

be noted that Lobo et al. (2012), and the current paper, deal with asynchronous
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systems, that in general pose a bigger challenge for a distributed program to be cor-

rect, i.e., the program should remain unaffected by nondeterministic effects caused

by message delays.

An area of artificial intelligence that is closely related to declarative networking is

that of programming multi-agent systems in declarative languages. The knowledge

of an agent can be expressed by a logic program, which also allows for non-monotone

reasoning, and agents update their knowledge by modifying the rules in these

logic programs (Leite et al. 2002; Nigam and Leite 2006; Leite and Soares 2007).

The language LUPS (Alferes et al. 2002) was designed to specify such dynamic

updates to logic programs, and LUPS is also a declarative language itself. After

applying a sequence of updates specified in LUPS, the semantics of the resulting

logic program can be defined in an inductive way. But an interesting connection

to this current work, is that the semantics can also be given by first syntactically

translating the original program and its updates into a single normal logic program,

after which the stable model semantics is applied (Alferes et al. 2002). It should be

noted however that in this second semantics, there is no modeling of causality or

the sending of messages.

Of course, logic programming is not the only means for specifying a (distributed)

system. For example, in the area of formal methods, logic-based languages like

TLA (Lamport 2000a), Z (Woodcock and Davies 1996), and Event-B (Abrial 2010)

can be used to specify various distributed algorithms. Specifications written in these

languages can also be automatically checked for correctness.

Although we work within the established setting of declarative networking (Loo et al. 2009),

the scientific debate on the merits of Datalog versus other formalisms for program-

ming distributed systems remains open. It seems desirable to have an analysis of

how features of Datalog relate to the features of other languages for formal specifi-

cation, e.g. (Lamport 2000a; Woodcock and Davies 1996; Abrial 2010), both on the

syntactical and the semantical level. However, a deep understanding of the other

languages would be needed. Moreover, one may expect that features of Datalog will

in general not map naturally to features of the other languages. Hence, we consider

such a comparison to be a separate research project, outside the scope of the current

paper.

3 Preliminaries

3.1 Database Basics

A database schema D is a finite set of pairs (R, k) where R is a relation name

and k ∈ N its associated arity. A relation name occurs at most once in a database

schema. We often write (R, k) as R/k .

We assume some infinite universe dom of atomic data values. A fact fff is a pair

(R, ā), often denoted as R(ā), where R is a relation name and ā is a tuple of values

over dom. For a fact R(ā), we call R the predicate. We say that a fact R(a1, . . . , ak )

is over database schema D if R/k ∈ D. A database instance I over D is a set of

facts over D. For a subset D′ ⊆ D, we write I |D′ to denote the subset of facts in
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I whose predicate is a relation name in D′. We write adom(I ) to denote the set of

values occurring in facts of I .

3.2 Datalog with Negation

We recall Datalog with negation (Abiteboul et al. 1995), abbreviated Datalog¬. We

assume the standard database perspective, where a Datalog¬ program is evaluated

over a given set of facts, i.e., where these facts are not part of the program itself.

Let var be a universe of variables, disjoint from dom. An atom is of the form

R(u1, . . . , uk ) where R is a relation name and ui ∈ var∪dom for each i = 1, . . . , k .

We call R the predicate. If an atom contains no data values, we call it constant-free.

A literal is an atom or an atom with “¬” prepended. A literal that is an atom is

called positive and otherwise it is called negative.

It will be technically convenient to use a slightly unconventional definition of

rules. Formally, a Datalog¬ rule ϕ is a triple

(headϕ, posϕ, negϕ)

where headϕ is an atom; posϕ and negϕ are sets of atoms; and, the variables in ϕ

all occur in posϕ. This last condition is called safety. The components headϕ, posϕ
and negϕ are called respectively the head, the positive body atoms and the negative

body atoms. We refer to posϕ ∪ negϕ as the body atoms. Note, negϕ contains just

atoms, not negative literals. Every Datalog¬ rule ϕ must have a head, whereas posϕ
and negϕ may be empty. If negϕ = ∅ then ϕ is called positive.

A rule ϕ may be written in the conventional syntax. For instance, if headϕ =

T (u, v), posϕ = {R(u, v)} and negϕ = {S (v)}, with u, v ∈ var, then we can write

ϕ as

T (u, v)← R(u, v), ¬S (v)·

The specific ordering of literals to the right of the arrow has no significance in this

paper.

The set of variables of ϕ is denoted vars(ϕ). If vars(ϕ) = ∅ then ϕ is called

ground, in which case {headϕ} ∪ posϕ ∪ negϕ is a set of facts.

Let D be a database schema. A rule ϕ is said to be over schema D if for each atom

R(u1, . . . , uk ) ∈ {headϕ} ∪ posϕ ∪ negϕ we have R/k ∈ D. A Datalog¬ program

P over D is a set of (safe) Datalog¬ rules over D. We write sch(P) to denote the

smallest database schema that P is over; note, sch(P) is uniquely defined. We define

idb(P) ⊆ sch(P) to be the database schema consisting of all relations in rule-heads

of P . We abbreviate edb(P) = sch(P) \ idb(P).1

Any database instance I over sch(P) can be given as input to P . Note, I may

already contain facts over idb(P).2 Let ϕ ∈ P . A valuation for ϕ is a total function

V : vars(ϕ)→ dom. The application of V to an atom R(u1, . . . , uk ) of ϕ, denoted

1 The abbreviation “idb” stands for “intensional database schema” and “edb” stands for “exten-
sional database schema” (Abiteboul et al. 1995).

2 The need for this will become clear in Section 5.
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V (R(u1, . . . , uk )), results in the fact R(a1, . . . , ak ) where for each i ∈ {1, . . . , k} we

have ai = V (ui) if ui ∈ var and ai = ui otherwise. In words: applying V replaces

the variables by data values and leaves the old data values unchanged. This is

naturally extended to a set of atoms, which results in a set of facts. Valuation V

is said to be satisfying for ϕ on I if V (posϕ) ⊆ I and V (negϕ) ∩ I = ∅. If so, ϕ is

said to derive the fact V (headϕ).

3.2.1 Positive and Semi-positive

Let P be a Datalog¬ program. We say that P is positive if all rules of P are positive.

We say that P is semi-positive if for each rule ϕ ∈ P , the atoms of negϕ are over

edb(P). Note, positive programs are semi-positive.

We now give the semantics of a semi-positive Datalog¬ programP (Abiteboul et al. 1995).

First, let TP be the immediate consequence operator that maps each instance J

over sch(P) to the instance J ′ = J ∪ A where A is the set of facts derived by all

possible satisfying valuations for the rules of P on J .

Let I be an instance over sch(P). Consider the infinite sequence I0, I1, I2, etc,

inductively defined as follows: I0 = I and Ii = TP (Ii−1) for each i ≥ 1. The output

of P on input I , denoted P(I ), is defined as
⋃

j Ij ; this is the minimal fixpoint of

the TP operator. Note, I ⊆ P(I ). When I is finite, the fixpoint is finite and can be

computed in polynomial time according to data complexity (Vardi 1982).

3.2.2 Stratified Semantics

We now recall the stratified semantics for a Datalog¬ programP (Abiteboul et al. 1995).

As a slight abuse of notation, here we will treat idb(P) as a set of only relation

names (without associated arities). First, P is called syntactically stratifiable if

there is a function σ : idb(P) → {1, . . . , |idb(P)|} such that for each rule ϕ ∈ P ,

having some head predicate T , the following conditions are satisfied:

• σ(R) ≤ σ(T ) for each R(ū) ∈ posϕ|idb(P);

• σ(R) < σ(T ) for each R(ū) ∈ negϕ|idb(P).

For R ∈ idb(P), we call σ(R) the stratum number of R. For technical convenience,

we may assume that if there is an R ∈ idb(P) with σ(R) > 1 then there is an

S ∈ idb(P) with σ(S ) = σ(R) − 1. Intuitively, function σ partitions P into a

sequence of semi-positive Datalog¬ programs P1, . . . , Pk with k ≤ |idb(P)| such

that for each i = 1, . . . , k , the program Pi contains the rules of P whose head

predicate has stratum number i . This sequence is called a syntactic stratification of

P . We can now apply the stratified semantics to P : for an input I over sch(P), we

first compute the fixpoint P1(I ), then the fixpoint P2(P1(I )), etc. The output of

P on input I , denoted P(I ), is defined as Pk (Pk−1(. . .P1(I ) . . .)). It is well known

that the output of P does not depend on the chosen syntactic stratification (if more

than one exists). Not all Datalog¬ programs are syntactically stratifiable.
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3.2.3 Stable Model Semantics

We now recall the stable model semantics for a Datalog¬ program P (Gelfond and Lifschitz 1988;

Saccà and Zaniolo 1990). Let I be an instance over sch(P). Let ϕ ∈ P . Let V be

a valuation for ϕ whose image is contained in adom(I ) ∪ C , where C is the set of

all constants appearing in P . Valuation V does not have to be satisfying for ϕ on

I . Together, V and ϕ give rise to a ground rule ψ, obtained from ϕ by replacing

each u ∈ vars(ϕ) with V (u). We call ψ a ground rule of ϕ with respect to I . Let

ground(ϕ, I ) denote the set of all ground rules of ϕ with respect to I . The ground

program of P on I , denoted ground(P , I ), is defined as
⋃

ϕ∈P ground(ϕ, I ). Note,

if I = ∅, the set ground(P , I ) contains only rules whose ground atoms are made

with C , or atoms that are nullary.

Let M be another instance over sch(P). We write groundM (P , I ) to denote the

program obtained from ground(P , I ) as follows:

1. remove every rule ψ ∈ ground(P , I ) for which negψ ∩M 6= ∅;

2. remove the negative (ground) body atoms from all remaining rules.

Note, groundM (P , I ) is a positive program. We say that M is a stable model of P

on input I if M is the output of groundM (P , I ) on input I . If so, the semantics of

positive Datalog¬ programs implies I ⊆ M . Not all Datalog¬ programs have stable

models on every input (Gelfond and Lifschitz 1988).

3.3 Network and Distributed Databases

A (computer) network is a nonempty finite setN of nodes, which are values in dom.

Intuitively, N represents the identifiers of compute nodes involved in a distributed

system. Communication channels (edges) are not explicitly represented because we

allow a node x to send a message to any node y, as long as x knows about y by

means of input relations or received messages. For general distributed or cluster

computing, the delivery of messages is handled by the network layer, which is

abstracted away. But (Datalog) programs can also describe the network layer itself

(Loo et al. 2009; Hellerstein 2010b), in which case we would restrict attention to

programs where nodes only send messages to nodes to which they are explicitly

linked; these nodes would again be provided as input.

A distributed database instance H over a network N and a database schema D

is a function that maps every node of N to an ordinary finite database instance

over D. This represents how data over the same schema D is spread over a network.

As a small example of a distributed database instance, consider the following

instance H over a network N = {x , y} and a schema D = {R/1, S/1}: H (x ) =

{R(a), S (b)} and H (y) = {R(a), S (c)}. In words: we put facts R(a) and S (b) at

node x , and we put facts R(a) and S (c) at node y. Note that it is possible that the

same fact is given to multiple nodes.
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4 Model-Based Semantics

Here we describe a class of distributed Datalog¬ programs that we give a model-

based semantics. First, in Section 4.1, we recall the user language Dedalus, that is

based on Datalog¬ with annotations, in which the programmer can express the func-

tionality of the distributed program. Next, we discuss how to assign a declarative,

model-based semantics to Dedalus programs. This semantics consists of applying

the stable model semantics to the Dedalus programs after they are transformed

into pure Datalog¬ programs, i.e., without annotations. We introduce some aux-

iliary notations and symbols in Section 4.2. Next, in Section 4.3, we give a basic

transformation of Dedalus programs in order to apply the stable model seman-

tics. However, this basic transformation has some shortcomings, that we iteratively

correct in Sections 4.4 and 4.5.

4.1 User Language: Dedalus

Our user language for distributed Datalog¬ programs is Dedalus (Alvaro et al. 2009;

Alvaro et al. 2011; Hellerstein 2010b), here presented as Datalog¬ with annota-

tions.3 Essentially, the language represents updatable memory for the nodes of

a network and provides a mechanism for communication between these nodes.

4.1.1 Syntax

Let D be a database schema. We write B{v̄}, where v̄ is a tuple of variables, to

denote any sequence β of literals over database schema D, such that the variables

in β are precisely those in the tuple v̄. Let R(ū) denote any atom over D. There

are three types of Dedalus rules over D:

• A deductive rule is a normal Datalog¬ rule over D.

• An inductive rule is of the form

R(ū)• ← B{ū, v̄}·

• An asynchronous rule is of the form

R(ū) | y← B{ū, v̄, y}·

For asynchronous rules, the annotation ‘| y’ with y ∈ var means that the derived

head facts are transferred (“piped”) to the addressee node represented by y. Deduc-

tive, inductive and asynchronous rules will express respectively local computation,

updatable memory, and message sending. As in Section 3.2, a Dedalus rule is called

safe if all its variables occur in at least one positive body atom.

We already provide some intuition of how asynchronous rules operate. There are

four conceptual time points involved in the execution of an asynchronous rule: the

time when the body is evaluated; the time when the derived fact is sent to the

addressee; the time when the fact arrives at the addressee; and, the time when

3 These annotations correspond to syntactic sugar in the previous presentations of Dedalus.
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the arrived fact becomes visible at the addressee. In the model-based semantics

presented later, the first two time points coincide and the last two time points

coincide; and, there is no upper bound on the interval between these two pairs,

although it will be finite.

Now consider the following definition:

Definition 4.1
A Dedalus program over a schema D is a set of deductive, inductive and asyn-

chronous Dedalus rules over D, such that all rules are safe, and the set of deductive

rules is syntactically stratifiable.

In the current work, we will additionally assume that Dedalus programs are

constant-free, as is common in the theory of database query languages, and which

is not really a limitation, since constants that are important for the program can

always be indicated by unary relations in the input.

Let P be a Dedalus program. The definitions of sch(P), idb(P), and edb(P) are

like for Datalog¬ programs. An input for P is a distributed database instance over

some network N and the schema edb(P).

4.1.2 Semantics Sketch

We sketch the main idea behind the semantics of a Dedalus programP . We illustrate

the semantics in Section 4.1.3.

Let H be an input distributed database instance for P , over a network N . The

idea is that all nodes x ∈ N run the same program P and use their local input

fragment H (x ) to do local computation and to send messages. Conceptually, each

node of N should be thought of as doing local computation steps, indefinitely.

During each step, a node reads the following facts: (i) the local input; (ii) some

received message facts, generated by asynchronous rules on other nodes or the

node itself; and, (iii) the facts derived by inductive rules during the previous step

on this same node. Next, the deductive rules are applied to these available facts, to

compute a fixpoint D under the stratified semantics.

Subsequently, the asynchronous and inductive rules are fired in parallel on the

deductive fixpoint D , trying all possible valuations in single-step derivations (i.e.,

no fixpoint). The asynchronous rules send messages to other nodes or to the same

node. Messages arrive after an arbitrary (but finite) delay, where the delay can vary

for each message. The inductive rules store facts in the memory of the local node.

The effect of an inductive derivation is only visible in the very next step; so, if a fact

is to be remembered over multiple steps, it should always be explicitly rederived by

inductive rules.

4.1.3 Examples

We consider several examples to demonstrate the three kinds of Dedalus rules, and

how they work together. These examples also illustrate the utility of Dedalus when

applied to some practical problems. Here, we follow the principle that the output

on a node x consists of the facts that are eventually derived during every step of x .
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marked(u) | y← start(u), Node(y)·

marked(u)• ← marked(u)·

marked(v)← marked(u), R(u, v)·

vert(u)← R(u, v)·

vert(u)← R(v, u)·

missing( )← vert(u), ¬marked(u)·

covered( )← ¬missing( )·

Figure 1. Dedalus program for Example 1.

Example 1

In this example we compute reachable vertices on graph data. Consider the Dedalus

program P in Figure 1. We assume the edb relations R/2, start/1, and Node/1. For

each node, relation R describes a local graph, and relation start provides certain

starting vertices. In any input distributed database instance H over a network N ,

we assume that for each node, relation Node is initialized to contain all nodes of N ;

intuitively, Node can be regarded as an address book for N .

Now, the idea is that each node of N will check whether all of its local vertices are

reachable from the (distributed) start vertices. Communication is needed to share

these start vertices, which is accomplished by the asynchronous rule. The receipt of a

start vertex initializes a local relation marked/1 at each node; this relation contains

reachable vertices. The inductive rule says that all reachable vertices that we know

during the current step, are remembered in the next step. This way, the effect of the

communication is preserved. Moreover, the third rule, which is deductive, collects all

local graph vertices reachable from the currently known reachable vertices. Note,

the inductive rule will cause the result of this deductive computation to be also

remembered in the next step, although this effect is not really needed here. The

last four rules, which are deductive, check that all local vertices are reachable from

the start vertices seen so far; if so, a local flag covered( ) is derived.

In our semantics, we will enforce that all messages eventually arrive. In such a

semantics, eventually a node will produce covered( ) during each step iff all its

local vertices are reachable from the distributed start vertices. �

Example 2

In this example we generate a random ordering of a set through asynchronous

delivery of messages. Every node generates a random ordering of a local edb relation

S/1 that represents an input set. We also assume an edb relation Id/1 that contains

on each node the identifier of that node; the relation Id allows a node to send a

message to itself. The idea is that a node sends all elements of S to itself as messages,

and the arbitrary arrival order is used to generate an ordering of the elements. This
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ordering depends on the execution, and some executions will not lead to orderings

if some elements are always jointly delivered.

The corresponding program is shown in Figure 2. We use relation M /1 to send the

elements of S , as accomplished by the single asynchronous rule. The relations F/1

and N /2 represent the ordering of S so far, and they are considered as the output

of the program; the letters ‘F’ and ‘N’ stand for “first” and “next” respectively.

For example, a possible ordering of the set {a, b, c, d} could be expressed by the

following facts: F (d), N (d , c), N (c, b), N (b, a).

Inductive rules are responsible for remembering the iteratively updated versions

of F and N . The other rules are deductive, and they can conceptually be executed

in the order in which they are written. The main technical challenge is to only

update the ordering when precisely one element of S arrives; otherwise, because

we have no choice mechanism, we would accidentally give the same ordinal to two

different elements. Checking whether we may update the ordering is accomplished

through other auxiliary relations. We use a nullary relation started as a flag to

know whether we still have to initialize relation F or not.

Note that the program keeps sending all elements of S through the single asyn-

chronous rule. Alternatively, by adapting the program, we could send the elements

only once by making sure the asynchronous rule is fired only once (in parallel for all

elements of S ). In that case, as soon as two elements are later delivered together,

the ordering will not contain all elements. �

Example 3

This example is inspired by commit protocols that were expressed in a precursor

language of Dedalus (Alvaro et al. 2009). In particular, we implement a two-phase

commit protocol where agents, represented by nodes, vote either “yes” or “no” for

transaction identifiers. Such a protocol could be part of a bigger system, where

transactions are distributed across agents and each agent may only perform the

transaction locally if all agents want to do this. A single coordinator node is re-

sponsible for combining the votes for each transaction identifier t : the coordinator

broadcasts “yes” for t if all votes for t are “yes”, and “no” otherwise. Each agent

stores the decision of the coordinator.

Because the agents and the coordinator have different roles, we make two separate

Dedalus programs.4 First, the agent nodes are assigned the following simple Dedalus

program, whose relations are explained below:

vote(t, x, v) | y← myVote(t, v), Id(x), coord(y)·

outcome(t, v)• ← outcome(t, v)·

Here, the edb relations are: myVote/2 that maps each transaction identifier t to

a local vote “yes” or “no”, Id/1 storing the identifier of the agent, and coord/1

4 In our formal definitions, all nodes execute the same Dedalus program. However, it is easy to
simulate two different programs by giving every node the union of both programs, but using a
flag to guard the rules of each program. In this example, we can then assume that one node
gets a “coordinator” flag as input, and the other nodes get an “agent” flag as input.
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M (u) | x← S(u), Id(x)·

used(u)← F (u)·

used(u)← N (u, v)·

used(u)← N (v, u)·

new(u)← M (u), ¬used(u)·

eq(u, u)← S(u)·

two( )← new(u), new(v), ¬eq(u, v)·

keep(u)← new(u), ¬two( )·

notlast(u)← N (u, v)·

last(u)← F (u), ¬notlast(u)·

last(u)← N (v, u), ¬notlast(u).

started( )← F (u)·

F (u)• ← ¬started( ), keep(u)·

N (u, v)• ← started( ), last(u), keep(v)·

F (u)• ← F (u)·

N (u, v)• ← N (u, v)·

Figure 2. Dedalus program for Example 2.

storing the identifier of the coordinator. Also, the relations vote/3 and outcome/2

represent respectively the outgoing votes and the final decision by the coordinator.

Second, the coordinator node is assigned the Dedalus program shown in Fig-

ure 3. The coordinator has the following edb relations: relation T/1 containing all

transaction identifiers, relations Y /1 and N /1 containing the constants “yes” and

“no” respectively, and relation agents/1 containing all voting agents. The coordi-

nator uses an inductive rule to gradually accumulate all votes for each transaction

identifier. Votes can have arbitrary delays, but in our model the delays are always

finite. In each computation step, the deductive rules at the coordinator recompute

a relation complete that contains the transaction identifiers for which all votes

have been received. When a transaction identifier t has at least one “no” vote, the

coordinator decides “no” for t , and otherwise the coordinator decides “yes” for t .

The final decision is broadcast to all agents. The coordinator adds the transactions

with a decision to a log, so the decision will not be broadcast again. �

4.2 Auxiliary Notations and Relations

Let P be a Dedalus program. Let R/k ∈ sch(P). We will use facts of the form

R(x , s , a1, . . . , ak ) to express that fact R(a1, . . . , ak ) is present at a node x during

its local step s , with s ∈ N, after the deductive rules are executed. We call x the
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vote(t, x, v)• ← vote(t, x, v)·

known(t, x)← vote(t, x, v)·

missing(t)← T (t), agent(x), ¬known(t, x)·

complete(t)← T (t), ¬missing(t)·

decideNo(t)← votes(t, x, v), N (v)·

decideYes(t)← complete(t), ¬decideNo(t)·

outcome(t, v) | y← decideNo(t), ¬log(t), N (v), agent(y)·

outcome(t, v) | y← decideYes(t), ¬log(t), Y (v), agent(y)·

log(t)• ← complete(t)·

log(t)• ← log(t).

Figure 3. Dedalus (coordinator) program for Example 3.

location specifier and s the timestamp. In order to represent timestamps, we assume

N ⊆ dom.

We write sch(P)LT to denote the database schema obtained from sch(P) by

incrementing the arity of every relation by two. The two extra components will

contain the location specifier and timestamp.5 For an instance I over sch(P), x ∈

dom and s ∈ N, we write I ⇑x ,s to denote the facts over sch(P)LT that are obtained

by prepending location specifier x and timestamp s to every fact of I . Also, if L

is a sequence of literals over sch(P), and x, s ∈ var, we write L⇑x,s to denote the

sequence of literals over sch(P)LT that is obtained by adding location specifier x

and timestamp s to the literals in L (negative literals stay negative).

We also need auxiliary relation names, that are assumed not to be used in sch(P);

these are listed in Table 1.6 The concrete purpose of these relations will become

clear in the following subsections.

We define the following schema

Dtime = {time/1, tsucc/2, </2, 6=/2}·

The relations ‘<’ and ‘6=’ will be written in infix notation in rules. We consider only

the following instance over Dtime:

Itime = {time(s), tsucc(s , s + 1) | s ∈ N}

∪ {(s < t) | s , t ∈ N : s < t}

∪ {(s 6= t) | s , t ∈ N : s 6= t}·

Intuitively, the instance Itime provides timestamps together with relations to com-

pare them.

5 The abbreviation ‘LT’ stands for “location specifier and timestamp”.
6 In practice, auxiliary relations can be differentiated from those in sch(P) by a namespace

mechanism.
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Table 1. Relation names not in sch(P).

Relation Names Meaning

all network

time, tsucc, <, 6= timestamps

before happens-before relation

candR, chosenR, otherR, for each
relation name R in idb(P)

messages

hasSender, isSmaller, hasMax,
rcvInf

only a finite number of messages ar-
rive at each step of a node

4.3 Dynamic Choice Transformation

Let P be a Dedalus program. We describe the dynamic choice transformation to

transform P into a pure Datalog¬ program purech(P). The most technical part of

the transformation involves the use of dynamic choice to select an arrival timestamp

for each message generated by an asynchronous rule. The actual transformation is

presented first; next we give the semantics; and, lastly, we discuss how the trans-

formation can be improved.

4.3.1 Transformation

We incrementally construct purech(P). In particular, for each rule in P , we specify

what corresponding rule (or rules) should be added to purech(P). For technical

convenience, we assume that rules of P always contain at least one positive body

atom. This assumption allows us to more elegantly enforce that head variables in

rules of purech(P) also occur in at least one positive body atom.7 Let x, s, t, t′ ∈ var

be distinct variables not yet occurring in rules of P . We write B{v̄}, where v̄ is a

tuple of variables, to denote any sequence β of literals over sch(P), such that the

variables in β are precisely those in v̄. Also recall the notations and relation names

from Section 4.2.

Deductive rules For each deductive rule R(ū)← B{ū, v̄} in P , we add to purech(P)

the following rule:

R(x, s, ū)← B{ū, v̄}⇑x,s · (1)

7 This assumption is not really a restriction, since a nullary positive body atom is already suffi-
cient.
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This rule expresses that deductively derived facts at some node x during step s

are (immediately) visible within step s of x . Note, all atoms in this rule are over

sch(P)LT.

Inductive rules For each inductive rule R(ū)• ← B{ū, v̄} in P , we add to purech(P)

the following rule:

R(x, t, ū)← B{ū, v̄}⇑x,s, tsucc(s, t) · (2)

This rule expresses that inductively derived facts becomes visible in the next step

of the same node.

Asynchronous rules We use facts of the form all(x ) to say that x is a node of the

network at hand. We use facts of the form candR(x , s , y, t , ā) to express that node x

at its step s sends a message R(ā) to node y, and that t could be the arrival times-

tamp of this message at y.8 Within this context, we use a fact chosenR(x , s , y, t , ā)

to say that t is the effective arrival timestamp of this message at y. Lastly, a fact

otherR(x , s , y, t , ā) means that t is not the arrival timestamp of the message. Now,

for each asynchronous rule

R(ū) | y← B{ū, v̄, y}

in P , letting w̄ be a tuple of new and distinct variables with |w̄| = |ū|, we add to

purech(P) the following rules, for which the intuition is given below:

candR(x, s, y, t, ū)← B{ū, v̄, y}⇑x,s, all(y), time(t) · (3)

chosenR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), ¬otherR(x, s, y, t, w̄) · (4)

otherR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), chosenR(x, s, y, t
′, w̄), t 6= t′ · (5)

R(y, t, w̄)← chosenR(x, s, y, t, w̄) · (6)

Rule (3) represents the messages that are sent. It evaluates the body of the

original asynchronous rule, verifies that the addressee is within the network by

using relation all, and it generates all possible candidate arrival timestamps.

Now remains the matter of actually choosing one arrival timestamp amongst

all these candidates. Intuitively, rule (4) selects an arrival timestamp for a message

with the condition that this timestamp is not yet ignored, as expressed with relation

otherR. Also, looking at rule (5), a possible arrival timestamp t becomes ignored

if there is already a chosen arrival timestamp t ′ with t 6= t ′. Together, both rules

have the effect that exactly one arrival timestamp will be chosen under the stable

model semantics. This technical construction is due to Saccà and Zaniolo (1990),

who show how to express dynamic choice under the stable model semantics.

Rule (6) represents the actual arrival of an R-message with the chosen arrival

timestamp: the data-tuple in the message becomes part of the addressee’s state for

relation R. When the addressee reads relation R, it thus transparently reads the

arrived R-messages.

8 Here, ‘cand’ abbreviates “candidate”.
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Note, if multiple asynchronous rules in P have the same head predicate R, only

new candR-rules have to be added because the rules (4)–(6) are general for all

R-messages.

Note that if there are asynchronous rules in P , program purech(P) is not syn-

tactically stratifiable if a candR-rule contains a body atom that (indirectly) neg-

atively depends on R.9 In that case, purech(P) might not even be locally stratifi-

able (Apt and Bol 1994).

4.3.2 Semantics

Now we define the semantics of purech(P). Let H be an input distributed database

instance for P , over a network N . Using the notations from Section 4.2, we define

decl(H ) to be the following database instance over the schema edb(P)LT∪{all/1}∪

Dtime:

decl(H ) = {R(x , s , ā) | x ∈ N , s ∈ N, R(ā) ∈ H (x )}

∪ {all(x ) | x ∈ N} ∪ Itime·

In words: we make for each node its input facts available at all timestamps; we

provide the set of all nodes; and, Itime provides the timestamps with comparison

relations.10 Note, instance decl(H ) is infinite because N is infinite.

The stable model semantics for Datalog¬ programs is reviewed in Section 3.2.3.

Consider now the following definition:

Definition 4.2

For an input distributed database instance H for P , we call any stable model of

purech(P) on input decl(H ) a choice-model of P on input H .

4.3.3 Possible Improvement

We illustrate a shortcoming of the dynamic choice transformation. Consider the

Dedalus program P in Figure 4. We assume that in each input distributed database,

the edb relation Id/1 contains on each node just the identifier of this node. This way,

the node can send messages to itself. Relation T is the intended output relation of P .

The idea is that a node sends A( ) to itself continuously. When A( ) arrives, we send

B( ), but we also want to create an output fact T ( ). We only create T ( ) when B( ) is

absent. When B( ) is received, it is remembered by inductive rules. Now, we see that

the delivery of at least one A( ) is necessary to cause a B( ) to be sent. This creates

the expectation that T ( ) is always created: at least one A( ) is delivered before any

B( ). This intuition can be formalized as causality (Attiya and Welch 2004) (see

also Section 5.2.1).

However, this intuition is violated by some choice-models of P , as we demonstrate

9 Indeed, candR is used to compute R, but R is also used to compute candR, giving a cycle
through negation.

10 For simplicity we already include relation < in this definition, although this relation will only
be used later.
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A( ) | x← Id(x)·

B( ) | x← A( ), Id(x)·

T ( )← A( ), ¬B( )·

T ( )• ← T ( )·

B( )• ← B( )·

Figure 4. Dedalus program sensitive to non-causality.

next. Consider the input distributed database instance H over a singleton network

{z} that assigns the fact Id(z ) to z . Now, consider the following choice-model M

of P on H :11

M = decl(H ) ∪M snd
A ∪M rcv

A ∪M snd
B ∪M rcv

B ,

where

M snd
A = {candA(z , s , z , t) | s , t ∈ N}

∪ {chosenA(z , s , z , s + 1) | s ∈ N}

∪ {otherA(z , s , z , t) | s , t ∈ N, t 6= s + 1};

M rcv
A = {A(z , s) | s ∈ N, s ≥ 1};

M snd
B = {candB (z , s , z , t) | s , t ∈ N, s ≥ 1}

∪ {chosenB (z , 1, z , 0)}

∪ {chosenB (z , s , z , s + 1) | s ∈ N, s ≥ 2}

∪ {otherB (z , 1, z , t) | t ∈ N, t 6= 0}

∪ {otherB (z , s , z , t) | s , t ∈ N, s ≥ 2, t 6= s + 1};

M rcv
B = {B(z , s) | s ∈ N}·

In M snd
B , note that one B -message is sent at timestamp 1 of z , and arrives at times-

tamp 0 of z . We immediately see that this message is peculiar: we should not be

able to send a message to arrive in the past. Because of the stray message B( ),

the fact B( ) exists at all timestamps: it arrives at timestamp 0 and is henceforth

persisted by the inductive rule for relation B ; this is modeled by set M rcv
B . Subse-

quently, there are no ground rules of the form T (z , s)← A(z , s) with s ∈ N in the

ground program groundM (C , I ), where C = purech(P) and I = decl(H ).

In the next subsection, we exclude such unintuitive stable models using an ex-

tended transformation of Dedalus programs.

11 Using straightforward arguments, it can indeed be shown that M is a stable model of purech(P)
on decl(H ).
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4.4 Causality Transformation

Let P be a Dedalus program. In this section, we present the causality transfor-

mation pureca(P) that extends purech(P) to exclude the unintuitive stable models

that we have encountered in the previous subsection. We first present the new

transformation, and then we discuss how the transformation can still be improved.

4.4.1 Transformation

We define pureca(P) again incrementally. First, we transform deductive and induc-

tive rules just as in purech(P).

Next, we use facts of the form before(x , s , y, t) to express that local step s of

node x happens before local step t of node y. Regardless of P , we always add the

following rules to pureca(P):

before(x, s, x, t)← all(x), tsucc(s, t) · (7)

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t) · (8)

Rule (7) expresses that on every node, a step happens before the next step. Rule

(8) makes relation before transitive.

Now, for each asynchronous rule

R(ū) | y← B{ū, v̄, y}

in P , we add to pureca(P) the previous transformation rules (4), (5) and (6) (omit-

ting the candR-rule), and we add the following new rules, where w̄ is a tuple of new

and distinct variables with |w̄| = |ū|, and x, s, and t are also new variables:

candR(x, s, y, t, ū)← B{ū, v̄, y}⇑x,s, all(y), time(t),

¬before(y, t, x, s)·
(9)

before(x, s, y, t)← chosenR(x, s, y, t, w̄) · (10)

Like the old rule (3), rule (9) represents the messages that are sent, but now can-

didate arrival timestamps are restricted by relation before to enforce causality.

Intuitively, this restriction prevents cycles from occurring in relation before. This

aligns with the semantics of a real distributed system, where the happens-before

relation is a strict partial order (Attiya and Welch 2004) (see also Section 5.2.1).

Rule (10) adds the causal restriction that the local step of the sender happens

before the arrival step of the addressee. Together with the previously introduced

rules (7) and (8), this will make sure that when the addressee later causally replies

to the sender, the reply — as generated by a rule of the form (9) — will arrive after

this first send-step of the sender.

Remark 1

The new program pureca(P) excludes unintuitive models like the one in Section 4.3.3.

In the context of that particular example, it will be impossible to exhibit a stable

model of pureca(P) in which B( ) is sent to timestamp 0. Indeed, B( ) can only be
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sent starting from timestamp 1; timestamp 0 at z (locally) happens before times-

tamp 1 at z ; and, the negative before-literal in rule (9) will prevent sending from

timestamp 1 at z to timestamp 0 at z . Also in scenarios where different nodes x

and y send messages to each other, when node x replies to a message of node y

sent at timestamp s of y, node x can not send the reply to a timestamp t of y with

t < s .

4.4.2 Semantics

The semantics of the causality transformation is the same as for the dynamic choice

transformation:

Definition 4.3

For an input distributed database instance H for P , we call any stable model of

pureca(P) on input decl(H ) a causal model of P on input H .

4.4.3 Possible Improvement

We illustrate a shortcoming of the causality transformation. Consider the Dedalus

program P in Figure 5. We assume that in each input distributed database, the

edb relation contact/1 contains intended recipients of messages. Relation T serves

as the output relation of P . The idea is that a node sends A( ) to its recipients

continuously. When A( ) arrives, a recipient sets a local flag first( ). Later, when a

second A( ) arrives, the recipient creates an output fact T ( ) that we remember by

means of inductive rules. Intuitively, we expect that T ( ) is always created because

the fact A( ) is sent infinitely often to a recipient, making this recipient witness the

arrival of A( ) at (hopefully) two distinct moments.

However, this intuition is violated by some causal models of P . Consider the input

distributed database instance H over a network {x , y} that (only) assigns the fact

contact(y) to x . Now, consider the following causal model M of P on H :12

M = decl(H ) ∪M snd
A ∪M rcv

A ∪M before,

where

M snd
A = {candA(x , s , y, t) | s , t ∈ N}

∪ {chosenA(x , s , y, 0) | s ∈ N}

∪ {otherA(x , s , y, t) | s , t ∈ N, t 6= 0};

M rcv
A = {A(y, 0)}

∪ {first(y, s) | s ∈ N, s ≥ 1};

M before = {before(x , s , x , t) | s , t ∈ N, s < t};

∪ {before(y, s , y, t) | s , t ∈ N, s < t};

∪ {before(x , s , y, t) | s , t ∈ N}

12 Using straightforward arguments, it can be shown that M is a stable model of pureca(P) on
decl(H ).
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A( ) | y← contact(y)·

first( )• ← A( )·

first( )• ← first( )·

T ( )← first( ), A( )·

T ( )• ← T ( )·

Figure 5. Dedalus program sensitive to infinite message grouping.

In this causal model, all instances of message A( ) that x sends to y arrive at

timestamp 0 of y. For this reason, node y can not witness two different arrivals

of message A( ). In practice, however, node y can not receive an infinite number

of messages during a timestamp, and the deliveries of the A( ) messages would

be spread out more evenly in time. So, in the next subsection, we will additionally

exclude such infinite message arrivals, to obtain our final transformation of Dedalus

programs.

4.5 Causality-Finiteness Transformation

Let P be a Dedalus program. As seen in the previous subsection, program pureca(P)

allows an infinite number of messages to arrive at any step of a node. This does

not happen in any real-world distributed system; indeed, no node has to process an

infinite number of messages at any given moment. We consider this to be an addi-

tional restriction that must be explicitly enforced. To this purpose, we present in

this section the causality-finiteness transformation pure(P) that extends pureca(P).

We will approach this problem as follows. Suppose there are an infinite number of

messages that arrive at some node y during its step t . Since in a network there are

only a finite number of nodes and a node can only send a finite number of messages

during each step (the input domain is finite), there must be at least one node x that

sends messages to step t of y during an infinite number of steps of x . Hence there

is no maximum value amongst the corresponding send-timestamps of x . Thus, in

order to prevent the arrival of an infinite number of messages at step t of y, it will

be sufficient to demand that there always is such a maximum send-timestamp for

every sender. Below, we will implement this strategy with some concrete rules in

pure(P).

4.5.1 Transformation

We define pure(P) as pureca(P) extended as follows. The additional rules can be

thought of as being relative to an addressee and a step of this addressee, represented

by the variables y and t respectively.

We use a fact rcvInf(y, t) to express that node y receives an infinite number

of messages during its step t . First, we add the following rule to pure(P) for each
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relation chosenR that results from the transformation of asynchronous rules in

pureca(P), where x, s, y, and t are variables and w̄ is a tuple of distinct variables

disjoint from the previous ones with |w̄| the arity of relation R in sch(P):

hasSender(y, t, x, s)← chosenR(x, s, y, t, w̄), ¬rcvInf(y, t) · (11)

This rule intuitively means that as long as addressee y has not received an infi-

nite number of messages during its step t, we register the senders and their send-

timestamps.

Recall the auxiliary relations defined in Section 4.2. Next, we add to pure(P) the

following rules, for which the intuition is provided below:

isSmaller(y, t, x, s)← hasSender(y, t, x, s), hasSender(y, t, x, s′),

s < s′·
(12)

hasMax(y, t, x)← hasSender(y, t, x, s), ¬isSmaller(y, t, x, s) · (13)

rcvInf(y, t)← hasSender(y, t, x, s), ¬hasMax(y, t, x) · (14)

Rule (12) checks for each sender and each of its send-timestamps whether there is a

later send-timestamp of that same sender. Rule (13) tries to find a maximum send-

timestamp. Finally, rule (14) derives a rcvInf-fact if no maximum send-timestamp

was found for at least one sender.

We will show in Section 5.3.1 that in any stable model, the above rules make sure

that every node receives only a finite number of messages at every step.

4.5.2 Semantics

The semantics of the causality-finiteness transformation is again the same as for

the dynamic choice transformation and the causality transformation:

Definition 4.4

For an input distributed database instance H for P , we call any stable model of

pure(P) on input decl(H ) a causal-finite model of P on input H .

We will refer to a causal-finite model also simply as model.

5 Correctness

In Section 4, we have described the computation of a distributed Datalog¬ program

by means of stable models. By using suitable rules, we have excluded some unintu-

itive stable models. But at this point we are still not sure whether the remaining

stable models really correspond to the execution of a distributed system. We fill

that gap in this section: we show that each remaining stable model corresponds to

an execution of the distributed Datalog¬ program under an operational semantics,

and vice versa. We call such an execution a run, and we will only be concerned

with so-called fair runs, where each node is made active infinitely often and all sent

messages are eventually delivered.

We extract from each run R a trace, denoted trace(R), which is a set of facts
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that shows in detail what each node computes during each step. We will make this

concrete in the following subsections. But we can already state our main result, as

follows:

Theorem 4

Let P be a Dedalus program. For each input distributed database instance H for

P ,

(i) for every fair run R of P there is a model M of P such that trace(R) =

M |sch(P)LT , and

(ii) for every model M of P there is a fair run R of P such that trace(R) =

M |sch(P)LT .

�

First, Section 5.1 formalizes runs and traces of runs. The proof of item (i) of

the theorem is described in Section 5.2. The proof of item (ii), which is the most

difficult, is described in Section 5.3. We only describe the crucial reasoning steps

of the proofs; the intricate technical details can be found in the online appendix to

the paper.

5.1 Operational Semantics

In this section, we give an operational semantics for Dedalus that is in line with ear-

lier formal work on declarative networking (Deutsch et al. 2006; Navarro and Rybalchenko 2009;

Grumbach and Wang 2010; Ameloot et al. 2011; Abiteboul et al. 2011).

Let P be a Dedalus program, and let H be an input distributed database instance

for P , over a network N . The essence of the operational semantics is as follows.

Every node of N runs program P , and a node has access only to its own local state

and any received messages. The nodes are made active one by one in some arbitrary

order, and this continues an infinite number of times. During each active moment

of a node x , called a local (computation) step, node x receives message facts and

applies its deductive, inductive and asynchronous rules. Concretely, the deductive

rules, forming a stratified Datalog¬ subprogram, are applied to the incoming mes-

sages and the previous state of x . Next, the inductive rules are applied to the output

of the deductive subprogram, and these allow x to store facts in its memory: these

facts become visible in the next local step of x . Finally, the asynchronous rules are

also applied to the output of the deductive subprogram, and these allow x to send

facts to the other nodes or to itself. These facts become visible at the addressee af-

ter some arbitrary delay, which represents asynchronous communication, as occurs

for instance on the Internet. We assume that all messages are eventually delivered

(and are thus never lost). We will refer to local steps simply as “steps”.

We make the above sketch more concrete in the next subsections.
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5.1.1 Configurations

Let P , H , and N be as above. A configuration describes the network at a certain

point in its evolution. Formally, a configuration of P on H is a pair ρ = (st, bf)

where

• st is a function mapping each node of N to an instance over sch(P); and,

• bf is a function mapping each node of N to a set of pairs of the form (i , fff ),

where i ∈ N and fff is a fact over idb(P).

We call st and bf the state and (message) buffer respectively. The state says for

each node what facts it has stored in its memory, and the message buffer bf says

for each node what messages have been sent to it but that are not yet received. The

reason for having numbers i , called send-tags, attached to facts in the image of bf

is merely a technical convenience: these numbers help separate multiple instances

of the same fact when it is sent at different moments (to the same addressee), and

these send-tags will not be visible to the Dedalus program. For example, if the

buffer of a node x simultaneously contains pairs (3, fff ) and (7, fff ), this means that

fff was sent to x during the operational network transitions with indices 3 and 7,

and that both particular instances of fff are not yet delivered to x . This will become

more concrete in Section 5.1.3.

The start configuration of P on input H , denoted start(P ,H ), is the configuration

ρ = (st, bf) defined by st(x ) = H (x ) and bf(x ) = ∅ for each x ∈ N . In words: for

every node, the state is initialized with its local input fragment in H , and there are

no sent messages.

5.1.2 Subprograms

We look at the operations that are executed locally during each step of a node. We

have mentioned that the three types of Dedalus rules each have their own purpose

in the operational semantics. For this reason, we split the program P into three

subprograms, that contain respectively the deductive, inductive and asynchronous

rules. In Section 5.1.3, we describe how these subprograms are used in the opera-

tional semantics.

• First, we define deducP to be the Datalog¬ program consisting of precisely

all deductive rules of P .

• Secondly, we define inducP to be the Datalog¬ program consisting of all

inductive rules of P after the annotation ‘•’ in their head is removed.

• Thirdly, we define asyncP to be the Datalog¬ program consisting of precisely

all rules

T (y, ū)← B{ū, y}

where

T (ū) | y← B{ū, y}

is an asynchronous rule of P . So, we basically put the variable y as the first
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component in the (extended) head atom. The intuition for the generated head

facts is that the first component will represent the addressee.

Note that the programs deducP , inducP and asyncP are just Datalog¬ programs

over the schema sch(P), or a subschema thereof. Moreover, deducP is syntacti-

cally stratifiable because the deductive rules in every Dedalus program must be

syntactically stratifiable. It is possible however that inducP and asyncP are not

syntactically stratifiable. Now we define the semantics of each of these three sub-

programs.

Let I be a database instance over sch(P). During each step of a node, the intuition

of the deductive rules is that they “complete” the available facts by adding all new

facts that can be logically derived from them. This calls for a fixpoint semantics, and

for this reason, we define the output of deducP on input I , denoted as deducP(I ),

to be given by the stratified semantics. This implies I ⊆ deducP(I ). Importantly,

I is allowed to contain facts over idb(P), and the intuition is that these facts were

derived during a previous step (by inductive rules) or received as messages (as sent

by asynchronous rules). This will become more explicit in Section 5.1.3.

During each step of a node, the intuition behind the inductive rules is that they

store facts in the memory of the node, and these stored facts will become visible

during the next step. There is no notion of a fixpoint here because facts that will

become visible in the next step are not available in the current step to derive more

facts. For this reason, we define the output of inducP on input I to be the set of

facts derived by the rules of inducP for all possible satisfying valuations in I , in

just one derivation step. This output is denoted as inducP(I ).

During each step of a node, the intuition behind the asynchronous rules is that

they generate message facts that are to be sent around the network. The output for

asyncP on input I is defined in the same way as for inducP , except that we now

use the rules of asyncP instead of inducP . This output is denoted as asyncP(I ).

The intuition for not requiring a fixpoint for asyncP is that a message fact will

arrive at another node, or at a later step of the sender node, and can therefore not

be read during sending.

Regarding data complexity (Vardi 1982), for each subprogram the output can be

computed in PTIME with respect to the size of its input.

5.1.3 Transitions and Runs

Transitions formalize how to go from one configuration to another. Here we use the

subprograms of P . Transitions are chained to form a run. Regarding notation, for

a set m of pairs of the form (i , fff ), we define untag(m) = {fff | ∃i ∈ N : (i , fff ) ∈ m}.

A transition with send-tag i ∈ N is a five-tuple (ρa , x ,m, i , ρb) such that ρa =

(sta , bfa) and ρb = (stb , bfb) are configurations of P on input H , x ∈ N , m ⊆

bfa(x ), and, letting

I = sta (x ) ∪ untag(m),

D = deducP(I ),

δi→y = {(i , R(ā)) | R(y, ā) ∈ asyncP(D)} for each y ∈ N ,
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for x and each y ∈ N \ {x} we have

stb(x ) = H (x ) ∪ inducP(D),

bfb(x ) = (bfa (x ) \m) ∪ δi→x ,

stb(y) = sta(y),

bfb(y) = bfa (y) ∪ δ
i→y ·

We call ρa and ρb respectively the source and target configuration, and say this

transition is of the active node x . Intuitively, the transition expresses that x reads

its old state together with the received facts in untag(m) (thus without the tags),

and describes the subsequent computation: subprogram deducP completes the avail-

able information; the new state of x consists of the input facts of x united with all

facts derived by subprogram inducP ; and, subprogram asyncP generates messages,

whose first component indicates the addressee.13 Note, inducP and asyncP do not

influence each other, and can be thought of as being executed in parallel. Also, for

each y ∈ N , the set δi→y contains all messages addressed to y, with send-tag i

attached. Messages with an addressee outside the network are ignored. This way of

defining local computation closely corresponds to that of the language Webdamlog

(Abiteboul et al. 2011). If m = ∅, we call the transition a heartbeat.

A run R of P on input H is an infinite sequence of transitions, such that (i) the

source configuration of the first transition is start(P ,H ), (ii) the target configura-

tion of each transition is the source configuration of the next transition, and (iii)

the transition at ordinal i of the sequence uses send-tag i . Ordinals start at 0 for

technical convenience. The resulting transition system is highly non-deterministic

because in each transition we can choose the active node and also what messages

to deliver; the latter choice is represented by the set m from above.

Remark 2 (Parallel transitions)

Transitions as defined here can simulate parallel transitions in which multiple nodes

are active at the same time and receive messages from their respective buffers.

Indeed, if we would have multiple nodes active during a parallel transition, they

would receive messages from their buffers in isolation, and this can be represented

by a chain of transitions in which these nodes receive one after the other precisely

the messages that they received in the parallel transition. For this reason, we limit

our attention to transitions with single active nodes.

5.1.4 Fairness and Arrival Function

In the literature on process models it is customary to require certain fairness con-

ditions on the execution of a system, for instance to exclude some extreme situ-

ations that are expected not to happen in reality (Francez 1986; Apt et al. 1988;

Lamport 2000b).

Let R be a run of P on H . For every transition i ∈ N, let ρi = (sti , bf i) denote

the source configuration of transition i . Now, R is called fair if:

• every node is the active node in an infinite number of transitions of R; and,

13 Note, input facts are preserved by the transition. This aligns with the design of Dedalus, where
we do not allow facts to be retracted; only negation as failure is permitted.
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• for every transition i ∈ N, for every y ∈ N , for every pair (j , fff ) ∈ bf i(y),

there is a transition k with i ≤ k in which (j , fff ) is delivered to y.

Intuitively, the fairness conditions disallow starvation: every node does an infinite

number of local computation steps and every sent message is eventually delivered.

We consider only fair runs in this paper. Note, a fair run exists for every input

because heartbeats remain possible even when there are no messages to deliver.

In the second condition about message deliveries, it is possible that k = i , and

in that case (j , fff ) is delivered in the transition immediately following configuration

ρi . Because the pair (j , fff ) can be in the message buffer of multiple nodes, this k is

not unique for the pair (j , fff ) by itself. But, when we also consider the addressee y,

it follows from the operational semantics that this k is unique for the triple (j , y, fff ).

This reasoning gives rise to a function αR, called the arrival function for R, that

is defined as follows: for every transition i , for every node y, for every message

fff sent to addressee y during i , the function αR maps (i , y, fff ) to the transition

ordinal k in which (i , fff ) is delivered to y. We always have αR(i , y, fff ) > i . Indeed,

the delivery of a message can only happen after it was sent. So, when the delivery

of one message causes another to be sent, then the second one is delivered in a

later transition. This is related to the topic of causality that we have introduced in

Section 4. This topic will also be further discussed in Sections 5.2 and 5.3.

5.1.5 Timestamps and Trace

For each transition i of a run, we define the timestamp of the active node x during

i to be the number of transitions of x that come strictly before i . This can be

thought of as the local (zero-based) clock of x during i , and is denoted locR(i). For

example, suppose we have the following sequence of active nodes: x , y, y, x , x , etc.

If we would write the timestamps next to the nodes, we get this sequence: (x , 0),

(y, 0), (y, 1), (x , 1), (x , 2), etc.

As a counterpart to function locR(·), for each (x , s) ∈ N×N we define globR(x , s)

to be the transition ordinal i of R such that x is the active node in transition i

and locR(i) = s . In words: we find the transition in which node x does its local

computation step with timestamp s . It follows from the definition of locR(·) that

globR(x , s) is uniquely defined.

Let R be a run of P on input H . Recall that H is over network N . We now

capture the computed data during R as a set of facts that we call the trace. For

each transition i ∈ N, let xi denote the active node, and let Di denote the output

of subprogram deducP during i . The operational semantics implies that Di consists

of (i) the input edb-facts at xi ; (ii) the inductively derived facts during the previous

step of xi (if locR(i) ≥ 1); (iii) the messages delivered during transition i ; and, (iv)

all facts deductively derived from the previous ones. So, intuitively, Di contains all

local facts over sch(P) that xi has during transition i .
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Recall the notations of Section 4.2. Now, the trace of R is the following instance

over sch(P)LT:

trace(R) =
⋃

i∈N

D
⇑xi , locR(i)
i ·

The trace shows in detail what happens in the run, in terms of what facts are

available on the nodes during which of their steps.

5.2 Run to Model

Let P be a Dedalus program and let H be an input distributed database instance

for P , over a network N . Let R be a fair run of P on input H . We show there is

a model M of P on H such that trace(R) = M |sch(P)LT . The main idea is that we

translate the transitions of R to facts over the schema of pure(P).

First, in Section 5.2.1, we extract the happens-before relation on nodes and times-

tamps from R. Next, in Section 5.2.2, we define the desired model M .

5.2.1 Happens-before Relation

In the operational semantics, we order the actions of the nodes on a fine-grained

global time axis, by ordering the transitions in the runs. By contrast, we now define

a partial order on N × N, saying which steps of nodes must have come before

which steps of (other) nodes, without referring to the global ordering imposed by

transitions.

First, we extract from R the message sending and receiving events. Formally, we

define mesg(R) to be the set of all tuples (x , s , y, t , fff ), with fff a fact, and denoting

i = globR(x , s) and j = globR(y, t), such that αR(i , y, fff ) = j , i.e., node x during

step s sends message fff to y that arrives at the step t of y, with possibly x = y. In

words: mesg(R) contains the direct relationships between local steps of nodes that

arise through message sending.

FromR we can now extract the happens-before relation (Attiya and Welch 2004)

on the setN×N, which is defined as the smallest relation≺R on N×N that satisfies

the following three conditions:

• for each (x , s) ∈ N × N, we have (x , s) ≺R (x , s + 1);

• (x , s) ≺R (y, t) whenever for some fact fff we have (x , s , y, t , fff ) ∈ mesg(R);

• ≺R is transitive, i.e., (x , s) ≺R (z , u) ≺R (y, t) implies (x , s) ≺R (y, t).

We call these three cases respectively local edges, message edges and transitive

edges. Naturally, the first two cases express a direct relationship, whereas the third

case is more indirect.

Note, if two runs on the same input have the same happens-before relation, they

do not necessarily have the same trace. This is because relation ≺R does not talk

about the specific messages that arrive at the nodes.

We will now show that ≺R is a strict partial order. Consider first the following

property:
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Lemma 1

For every run R, for each (x , s) ∈ N × N and (y, t) ∈ N × N, if (x , s) ≺R (y, t)

then globR(x , s) < globR(y, t).

Proof

We can consider a path from (x , s) to (y, t) in ≺R. We can substitute each transitive

edge in this path with a subpath of non-transitive edges. This results in a path of

only non-transitive edges:

(x1, s1) ≺R (x2, s2) ≺R . . . ≺R (xn , sn),

where n ≥ 2, (x1, s1) = (x , s) and (xn , sn) = (y, t). Because there are no transitive

edges, for each i ∈ {1, . . . , n − 1}, the edge (xi , si) ≺R (xi+1, si+1) falls into one of

the following two cases:

• xi = xi+1 and si+1 = si + 1 (local edge);

• xi during step si sends a message to xi+1 that arrives in step si+1 of xi+1 (message

edge).

In the first case, it follows from the definition of locR(·) that

globR(xi , si) < globR(xi+1, si+1)·

For the second case, by our operational semantics, every message is always delivered

in a later transition than the one in which it was sent. So, again we have

globR(xi , si) < globR(xi+1, si+1)·

Since this property holds for all the above edges, by transitivity we thus have

globR(x , s) < globR(y, t), as desired.

Corollary 1

For every run R, the relation ≺R is a strict partial order on N × N.

Proof

From its definition, we immediately have that ≺R is transitive. Secondly, irreflex-

ivity for ≺R follows from Lemma 1.

5.2.2 Definition of M

Now we define the model M :

M = decl(H ) ∪
⋃

i∈N

trans
[i]
R ,

where trans
[i]
R for each i ∈ N is an instance over the schema of pure(P) that describes

transition i of R.14 Let i ∈ N. We define trans
[i]
R as

trans
[i]
R = caus

[i]
R ∪ fin

[i]
R ∪ duc

[i]
R ∪ snd

[i]
R ,

14 Note, M must include the input decl(H ) by definition of stable model (see Section 3.2.3).



30 Ameloot et al.

where each of these sets focuses on different aspects of transition i , and they are de-

fined next. Regarding notation, let ≺R be the happens-before relation as defined in

the preceding subsection; let locR(·), globR(·), and αR be as defined in Section 5.1;

let xi denote the active node of transition i ; and, let us abbreviate si = locR(i).

Causality We define caus
[i]
R to consist of all facts before(x , s , xi , si) for which

(x , s) ∈ N × N and (x , s) ≺R (xi , si). Intuitively, caus
[i]
R represents the joint result

of rules (7), (8), and (10), corresponding to respectively the local edges, transitive

edges, and message edges of ≺R.

Finite Messages We define fin
[i]
R to represent that only a finite number of messages

are delivered in transition i , thus at step si of node xi . We proceed as follows.

First, let senders
[i]
R be the set of all pairs (x , s) ∈ N × N such that, denoting

j = globR(x , s), for some fact fff we have αR(j , xi , fff ) = i , i.e., the node x during

its step s sends a message to xi with arrival timestamp si . It follows from the

operational semantics that for each (x , s) ∈ senders
[i]
R we have globR(x , s) < i .

Now, we define fin
[i]
R to consist of the following facts:

• the fact hasSender(xi , si , x , s) for each (x , s) ∈ senders
[i]
R , representing the

result of rule (11);
• the fact isSmaller(xi , si , x , s) for each (x , s) ∈ senders

[i]
R and (x , s ′) ∈ senders

[i]
R

with s < s ′, representing the result of rule (12); and,
• the fact hasMax(xi , si , x ) for each sender-node x mentioned in senders

[i]
R , rep-

resenting the result of rule (13).

We know that in R only a finite number of messages arrive at step si of xi . Hence,

we add no fact rcvInf(xi , si) to fin
[i]
R . This also explains why the specification of the

hasMax-facts above is relatively simple: there is always a maximum send-timestamp

for each sender-node.

Deductive Let Di denote the output of subprogram deducP during transition i . We

define duc
[i]
R to consist of the facts D

⇑xi ,si
i . Intuitively, duc

[i]
R represents all facts

over sch(P) that are available at xi during step si , i.e., the joint result of rules in

pure(P) of the form (1), (2) and (6).

Sending We define snd
[i]
R to represent the sending of messages during transition

i . We proceed as follows. Let mesg
[i]
R denote the output of subprogram asyncP

during transition i , restricted to the facts having their addressee-component in the

network. Now, we define snd
[i]
R to consist of the following facts:

• all facts candR(xi , si , y, t , ā) for which R(y, ā) ∈ mesg
[i]
R and t ∈ N such that

(y, t) 6≺R (xi , si), representing the result of rule (9);
• all facts chosenR(xi , si , y, t , ā) for which R(y, ā) ∈ mesg

[i]
R and t = locR(j )

with j = αR(i , y, R(ā)), representing the result of rule (4); and,
• all facts otherR(xi , si , y, u, ā) for which R(y, ā) ∈ mesg

[i]
R , u ∈ N, (y, u) 6≺R

(xi , si) and u 6= locR(j ) with j = αR(i , y, R(ā)), representing the result of

rule (5).
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Conclusion We can show that M is indeed a model of P on input H ; this proof

can be found in Appendix A of the online appendix to the paper. By construction

of M , we have, as desired:

M |sch(P)LT =
⋃

i∈N

duc
[i]
R =

⋃

i∈N

D
⇑xi ,si
i = trace(R)·

5.3 Model to Run

Let P be a Dedalus program and let H be an input distributed database instance

for P , over some network N . Let M be a model of P on input H . We show there

is a fair run R of P on input H such that trace(R) = M |sch(P)LT .

The direction shown in Section 5.2 is perhaps the most intuitive direction because

we only have to show that a concrete set of facts is actually a stable model. In this

section we do not yet understand what M can contain. So, a first important step

is to show that M has some desirable properties which allow us to construct a run

from it.

Using the notation from Section 3.2.3, let G abbreviate the ground program

groundM (C , I ) where C = pure(P) and I = decl(H ). By definition of M as a

stable model, we have M = G(I ).

First, it is important to know that in M we find location specifiers where we

expect location specifiers and we find timestamps where we expect timestamps.

Formally, we call M well-formed if:

• for each R(x , s , ā) ∈ M |sch(P)LT we have x ∈ N and s ∈ N;

• for each before(x , s , y, t) ∈ M , we have x , y ∈ N and s , t ∈ N;

• for each fact candR(x , s , y, t , ā), chosenR(x , s , y, t , ā) and otherR(x , s , y, t , ā)

in M , we have x , y ∈ N and s , t ∈ N;

• for each fact hasSender(x , s , y, t), isSmaller(x , s , y, t), hasMax(x , s , y) and

rcvInf(x , s) in M , we have x , y ∈ N and s , t ∈ N.

It can be shown by induction on the fixpoint computation of G that M is always

well-formed. We omit the details.

The rest of this subsection is organized as follows. In Section 5.3.1, we extract a

happens-before relation ≺M from M . Next, in Section 5.3.2, we construct a run R:

we use ≺M to establish a total order on N × N that tells us which are the active

nodes in the transitions of R. Finally, we show in Section 5.3.3 that R is fair.

5.3.1 Partial Order

We define the following relation ≺M on N × N: for each (x , s) ∈ N × N and

(y, t) ∈ N × N, we write (x , s) ≺M (y, t) if and only if before(x , s , y, t) ∈ M . The

rest of this section is dedicated to showing that ≺M is a well-founded strict partial

order on N × N.

Let G abbreviate the ground program groundM (C , I ) where C = pure(P) and

I = decl(H ). Regarding terminology, an edge (x , s) ≺M (y, t) is called a local edge,

a message edge or a transitive edge if the fact before(x , s , y, t) ∈ M can be derived
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by a ground rule in G of respectively the form (7), the form (10), or the form (8).15

It is possible that an edge is of two or even three types at the same time.

Consider the following claim:

Claim 5

Relation ≺M is a strict partial order on N × N.

Proof

We show that ≺M is transitive and irreflexive.

Transitive First, we show that ≺M is transitive. Suppose we have (x , s) ≺M (z , u)

and (z , u) ≺M (y, t). We have to show that (x , s) ≺M (y, t). By definition of ≺M ,

we have before(x , s , z , u) ∈ M and before(z , u, y, t) ∈ M . Because rule (8) is

positive, we have the following ground rule in G:

before(x , s , y, t)← before(x , s , z , u), before(z , u, y, t)·

Because M is a stable model and the body of the previous ground rule is in M , we

obtain before(x , s , y, t) ∈ M . Hence, (x , s) ≺M (y, t), as desired.

Irreflexive Because an edge (x , s) ≺M (x , s) for any (x , s) ∈ N × N would form a

cycle of length one, it is sufficient to show that there are no cycles in ≺M at all.

This gives us irreflexivity, as desired.

First, let ≺′
M denote the restriction of ≺M to the edges that are local or message

edges. Note that this definition allows some edges in ≺′
M to also be transitive.

The edges that are missing from ≺′
M with respect to ≺M are only derivable by

ground rules of the form (8); we call these the pure transitive edges. We start by

showing that ≺′
M contains no cycles. We show this with a proof by contradiction.

So, suppose that there is a cycle in N × N through the edges of ≺′
M :

(x1, s1) ≺M (x2, s2) ≺M . . . ≺M (xn , sn)

with n ≥ 2 and (x1, s1) = (xn , sn). We have before(xi , si , xi+1, si+1) ∈ M for each

i ∈ {1, . . . , n − 1}. Based on these before-facts, ground rules in G of the form (8)

will have derived before(xi , si , xj , sj ) ∈ M for each i , j ∈ {1, . . . , n}.

If each edge on the above cycle would be only local, then for each i , j ∈ {1, . . . , n}

with i < j we have xi = xj and si < sj , and hence s1 6= sn , which is false. So, there

has to be some k ∈ {1, . . . , n − 1} such that (xk , sk ) ≺M (xk+1, sk+1) is a message

edge, derived by a ground rule of the form (10):

before(xk , sk , xk+1, sk+1)← chosenR(xk , sk , xk+1, sk+1, ā)·

Therefore chosenR(xk , sk , xk+1, sk+1, ā) ∈ M . This chosenR-fact must be derived

by a ground rule of the form (4) in G, which implies that

candR(xk , sk , xk+1, sk+1, ā) ∈ M ·

This candR-fact must in turn be derived by a ground rule ψ of the form (9).

15 The body of such a ground rule has to be in M .
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Because rules of the form (9) in pure(P) contain a negative before-atom in their

body, the presence of ψ in G requires that before(xk+1, sk+1, xk , sk ) /∈ M . But that

is a contradiction, because before(xi , si , xj , sj ) ∈ M for each i , j ∈ {1, . . . , n} (see

above).

Now we show there are no cycles in the entire relation≺M . Since M = G(decl(H )),

we have M =
⋃

i∈N
Mi where M0 = decl(H ) and Mi = T (Mi−1) for each i ≥ 1

where T is the immediate consequence operator of G. By induction on i , we show

that an edge before(x , s , y, t) ∈ Mi either is a local or message edge, or it can be

replaced by a path of local or message edges in Mi . Then any cycle in ≺M would

imply there is a cycle in ≺′
M , which is impossible. So, ≺M can not contain cycles.

Now, this induction property is satisfied for the base case because M0 does not

contain before-facts. For the induction hypothesis, assume the property holds for

Mi−1, where i ≥ 1. For the inductive step, let before(x , s , y, t) ∈ Mi \ Mi−1. If

this fact is derived by a ground rule of the form (7) or (10) then the property is

satisfied. Now suppose the fact is derived by a ground rule of the form (8):

before(x , s , y, t)← before(x , s , z , u), before(z , u, y, t)·

Both body facts are in Mi−1, implying Mi−1 contains a path of local or message

edges from (x , s) to (z , u) and from (z , u) to (y, t). Hence, using Mi−1 ⊆ Mi , the

edge before(x , s , y, t) ∈ Mi can be replaced by a path of local or message edges in

Mi .

In Section 4.5 we have added extra rules to pure(P) to enforce that every node

only receives a finite number of messages during each step. We now verify that this

works correctly:

Claim 6

For each (y, t) ∈ N ×N there are only a finite number of pairs (x , s) ∈ N ×N such

that (x , s) ≺M (y, t) is a message edge.

Proof

We start by noting that M does not contain the fact rcvInf(y, t). Indeed, in or-

der to derive this fact, we need a ground rule in G of the form (14), which has a

body fact of the form hasSender(y, t , x , s). Such hasSender-facts must be gener-

ated by ground rules in G of the form (11). The rule (11) negatively depends on

relation rcvInf. Thus, specifically, if we want a ground rule in G that can derive

hasSender(y, t , x , s), we should require the absence of rcvInf(y, t) from M . So

rcvInf(y, t) ∈ M requires rcvInf(y, t) /∈ M , which is impossible.

The rest of the proof works towards a contradiction. So, suppose that (y, t) has an

infinite number of incoming message edges. Because there are only a finite number

of nodes in N , there has to be a node x that has an infinite number of timestamps

s such that before(x , s , y, t) ∈ M is a message edge. Since it is a message edge,

such a fact before(x , s , y, t) can be generated by a ground rule in G of the form

(10), which implies that there is a relation R in idb(P) and a tuple ā such that

chosenR(x , s , y, t , ā) ∈ M . Because rcvInf(y, t) /∈ M (see above), for each of
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these chosenR-facts, there is a ground rule of the form (11) in M that derives

hasSender(y, t , x , s) ∈ M .

Rule (14) has a negative hasMax-atom in its body. If we can show that hasMax(y, t , x ) /∈

M , then there will be a ground rule in G of the form (14), where hasSender(y, t , x , s) ∈

M :

rcvInf(y, t)← hasSender(y, t , x , s)·

This then causes rcvInf(y, t) ∈ M , giving the desired contradiction.

Also towards a proof by contradiction, suppose that hasMax(y, t , x ) ∈ M . This

means that there is a ground rule ψ in G of the form (13):

hasMax(y, t , x )← hasSender(y, t , x , s)·

Because the rule (13) contains a negative isSmaller-atom in the body, and be-

cause ψ ∈ G, we know that isSmaller(y, t , x , s) /∈ M . But because there are

infinitely many facts of the form hasSender(y, t , x , s ′) ∈ M , there is at least one

fact hasSender(y, t , x , s ′) ∈ M with s < s ′. Moreover, the rule (12) is positive, and

therefore the following ground rule is always in G:

isSmaller(y, t , x , s)← hasSender(y, t , x , s), hasSender(y, t , x , s ′), s < s ′·

Since the body of this ground rule is in M , the rule derives isSmaller(y, t , x , s) ∈

M , which gives the desired contradiction.

An ordering ≺ on a set A is called well-founded if for each a ∈ A, there are only

a finite number of elements b ∈ A such that b ≺ a. We now use Claim 6 to show:

Claim 7

Relation ≺M on N × N is well-founded.

Proof

Let (x , s) ∈ N × N. We have to show that there are only a finite number of pairs

(y, t) ∈ N ×N such that (y, t) ≺M (x , s). Technically, we can limit our attention to

paths in ≺M consisting of local edges and message edges, because if we can show

that there are only a finite number of predecessors of (x , s) on such paths, then

there are only a finite number of predecessors when we include the transitive edges

as well. First we show that every pair (y, t) ∈ N × N has only a finite number of

incoming local and message edges. If t > 0, we can immediately see that (y, t) has

precisely one incoming local edge, as created by a ground rule of the form (7), and

if t = 0 then (y, t) has no incoming local edge. Also, Claim 6 tells us that (y, t) has

only a finite number of incoming message edges. So, the number of incoming local

and message edges in (y, t) is finite.

Let (y, t) ∈ N×N be a pair such that (y, t) ≺M (x , s) is a local edge or a message

edge. Starting in (x , s), we can follow this edge backwards so that we reach (y, t). If

(y, t) itself has incoming local or message edges, from (y, t) we can again follow an

edge backwards. This way we can incrementally construct backward paths starting

from (x , s). Because at each pair of N×N there are only a finite number of incoming

local or message edges (shown above), if (x , s) would have an infinite number of
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predecessors, we must be able to construct a backward path of infinite length. We

now show that the existence of such an infinite path leads to a contradiction. So,

suppose that there is a backward path of infinite length. Because there are only

a finite number of nodes in the network N , there must be a node y that occurs

infinitely often on this path. We will now show that, as we progress further along

the backward path, we must see the local timestamps of y strictly decrease. Hence,

we must eventually reach timestamp 0 of y, after which we cannot decrement the

timestamps of y anymore, and thus it is impossible that y occurs infinitely often

along the path. Suppose that the timestamps of y do not strictly decrease. There

are two cases. First, if the same pair (y, t) would occur twice on the path, we would

have a cycle in ≺M , which is not possible by Claim 5. Secondly, suppose that there

are two timestamps t and t ′ of y such that t < t ′ and (y, t) occurs before (y, t ′) on

the backward path, meaning that (y, t) lies closer to (x , s). Because the edges were

followed in reverse, we have

(y, t ′) ≺M . . . ≺M (y, t)·

But since t < t ′, by means of local edges, we always have

(y, t) ≺M (y, t + 1) ≺M . . . ≺M (y, t ′)·

So, there would be a cycle between (y, t ′) and (y, t). But that is again impossible

by Claim 5.

5.3.2 Construction of Run

Let ≺M be the well-founded strict partial order onN×N as defined in the preceding

subsection. The relation ≺M has the intuition of a happens-before relation of a run

(Section 5.2.1), but the novelty is that it comes from a purely declarative model

M . We will now use ≺M to construct a run R such that trace(R) = M |sch(P)LT .

Total order It is well-known that a well-founded strict partial order can be extended

to a well-founded strict total order. So, let <M be a well-founded strict total order

on N × N that extends ≺M , i.e., for each (x , s) ∈ N × N and (y, t) ∈ N × N, if

(x , s) ≺M (y, t) then (x , s) <M (y, t), but the reverse does not have to hold.

Ordering the set N × N according to <M gives us a sequence of pairs that will

form the transitions in the constructed run R. Concretely, we obtain a sequence of

nodes by taking the node-component from each pair. This will form our sequence

of active nodes. Similarly, by taking the timestamp-component from each pair of

N ×N, we obtain a sequence of timestamps. These are the local clocks of the active

nodes during their transitions.

We introduce some extra notations to help us reason about the ordering of time

that is implied by <M . For each (x , s) ∈ N × N, let globM (x , s) ∈ N denote the

ordinal of (x , s) as implied by<M , which is well-defined because<M is well-founded.

For technical convenience, we let ordinals start at 0. Note, globM (·) is an injective

function. For any i ∈ N, we define (xi , si) to be the unique pair in N ×N such that

globM (xi , si) = i .
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As a counterpart to function globM (·), for each i ∈ N and each x ∈ N , let

locM (i , x ) denote the size of the set

{s ∈ N | globM (x , s) < i}·

Intuitively, if i is regarded to be the ordinal of a transition in a run, locM (i , x ) is

the number of local steps of x that came before transition i , i.e., the number of

transitions before i in which x was the active node. If x = xi (the active node)

then locM (i , x ) is effectively the timestamp of x during transition i , and if x 6= xi

then locM (i , x ) is the next timestamp of x that still has to come after transition

i . Note, the functions globM (·) and locM (·) closely resemble the functions globR(·)

and locR(·) of Section 5.1.5.

Configurations We will now define the desired run R of P on H . First we define an

infinite sequence of configurations ρ0, ρ1, ρ2, etc. In a second step we will connect

each pair of subsequent configurations by a transition. Recall from Section 5.1.1

that a configuration describes for each node what facts it has stored locally (state),

and also what messages have been sent to this node but that are not yet received

(message buffer). The facts that are stored on a node are either input edb-facts, or

facts derived by inductive rules in a previous step of the node. The first kind of facts

can be easily obtained from M by keeping only the facts over schema edb(P)LT,

which gives a subset of decl(H ).

For the second kind of state facts, we look at the inductively derived facts in

M . Rules in pure(P) that represent inductive rules of P are recognizable as rules

of the form (2): they have a head atom over sch(P)LT and they have a (positive)

tsucc-atom in their body. No other kind of rule in pure(P) has this form. Hence, the

ground rules in G that are based on rules of the form (2) are also easily recognizable,

and we will call these inductive ground rules. A ground rule ψ ∈ G is called active

on M if posψ ⊆ M , which implies headψ ∈ M because M is stable. Let M ind

denote all head atoms of inductive ground rules in G that are active on M . Note

that M ind ⊆ M . Regarding notation, for an instance I over sch(P)LT, we write I ⇓

to denote the set {R(ā) | ∃x , s : R(x , s , ā) ∈ I }, and we write I |x ,s to denote the

set {R(y, t , ā) ∈ I | y = x , t = s}.

Now, for each i ∈ N, for each node x ∈ N , denoting s = locM (i , x ), in configura-

tion ρi = (sti , bf i), the state sti(x ) is defined as

(

(M |edb(P)LT)|
x ,s ∪M ind|x ,s

)⇓
·

We remove the location specifier and timestamp because we have to obtain facts

over the schema of P , not over the schema of pure(P).

Now we define the message buffers in the configurations. Recall that the message

buffer of a node always contains pairs of the form (j , fff ), where j ∈ N is the transition

in which fact fff was sent. For each i ∈ N, for each node x ∈ N , in configuration

ρi = (sti , bf i), the message buffer bf i(x ) is defined as

{(globM (y, t), R(ā)) | ∃u : chosenR(y, t , x , u, ā) ∈ M ,

globM (y, t) < i ≤ globM (x , u)}·
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Note the use of addressee x in this definition. The definition of bf i(x ) reflects the

operational semantics, in that the messages in the buffer of node x must be sent in

a previous transition, as expressed by the constraint globM (y, t) < i . Moreover, the

constraint i ≤ globM (x , u) says that bf i(x ) contains only messages that will be de-

livered in transitions of x that come after configuration ρi . Possibly i = globM (x , u),

and in that case the message will be delivered in the transition immediately after

configuration ρi , which is transition i (see also below).

Transitions So far we have obtained a sequence of configurations ρ0, ρ1, ρ2, etc.

Now we define a sequence of tuples, one tuple per ordinal i ∈ N, that represents the

transition i . Let i ∈ N. Recall from above that (xi , si) is the unique pair in N × N

such that globM (xi , si) = i . The tuple τi is defined as (ρi , xi ,mi , i , ρi+1), where

mi = {(globM (y, t), R(ā)) | chosenR(y, t , z , u, ā) ∈ M , globM (z , u) = i}·

Intuitively, mi selects all messages that arrive in transition i . And since globM (z , u) =

i implies z = xi and u = si , we thus select all messages destined for step si of node

xi .

Trace We can show that sequence R is indeed a legal run of P on input H such

that trace(R) = M |sch(P)LT ; this proof can be found in Appendix B of the online

appendix to the paper. In the following subsection we show that R is also fair.

5.3.3 Fair Run

Let R be the run as constructed in the previous subsection. We now show that

R is fair. For each transition index i ∈ N, let ρi = (sti , bf i) denote the source

configuration of transition i . Recall from Section 5.1.4 that we have to check two

fairness conditions:

1. every node is the active node in an infinite number of transitions; and,

2. for every transition i ∈ N, for every y ∈ N , for every pair (j , fff ) ∈ bf i(y),

there is a transition k with i ≤ k in which (j , fff ) is delivered to y.

We show that R satisfies the first fairness condition. Let x ∈ N be a node, and let

s ∈ N be a timestamp of x . Consider transition i = globM (x , s). This transition

has active node xi = x . We can find such a transition with active node x for every

timestamp s ∈ N of x , and these transitions are all unique because function globM (·)

is injective. So, there are an infinite number of transitions in R with active node x .

We show that R satisfies the second fairness condition. Let i ∈ N, y ∈ N , and

(j , fff ) ∈ bf i(y). Denote fff = R(ā). From its construction, the pair (j , fff ) ∈ bf i(y)

implies there are values x ∈ N , s ∈ N and t ∈ N such that chosenR(x , s , y, t , ā) ∈

M and j = globM (x , s) < i ≤ globM (y, t). Denote k = globM (y, t). Hence, i ≤ k

and (j , fff ) ∈ mk by definition of mk . Thus (j , fff ) is delivered to xk = y in transition

k .
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6 Discussion

We have represented distributed programs in Datalog under the stable model se-

mantics. Moreover, we have shown that the stable models represent the desired

behavior of the distributed program, as found in a realistic operational semantics.

We now discuss some points for future work.

As mentioned, many Datalog-inspired languages have been proposed to imple-

ment distributed applications (Loo et al. 2009; Navarro and Rybalchenko 2009; Grumbach and Wang 2010;

Abiteboul et al. 2011), and they contain several powerful features such as aggrega-

tion and non-determinism (choice). Our current framework already represents the

essential features that all these languages possess: reasoning about distributed state

and representing message sending. Nonetheless, we have probably not yet explored

the full power of stable models. We therefore expect that this work can be extended

to languages that incorporate more powerful language constructs such as the ones

mentioned above. It might also be possible to remove the syntactic stratification

condition that we have used for the deductive rules.

More related to multi-agent systems (Leite et al. 2002; Nigam and Leite 2006;

Leite and Soares 2007), it might be interesting to allow logic programs used in

declarative networking to dynamically modify their rules. The question would be

how (and if) this can be represented in our model-based semantics.

The effect of variants of the model-based semantics can studied. For example,

messages can be sent into the past when the causality rules are removed. Then, one

might ask which (classes of) programs still work “correctly” under such a non-causal

semantics; some preliminary results are in (Ameloot and den Bussche 2014).

Lastly, we can think about the output of distributed Datalog programs. Marczak et al.

(2011) define the output with ultimate facts, which are facts that will eventually

always be present on the network. This way, the output of a run (or equivalently

stable model) can be defined. Then, a consistent program is required to produce

the same output in every run. For consistent programs, the output on an input

distributed database instance can thus be defined as the output of any run. We can

now consider the following decision problem: for a consistent program, an input

distributed database instance for that program, and a fact, decide if this fact is

output by the program on that input. We think that decidability depends on the

semantics of the message buffers. In this paper, we have represented per addressee

duplicate messages in its message buffer. This is a realistic representation, since in

a real network, the same message can be sent multiple times, and hence, multiple

instances of the same message can be in transmission simultaneously. If we would

forbid duplicate messages in the buffers, then the decision problem becomes decid-

able because only a finite number of configurations would be possible by finiteness

of the input domain. But when duplicates are preserved, the number of configura-

tions is not limited, and we expect that the problem will be undecidable in general.

However, we might want to investigate whether decidability can be obtained in par-

ticular (syntactically defined) cases. If so, it might be interesting for those cases to

find finite representations of the stable models. This could serve as a more intuitive
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programmer abstraction, or it could perhaps be used to more efficiently simulate

the behavior of the network for testing purposes.
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Appendix

General Remarks

Let P be a Dedalus program. Recall from Section 5.1.2 that deducP ⊆ P is the

subset of all (unmodified) deductive rules. The semantics of deducP is given by

the stratified semantics. Although the semantics of deducP does not depend on

the chosen syntactic stratification, for technical convenience in the proofs, we will

fix an arbitrary syntactic stratification for deducP . Whenever we refer to the stra-

tum number of an idb relation, we implicitly use this fixed syntactic stratification.

Stratum numbers start at 1.

Appendix A Run to Model: Proof Details

In the context of Section 5.2.2, we show that M is a model of P on input H .

Let G abbreviate the ground program groundM (C , I ), where C = pure(P) and

I = decl(H ). To show that M is a stable model, we have to show M = N where

N = G(decl(H )). The inclusions M ⊆ N and N ⊆ M are shown respectively in

Sections A.1 and A.2. We use the notations of Section 5.2.2.

A.1 Inclusion M ⊆ N

By definition,

M = decl(H ) ∪
⋃

i∈N

trans
[i]
R ·
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We immediately have decl(H ) ⊆ N by the semantics of G. Next, we define for

uniformity the set trans
[−1]
R = ∅. We will show by induction on i = −1, 0, 1, . . .,

that trans
[i]
R ⊆ N . The base case (i = −1) is clear. For the induction hypothesis,

let i ≥ 0, and assume for all j ∈ {−1, 0, . . . , i − 1} that trans
[j ]
R ⊆ N . We show that

trans
[i]
R ⊆ N . By definition,

trans
[i]
R = caus

[i]
R ∪ fin

[i]
R ∪ duc

[i]
R ∪ snd

[i]
R ·

We show inclusion of these four sets in N below. Auxiliary claims can be found in

Section A.1.5.

A.1.1 Causality

We show that caus
[i]
R ⊆ N . Concretely, let (x , s) ∈ N×N such that (x , s) ≺R (xi , si).

We show before(x , s , xi , si) ∈ N . We distinguish between the following cases.

Local edge Suppose (x , s) ≺R (xi , si) is a local edge, i.e., x = xi and si = s + 1.

Because rule (7) is positive, the following ground rule is always in G:

before(x , s , x , s + 1)← all(x ), tsucc(s , s + 1)·

The body facts of this ground rule are in decl(H ) ⊆ N ; hence, the rule derives

before(x , s , x , s + 1) = before(x , s , xi , si) ∈ N .

Message edge Suppose (x , s) ≺R (xi , si) is a message edge, i.e., there is an earlier

transition j < i with j = globR(x , s), in which x sends a message fff to xi such that

αR(j , xi , fff ) = i . Denote fff = R(ā). Because rules of the form (10) in pure(P) are

positive, the following ground rule is always in G:

before(x , s , xi , si)← chosenR(x , s , xi , si , ā)·

We show chosenR(x , s , xi , si , ā) ∈ N , so that before(x , s , xi , si) ∈ N , as desired.

Since j = globR(x , s), we have xj = x and sj = s . Also using si = locR(i), we have

chosenR(x , s , xi , si , ā) ∈ snd
[j ]
R ⊆ trans

[j ]
R ·

Lastly, we have trans
[j ]
R ⊆ N by applying the induction hypothesis.

Transitive edge Suppose (x , s) ≺R (xi , si) is not a local edge nor a message edge.

Then we can choose a pair (z , u) ∈ N ×N such that (x , s) ≺R (z , u) and (z , u) ≺R

(xi , si), but also such that (z , u) ≺R (xi , si) is a local edge or a message edge.

Because rule (8) is positive, the following ground rule is always in G:

before(x , s , xi , si)← before(x , s , z , u), before(z , u, xi , si)·

We now show that the body of this rule is in N , so that before(x , s , xi , si) ∈

N , as desired. Denote j = globR(z , u). First, because (x , s) ≺R (z , u), we have

before(x , s , z , u) ∈ caus
[j ]
R . Next, because (z , u) ≺R (xi , si), we have j < i by

Lemma 1. So, by applying the induction hypothesis to j , we have before(x , s , z , u) ∈

N . Secondly, because (z , u) ≺R (xi , si) is a local edge or a message edge, we have

before(z , u, xi , si) ∈ N as shown in the preceding two cases.
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A.1.2 Finite Messages

We show that fin
[i]
R ⊆ N . Let senders

[i]
R be as defined in Section 5.2.2. For each of

the different kinds of facts in fin
[i]
R , we show inclusion in N .

Senders Let hasSender(xi , si , x , s) ∈ fin
[i]
R . We have (x , s) ∈ senders

[i]
R , which

means that x during step s sends some message fact R(ā) that arrives in step

si of xi . Rules in pure(P) of the form (11) have a negative rcvInf-atom in their

body. But since we have not added any rcvInf-facts to M , including rcvInf(xi , si),

the following rule is in G:

hasSender(xi , si , x , s)← chosenR(x , s , xi , si , ā)·

We are left to show that chosenR(x , s , xi , si , ā) ∈ N . Denote j = globR(x , s). Using

that x = xj and s = sj , we have chosenR(x , s , xi , si , ā) ∈ snd
[j ]
R . Because j < i

by the operational semantics, we can apply the induction hypothesis to j to know

snd
[j ]
R ⊆ N .

Comparison of timestamps Let isSmaller(xi , si , x , s) ∈ fin
[i]
R . We have (x , s) ∈

senders
[i]
R and there is a timestamp s ′ ∈ N so that (x , s ′) ∈ senders

[i]
R and s < s ′.

Rule (12) is positive and therefore the following ground rule is always in G:

isSmaller(xi , si , x , s) ← hasSender(xi , si , x , s), hasSender(xi , si , x , s
′),

s < s ′·

We immediately have (s < s ′) ∈ decl(H ) ⊆ N . By construction of fin
[i]
R , we also

have hasSender(xi , si , x , s) ∈ fin
[i]
R and hasSender(xi , si , x , s

′) ∈ fin
[i]
R , and thus

both facts are also in N as shown above. Hence the previous ground rule derives

isSmaller(xi , si , x , s) ∈ N .

Maximum timestamp Let hasMax(xi , si , x ) ∈ fin
[i]
R . Thus x is a sender-node men-

tioned in senders
[i]
R . Let s be the maximum send-timestamp of x in senders

[i]
R , which

surely exists because senders
[i]
R is finite. We have not added isSmaller(xi , si , x , s)

to fin
[i]
R , and thus also not to M . Although rule (13) contains a negated isSmaller-

atom, isSmaller(xi , si , x , s) /∈ M implies that the following ground rule is in G:

hasMax(xi , si , x )← hasSender(xi , si , x , s)·

Moreover, (x , s) ∈ senders
[i]
R implies hasSender(xi , si , x , s) ∈ N , and thus the pre-

vious ground rule derives hasMax(xi , si , x ) ∈ N , as desired.

A.1.3 Deductive

We show that duc
[i]
R ⊆ N . By definition, duc

[i]
R = D

⇑xi ,si
i , where Di is the output

of subprogram deducP during transition i . Recall from Section 5.1.3 that deducP
is given the following input during transition i :

sti(xi) ∪ untag(mi),
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where sti denotes the state at the beginning of transition i , and mi is the set

of (tagged) messages delivered during transition i . If we can show that (sti(xi) ∪

untag(mi))
⇑xi ,si ⊆ N , then we can apply Claim 8 to know that D

⇑xi ,si
i ⊆ N , as

desired.

State We first show sti(xi)
⇑xi ,si ⊆ N . There are two cases:

• Suppose si = 0, i.e., i is the first transition of R with active node xi . Then

sti(xi) = H (xi) by the operational semantics, which gives sti(xi)
⇑xi ,si ⊆

decl(H ) ⊆ N by definition of decl(H ).

• Suppose si > 0. Then we can consider the last transition j of xi that came

before i . By the operational semantics, we have sti(xi) = stj+1(xi), where

stj+1 is the state resulting from transition j . More concretely, sti(xi) =

H (xi) ∪ inducP(Dj ), with Dj the output of deducP during transition j . As

in the previous case, we already know H (xi)
⇑xi ,si ⊆ decl(H ). Now, by apply-

ing the induction hypothesis to j , we have duc
[j ]
R ⊆ trans

[j ]
R ⊆ N . Next, by

applying Claim 10, and by using si = sj + 1, we obtain

sti(xi)
⇑xi ,si = H (xi)

⇑xi ,si ∪ inducP(Dj )
⇑xi ,sj+1

⊆ N ·

Messages Now we show untag(mi)
⇑xi ,si ⊆ N . Let fff ∈ untag(mi). We have to show

that fff
⇑xi ,si ∈ N . First, because fff ∈ untag(mi), there is a transition k with k < i

such that (k , fff ) ∈ mi , i.e., the fact fff was sent to xi during transition k (by node

xk). Denote fff = R(ā). So, there must be an asynchronous rule with head-predicate

R in P , which has a corresponding rule in pure(P) of the form (6). Rules of the

form (6) are positive and thus the following ground rule is always in G:

R(xi , si , ā)← chosenR(xk , sk , xi , si , ā)·

We show chosenR(xk , sk , xi , si , ā) ∈ N , so that the rule derives fff
⇑xi ,si ∈ N , as

desired. Because xk sends fff to xi during transition k , and i is the transition in which

this message is delivered to xi , we have chosenR(xk , sk , xi , si , ā) ∈ snd
[k ]
R ⊆ trans

[k ]
R .

By applying the induction hypothesis to k , we have snd
[k ]
R ⊆ N .

A.1.4 Sending

We show that snd
[i]
R ⊆ N . For each kind of fact in snd

[i]
R we show inclusion in N .

Candidates Let candR(xi , si , y, t , ā) ∈ snd
[i]
R . We have R(y, ā) ∈ mesg

[i]
R , t ∈ N and

(y, t) 6≺R (xi , si). Since D
⇑xi ,si
i ⊆ N (see above), we can use Claim 11 to obtain

candR(xi , si , y, t , ā) ∈ N , as desired.

Chosen Let chosenR(xi , si , y, t , ā) ∈ snd
[i]
R . We have R(y, ā) ∈ mesg

[i]
R and t =

locR(j ) with j = αR(i , y,R(ā)). Because R(y, ā) ∈ mesg
[i]
R , this fact was produced

by asyncP , and thus there is an asynchronous rule in P with head-predicate R.
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This asynchronous rule has a corresponding rule in pure(P) of the form (4), that

contains a negated otherR-atom in the body. But by construction of snd
[i]
R , we have

not added otherR(xi , si , y, t , ā) to snd
[i]
R , and thus also not to M . Therefore the

following ground rule of the form (4) is in G:

chosenR(xi , si , y, t , ā)← candR(xi , si , y, t , ā)·

Because j > i by the operational semantics, we have (y, t) 6≺R (xi , si) by Lemma 1.

Thus, by construction of snd
[i]
R , we have candR(xi , si , y, t , ā) ∈ snd

[i]
R , in which case

candR(xi , si , y, t , ā) ∈ N (shown above). Hence, the previous ground rule derives

chosenR(xi , si , y, t , ā) ∈ N , as desired.

Other Let R(y, ā) and t be from above. Let otherR(xi , si , y, u, ā) ∈ snd
[i]
R . We

have u ∈ N, (y, u) 6≺R (xi , si) and u 6= t . Because rule (5) is positive, the following

ground rule is in G:

otherR(xi , si , y, u, ā) ← candR(xi , si , y, u, ā), chosenR(xi , si , y, t , ā),

u 6= t ·

We immediately have (u 6= t) ∈ decl(H ) ⊆ N . Now we show that the other body

facts are in N , so the rule derives otherR(xi , si , y, u, ā) ∈ N , as desired. Because

(y, u) 6≺R (xi , si), by construction of snd
[i]
R , we have candR(xi , si , y, u, ā) ∈ snd

[i]
R

and thus candR(xi , si , y, u, ā) ∈ N (shown above). Moreover, it was shown above

that chosenR(xi , si , y, t , ā) ∈ N .

A.1.5 Subclaims

Claim 8

Let i be a transition of R. If (sti(xi) ∪ untag(mi))
⇑xi ,si ⊆ N , then D

⇑xi ,si
i ⊆ N .

Proof

Abbreviate Ii = sti(xi) ∪ untag(mi). Recall that Di = deducP(Ii), which is com-

puted with the stratified semantics.

For k ∈ N, we write D→k
i to denote the set obtained by adding to Ii all facts

derived in stratum 1 up to stratum k during the computation of Di . For the largest

stratum number n of deducP , we have D→n
i = Di . Also, because stratum numbers

start at 1, we have D→0
i = Ii . We show by induction on k = 0, 1, 2, . . ., n, that

(D→k
i )⇑xi ,si ⊆ N .

Base case For the base case, k = 0, the property holds by the given assumption

I
⇑xi ,si
i ⊆ N .

Induction hypothesis For the induction hypothesis, assume for some stratum num-

ber k with k ≥ 1 that (D→k−1
i )⇑xi ,si ⊆ N .
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Inductive step For the inductive step, we show that (D→k
i )⇑xi ,si ⊆ N . Recall that

the input of stratum k in deducP is the set D→k−1
i , and the semantics is given

by the fixpoint semantics of semi-positive Datalog¬ (see Section 3.2.2). So, we can

consider D→k
i to be a fixpoint, i.e., as the set

⋃

l∈N
Al with A0 = D→k−1

i and

Al = T (Al−1) for each l ≥ 1, where T is the immediate consequence operator of

stratum k . We show by inner induction on l = 0, 1, etc, that

(Al )
⇑xi ,si ⊆ N ·

For the base case (l = 0), we have A0 = D→k−1
i , for which we can apply the outer

induction hypothesis to know that (D→k−1
i )⇑xi ,si = (A0)

⇑xi ,si ⊆ N , as desired. For

the inner induction hypothesis, we assume for some l ≥ 1 that (Al−1)
⇑xi ,si ⊆ N .

For the inner inductive step, we show that (Al)
⇑xi ,si ⊆ N . Let fff ∈ Al \ Al−1.

Let ϕ ∈ deducP and V be a rule from stratum k and valuation respectively that

have derived fff . Let ϕ′ be the rule in pure(P) obtained by applying the transfor-

mation (1) to ϕ. Let V ′ be V extended to assign xi and si to the new variables in

ϕ′ that represent the location and timestamp respectively. Note in particular that

V ′(posϕ′) = V (posϕ)
⇑xi ,si and V ′(negϕ′) = V (negϕ)

⇑xi ,si . Let ψ be the positive

ground rule obtained by applying V ′ to ϕ′ and by subsequently removing all nega-

tive (ground) body atoms. We show that ψ ∈ G and that its body is in N , so that

ψ derives headψ = fff
⇑xi ,si ∈ N , as desired.

• In order for ψ to be in G, it is required that V ′(negϕ′) ∩ M = ∅. Because V is

satisfying for ϕ, and negation in ϕ is only applied to lower strata, we have V (negϕ)∩

D→k−1
i = ∅. Moreover, since a relation is computed in only one stratum of deducP ,

we overall have V (negϕ)∩Di = ∅. Then by Claim 9 we have V (negϕ)
⇑xi ,si ∩M = ∅.

Hence,

V ′(negϕ′) ∩M = ∅·

• Now we show that posψ ⊆ N . Because V is satisfying for ϕ, we have V (posϕ) ⊆

Al−1, and by applying the inner induction hypothesis we have V (posϕ)
⇑xi ,si ⊆ N .

Therefore, posψ = V ′(posϕ′) ⊆ N .

Claim 9

Let i be a transition of R. Let I be a set of facts over sch(P). If I ∩ Di = ∅ then

I ⇑xi ,si ∩M = ∅.

Proof

If a fact fff ∈ M is over schema sch(P)LT and has location specifier xi and timestamp

si then fff ∈ duc
[i]
R because (i) for any transition j there are no facts over sch(P)LT

in caus
[j ]
R , fin

[j ]
R or snd

[j ]
R ; (ii) we only add facts with location specifier xi to duc

[j ]
R if

j is a transition of node xi ; and, (iii) for every transition j of node xi , if i 6= j then

locR(j ) 6= si .

Hence, it suffices to show I ⇑xi ,si∩duc
[i]
R = ∅. But this is immediate from I ∩Di = ∅

because duc
[i]
R equals D

⇑xi ,si
i by definition.
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Claim 10

Let j be a transition of R. Let Dj be the output of deducP during transition j .

Suppose duc
[j ]
R ⊆ N . We have inducP(Dj )

⇑xj ,sj+1 ⊆ N .

Proof

Let fff ∈ inducP(Dj ). Let ϕ ∈ inducP and V respectively be a rule and valuation

that have derived fff . Let ϕ′ be the rule in pure(P) that is obtained after applying

transformation (2) to ϕ. Thus, besides the additional location variable, the rule

ϕ′ has two timestamp variables, one in the body and one in the head. Moreover,

the body contains an additional positive tsucc-atom. Let V ′ be V extended to

assign xj to the location variable, and to assign timestamps sj and sj + 1 to the

body and head timestamp variables respectively. Let ψ be the positive ground

rule obtained from ϕ′ by applying valuation V ′ and by subsequently removing all

negative (ground) body atoms. We show that ψ ∈ G and that its body is in N , so

that ψ derives headψ = fff
⇑xj ,sj+1 ∈ N , as desired.

• For ψ to be in G, we require V ′(negϕ′)∩M = ∅. Since V ′(negϕ′) = V (negϕ)
⇑xj ,sj ,

it suffices to show V (negϕ)
⇑xj ,sj ∩M = ∅. Because V is satisfying for ϕ, we have

V (negϕ) ∩Dj = ∅. Then, by Claim 9 we have V (negϕ)
⇑xj ,sj ∩M = ∅.

• Now we show V ′(posϕ′) ⊆ N . The set V ′(posϕ′) consists of the facts V (posϕ)
⇑xj ,sj

and the fact tsucc(sj , sj + 1). The latter fact is in decl(H ) and thus in N . For

the other facts, because V is satisfying for ϕ, we have V (posϕ) ⊆ Dj and thus

V (posϕ)
⇑xj ,sj ⊆ D

⇑xj ,sj
j = duc

[j ]
R . And by using the given assumption duc

[j ]
R ⊆ N ,

we obtain the inclusion in N .

Claim 11

Let i be a transition of R. Suppose D
⇑xi ,si
i ⊆ N . For each R(y, ā) ∈ mesg

[i]
R and

timestamp t ∈ N with (y, t) 6≺R (xi , si) we have

candR(xi , si , y, t , ā) ∈ N ·

Proof

By definition of mesg
[i]
R , we have R(y, ā) ∈ asyncP(Di). Let ϕ ∈ asyncP and

V be a rule and valuation that have produced R(y, ā). Let ϕ′ ∈ P be the original

asynchronous rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the rule obtained from

ϕ′ by applying transformation (9). Let V ′′ be valuation V extended to assign xi

and si to respectively the sender location and sender timestamp of ϕ′′, and to assign

y and t respectively to the addressee location and addressee arrival timestamp. Let

ψ denote the positive ground rule that is obtained from ϕ′′ by applying valuation

V ′′ and by subsequently removing all negative (ground) body atoms. We show that

ψ ∈ G and that its body is in N , so that ψ derives headψ = candR(xi , si , y, t , ā) ∈

N , as desired.
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• For ψ to be in G, we require V ′′(negϕ′′) ∩M = ∅. By construction of ϕ′′, the set

V ′′(negϕ′′) consists of the facts V (negϕ)
⇑xi ,si and the fact before(y, t , xi , si). First,

because V is satisfying for ϕ, we have V (negϕ)∩Di = ∅, and thus V (negϕ)
⇑xi ,si ∩

M = ∅ by Claim 9. Moreover, we are given that (y, t) 6≺R (xi , si), and thus we

have not added before(y, t , xi , si) to caus
[i]
R , and by extension also not to M (since

caus
[i]
R is the only part of M where we add before-facts with last two components

xi and si). Thus overall V ′′(negϕ′′) ∩M = ∅, as desired.

• Now we show V ′′(posϕ′′) ⊆ N . By construction of ϕ′′, the set V ′′(posϕ′′) consists of

the facts V (posϕ)
⇑xi ,si , all(y) and time(t). First, we immediately have time(t) ∈

decl(H ) ⊆ N . Also, by definition of mesg
[i]
R , y is a valid addressee and thus all(y) ∈

decl(H ) ⊆ N . Finally, because V is satisfying for ϕ, we have V (posϕ) ⊆ Di .

Thus V (posϕ)
⇑xi ,si ⊆ D

⇑xi ,si
i , and we are given that D

⇑xi ,si
i ⊆ N . Thus overall

V ′′(posϕ′′) ⊆ N .

A.2 Inclusion N ⊆ M

In this section we show that N ⊆ M . By definition, N = G(decl(H )). Following

the semantics of positive Datalog¬ programs in Section 3.2.1, we can view N as

a fixpoint, i.e., N =
⋃

l∈N
Nl , where N0 = decl(H ), and for each l ≥ 1 the set Nl

is obtained by applying the immediate consequence operator of G to Nl−1. This

implies Nl−1 ⊆ Nl for each l ≥ 1. We show by induction on l = 0, 1, . . ., that

Nl ⊆ M . For the base case (l = 0), we immediately have N0 = decl(H ) ⊆ M .

For the induction hypothesis, we assume for some l ≥ 1 that Nl−1 ⊆ M . For the

inductive step, we show that Nl ⊆ N . Specifically, we divide the facts of Nl \Nl−1

into groups based on their predicate, and for each group we show inclusion in M .

As for terminology, we call a ground rule ψ ∈ G active on Nl−1 if posψ ⊆ Nl−1.

The numbered claims we will refer to can be found in Section A.2.5.

A.2.1 Causality

Let before(x , s , y, t) ∈ Nl \ Nl−1. It is sufficient to show that (x , s) ≺R (y, t)

because then before(x , s , y, t) ∈ caus
[i]
R ⊆ M where i = globR(y, t). We have the

following cases:

Local edge The before-fact was derived by a ground rule in G of the form (7) (local

edge). This implies x = y and t = s +1. Then (x , s) ≺R (y, t) by definition of ≺R.

Message edge The before-fact was derived by a ground rule in G of the form (10)

(message edge):

before(x , s , y, t)← chosenR(x , s , y, t , ā)·

Since this rule is active on Nl−1, we have chosenR(x , s , y, t , ā) ∈ Nl−1. By ap-

plying the induction hypothesis, we have chosenR(x , s , y, t , ā) ∈ M . Denoting
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j = globR(x , s), the set snd
[j ]
R is the only part of M where we could have added this

fact. This implies that x during its step s sends a message to y, and this message

arrives at local step t of y. Then (x , s) ≺R (y, t) by definition of ≺R.

Transitive edge The before-fact was derived by a ground rule in G of the form (8)

(transitive edge):

before(x , s , y, t)← before(x , s , z , u), before(z , u, y, t)·

Since this rule is active on Nl−1, its body facts are in Nl−1. By applying the induc-

tion hypothesis, we have before(x , s , z , u) ∈ M and before(z , u, y, t) ∈ M . The

only places we could have added these facts to M are in the sets caus
[j ]
R and caus

[k ]
R

respectively, where j = globR(z , u) and k = globR(y, t). By construction of the sets

caus
[j ]
R and caus

[k ]
R we respectively have that (x , s) ≺R (z , u) and (z , u) ≺R (y, t),

and thus by transitivity (x , s) ≺R (y, t), as desired.

A.2.2 Finite Messages

Senders Let hasSender(x , s , y, t) ∈ Nl \Nl−1. This fact can only have been derived

by a ground rule in G of the form (11):

hasSender(x , s , y, t)← chosenR(y, t , x , s , ā)·

Since this rule is active on Nl−1, we have chosenR(y, t , x , s , ā) ∈ Nl−1. By applying

the induction hypothesis, we have chosenR(y, t , x , s , ā) ∈ M . We can only have

added this fact in the set snd
[i]
R with i = globR(y, t). This means that y during its

step t sends a message R(ā) to x , and this message arrives during step s of x . Hence,

denoting j = globR(x , s), we have (y, t) ∈ senders
[j ]
R (with senders

[j ]
R as defined in

Section 5.2.2). Thus we have added the fact hasSender(x , s , y, t) ∈ fin
[j ]
R ⊆ M , as

desired.

Comparison of timestamps Let isSmaller(x , s , y, t) ∈ Nl \Nl−1. This fact can only

have been derived by a ground rule in G of the form (12):

isSmaller(x , s , y, t) ← hasSender(x , s , y, t), hasSender(x , s , y, t ′),

t < t ′·

Since this rule is active on Nl−1, its body facts are in Nl−1. By applying the induc-

tion hypothesis, we have hasSender(x , s , y, t) ∈ M and hasSender(x , s , y, t ′) ∈ M .

The only part of M where we could have added these facts is the set fin
[i]
R with

i = globR(x , s). By construction of the set fin
[i]
R , this implies that (y, t) ∈ senders

[i]
R

and (y, t ′) ∈ senders
[i]
R . Because (t < t ′) ∈ Nl−1, we more specifically know that (t <

t ′) ∈ decl(H ), which implies t < t ′. Thus we have added isSmaller(x , s , y, t) ∈

fin
[i]
R , as desired.

Maximum timestamp Let hasMax(x , s , y) ∈ Nl \Nl−1. This fact can only have been

derived by a ground rule in G of the form (13):

hasMax(x , s , y)← hasSender(x , s , y, t)·
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Since this rule is active on Nl−1, we have hasSender(x , s , y, t) ∈ Nl−1. By applying

the induction hypothesis, we have hasSender(x , s , y, t) ∈ M . The only part of M

where we could have added this fact, is the set fin
[i]
R with i = globR(x , s). Thus

(y, t) ∈ senders
[i]
R , and y is a sender-node mentioned in senders

[i]
R . Hence, we have

added hasMax(x , s , y) ∈ fin
[i]
R ⊆ M , as desired.

Receive infinite Let rcvInf(x , s) ∈ Nl \Nl−1. This fact can only have been derived

by a ground rule in G of the form (14):

rcvInf(x , s)← hasSender(x , s , y, t)·

Since this rule is active on Nl−1, we have hasSender(x , s , y, t) ∈ Nl−1. By applying

the induction hypothesis, we have hasSender(x , s , y, t) ∈ M . The only part of M

where we could have added this fact, is the set fin
[i]
R with i = globR(x , s). Thus

(y, t) ∈ senders
[i]
R . Moreover, because the rule (14) contains a negative hasMax-atom

in the body, and the above ground rule is in G, it must be that hasMax(x , s , y) /∈

M , and thus hasMax(x , s , y) /∈ fin
[i]
R . But since y is a sender-node mentioned in

senders
[i]
R , the absence of hasMax(x , s , y) from fin

[i]
R is impossible. Therefore this

case can not occur.

A.2.3 Regular Facts

Let R(x , s , ā) ∈ (Nl \ Nl−1)|sch(P)LT . The fact R(x , s , ā) has been derived by a

ground rule ψ ∈ G that is active on Nl−1. Because ψ ∈ G, there is a rule ϕ ∈

pure(P) and valuation V such that ψ is obtained from ϕ by applying V and by

subsequently removing the negative (ground) body atoms, and such that V (negϕ)∩

M = ∅. We have the following cases:

Deductive Rule ϕ is of the form (1). Let ϕ′ ∈ deducP be the original deductive rule

corresponding to ϕ. By construction of ϕ out of ϕ′, we can apply valuation V to

ϕ′ as well. Denote i = globR(x , s). We will show now that V is satisfying for ϕ′

during transition i , which causes V (headϕ′) = R(ā) ∈ Di to be derived, and we

obtain as desired:

R(x , s , ā) ∈ D
⇑x ,s
i = D

⇑xi ,si
i = duc

[i]
R ⊆ M ·

By definition of syntactic stratification, relations mentioned in posϕ′ are never com-

puted in a stratum higher than R, and relations mentioned in negϕ′ are computed

in a strictly lower stratum than R. Thus, it is sufficient to show that V (posϕ′) ⊆ Di

and V (negϕ′) ∩Di = ∅.

First we show V (posϕ′) ⊆ Di . Because ϕ is of the form (1), all facts in V (posϕ)

are over sch(P)LT and have location specifier x and timestamp s . Moreover, since

ψ is active on Nl−1, we have posψ = V (posϕ) ⊆ Nl−1. By applying the induction

hypothesis, we have V (posϕ) ⊆ M , and thus V (posϕ)
⇓ ⊆ Di by Claim 12. We thus

obtain V (posϕ′) ⊆ Di since V (posϕ)
⇓ = V (posϕ′).

Next we show V (negϕ′)∩Di = ∅. Because ϕ is of the form (1), all facts in V (negϕ)

are over sch(P)LT and have location specifier x and timestamp s . Moreover, by
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choice of ϕ and V , we have V (negϕ) ∩M = ∅, and thus V (negϕ)
⇓ ∩ Di = ∅ by

Claim 13. We thus obtain V (negϕ′) ∩Di = ∅ since V (negϕ)
⇓ = V (negϕ′).

Inductive Rule ϕ is of the form (2). Let ϕ′ ∈ inducP be the rule corresponding to

ϕ. First, ψ contains in its body a fact of the form tsucc(r , s). Since ψ is active on

Nl−1, we have tsucc(r , s) ∈ Nl−1 and more specifically, tsucc(r , s) ∈ decl(H ). This

implies that s = r +1. Denote i = globR(x , r) and j = globR(x , s). Since s = r +1,

there are no transitions of node x between i and j . By the relationship between ϕ

and ϕ′, we can apply V to ϕ′, and we will now show that V is satisfying for ϕ′

during transition i . This results in V (headϕ′) = R(ā) ∈ inducP(Di) ⊆ sti+1(x ),

and since sti+1(x ) = stj (x ) ⊆ Dj , we obtain R(x , s , ā) ∈ D
⇑x ,s
j = duc

[j ]
R ⊆ M , as

desired.

First we show V (posϕ′) ⊆ Di . Denote I = V (posϕ)|sch(P)LT , which allows us to

exclude the extra tsucc-fact in the body. All facts in I have location specifier x

and timestamp r . Because ψ is active on Nl−1, we have I ⊆ posψ ⊆ Nl−1, and by

applying the induction hypothesis, we have I ⊆ M . Thus I ⇓ ⊆ Di by Claim 12.

Hence, V (posϕ′) = I ⇓ ⊆ Di .

Secondly, showing that V (negϕ′) ∩ Di = ∅ is like in the previous case, where ϕ

is deductive.

Delivery Rule ϕ is of the form (6). Then ψ concretely looks as follows, where (y, t) ∈

N × N:

R(x , s , ā)← chosenR(y, t , x , s , ā)·

Since ψ is active on Nl−1, we have chosenR(y, t , x , s , ā) ∈ Nl−1, and by applying

the induction hypothesis, we have chosenR(y, t , x , s , ā) ∈ M . The only part of M

where we could have added this fact, is snd
[i]
R with i = globR(y, t). This implies that

x will receive R(ā) during its local step s , thus during transition j = globR(x , s).

Then, by the operational semantics, we have R(ā) ∈ untag(mj ) ⊆ Dj . Hence,

R(x , s , ā) ∈ D
⇑x ,s
j = duc

[j ]
R ⊆ M .

A.2.4 Sending

For a transition i of R, let Di denote the output of subprogram deducP during

transition i .

Candidates Let candR(x , s , y, t , ā) ∈ Nl \ Nl−1. The fact candR(x , s , y, t , ā) is de-

rived by a ground rule ψ ∈ G of the form (9) that is active on Nl−1. Because

ψ ∈ G, there is a rule ϕ ∈ pure(P) and a valuation V such that ψ is ob-

tained from ϕ by applying valuation V and by subsequently removing the negative

(ground) body atoms, and so that V (negϕ) ∩ M = ∅. Denote i = globR(x , s).

It is sufficient to show that R(y, ā) ∈ mesg
[i]
R and (y, t) 6≺R (x , s), because then

candR(x , s , y, t , ā) ∈ snd
[i]
R ⊆ M , as desired.

First, we show (y, t) 6≺R (x , s). Because there is a negative before-atom in ϕ, the
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existence of ψ in G implies that before(y, t , x , s) /∈ M . Hence, before(y, t , x , s) /∈

caus
[i]
R . Then by construction of caus

[i]
R we obtain (y, t) 6≺R (x , s).

Secondly, we show R(y, ā) ∈ mesg
[i]
R . Let ϕ′ ∈ P be the original asynchronous

rule on which ϕ is based. Let ϕ′′ ∈ asyncP be the rule corresponding to ϕ′. It

follows from the constructions of ϕ out of ϕ′ and ϕ′′ out of ϕ′ that valuation V

can be applied to ϕ′′. Note, V (headϕ′′) = R(y, ā). We show that V is satisfying

for ϕ′′ during transition i on Di , which gives R(y, ā) ∈ asyncP(Di). Moreover, the

body of ψ contains the fact all(y) ∈ decl(H ), and thus y ∈ N , making y a valid

addressee. Hence, R(y, ā) ∈ mesg
[i]
R , as desired.

We have to show V (posϕ′′) ⊆ Di and V (negϕ′′) ∩ Di = ∅. Abbreviate I1 =

V (posϕ)|sch(P)LT and I2 = V (negϕ)|sch(P)LT . Note, I
⇓
1 = V (posϕ′′) and I

⇓
2 =

V (negϕ′′). All facts in I1 ∪ I2 have location specifier x and timestamp s .

• Because ψ is active on Nl−1, we have I1 ⊆ posψ ⊆ Nl−1, and thus I1 ⊆ M by

the induction hypothesis. Then V (posϕ′′) = I
⇓
1 ⊆ Di by Claim 12.

• By choice of ϕ and V , we have I2 ∩M = ∅. Then I
⇓
2 ∩ Di = ∅ by Claim 13,

giving V (negϕ′′) ∩Di = ∅.

Chosen Let chosenR(x , s , y, t , ā) ∈ Nl \Nl−1. This fact is derived by a ground rule

ψ in G of the form (4):

chosenR(x , s , y, t , ā)← candR(x , s , y, t , ā)·

Denote i = globR(x , s). We show that R(y, ā) ∈ mesg
[i]
R and that t is the actual

arrival timestamp of this message at y. Then chosenR(x , s , y, t , ā) ∈ snd
[i]
R ⊆ M ,

as desired.

First, since ψ is active on Nl−1, we have candR(x , s , y, t , ā) ∈ Nl−1, and thus

candR(x , s , y, t , ā) ∈ M by the induction hypothesis. The set snd
[i]
R is the only part

of M where we could have added this fact, which implies R(y, ā) ∈ mesg
[i]
R and

(y, t) 6≺R (x , s).

We are left to show that t is the actual arrival timestamp of the message. Because

ψ ∈ G, there is a rule ϕ ∈ pure(P) and valuation V such that ψ is obtained from

ϕ by applying V and by subsequently removing the negative (ground) body atoms,

and so that V (negϕ) ∩M = ∅. Now, because rule ϕ contains a negative otherR-

atom in its body, we have otherR(x , s , y, t , ā) /∈ M and thus otherR(x , s , y, t , ā) /∈

snd
[i]
R . Since R(y, ā) ∈ mesg

[i]
R and (y, t) 6≺R (x , s) (see above), the absence of this

otherR-fact from snd
[i]
R can only be explained by the following: t = locR(j ) with

j = αR(i , y,R(ā)), as desired.

Other Let otherR(x , s , y, t , ā) ∈ Nl \Nl−1. This fact is derived by a ground rule ψ

of the form (5):

otherR(x , s , y, t , ā) ← candR(x , s , y, t , ā), chosenR(x , s , y, t
′, ā),

t 6= t ′·

We have candR(x , s , y, t , ā) ∈ Nl−1 and chosenR(x , s , y, t
′, ā) ∈ Nl−1 since ψ is

active on Nl−1, and these facts are thus also in M by the induction hypothesis.
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Denote i = globR(x , s). The only part of M where we could have added these

candR- and chosenR-facts to M , is the set snd
[i]
R . First, candR(x , s , y, t , ā) ∈ snd

[i]
R

implies that R(y, ā) ∈ mesg
[i]
R and (y, t) 6≺R (x , s). Second, chosenR(x , s , y, t

′, ā) ∈

snd
[i]
R implies that t ′ is the real arrival timestamp of the message R(ā) at y. Finally,

since ψ is active, we have (t 6= t ′) ∈ decl(H ), and thus t 6= t ′. Therefore we have

added otherR(x , s , y, t , ā) to snd
[i]
R ⊆ M , as desired.

A.2.5 Subclaims

Claim 12

Let I be a set of facts over sch(P)LT, all having the same location specifier x ∈ N

and timestamp s ∈ N. Denote i = globR(x , s). If I ⊆ M then I ⇓ ⊆ Di , where Di

denotes the output of subprogram deducP during transition i of R.

Proof

The only part of M where we add facts over sch(P)LT with location specifier x and

timestamp s is duc
[i]
R . Hence I ⊆ duc

[i]
R = D

⇑x ,s
i and thus I ⇓ ⊆ Di .

Claim 13

Let I be a set of facts over sch(P)LT, all having the same location specifier x ∈ N

and timestamp s ∈ N. Denote i = globR(x , s). If I ∩ M = ∅ then I ⇓ ∩ Di = ∅,

where Di denotes the output of subprogram deducP during transition i of R.

Proof

First, I ∩M = ∅ implies I ∩duc
[i]
R = ∅ because duc

[i]
R ⊆ M . And since duc

[i]
R = D

⇑x ,s
i ,

we have I ∩D⇑x ,s
i = ∅. Finally, since the facts in I ∪D⇑x ,s

i all have the same location

specifier x and timestamp s , we obtain I ⇓ ∩Di = ∅.

Appendix B Model to Run: Proof Details

Consider the definitions and notations from Section 5.3. In this section we show

that R is a run of P on input H , and that trace(R) = M |sch(P)LT . We do this in

several parts, where each part is placed in its own subsection:

• in Section B.2 we show ρ0 = start(P ,H );

• in Section B.3 we show that every transition of R is valid; and,

• in Section B.4 we show trace(R) = M |sch(P)LT .

Before we start, the next subsection gives definitions and notations. The numbered

claims we will refer to can be found in Section B.5.



54 Ameloot et al.

B.1 Definitions and Notations

Using notations of Section 3.2.3, let G be the ground program groundM (C , I )

where C = pure(P) and I = decl(H ). By definition of M as a stable model, we

have M = G(I ).

Let ϕ ∈ pure(P) be a rule having its head atom over sch(P)LT. From the con-

struction of pure(P), we know that ϕ belongs to exactly one of the following three

cases:

• ϕ is of the form (1), i.e., deductive, recognizable as a rule in which only atoms

over sch(P)LT are used, and in which the location and timestamp variable in

the head are the same as in the body;

• ϕ is of the form (2), i.e., inductive, recognizable as a rule with a head atom

over sch(P)LT and a tsucc-atom in the body;

• ϕ is of the form (6), i.e., a delivery, recognizable as a rule with a head atom

over sch(P)LT and a chosenR-fact in the body (with R the head-predicate).

The same classification of deductive, inductive and delivery rules can also be applied

to the (positive) ground rules in G that have a ground head atom over sch(P)LT.

Recall from the general remarks at the beginning of the appendix that we are

working with a fixed (but arbitrary) syntactic stratification for the deductive rules.

Stratum numbers start at 1. If ϕ ∈ pure(P) is deductive, we can uniquely identify

its stratum number as the stratum number of the original deductive rule in P on

which ϕ is based. Similarly, for deductive ground rules, we can also uniquely identify

the stratum number as the stratum number of a corresponding non-ground rule in

pure(P).16

We call a ground rule ψ ∈ G active if posψ ⊆ M , which implies that headψ ∈ M

because M is stable. Now we define the following subsets of M :

• M duc,k : the head facts of all active deductive rules in G with stratum number

less than or equal to k ;

• M ind: the head facts of all active inductive rules in G;

• M deliv: the head facts of all active delivery rules in G.

This allows us to classify the facts in M |sch(P)LT as being derived in a deductive

manner, an inductive manner or being message deliveries. We also define:

M N = M |edb(P)LT ∪M ind ∪M deliv·

For (x , s) ∈ N×N, we write I |x ,s to abbreviate (I |sch(P)LT)|
x ,s . So intuitively, when

we select the facts with location specifier x and timestamp s , we are only interested

in facts that provide these two components, which are the facts over sch(P)LT.

Intuitively, for i ∈ N, the set (M N)|xi ,si is the input for the deductive rules

during local step si of node xi , consisting of (i) the edb-facts; (ii) the facts derived

16 We say a rather than the corresponding rule because there could be more than one. Indeed,
multiple original deductive rules in pure(P) could be mapped to the same positive ground rule
after applying a valuation and removing their negative ground body atoms. But in any case,
these non-ground rules will have the same head predicate. Hence, they have the same stratum.
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by inductive rules during a previous step (if any) of xi ; and, (iii) the delivered

messages. The deductive rules then complete this information by deriving some

new facts, that are visible within step si of xi .

For a transition number i of R, (i) we denote the source-configuration of tran-

sition i as ρi = (sti , bf i); (ii) we denote the set of (tagged) messages delivered

in transition i as mi ; and, (iii) we denote Di = deducP(sti(xi) ∪ untag(mi)). For

a number k ∈ N, we write D→k
i to denote the set of facts obtained by adding to

sti(xi)∪untag(mi) all facts derived in stratum 1 up to stratum k during the compu-

tation of Di . To mirror this notation, we write M→k to denote the set M N∪M duc,k .

For uniformity in the proofs, we will consider the case k = 0, which is an invalid

stratum number, and this gives D→0
i = sti(xi) ∪ untag(mi) and M→0 = M N.

B.2 Valid Start

We show that ρ0 = start(P ,H ). Denote ρ0 = (st0, bf0). Let x ∈ N . First we show

st0(x ) = H (x ). By definition,

st0(x ) =
(

(M |edb(P)LT)|
x ,s ∪M ind|x ,s

)⇓

with s = locM (0, x ). Note, s = 0 because no elements of N×N with first component

x have an ordinal strictly less than 0 in the total order <M . Now, there can be no

ground inductive rules in G that derive facts with head timestamp 0 because it

follows from the construction of decl(H ) that the second component of a tsucc-

fact is always strictly larger than 0. Therefore M ind|x ,s = ∅, and thus st0(x ) =
(

(M |edb(P)LT)|
x ,s
)⇓

. Then by Claim 14 we have st0(x ) = (H (x )⇑x ,s)⇓ = H (x ), as

desired.

Now we show bf0(x ) = ∅. By definition, bf0(x ) is

{(globM (y, t), R(ā)) | ∃u : chosenR(y, t , x , u, ā) ∈ M ,

globM (y, t) < 0 ≤ globM (x , u)}·

By definition of function globM (·), all facts of the form chosenR(y, t , x , u, ā) ∈ M

satisfy globM (y, t) ≥ 0. Hence, bf0(x ) = ∅.

We conclude that ρ0 = start(P ,H ).

B.3 Valid Transition

Let i ∈ N. We show that (ρi , xi ,mi , i , ρi+1) is a valid transition. Denote ρi =

(sti , bf i) and ρi+1 = (sti+1, bf i+1).

We start by showing mi ⊆ bf i(xi). Let (j , fff ) ∈ mi . By definition of mi , there

is a fact of the form chosenR(y, t , z , u, ā) ∈ M with globM (z , u) = i such that

j = globM (y, t) and fff = R(ā). Note, globM (z , u) = i implies z = xi and u = si .

Now, because rules in pure(P) of the form (10) are always positive, the following

ground rule is in G, which is of the form (10):

before(y, t , xi , si)← chosenR(y, t , xi , si , ā)·

Since its body is in M , this rule derives before(y, t , xi , si) ∈ M . Hence (y, t) ≺M
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(xi , si) by definition of ≺M . Moreover,<M respects ≺M , and thus (y, t) <M (xi , si),

which implies globM (y, t) < globM (xi , si). And since globM (xi , si) = i , we overall

have

globM (y, t) < i ≤ globM (xi , si)·

Therefore (j , fff ) ∈ bf i(xi).

Now, because mi ⊆ bf i(xi), and because transitions are deterministic once the

active node and delivered messages are fixed, we can consider the unique result

configuration ρ = (st, bf) such that (ρi , xi ,mi , i , ρ) is a valid transition. We are left

to show ρi+1 = ρ. We divide the work in two parts: for each x ∈ N , we show that

(i) sti+1(x ) = st(x ), and (ii) bf i+1(x ) = bf(x ).

B.3.1 State

Let x ∈ N . We show sti+1(x ) = st(x ). Denote s = locM (i + 1, x ). By definition,

sti+1(x ) =
(

(M |edb(P)LT)|
x ,s ∪M ind|x ,s

)⇓
·

Case x 6= xi . By definition, st(x ) = sti(x ). Hence, it suffices to show sti+1(x ) =

sti(x ). Since x 6= xi , the number of pairs from N ×N containing node x that come

strictly before ordinal i + 1 is the same as the number of pairs containing node

x that come strictly before ordinal i . Formally: s = locM (i + 1, x ) = locM (i , x ).

Thus the right-hand side in the previous equation equals sti(x ), and the result is

obtained.

Case x = xi . By definition, st(x ) = H (x )∪ inducP(Di). Referring to the definition

of sti+1(x ) from above, by Claim 14 we have

(M |edb(P)LT)|
x ,s = H (x )⇑x ,s ·

If we can also show M ind|x ,s = inducP(Di)
⇑x ,s , then we overall have, as desired:

sti+1(x ) =
(

(M |edb(P)LT)|
x ,s ∪M ind|x ,s

)⇓

= H (x ) ∪ inducP(Di)

= st(x )·

Since x = xi , we have s = locM (i + 1, xi) = locM (i , xi) + 1, and using that

locM (i , xi ) = si (Claim 15), we have s = si + 1. Now, Claim 16 and Claim 19

together show M ind|xi ,si+1 = inducP(Di)
⇑xi ,si+1.

B.3.2 Buffer

Let x ∈ N . We show bf i+1(x ) = bf(x ). Denote

δi→x = {(i ,R(ā)) | R(x , ā) ∈ asyncP(Di)}·

Like in the operational semantics, δi→x denotes the (tagged) messages that are sent

to x during transition i .
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Case x 6= xi . By definition, bf(x ) = bf i(x ) ∪ δ
i→x . We start by showing bf(x ) ⊆

bf i+1(x ). Let (j , fff ) ∈ bf(x ). Denote fff = R(ā).

• Suppose (j , fff ) ∈ bf i(x ). By definition of bf i(x ), there are values y ∈ N , t ∈ N

and u ∈ N such that chosenR(y, t , x , u, ā) ∈ M and j = globM (y, t) < i ≤

globM (x , u). Now, since x 6= xi , we more specifically have i < globM (x , u)

and thus i + 1 ≤ globM (x , u). Therefore (j , fff ) ∈ bf i+1(x ), as desired.

• Suppose (j , fff ) ∈ δi→x . By definition of δi→x , this implies j = i and R(x , ā) ∈

asyncP(Di). Then (j , fff ) = (i ,R(ā)) ∈ bf i+1(x ) by Claim 20, as desired.

Secondly, we show bf i+1(x ) ⊆ bf(x ). Let (j , fff ) ∈ bf i+1(x ). Denote fff = R(ā).

By definition of bf i+1(x ), there are values y ∈ N , t ∈ N and u ∈ N such that

chosenR(y, t , x , u, ā) ∈ M and j = globM (y, t) < i + 1 ≤ globM (x , u). So j ≤ i .

We have the following cases:

• Suppose j < i . Thus globM (y, t) < i . This immediately gives (j , fff ) ∈ bf i(x ) ⊆

bf(x ), as desired.

• Suppose j = i . Then R(x , ā) ∈ asyncP(Di) by Claim 21. This implies that

(j , fff ) = (i ,R(ā)) ∈ δi→x ⊆ bf(x ), as desired.

Case x = xi . By definition, bf(x ) = (bf i(x )\mi)∪δi→x . Some parts of the reasoning

are similar to the case x 6= xi . We refer to shared subclaims where possible.

We start by showing bf(x ) ⊆ bf i+1(x ). Let (j , fff ) ∈ bf(x ). Denote fff = R(ā). We

have the following cases:

• Suppose (j , fff ) ∈ bf i(x ) \ mi . Thus (j , fff ) ∈ bf i(x ) and (j , fff ) /∈ mi . Here,

(j , fff ) ∈ bf i(x ) implies there are values y ∈ N , t ∈ N and u ∈ N such that

chosenR(y, t , x , u, ā) ∈ M and j = globM (y, t) < i ≤ globM (x , u). Also,

(j , fff ) /∈ mi implies globM (x , u) 6= i . Hence, i+1 ≤ globM (x , u) and we obtain

(j , fff ) ∈ bf i+1(x ), as desired.

• Suppose (j , fff ) ∈ δi→x . By definition of δi→x , we have j = i and R(x , ā) ∈

asyncP(Di). By Claim 20 we then have (i ,R(ā)) ∈ bf i+1(x ), as desired.

Secondly, we show bf i+1(x ) ⊆ bf(x ). Let (j , fff ) ∈ bf i+1(x ). Denote fff = R(ā).

By definition of bf i+1(x ), there are values y ∈ N , t ∈ N and u ∈ N such that

chosenR(y, t , x , u, ā) ∈ M and j = globM (y, t) < i +1 ≤ globM (x , u). Now we look

at the cases for j :

• Suppose j < i . This gives us globM (y, t) < i ≤ globM (x , u), which implies

(j , fff ) ∈ bf i(x ). Moreover, i + 1 ≤ globM (x , u) gives globM (x , u) 6= i . Hence,

(j , fff ) /∈ mi . Taken together, we now have (j , fff ) ∈ bf i(x ) \mi ⊆ bf(x ).

• Suppose j = i . Then (i ,R(ā)) ∈ bf i+1(x ), and by Claim 21 we obtain that

R(x , ā) ∈ asyncP(Di). Therefore (j , fff ) = (i ,R(ā)) ∈ δi→x ⊆ bf(x ), as de-

sired.
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B.4 Trace

In this section we show trace(R) = M |sch(P)LT . Recall from Section 5.1.5 that

trace(R) =
⋃

i∈N

(Di)
⇑xi , locR(i)·

For each i ∈ N, locR(i) is the number of transitions in R before i in which xi is also

the active node. From the construction of R we know locR(i) = locM (i , xi ); indeed,

locM (i , xi ) counts the number of pairs in N ×N with node xi that have an ordinal

strictly smaller than i , which is precisely the number of transitions in R with active

node xi that come before i . Moreover, by Claim 15 we have locM (i , xi) = si . Hence,

trace(R) =
⋃

i∈N

(Di)
⇑xi ,si ·

Thus, by Claim 22:

trace(R) =
⋃

i∈N

M |xi ,si ·

For the next step, let us denote A = {(xi , si) | i ∈ N}. We show A = N × N.

First, we have A ⊆ N × N because xi ∈ N and si ∈ N for each i ∈ N. Now, let

(x , s) ∈ N × N. Denote i = globM (x , s). By definition, xi = x and si = s . Hence

(x , s) = (xi , si) ∈ A. Now we may write:

trace(R) =
⋃

(x ,s)∈A

M |x ,s

=
⋃

(x ,s)∈N×N

M |x ,s ·

Finally, because M is well-formed (see Section 5.3), for each R(v ,w , ā) ∈ M |sch(P)LT

we have v ∈ N and w ∈ N. We obtain, as desired:

trace(R) = M |sch(P)LT ·

B.5 Subclaims

Claim 14

Let x ∈ N and s ∈ N. We have (M |edb(P)LT)|
x ,s = H (x )⇑x ,s .

Proof

First, by construction of decl(H ) we have (decl(H )|edb(P)LT)|
x ,s = H (x )⇑x ,s . Be-

cause decl(H ) ⊆ M , and because facts over edb(P)LT can not be derived by rules

in pure(P), we have M |edb(P)LT = decl(H )|edb(P)LT . Hence,

(M |edb(P)LT)|
x ,s = (decl(H )|edb(P)LT)|

x ,s = H (x )⇑x ,s ·
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Claim 15

Let i ∈ N. We have si = locM (i , xi).

Proof

Recall that (xi , si) ∈ N×N is the unique pair at ordinal i in <M , i.e., globM (xi , si) =

i . Suppose we would know for all s ∈ N and t ∈ N that s < t implies globM (xi , s) <

globM (xi , t). Then locM (i , xi ), which is

|{s ∈ N | globM (x , s) < i}|,

is precisely

|{s ∈ N | s < si}|·

The latter is just si .

We are left to show for any s ∈ N and t ∈ N that s < t implies globM (xi , s) <

globM (xi , t). It is actually sufficient to show for any s ∈ N that (xi , s) ≺M (xi , s+1).

Indeed, this would imply for any t ∈ N with s < t that

(xi , s) ≺M (xi , s + 1) ≺M (xi , s + 2) ≺M . . . ≺M (xi , t)·

And since ≺M is a partial order, it is transitive, and thus (xi , s) ≺M (xi , t).

Next, since <M respects ≺M , we obtain (xi , s) <M (xi , t) and thus globM (xi , s) <

globM (xi , t), as desired. To show (xi , s) ≺M (xi , s +1), we observe that the rule (7)

in pure(P) is positive. Hence, for any s ∈ N, the following ground rule is always

in G, and it derives before(xi , s , xi , s + 1) ∈ M because all(xi) ∈ decl(H ) and

tsucc(s , s + 1) ∈ decl(H ):

before(xi , s , xi , s + 1)← all(xi), tsucc(s , s + 1)·

Thus (xi , s) ≺M (xi , s + 1) by definition of ≺M .

Claim 16

Let i ∈ N. We have M ind|xi ,si+1 ⊆ inducP(Di)
⇑xi ,si+1.

Proof

Let fff ∈ M ind|xi ,si+1. We show fff ∈ inducP(Di)
⇑xi ,si+1.

By definition of M ind, there is an active inductive ground rule ψ ∈ G with

headψ = fff . Because ψ ∈ G, there is a rule ϕ ∈ pure(P) and a valuation V so

that ψ can be obtained from ϕ by applying V and by subsequently removing all

negative (ground) body literals, and so that V (negϕ)∩M = ∅. The rule ϕ must be

of the form (2), which implies that V must assign xi and si to the body location

and timestamp variable respectively, and that it must assign xi and si + 1 to the

head location and timestamp variable respectively.

Let ϕ′ ∈ P be the original inductive rule on which ϕ is based. Let ϕ′′ ∈ inducP
be the rule corresponding to ϕ′. It follows from the construction of ϕ out of ϕ′ and

ϕ′′ out of ϕ′ that valuation V can also be applied to rule ϕ′′. Indeed, rule ϕ just

has more variables for the location and timestamps. We show that V is satisfying
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for ϕ′′ with respect to Di , so that ϕ′′ and V together derive V (headϕ′′) = fff
⇓ ∈

inducP(Di), which gives fff ∈ inducP(Di)
⇑xi ,si+1, as desired.

We must concretely show V (posϕ′′) ⊆ Di and V (negϕ′′) ∩ Di = ∅. We start by

showing V (posϕ′′) ⊆ Di . From the relationship between ψ, ϕ and ϕ′′, we know that

posψ|sch(P)LT = V (posϕ)|sch(P)LT = V (posϕ′′)⇑xi ,si ·

Since ψ is active with respect to M , we have posψ ⊆ M , and thus V (posϕ′′)⇑xi ,si ⊆

M . Then by Claim 17 we have V (posϕ′′) ⊆ Di , as desired.

Now we show that V (negϕ′′)∩Di = ∅. By the relationship of ϕ and ϕ′′, we have

V (negϕ′′)⇑xi ,si = V (negϕ). By choice of ϕ and V , we have V (negϕ) ∩ M = ∅.

Hence, V (negϕ′′)⇑xi ,si ∩M = ∅. Finally, by Claim 18, we have V (negϕ′′)∩Di = ∅,

as desired.

Claim 17

Let i ∈ N. Let I be a set of facts over sch(P)LT that all have location specifier xi

and timestamp si . If I ⊆ M then I ⇓ ⊆ Di , with Di as defined in Section B.1.

Proof

We are given I ⊆ M . By the assumptions on I , we more specifically have I ⊆

M |xi ,si . Then by Claim 22 we have I ⊆ (Di)
⇑xi ,si . Hence I ⇓ ⊆ Di , as desired.

Claim 18

Let i ∈ N. Let I be a set of facts over sch(P)LT that all have location specifier xi

and timestamp si . If I ∩M = ∅ then I ⇓∩Di = ∅, with Di as defined in Section B.1.

Proof

We are given that I ∩ M = ∅. This implies I ∩ M |xi ,si = ∅. By Claim 22 we

have I ∩ (Di)
⇑xi ,si = ∅. Hence, by the assumptions on I , we have I ⇓ ∩ Di = ∅, as

desired.

Claim 19

Let i ∈ N. We have inducP(Di)
⇑xi ,si+1 ⊆ M ind|xi ,si+1.

Proof

Let fff ∈ inducP(Di). We show that fff
⇑xi ,si+1 ∈ M ind|xi ,si+1.

Recall the semantics for inducP from Section 5.1.2. Let ϕ ∈ inducP and V be

the rule and valuation that together derived fff ∈ inducP(Di). Let ϕ′ ∈ P be the

original inductive rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the inductive rule

that in turn is based on ϕ′, which is of the form (2). Let V ′′ be the valuation for

ϕ′′ that is obtained by extending V to assign xi and si to respectively the location

and timestamp variables in the body, and to assign si + 1 to the head timestamp

variable. Let ψ be the positive ground rule obtained from ϕ′′ by applying the
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valuation V ′′, and by subsequently removing the negative (ground) body literals.

Note that headψ = V (headϕ)
⇑xi ,si+1 = fff

⇑xi ,si+1. We will show that ψ ∈ G and

that posψ ⊆ M , so that this ground rule derives fff
⇑xi ,si+1 ∈ M . And since ψ is

inductive, we more specifically have fff
⇑xi ,si+1 ∈ M ind|xi ,si+1, as desired.

• For ψ ∈ G, we require V ′′(negϕ′′) ∩M = ∅. From the construction of rule ϕ′′, we

have V ′′(negϕ′′) = V (negϕ)
⇑xi ,si . We show V (negϕ)

⇑xi ,si ∩M = ∅.

Because V is satisfying for ϕ with respect to Di , we have V (negϕ) ∩Di = ∅. This

gives V (negϕ)
⇑xi ,si ∩ (Di)

⇑xi ,si = ∅. Then V (negϕ)
⇑xi ,si ∩M |xi ,si = ∅ by Claim 22.

Next, we obtain V (negϕ)
⇑xi ,si ∩M = ∅ since V (negϕ)

⇑xi ,si contains only facts over

sch(P)LT with location specifier xi and timestamp si .

• Now we show posψ ⊆ M . From the construction of rule ϕ′′, we have

posψ = V ′′(posϕ′′) = V (posϕ)
⇑xi ,si ∪ {tsucc(si , si + 1)}·

We immediately have tsucc(si , si + 1) ∈ decl(H ) ⊆ M . Moreover, since V is

satisfying for ϕ with respect to Di , we have V (posϕ) ⊆ Di . Hence V (posϕ)
⇑xi ,si ⊆

(Di)
⇑xi ,si . By Claim 22 we then have V (posϕ)

⇑xi ,si ⊆ M |xi ,si ⊆ M , as desired.

Claim 20

Let i ∈ N. Let x ∈ N . For each R(x , ā) ∈ asyncP(Di), we have (i ,R(ā)) ∈ bf i+1(x ).

Proof

The main approach of this proof is as follows. We will show there is a timestamp

u ∈ N such that chosenR(xi , si , x , u, ā) ∈ M . Next, because rules of the form (10)

are positive, in G there is always the following ground rule:

before(xi , si , x , u)← chosenR(xi , si , x , u, ā)·

Thus if chosenR(xi , si , x , u, ā) ∈ M then before(xi , si , x , u) ∈ M , which implies

(xi , si) ≺M (x , u) by definition of≺M . Since <M respects ≺M , we obtain (xi , si) <M

(x , u) and thus globM (xi , si) < globM (x , u). Also, since globM (xi , si) = i , we overall

get

globM (xi , si) < i + 1 ≤ globM (x , u),

which together with chosenR(xi , si , x , u, ā) ∈ M gives (globM (xi , si), R(ā)) =

(i ,R(ā)) ∈ bf i+1(x ), as desired.

Now we are left to show that such a timestamp u exists. Recall the semantics

for asyncP from Section 5.1.2. Let ϕ ∈ asyncP and V be a rule and valuation

that together have derived R(x , ā) ∈ asyncP(Di). Let ϕ′ ∈ P be the original

asynchronous rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the rule obtained by

applying transformation (9) to ϕ′. To continue, because ≺M is well-founded, there

are only a finite number of timestamps v ∈ N of node x such that (x , v) ≺M (xi , si).

So, there exists a timestamp u ∈ N such that (x , u) 6≺M (xi , si). Now, let V ′′ be

the valuation for ϕ′′ that is the extension of valuation V to assign xi and si to the
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body location variable and timestamp variable respectively (both belonging to the

sender), and to assign u to the addressee arrival timestamp. Note that from the

construction of ϕ′′ we also know that V (and thus V ′′) assigns the value x to the

addressee location variable and the tuple ā to the message contents. Let ψ denote

the ground rule obtained by applying V ′′ to ϕ′′, and by subsequently removing

the negative (ground) body literals. We will first show that ψ ∈ G, and then we

show that posψ ⊆ M , meaning that ψ derives headψ = candR(xi , si , x , u, ā) ∈ M .

Then Claim 24 can be applied to know that there is a timestamp u ′, with possibly

u ′ = u, such that chosenR(xi , si , x , u
′, ā) ∈ M , as desired.

In order for ψ to be in G, we require V ′′(negϕ′′) ∩M = ∅. It follows from the

construction of ϕ′′ out of ϕ′ and ϕ out of ϕ′ that

V ′′(negϕ′′) = V (negϕ)
⇑xi ,si ∪ {before(x , u, xi , si)}·

We have before(x , u, xi , si) /∈ M because (x , u) 6≺M (xi , si) by choice of u. Next,

we show that V (negϕ)
⇑xi ,si ∩M = ∅. Because V is satisfying for ϕ with respect to

Di , we have V (negϕ) ∩Di = ∅, and thus

V (negϕ)
⇑xi ,si ∩ (Di)

⇑xi ,si = ∅·

Then, by Claim 22,

V (negϕ)
⇑xi ,si ∩M |xi ,si = ∅·

Since V (negϕ)
⇑xi ,si contains only facts over sch(P)LT with location specifier xi and

timestamp si , we have

V (negϕ)
⇑xi ,si ∩M = ∅·

We now show posψ ⊆ M . Note, posψ = V ′′(posϕ′′). From the construction of ϕ′′

we have

V ′′(posϕ′′) = V (posϕ)
⇑xi ,si ∪ {all(x ), time(u)}·

Because x ∈ N and u ∈ N, we immediately have {all(x ), time(u)} ⊆ decl(H ) ⊆

M . We are left to show V (posϕ)
⇑xi ,si ⊆ M . Because V is satisfying for ϕ with

respect to Di , we have V (posϕ) ⊆ Di . Hence V (posϕ)
⇑xi ,si ⊆ (Di)

⇑xi ,si . By again

using Claim 22 we then obtain V (posϕ)
⇑xi ,si ⊆ M |xi ,si ⊆ M , as desired.

Claim 21

Let i ∈ N and x ∈ N . For each (i ,R(ā)) ∈ bf i+1(x ), we have R(x , ā) ∈ asyncP(Di).

Proof

By definition of bf i+1(x ), the pair (i ,R(ā)) ∈ bf i+1(x ) implies that there are values

y ∈ N , t ∈ N and u ∈ N such that chosenR(y, t , x , u, ā) ∈ M , globM (y, t) = i and

globM (y, t) < i + 1 ≤ globM (x , u). And globM (y, t) = i gives us that y = xi and

t = si . Thus chosenR(xi , si , x , u, ā) ∈ M .

All ground rules in G that can derive chosenR(xi , si , x , u, ā) ∈ M are of the

form (4), and hence candR(xi , si , x , u, ā) ∈ M . Let ψ ∈ G be an active ground rule
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with head candR(xi , si , x , u, ā). Because ψ ∈ G, there is a rule ϕ ∈ pure(P) and

a valuation V so that ψ is obtained from ϕ by applying V and by subsequently

removing all negative (ground) body literals, and so that V (negϕ) ∩M = ∅. The

rule ϕ is of the form (9), which implies that V must assign xi and si respectively to

the body location and timestamp variable that correspond to the sender, and that

it must assign x and u respectively to the location and timestamp variable that

correspond to the addressee. Let ϕ′ ∈ P be the original asynchronous rule on which

ϕ is based. Let ϕ′′ be the corresponding rule in asyncP . From the construction of

ϕ out of ϕ′ and ϕ′′ out of ϕ′, it follows that V can also be applied to ϕ′′. Note,

V (headϕ′′) = R(x , ā). We now show that V is satisfying for ϕ′′ with respect to

Di , which causes R(x , ā) ∈ asyncP(Di), as desired. Specifically, we have to show

V (posϕ′′) ⊆ Di and V (negϕ′′) ∩Di = ∅.

First we show V (posϕ′′) ⊆ Di . By construction of ϕ and ϕ′′, we have

posψ|sch(P)LT = V (posϕ)|sch(P)LT = V (posϕ′′)⇑xi ,si ·

Since ψ is active, we have posψ|sch(P)LT ⊆ M , and therefore V (posϕ′′)⇑xi ,si ⊆ M .

Then, because the facts in V (posϕ′′)⇑xi ,si are over sch(P)LT and have location

specifier xi and timestamp si , we can apply Claim 17 to know that V (posϕ′′) ⊆ Di ,

as desired.

Now we show V (negϕ′′) ∩Di = ∅. By construction of ϕ and ϕ′′, we have

V (negϕ)|sch(P)LT = V (negϕ′′)⇑xi ,si ·

By choice of ϕ and V , we have V (negϕ)∩M = ∅. Hence, V (negϕ′′)⇑xi ,si ∩M = ∅.

Then, because the facts in V (negϕ′′)⇑xi ,si are over sch(P)LT and have location

specifier xi and timestamp si , we can apply Claim 18 to know that V (negϕ′′)∩Di =

∅, as desired.

Claim 22

Let i ∈ N. We have M |xi ,si = (Di)
⇑xi ,si . Intuitively, this means that the operational

deductive fixpoint Di during transition i , corresponding to step si of node xi , is

represented by M in an exact way.

Proof

Recall the notations from Section B.1. Let n denote the largest stratum number of

the deductive rules of P . We show by induction on k = 0, 1, . . . , n that

(M→k )|xi ,si = (D→k
i )⇑xi ,si ·

This will give us (M→n)|xi ,si = (D→n
i )⇑xi ,si = (Di)

⇑xi ,si · Moreover, Claim 25 says

that (M→n )|xi ,si = M |xi ,si , and thus we obtain M |xi ,si = (Di)
⇑xi ,si , as desired.

Base case (k = 0) By definition,

M→0 = M N ∪M duc,0·
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But since there are no deductive ground rules in G with stratum 0, we have

M duc,0 = ∅. Hence,

(M→0)|xi ,si = (M N)|xi ,si

= (M |edb(P)LT)|
xi ,si ∪M ind|xi ,si ∪M deliv|xi ,si · (B1)

Using Claim 23 and Claim 26, we can rewrite expression (B1) to the desired equality:

(M→0)|xi ,si = sti(xi)
⇑xi ,si ∪ untag(mi)

⇑xi ,si

= (sti(xi) ∪ untag(mi))
⇑xi ,si

= (D→0
i )⇑xi ,si ·

Induction hypothesis For the induction hypothesis, we assume for a stratum number

k ≥ 1 that

(M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si ·

Inductive step We show that

(M→k )|xi ,si = (D→k
i )⇑xi ,si ·

We show both inclusions separately, in Claims 27 and 28.

Claim 23

Let i ∈ N. We have sti(xi)
⇑xi ,si = (M |edb(P)LT)|

xi ,si ∪M ind|xi ,si .

Proof

By definition,

sti(xi) =
(

(M |edb(P)LT)|
xi ,s ∪M ind|xi ,s

)⇓
,

where s = locM (i , xi). Using Claim 15, we have s = si . Therefore,

sti(xi)
⇑xi ,si = (M |edb(P)LT)|

xi ,si ∪M ind|xi ,si ·

Claim 24

For each fact candR(x , s , y, u, ā) ∈ M , there is a timestamp u ′ ∈ N such that

chosenR(x , s , y, u
′, ā) ∈ M , with possibly u ′ = u.
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Proof

Towards a proof by contradiction, suppose there is no such timestamp u ′. Now,

because candR(x , s , y, u, ā) ∈ M , the following ground rule, which is of the form (4),

can not be in G, because otherwise chosenR(x , s , y, u, ā) ∈ M , which is assumed

not to be possible:

chosenR(x , s , y, u, ā)← candR(x , s , y, u, ā)·

Because rules of the form (4) contain a negative other...-atom in their body, the

absence of the above ground rule from G implies otherR(x , s , y, u, ā) ∈ M . This

otherR-fact must be derived by a ground rule of the form (5):

otherR(x , s , y, u, ā)← candR(x , s , y, u, ā), chosenR(x , s , y, u
′, ā), u 6= u ′·

But this implies that chosenR(x , s , y, u
′, ā) ∈ M , which is a contradiction.

Claim 25

Let i ∈ N. Let n denote the largest stratum number of the deductive rules of P .

We have (M→n)|xi ,si = M |xi ,si .

Proof

First, since M→n ⊆ M , we immediately have (M→n)|xi ,si ⊆ M |xi ,si .

Now, let fff ∈ M |xi ,si . We show fff ∈ (M→n )|xi ,si . Since fff has location specifier xi

and timestamp si , we are left to show fff ∈ M→n . We have the following cases:

• Suppose fff ∈ M |edb(P)LT . Then fff ∈ M N ⊆ M→n .

• Suppose fff ∈ M |idb(P)LT . Then there is an active ground rule ψ ∈ G with headψ = fff .

As seen in Section B.1, rule ψ can be of three types: deductive, inductive and

delivery. The last two cases would respectively imply fff ∈ M ind and fff ∈ M deliv,

giving fff ∈ M N ⊆ M→n . In the deductive case, rule ψ has a stratum number no

larger than n, and hence fff ∈ M duc,n ⊆ M→n .

Claim 26

Let i ∈ N. We have M deliv|xi ,si = untag(mi)
⇑xi ,si .

Proof

Let fff ∈ M deliv|xi ,si . We show fff ∈ untag(mi)
⇑xi ,si . Denote fff = R(xi , si , ā). By

definition of M deliv, there is an active delivery rule ψ ∈ G that derives fff :

R(xi , si , ā)← chosenR(y, t , xi , si , ā)·

Because this rule is active, we have chosenR(y, t , xi , si , ā) ∈ M . Now, by definition

of xi and si , we have globM (xi , si) = i . Hence, (globM (y, t), R(ā)) ∈ mi and thus

R(ā) ∈ untag(mi). Finally, we obtain fff = R(xi , si , ā) ∈ untag(mi)
⇑xi ,si , as desired.

Let fff ∈ untag(mi)
⇑xi ,si . We show fff ∈ M deliv|xi ,si . Denote fff = R(xi , si , ā). We
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have R(ā) ∈ untag(mi). Thus, there is some tag j ∈ N such that (j ,R(ā)) ∈ mi .

By definition of mi , there are values y ∈ N , t ∈ N, z ∈ N and u ∈ N such that

chosenR(y, t , z , u, ā) ∈ M ,

where globM (y, t) = j and globM (z , u) = i . Here, globM (z , u) = i implies z = xi

and u = si . Hence, chosenR(y, t , xi , si , ā) ∈ M . Now, the following ground rule ψ

is in G because (delivery) rules of the form (6) are always positive:

R(xi , si , ā)← chosenR(y, t , xi , si , ā)·

This rule derives fff = R(xi , si , ā) ∈ M because its body-fact is in M . Hence, fff ∈

M deliv|xi ,si , as desired.

Claim 27

Let i ∈ N. Let k be a stratum number (thus k ≥ 1). Suppose that

(M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si ·

We have

(M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Proof

We consider the fixpoint computation of M , i.e., M =
⋃

l∈N
Ml with M0 = decl(H )

and Ml = T (Ml−1) for each l ≥ 1, where T is the immediate consequence operator

of G. By the semantics of operator T , we have Ml−1 ⊆ Ml .

We show by induction on l = 0, 1, 2, . . ., that

(Ml ∩M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

This will imply that

((

⋃

l∈N

Ml

)

∩M→k

)

|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Hence, we obtain, as desired

(M ∩M→k )|xi ,si = (M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Before we start with the induction, recall from Section B.1 that

M→k = M N ∪M duc,k

= M |edb(P)LT ∪M ind ∪M deliv ∪M duc,k ·
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Base case (l = 0) We have M0 = decl(H ). Thus M0 contains no facts derived by

deductive, inductive or delivery ground rules. Therefore,

M0 ∩M→k = M |edb(P)LT ·

Hence,

(M0 ∩M→k )|xi ,si ⊆ (M N)|xi ,si

⊆ (M→k−1)|xi ,si ·

And by using the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si , we obtain, as

desired:

(M0 ∩M→k )|xi ,si ⊆ (D→k−1
i )⇑xi ,si

⊆ (D→k
i )⇑xi ,si ·

Induction hypothesis Let l ≥ 1. We assume

(Ml−1 ∩M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Inductive step We show

(Ml ∩M→k )|xi ,si ⊆ (D→k
i )⇑xi ,si ·

Let fff ∈ (Ml ∩ M→k )|xi ,si . If fff ∈ Ml−1 then fff ∈ (Ml−1 ∩ M→k )|xi ,si and the

induction hypothesis can be immediately applied. Now suppose that fff ∈ Ml \Ml−1.

Then there is a ground rule ψ ∈ G with headψ = fff that is active on Ml−1. We

have posψ ⊆ Ml−1. As we have seen in Section B.1, rule ψ can be of three types:

deductive, inductive or a delivery. If ψ is an inductive rule or a delivery rule then

fff ∈ M ind|xi ,si ∪M deliv|xi ,si

⊆ (M N)|xi ,si ⊆ (M→k−1)|xi ,si

= (D→k−1
i )⇑xi ,si ⊆ (D→k

i )⇑xi ,si ·

Now suppose ψ is deductive. If ψ has stratum less than or equal to k − 1, then

fff ∈ (M→k−1)|xi ,si . In that case, the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si

gives fff ∈ (D→k−1
i )⇑xi ,si ⊆ (D→k

i )⇑xi ,si , as desired. Now suppose that ψ has stratum

k . Because ψ ∈ G, there is a rule ϕ ∈ pure(P) and valuation V so that ψ is

obtained from ϕ by applying valuation V and subsequently removing the negative

(ground) body literals, and so that V (negϕ) ∩M = ∅. Let ϕ′ ∈ P be the original

deductive rule on which ϕ is based. Thus ϕ′ ∈ deducP (see Section 5.1.2). By

construction of ϕ out of ϕ′, valuation V can also be applied to rule ϕ′. We now

show that V is satisfying for ϕ′ during the computation of Di , in stratum k . Since

V (headϕ) = headψ = fff , this results in the derivation of V (headϕ′) = fff
⇓ ∈ D→k

i

and thus fff ∈ (D→k
i )⇑xi ,si , as desired. It is sufficient to show V (posϕ′) ⊆ D→k

i and

V (negϕ′) ∩D→k−1
i = ∅ because by the syntactic stratification, if ϕ′ uses relations

positively then those relations are in stratum k or lower, and if ϕ′ uses relations

negatively then those relations are in a stratum strictly lower than k .
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• We show V (posϕ′) ⊆ D→k
i . First, by the relationship between ϕ and ϕ′, and because

valuation V assigns xi and si to respectively the body location variable and body

timestamp variable of ϕ, we have posψ = V (posϕ) = V (posϕ′)⇑xi ,si . By choice of

ψ, we already know posψ ⊆ Ml−1. If we could show posψ ⊆ M→k then posψ ⊆

(Ml−1 ∩ M→k )|xi ,si , to which the induction hypothesis can be applied to obtain

posψ = V (posϕ′)⇑xi ,si ⊆ (D→k
i )⇑xi ,si , resulting in V (posϕ′) ⊆ D→k

i , as desired.

Now we show posψ ⊆ M→k . Let ggg ∈ posψ . If ggg ∈ M N then we immediately

have ggg ∈ M→k . Now suppose that ggg /∈ M N. Since posψ ⊆ M |xi ,si , we have ggg ∈

M |xi ,si \M N. Then Claim 25 implies there is an active deductive ground rule ψ′ ∈ G

with headψ′ = ggg . But we are working with a syntactic stratification, and thus

the stratum of ψ′ can not be higher than the stratum of ψ, which is k . Hence

ggg ∈ M duc,k ⊆ M→k .

• We show V (negϕ′)∩D→k−1
i = ∅. By choice of ϕ and V , we have V (negϕ)∩M = ∅.

So,

V (negϕ) ∩ (M→k−1)|xi ,si = ∅·

By applying the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si , we then have V (negϕ)∩

(D→k−1
i )⇑xi ,si = ∅. By the relationship between ϕ and ϕ′, we have V (negϕ) =

V (negϕ′)⇑xi ,si . Thus V (negϕ′) ∩D→k−1
i = ∅, as desired.

Claim 28

Let i ∈ N. Let k be a stratum number (thus k ≥ 1). Suppose that

(M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si ·

We have

(D→k
i )⇑xi ,si ⊆ (M→k )|xi ,si ·

Proof

Recall that the semantics of stratum k in deducP is that of semi-positive Datalog¬,

with input D→k−1
i . So, we can consider D→k

i to be a fixpoint, i.e., as the set
⋃

l∈N
Al

with A0 = D→k−1
i and Al = T (Al−1) for each l ≥ 1, where T is the immediate

consequence operator of stratum k in deducP . We show by induction on l = 0, 1,

2, etc, that

(Al )
⇑xi ,si ⊆ (M→k )|xi ,si ·

This then gives us the desired result.

Base case (l = 0) We have A0 = D→k−1
i . By applying the given equality, we obtain

(A0)
⇑xi ,si = (D→k−1

i )⇑xi ,si = (M→k−1)|xi ,si ⊆ (M→k )|xi ,si ·

Induction hypothesis Let l ≥ 1. We assume

(Al−1)
⇑xi ,si ⊆ (M→k )|xi ,si ·
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Inductive step Let fff ∈ Al . We show fff
⇑xi ,si ∈ (M→k )|xi ,si . If fff ∈ Al−1 then the

induction hypothesis can be applied to obtain the desired result. Now suppose

fff ∈ Al \Al−1. Let ϕ ∈ deducP and V be respectively a rule with stratum k and a

valuation that together have derived fff ∈ Al . Let ϕ′ ∈ pure(P) be the rule obtained

from ϕ by applying transformation (1). Let V ′ be the extension of V to assign xi

and si respectively to the body location and timestamp variable of ϕ′, which are

also both used in the head of ϕ′. Let ψ be the ground rule obtained from ϕ′ by

applying valuation V ′ and by subsequently removing all negative body literals. We

show ψ ∈ G and posψ ⊆ M , which then implies

headψ = V ′(headϕ′) = V (headϕ)
⇑xi ,si = fff

⇑xi ,si ∈ M ·

Moreover, because ϕ (and thus ϕ′) has stratum k , rule ψ is an active deductive

ground rule with stratum k , and thus fff
⇑xi ,si ∈ (M duc,k)|xi ,si ⊆ (M→k )|xi ,si , as

desired.

• To show ψ ∈ G, we require V ′(negϕ′) ∩M = ∅. Because V is satifying for ϕ, and

because negation is only applied to lower strata, we have

V (negϕ) ∩D→k−1
i = ∅·

Thus

V (negϕ)
⇑xi ,si ∩ (D→k−1

i )⇑xi ,si = ∅·

By the relationship between ϕ and ϕ′, we have V (negϕ)
⇑xi ,si = V ′(negϕ′), which

gives us

V ′(negϕ′) ∩ (D→k−1
i )⇑xi ,si = ∅·

And by using the given equality (M→k−1)|xi ,si = (D→k−1
i )⇑xi ,si , we have

V ′(negϕ′) ∩ (M→k−1)|xi ,si = ∅·

Now, for the last step, we work towards a contradiction: suppose that there is a fact

ggg ∈ V ′(negϕ′) ∩M . From the construction of ϕ′, we know that ggg is over sch(P)LT

and has location specifier xi and timestamp si .

— If ggg is over edb(P)LT then ggg ∈ (M |edb(P)LT)|
xi ,si . Thus ggg ∈ (M N)|xi ,si ⊆

(M→k−1)|xi ,si , which is a contradiction.

— If ggg is over idb(P)LT then there is an active ground rule ψ′ ∈ G with headψ′ =

ggg. As seen in Section B.1, rule ψ′ is either deductive, inductive or a delivery.

The last two cases would imply that ggg ∈ (M ind ∪M deliv)|xi ,si ⊆ (M N)|xi ,si ,

which gives a contradiction like in the previous case. Now suppose that ψ′

is deductive. Because the predicate of ggg is used negatively in ϕ′ and thus

negatively in ϕ, the syntactic stratification assigns a smaller stratum number

to ψ′ than the stratum number of ψ, which is k . Hence, ggg ∈ (M→k−1)|xi ,si ,

which is again a contradiction.

We conclude that V ′(negϕ′) ∩M = ∅.
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• We show posψ ⊆ M . Because V is satisfying for ϕ, we have

V (posϕ) ⊆ Al−1·

By the relationship between ϕ and ϕ′ (and ψ), we have V (posϕ)
⇑xi ,si = V ′(posϕ′) =

posψ. Thus

posψ ⊆ (Al−1)
⇑xi ,si ·

By now applying the induction hypothesis, we obtain, as desired:

posψ ⊆ (M→k )|xi ,si ⊆ M ·
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