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Abstract

The infinitary propositional logic of here-and-there is ongant for the theory of answer set programming
in view of its relation to strongly equivalent transfornmats of logic programs. We know a formal system
axiomatizing this logic exists, but a proof in that systenyrimelude infinitely many formulas. In this note
we describe a relationship between the validity of infinitearmulas in the logic of here-and-there and the
provability of formulas in some finite deductive systemsisTielationship allows us to use finite proofs to
justify the validity of infinitary formulas. This note is uad consideration for publication in Theory and
Practice of Logic Programming.

1 Introduction

The semantics of ASP programs can be defined using a tramstatit turns programs into sets
of infinitary propositional formulas (Gebser et al. 2015).rove properties of ASP programs
we need then to reason about stable models of infinitary ftagrin the sense of Truszczynski
(2012). In particular, we often need to know which transfations of infinitary formulas do
not affect their stable models. It is useful to know, for amste, that stable models of infinitary
formulas are not affected by applying the infinitary De Margdaws

/\ﬁFaH"\/Fa, (1)
acA acA

and
\/ —Fa <= )\ Fa 2)
acA acA

whereA may be infinite. “Strongly equivalent” transformations loistkind are used in the proof
of the interchangeability of the cardinality constr&ip{X) }0 and the conditional literal : p(X)
(Harrison et al. 2015a, Example 7), as well as the proof ofemtness of th@-queens program
given in the electronic appendix of (Gebser et al. 2015).

Strongly equivalent transformations of infinitary formsilare characterized by the infinitary
logic of here-and-there (Harrison et al. 2015). The set ebthms in the sense of that paper co-
incides with the set of all infinitary formulas that are “H&d"—satisfied by all interpretations
in the sense of the logic of here-and-there.
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The set of theorems is defined by Harrison et al. (2015) ingericlosure under a set of infer-
ence rules; there is no definition of a proof in that papes. pidssible to reformulate the definition
of a theorem in terms of proofs, but those proofs would cowggserally of infinitely many for-
mulas, because some of the inference rules introduced tlaeeinfinitely many premises. In
formalized mathematics, proofs are useful in that they aitefsyntactic objects that can estab-
lish the validity of assertions about infinite domains. “hité proofs”, on the other hand, do not
have this property.

Can we use finite syntactic objects of some kind to estaldiahan infinitary formula is HT-
valid, at least in some cases?

The definition of an instance of a propositional formula (titaim et al. 2015a) may help us
answer this question. Propositions 1 and 3 in that paper shatsubstituting infinitary formu-
las for atoms in a finite intuitionistically provable fornautesults in an HT-valid formula. For
example, the formula

(PVA)AT < (PAT)V(QAT) @)
is intuitionistically provablé’ it follows that for any infinitary formulag, G, H, the infinitary
formula

(FVG)AH < (FAH)V (GAH) 4)

is HT-valid. We can think of a proof of (3) as a proof of (4) withspect to the substitution that
mapspto F, gto G, andr to H. In a similar way, we can talk about proofs of the formula

<\/ Fa>/\G<—> \/ (Fa AG) (5)
acA acA
for any non-empty finite familyFq ) o ca Of infinitary formulas and any infinitary formula.

In this paper we show how the idea of an infinitary instancefadige formula can be used in
a different setting. We will define instances for first-orflmmulas, and that will allow us, for
example, to talk about finite proofs of (5) even whgris infinite. Consider the signature that
has (symbols for) the elements &fas object constants, the unary predicate con§laand the
propositional constar®. We will see that (5) is the instance of the first-order foranul

IXP(X) AQ + IX(P(X) AQ) (6)

corresponding to the substitution that m&jsr) to Fy, andQ to G. This formula is intuitionis-
tically provable, and according to the main theorem of tlaipgy it follows that (5) is HT-valid.
After a review of the infinitary logic of here-and-there incBen 2, we define instances of a
first-order formula in Section 3, and state the main theoreB8eiction 4. Two other useful forms
of the main theorem are discussed in Section 6. The prookdhthorem is outlined in Section 7.
A preliminary report on this project was presented at theV8titkshop on Answer Set Pro-
gramming and Other Computing Paradigms held in Cork, lcklar2015.

2 Infinitary Logic of Here-and-There

This review follows Harrison et al. (2015, 2015a).

1 Formalizations of propositional intuitionistic logic cése found, for instance, in Chapters 2 and 8 of Mints’s mono-
graph (2000). Formalizations of first-order intuitionisktbgic can be found in Chapters 13 and 15 of that book.



2.1 Infinitary Formulas

Throughout this note, we will use to denote a propositional signature, that is, a set of propo-
sitional atoms. For every nonnegative integefinfinitary propositional) formulas (over) of
rankr are defined recursively, as follows:

e every atom fronu is a formula of rank 0;
e if 27 is a set of formulas, andis the smallest nonnegative integer that is greater than the
ranks of all elements a##, thens#" ands#" are formulas of rank;

o if F andG are formulas, and is the smallest nonnegative integer that is greater than the
ranks ofF andG, thenF — G s a formula of rank.

We will write {F,G}" asF AG, and{F,G}" asF v G. The symbolsT and_ L will be understood
as abbreviations for'Dand for @ respectively—F andF <+ G are understood as abbreviations
in the usual way.

A set or family of formulas isboundedf the ranks of its members are bounded from above.
For any bounded famil{F ) qca of formulas, we denote the formuf&, : a € A} by AgeaFa,
and similarly for disjunctions. For example, if all formalg, andG are atoms then the left-hand
side of equivalence (5) is shorthand for the formula

{{Fa:acA}’,G}"

of rank 2.

2.2 HT-Interpretations

An HT-interpretatiorof o is an ordered paifi", 1') of subsets obr such that" C I. The sym-
bolsh,t are calledworlds respectivelyhereand there They are ordered by the relatidn< t.

HT-interpretations are the special case of Kripke modelsrfmiitionistic logic® with only two
worlds.

The satisfaction relation between an HT-interpretatien(1", 1), a worldw, and a formula is
defined recursively, as follows:

o LWk pif pelV;

o |,w = 7" if for every formulaF in 27, |,w = F;

e |, w7V if there is a formuld in 2 such that,w = F;

e |,wEF — Gif, for every worldw such thaw <w/, I,w [£F orl,w = G.

In particular,
I,w = —F if, for every worldw such thawv <w/, |,w [~ F.

We say that satisfiesF, and writel |= F, if |,h = F (equivalently, ifl,w = F for every
world w). A formula isHT-valid if it is satisfied by all HT-interpretations.

2http://plato.stanford.edu/entries/logic-intuitionistic/#KriSemForIntLog



3 Substitutions and Instances

By 2 we denote an arbitrary signature in the sense of first-omigic Ithat contains at least
one object constant. The signature may include propositioonstants (viewed as predicate
constants of arity 0). Object constants will be viewed afiom constants of arity 0. In first-
order formulas ovek, we treat the binary connectivesV, and— and the 0-place connective
as primitive; T, —, and< are the usual abbreviations from propositional logic.

A substitutionis a functiony that maps each closed atomic formula o¥eto an infinitary
formula overa, such that the range a@f is bounded. A substitutiogy is extended from closed
atomic formulas to arbitrary closed first-order formulasidv as follows:

Ylisl;

Y(a1 = ay), whereas, a» are ground terms, i$ if o is ap, and_L otherwise;
Y(F ®G), where® is a binary connective, igF © YG;

YWVF is A\, WFY, wherea ranges over the ground termsxf

Y3vF is \/, YFY, wherea ranges over the ground termsXf

The formulayF will be called theinstance of with respect tap.
For example, iz includes the elements & as object constants, but no other function con-
stants, then (5) is the instance of (6) with respect to theti#tukion ¢ defined as follows:

LIIP(CI) = Fav
¥Q=G.

If the function constants af are the object constaatand the unary function constagtthen
any infinite conjunction of the form

AR =G,
i>0
wherekR;, G; are infinitary formulas, is the instance of the first-ordenfala

YX(P(x) = Q(x))
with respect to the substitutiap defined as follows:

Y(P(s(a))) =Fi,

Y(Q(S(a))) = Gi.

4 Main Theorem

The main theorem stated below shows that if a closed firstrdi@mula is intuitionistically
provable then all its instances are HT-valid. The theoremcisially more general because it
refers to a deductive system that includes, in addition ¢catkioms and inference rules of first-
order intuitionistic logic with equality, some additioredioms. We can add, first of all, the axiom
schema

FV(F—-G)Vv-G @)
(Hosoi 1966; Umezawa 1959), the axiom schema
IX(F — VxF) (8)

3 By FY we denote the result of substitutimgfor all free occurrences ofin F.



(Lifschitz et al. 2007), and the “decidable equality” axiom

X=YVX#Y. (9)
We include also the axioms of the Clark Equality Theory (Kb®78):
f(X1,..., %) Z9(Y1,--,Ym) (10)

for all pairs of distinct function constants g from Z;

f(Xt,.. ., %) = fF(Y1,..-,¥n) = (Xt =Y1 A+ AXn=Yn) (11)

for all function constant$ from X of arity greater than 0; and

t(X) #x (12)

for all termst(x) that contairnx but are different fronx.
The deductive system obtained from first-order intuitiGoiogic with equality by adding
axioms (7)—(12) will be denoted tWHT (“Herbrand logic of here-and-there”).

Main Theorem. If a closed first-order formul& is provable irHHT then any instance &f is
HT-valid.

Example 1. The infinitary De Morgan'’s laws (1) and (2) with non-emptare HT-valid because
they are instances of the first-order formulas

Vx=P(x) > =3IXP(x)

and
Ix=P(X) +» =VXP(x)

respectively, and these formulas are provabléhT . (The first equivalence, and one direction of
the second, are provable intuitionistically. To prove themd equivalence right-to-left, use (8)
with P(x) asF.)

If A'is empty then formula (1) i + —L and (2) isL < —T. Both of these formulas are
HT-valid. However, in view of the restriction thatcontain at least one object constant neither is
an instance of the formulas in the previous example. Withiwaitrestriction, the assertion of the
Main Theorem would become incorrect. Indeed, the formula> | would be then an instance
of the intuitionistically provable formulsx P(x) — 3x P(x).

Example 2. As discussed above, the fact that formula (5) is HT-valitbfgs from the provability
of (6) in first-order intuitionistic logic. Consider the foula dual to (5):

(/\ Fa> VG A (FavG).
acA acA

(As before(Fy)aea is @ non-empty family of infinitary formulas, ar@lis an infinitary formula.)
The fact that this formula is HT-valid can be derived from thain theorem above in a similar
way, with the corresponding first-order formula

YXP(X) V Q + Vx(P(x) vV Q).

The proof of the right-to-left direction will use (8), agaarith P(x) asF.



Example 3. Any formula of the form

(o) o) = prao

with non-emptyA (Harrison et al. 2015a, Example 2) is HT-valid because ihigyatance of the
intuitionistically provable formula

(IXP(x) — Q) + VX(P(x) — Q).

Example 4. Any formula of the form

V |Fe— AFsl.

acA BeA

whereA is non-empty, is HT-valid because it is an instance of therméchema (8).

5 Including Restrictors

Under the definition of an instance above, all infinitary corgtions and disjunctions in an in-
stance of a formula have the same indexing set. In this seatiogive a more general definition
that overcomes this limitation.

We assume here that some unary predicate symbols of thawwigRamay be designated as
restrictors The role of restrictors will be somewhat similar to the rofesorts in a many-sorted
signature. Ageneralized variable defined as either a variable or an expression of the form

(X1:R1,...,Xn:Rn) (13)

wherexy, ..., X, (n > 1) are distinct variables, arféy, . .., R, are restrictorsFormulas with re-

strictorsare defined recursively in the same way as first-order forsnaleerZ except that a

guantifier may be followed by a generalized variable. Fotanse, ifZ includes the unary pred-
icate constant® andR, and the latter is a restrictor, then

YXP(x) — V(x:R)P(x) (14)

is a formula with restrictors.
Generalized variables (13) can be eliminated from a formuita restrictors by replacing
subformulas of the form

V(X1 :R1,...,%n:R)F
with
VX1 .. Xn(Rei(X2) A+ - ARs(Xn) — F),
and subformulas of the form
I(x1:Ry, ..., %n:Ry)F
with
g Xn(Ri(X1) A=+ ARa(Xn) AF).

To prove a formula with restrictors in a deductive systemmsda prove the first-order formula
obtained by this transformation. For instance, we can sayftrmula (14) is provable in the



intuitionistic predicate calculus because the formula
YXP(x) = VX(R(X) = P(x))

is provable in that deductive system. Satisfaction of addsemulas with restrictors is defined in
a similar way.

In the presence of restrictors sabstitutioris defined as a functiog that maps each closed
atomic formulaF overX to one of the formulag’, L, if F begins with a restrictor, and to an
infinitary formula overo otherwise, such that the range @fis bounded. A substitutiogy is
extended to closed first-order formulas o¥ewith restrictors in the same way as for first-order
formulas as in Section 3, with the additional clauses:

o UV(x1:Ry,...,%n:Ry)F is

A WFa e,
a1,..,0n : YRy(a1)==WRn(an)=T
o YWIX1:Ry,... . Xn:Ry)F is
\/ WFE o
a1,.,0n  YRy(Q1)==Rn(an)=T

Main Theorem for Formulas with Restrictors. If a closed first-order formul& with restrictors
is provable irHHT then any instance &f is HT-valid.

Example 5. Consider a formula of the form
N\ Fa = N Fa, (15)
acA aeB

whereB is a proper subset k. It is an instance of (14): take the elementsAdb be the only
function constants af, and define the substitutiap by the conditions

YR(a) =T iff a €B,
Since (14) is intuitionistically provable, (15) is HT-vali
Example 6. Any formula of the form

\VFaA\Gser \/  (FanGp) (16)

achA BeB (a,B)eAxB

is an instance of the formula
F(x:R)P(X) A 3(Y:R2)Q(Y) > F(X: Ry, y: R2) (P(X) AQ(Y)). a7

Indeed, we can include the elementsfaf B among the object constants @fand choose) so
that
YR (o) =Tiff a € A
YRy (a) =T iff a €B,
YP(a)=Fy foralla € A
YQ(a) =Gy forall a € B.
Since (17) is intuitionistically provable, (16) is HT-vali
References to the new version of the main theorem can becexpiiasome cases by references
to the more restricted version from Section 4 at the costioigumore complicated substitutions.



For instance, the claim that formula (15) is HT-valid, unttex additional assumption thBtis
non-empty, can be justified as follows. Takéo be the signature consisting of the elementa of
as object constants, the unary function consfaand the unary predicate const&tChoose an
elementng of B. Then (15) is the instance of the formula

VXP(x) — VXP(f (X))

with respect to the substitutiap defined by the condition: for all object constants

wp(a) = Fa,
WP(f'(a)) =Fq if i >1anda €B,
WP(f(a)) = Fa, if i > 1 anda ¢ B.

6 Including Second-Order Axioms

We will define now an extensioAHT 2 of HHT where predicate and function variables of arbi-
trary arity are included in the language, as in Section lo2tBe handbook chapter by Lifschitz
et al. (2008). The set of axioms and inference rulesibliiT is extended by adding the usual
postulates for second-order quantifiers, the axiom schémanoprehension

IpYXe .. Xn(P(X1,. .., %n) <> F) (18)
(n> 0), where the predicate variabpes not free inF, and the axiom of choice

VX1 . XnXnpr POX, -+ Xns1) —
VXL Xn(P(Xy -+« Xn, T (X2, .20, %n)))

(n> 0). The main theorem can be extended as follows.

(19)

Main Theorem for HHT 2. If a closed first-order formulg (possibly with restrictors) is prov-
able inHHT 2 then any instance &F is HT-valid.

In the special case when the signatlireontains finitely many function constants, by DCA
we denote the domain closure axiom:

vp(A\Ci(p) = VX p(x))

where the conjunction extends over all function constérftem Z, andC; (p) (“set p is closed
underf”) stands for the formula

VX1 .. Xn(P(X2) A+ Ap(Xn) = P(F(X1,...,%n)).

(In the presence of DCA, axioms (9) and (12) become redundamtinstance, i& contains an
object constard and unary function constaatand no other function constants, then DCA turns
into the second-order axiom of induction

Vp(p(@) AVX(p(X) = p(S(X))) — VX p(x)), (20)

andHHT 2+ DCA becomes an extension of second-order intuitionisiibiaetic.
In the following version of the main theorem, the signatkiris assumed to contain finitely
many function constants.

Main Theorem for HHT 2+ DCA. If a closed first-order formulg (possibly with restrictors)
is provable irHHT 24 DCA then any instance & is HT-valid.



Note that both versions of the main theorem stated in thisasepefer to first-order formulas
provable using second-order axioms. The notion of a suibistit is not defined here for second-
order formulas.

Example 7. Any equivalence of the form

(Fo/\ N\ (F— F|+1)> < A\F

i>0 i>0

(Harrison et al. 2015a, Example 1) is HT-valid. Indeed, lith appropriate choice of the signa-
ture, it is an instance of the formula

P(a) AVX(P(x) = P(s(x))) <> VXP(x).
This formula is provable iliHT >+ DCA. (The implication left-to-right is given by axiom (20).

7 Proof of Main Theorem

The proof of the theorem makes use of “Herbrand HT-integti@is"—Kripke models with
two worlds and with the universe consisting of all grounahtgmf the signaturz. We will see
that all theorems oHHT (and its extensions discussed in the previous section)adisfied by
all Herbrand HT-interpretations. On the other hand, for sulystitutiony and any HT-interpre-
tationl of g, we can find an Herbrand HT-interpretatidauch thatl satisfies a closed first-order
formulaF if and only if | satisfiesyF. The main theorem will directly follow from these two
facts.

An Herbrand HT-interpretatioaf a first-order signaturg is a pair(J",J') of subsets of the
Herbrand base df (that is, the set of all ground atomic formulas owethat do not include
equality) such thai" C Jt. By % we denote the Herbrand universeXfthat is, the set of all
ground terms ovex.

For each functiori of arity n > 0 that maps fron% " to % we introduce a function constant
f* of arity n, called thefunction nameof §. For each paip = (pp,pt) of subsets of7" such that
ph C pt, we introduce am-ary predicate constant, called thepredicate namef (pp, pt). By Z*
we denote the signature obtained by adding all function aadipate names t&, and by% *
we denote the Herbrand universesst Then for each termr € % *, we define the termad € %
recursively as follows:

e if o is an object constant fror# thend is a;

o if aisofthe formf(ay,...,an) wheref is afunction constant froig, thena is f (o, ..., 0n);

o if a is of the formf*(ay,...,an) wheref* is a function name, thed is the element o/
obtained by applyingto (a1,...,an).

The satisfaction relation between an Herbrand HT-integienJ = (J", J'), a worldw, and a
closed second-order formufaoverz is defined recursively, as follows:

() Jwie L.
(i) Wk ay=ayif oy is ay.
(i) J,wl=P(ay,...,an)if P(ay,...,on) € IV,
(iv) J,w=p*(ay,...,an)if (@1,...,0n) € pw.
(v) wEFAGIf J,wkEF andJ,w = G; similarly for v.
(vi) J,w = F — Gif for every worldw' such thatv <w/, J,w = F or J,w |= G.



(vii) J,w = WF, wherev is an object variable, if for each ground teamoverZ, J,w = Fy;
similarly for 3.
(viii) J,w = WvF, wherev is a function variable, if for each function narffeof the same arity as
v, J,w = F/; similarly for 3.4
(ix) J,w = VvF, wherev is a predicate variable, if for each predicate narhef the same arity

V. cimi
asv, J,w = F.; similarly for 3.

A closed second-order formul over Z* is HHT-valid if J,h = F for every Herbrand HT-
interpretation].
Soundness Lemma.

(a) If a second-order formula overX* is provable irHHT 2 then the universal closure Bf
is HHT-valid.

(b) For any first-order signatui@ containing finitely many function constants, if a second-
order formulaF overs* is provable inHHT 24+ DCA then the universal closure &f is
HHT-valid.

The lemma is proved by induction on the derivatior-of

Lifting Lemma. Letl be an HT-interpretation of a propositional signatarep be a substitution
from a first-order signaturg (possibly containing restrictors) , andJ be the Herbrand HT-
interpretation defined by the condition: for every wosid

Jwi=P(ay,...,an) iff 1wk @P(ay,...an).
Then for any closed first-order formua(possibly with restrictors)

JwEF iff |,wE yF.

The lemma is proved by strong induction on the total numberooihectives and quantifiers
in F. If F is atomic, then the assertion of the lemma is immediate fioerdefinition of). Here
are two of the other cases.

CasevvF:

J,w = W
iff for each ground ternr, J,w = Fy
iff for each ground ternm, I, w = WFy
iff 1,wi=Aq YFy
iff L,wi= ¢ (AaFa)-

Casev(x1:Ry,...,Xn:Ry)F: We need to show that
JWEVY(X1:Ry,.... % Ry)F
= N YR a. (21)

ag,....0n: YRy(a1)==yYRn(an)=T
Indeed,

4 The notation for substituting a function name for a functi@miable is the same as that of substituting a term for an
object variable; similarly for predicate names and predicariables.



JWEV(X1:Ry,. .., % Ry)F

iff J,wEVXy,... . Xn(Ri(X1) A+ AR(Xn) = F)

iff Jw = F(ﬁ;.'.'.';é“n in every worldw' > w and for each tuple of ground termas, ..., an such
thatd,w = Ry(a1) A--- ARy (ap)

iff 1w = LpFéijfffjé”n in every worldw > w and for each tuple of ground ternas, ..., an
such that ,w E YRy (a1) A+ AWYRs(an)

iff 1w = LpFéijfffjé”n in every worldw > w and for each tuple of ground ternas, ..., dn
such thatpRi(a1) =--- = YRy(an) =T

iff in every worldw > w,

The condition above is equivalent to (21) by the monotonjibperty of the satisfaction relation
in the logic of here-and-there.
The main theorem is immediate from the two lemmas statedeabov

8 Conclusion

In this paper we defined when an infinitary propositional folaris an instance of a first-order
formula. The provability of first-order formulas in some&msions of intuitionistic logic implies
that all instances of these formulas are HT-valid. Theorefrihis kind can be used for estab-
lishing the strong equivalence of logic programs that usalleariables ranging over infinite
domaing

If an infinite conjunction is an instance of a first-order falmthen it is syntactically uniform,
in the sense that all its conjunctive terms are all of the deintk—either each of them is an atom,
or each is an implication, and so forth. The same can be saigt &finite disjunctions. This fact
points to a limitation on the applicability of the method abping HT-validity described in this
paper. For instance, formulas of the form

(m=FV=F) A (R = F2) A (=R V=Rg) A (Fa = Fa) A (22)

are HT-valid, but they are not instances of any first-ordemida provable in the deductive
systems discussed above. Indeed, if (22) is an instancerst-®fder formuld thenF is either
an atom such that its predicate symbol is not a restrictdf,06r such an atom preceded by
a universally quantified generalized variable. Such firdeoformulas are not provable. But it
is clear that (22) can be tranformed into an instance of arém@fHHT by rewriting it as a
conjunction of two infinite conjunctions:

(m=FV-F)A(—=FRV-R)A--IA(FRR=FR)AFs—=F) A--).

In this sense, the syntactic uniformity of instances of Hingter formulas is not a significant
limitation.
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