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Abstract

In this paper we exploit Answer Set Programming (ASP) fososéng in a rational extensicBROE (1,

x )R T of the low complexity description logiBROEI(, x ), which underlies the OWL EL ontology lan-
guage. In the extended language, a typicality operatis allowed to define concep®(C) (typical C's)
under a rational semantics. It has been proven that instressking under rational entailment has a poly-
nomial complexity. To strengthen rational entailmenthiis paper we consider a minimal model semantics.
We show that, for arbitrarBROEI(M, x )RT knowledge bases, instance checking under minimal entatime
is I‘Ig-complete. Relying on a Small Model result, where modelsesmond to answer sets of a suitable
ASP encoding, we exploit Answer Set Preferences (and, iicpéar, theasprinframework) for reasoning
under minimal entailment. The paper is under considerdtioacceptance in Theory and Practice of Logic
Programming.

1 Introduction

In the context of work that aims at the convergence of desorigogics (DLs) and rule-based

languages (see, e.g., the invited talk by Hitzler at ICLP30%ome combinations of DLs and

LP languages have been proposed, for instance under thelasrsmsemanticOS),

under the MKNF semantics (Knorr et al. 2012), as well as inaldat +/- (Gottlob et al. 2014).

Many extensions of DLs have also been proposed (Straccig; B¥hder and HoIIunder 19|95
et 3 IIM jordano et al. 2007; Eiter et al. 2008dke Sattler 2008; Britz et al. 200

[Bonatti et al. 2009; Casini and Straccia 2010; Motik and R&EH 0 Knorr et al. 2012; Qag ni et al 2013;

Giordano et al. 2013; Bonatti et al. 2015) in order to deahwl#feasible reasoning, to allow for
prototypical properties of concepts, and to deal with d&fda inheritance.

In this paper we show that a non-trivial form of defeasibles@ning in DLs can be mapped
to Answer Set Programming (ASR) (Gelfond and Leone 2002palticular, we focus on ra-
tional extensions of DLs developed along the lines of thégpemtial semantics introduced by
Kraus, Lehmann and Magidar (Kraus et al. 1990; Lehmann angidda 1992) and, specifically
onranked interpretationsThese extensions model typical, defeasible, properfiesdividuals
besides strict ones, extending DLs semantics with a pre¢ereelation among domain individ-
uals. For the logicALC, a preferential extension has been proposed in (Giordaaio 2007;
Giordano et al. 2009a), introducing a typicality operafoin the language, which allows de-
feasible inclusiond (C) C D (“the typicalC elements ar®s”) to be expressed. A rational ex-
tension of ALC has been developed in (Britz et al. 2008) allowing defeasittlusions of the
form CCD, based on ranked interpretations (i.e., modular prefedenterpretations). Prefer-
ential description logics have been used as the basis afggraion-monotonic constructions,
such as the rational closure construction, originally defiby Lehmann and Magiddr (1992)
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and developed foALC in (Straccia 1993; Casini et al. 2013; Giordano et al. 205)articular,

in (Giordano et al. 2015) a rational closure constructios ieen presented which is based on a
rational extension oALC with the typicality operator, and which is characterizechaatically

by the minimal (canonical) rational models of the knowletgse (KB).

In this work we consider a rational extensiBROEI, x )RT of the low-complexity descrip-
tion logic SROEL, x ) (Kratzsch 2010a), an extension®E "+ (Baader et al. 2005), with local
reflexivity, conjunction of roles and concept products, ethis at the basis of OWL EL.

It has been shown if (Giordano and Theseider Dupré|2016)ti®ROEL, x)RT, instance
checking under rational entailment can be solved in polyiabtime, defining a Datalog transla-
tion for normalized knowledge bases which builds on the nelization calculus in(Krotzsch 2010a).
However, it is widely recognized that rational entailmentyoallows a rather weak kind of in-
ference, and minimal and canonical model semantics have deeloped to capture stronger
non-monotonic inferences (Lehmann and Magidor 1992). Wsvshat the notion of minimal
canonical model introduced in_(Giordano et al. 2015) as aasgimcharacterization of the ra-
tional closure forALC is not adequate to capture some knowledge bas&RDEI(M, x)RT,
and we introduce an alternative minimal model semanticsybégkening the requirement that
models have to be canonical, defining the notion§-@bmplete and -minimal model of a KB.
We show that, for the KBs for which there are minimal canonisadels, all determining the
same ranking of concepts as the rational clostirminimal models capture the same defeasible
inferences as minimal canonical models.

In this paper we exploit ASP for reasoning in tlieminimal models of a KB. Exploiting
the fact that, in modular preferential interpretations, ineference relation can be equivalently
formulated by a rank function, we provide a Small Rank theotteat ensures that the number of
different ranks to be considered in rational models of a KB lea limited by the number of the
concepts T(C)” occurring in the KB. Relying on this result, we define an ASReding for any
normalizedSROEL, x)RT KB, showing that thenswer setsf the ASP encoding correspond
to the ranked models of the KB. This result also provides alSvtadel Theorem for normalized
SROELM, x)RT knowledge bases. The ASP encoding builds on the matetializealculus for
SROEL, x) presented in (Krétzsch 2010a).

Reasoning undeminimal entailmentequires reasoning on the (possibly multiple) minimal
models of a KB. We show that deciding instance checking udderinimal entailment is a
ﬂg’—complete problem and we use the ASP encoding of the KB to cterthe answer sets corre-
sponding tor -minimal models. In particular, we exploit optimization fmulti-shot ASP solving
in theasprinframework for Answer Set Preferencés (Brewka et al. 2015/ijs &pproach can be
easily adapted to deal with ABox minimization, by minimigithe ranks of named individuals.
This strictly relates to the rational closure of ABox in (&lano et al. 2015).

2 A rational extension of SROELT, x)

In this section we extend the notion of concepSROEL, x ), defined by KrotzscH (201Da),
adding typicality concepts (we refer {o (Krotzsch 201@m)d detailed description of the syntax
and semantics dBROELM, x)). We letNc be a set of concept named a set of role names
andN, a set of individual names. A concept®ROELM, x) is defined as follows:
C:=A|T|L|CnC|3RC|3RSelf|{a}

whereA € Nc, R€ Ng anda € N,. We introduce a notion aéxtended concepiCas follows:
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Ce:=C|T(C)|CeNCe | IRCe

whereC is a SROEIM, x) concept. Hence, any concept BROEL, x) is also an extended
concept; a typicality concepit(C) is an extended concept and can occur in conjunctions and
existential restrictions, but it cannot be nested.

A KB is a triple (TBox RBox ABoX. TBoxcontains a finite set gjeneral concept inclusions
(GCI)C C D, whereC andD are extended concep8Boxcontains a finite set able inclusions
of the formSC T, RoSC T,SMNSCT,CxDCT andRLC C x D, whereC andD are
conceptsR, S S, S, T € Nr. ABoxcontainsindividual assertion®f the formC(a) andR(a, b),
wherea,b € N;, Re Nr andC is an extended concept. Restrictions are imposed on thefuse o
roles as in[(Krotzsch 2010a).

Consider the following example of KB, stating that: typit@lians have black hair; typical
students are young; they hate math, unless they are nerdhfochwase they love math); all
Mary’s friends are typical students. We also assert thatyN&aa student, that Mario is an Italian
studentand a friend of Mary, Luigi is a typical Italian statlend Paul is a typical young student.

Example 1
TBox (a) T(Italian) C 3hasHair.{Black} (b) T(StudentC Young
(c) T(StudentC MathHater (d) T(NerdStudentC MathLover
(e) NerdStudent Student (f) MathLoverm MathHaterC |
(g) FfriendOf.{mary} C T(Studen}t (h) 3hasHair.{Black} n3hasHair.{Blond} C L

ABox Studentmary), friendOf(mario,mary), (Studentiltalian)(mario), T(Studentiltalian)
(luigi), T(Student1Young(paul), T(NerdStuderit Tall)(bob)

T(C) is intended to select the most typical instanceS ahd can occur anywhere except from
being nested in & operator (as it can be seen from the semantics below, thatop&ris idem-
potent). Occurrence of typicality on the r.h.s. of inclusi@an be used, e.g., to state that typical
working students inherit properties of typical studefit€Student1Worker) C T (Studen), or to
state that there are typical Italian studers— 3U.T (Studentlltalian), whereU is the univer-
sal role (T x T £ U). As inclusionC is strict andT (C) is a concept, by standard DL inference
we can conclude that Mario is a typical student (by (g)) andngp(by (b)). Moreover, we ex-
pect that, according to desired properties of defeasilgleisions, Paul, who is a typical young
student, inherits the property of typical students of beimagh haters, while for Bob the more
specific property of typical nerd students of being math iswhould prevail.

Following (Giardano et al. 20094a; _Giordano et al. 2015), maetics for the extended lan-
guage is defined, adding to interpretationsSROELM, x) (Krétzsch 2010a) gpreference re-
lation < on the domain, which is intended to compare the “typicaldf/tlomain elements. The
typical instances of a conceft i.e., the instances daf(C), are the instances &f that are mini-
mal with respect ta<. As here we consider a rational extensiorS&OEI(M, x ), we assume the

preference relatior: to be modular as in (Britz et al. 2008; Giordano et al. 2015).

Definition 1
A SROELM, x)RT interpretation# is any structuréA, <,-') where:

e Ais adomain;' is an interpretation function that maps each concept nateetA' C A,
each role nameto a binary relatiolR' C A x A, and each individual namgeto an element
a' € A. The interpretation function is extended to complex concepts as usual:
T'=n, 1'=0;, {a}'/={d}; (€nD)=Cc'nD';
(ARC)'={xecA|IyecC :(xy)eR}; (ARSelf)!={xecA|(x,x) € R'}.
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o <isan irreflexive, transitive, well-founded and modHleslation over,
e Let Min_(S) = {u:ue Sandfize Ss.t.z < u}; the interpretation of concefit(C) is
defined as follows(T (C))' = Min_(C")

As in (Lehmann and Magidor 1992), modularity in preferdnti@dels can be equivalently de-
fined by postulating the existence of a rank functign: A — Q, whereQ is a totally ordered
set. Hence, modular preferential models are cak@tted modelsThe preference relation can
be defined fronk , as follows:x < y if and only if K ,(x) < K #(y). In the following, we as-
sume that a rank functidk, is always associated with any mod#f. We also define theank,

k #(C), of a concept C in the mode¥ ask ,(C) = min{k ,(x) | x € C'} (if C' = 0, thenC has
no rank and we writd , (C) = ). Given an interpretation# the notions of satisfiability and
entailment are defined as usual:

Definition 2(Satisfiability and rational entailment
An interpretation# = (A, <, ') satisfies:
e aconceptinclusio@ CDif C' CD';
e aroleinclusiorSCTif 3 CT!;
e ageneralized role inclusidRoSC T if Rl oS CT' (whereR oS = {(x,2) | (x,y) € R and
(y,2) € 9, for somey € A});
arole conjunctiors; 1S CTif SNS, C T
a concept product axio@x DC T if C' xD' C T';
a concept product axioRC Cx Dif R CC' x D';
an assertio€(a) if a' € C';
an assertioR(a,b) if (a',b') e R'.
Given a KBK = (TBoxRBoxABoY), an interpretation# =(A, <,-') satisfies TBoXresp.,
RBox ABoY) if .# satisfies all axioms iTBox(resp.,RBox ABox, and we write.# = TBox
(resp.,RBox AB0Y. An interpretation# = (A, <,-') is amodelof K (and we write 7 = K) if
A satisfies all the axioms ifBox RBoxandABox

Let a queryF be either a concept inclusid® C D, whereC andD are extended concepts,
or an individual assertiorf: is rationally entailed by Kwritten K |=goeirt F, if for all models
M =D, <, of K, ./ satisfiesF.

As shown in[(Giordano et al. 2009a) for the preferential esien of ALC, the meaning o
can be split into two parts: for any element A, x € (T(C))' when (i)x € C', and (ii) there
is noy € C' such thaty < x. The latter can be expressed by introducing a Godel-Lobatiiy
O and interpreting the preference relatiamas the accessibility relation of this modality. Well-
foundedness of ensures that typical elements@f exist wheneve€' # 0, avoiding infinitely
descending chains of elements. The interpretatidni of . is as follows:((0C)' = {x € A | for
everyy € A, if y < xtheny € C'}. The following result, from[(Giordano et al. 2009a), works as
well for typicality based on the rational semantics andSBROEI(M, x )R T, and will be exploited
in Section 4 to define an encoding®ROELM, x)RT in ASP:

Proposition 1
Given a model#, a concep€ and an elementc A: x € (T(C))' iff x € (CO-C)'

L An irreflexive and transitive relatior: is well-foundedif, for all SC A, for all x € S, eitherx € Min.(S) or 3y €
Min. (S) such thaty < x. It is modularif, for all x,y,z € A, x <y impliesx< zorz<y.
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In the rest of the paper, we mainly focus on the problem ofimst checking. In particular, we
propose an inference method in ASP for instance checki&R@ELM, x )R T under a minimal
model semantics, assuming the knowledge base is in normmal fo

A KB in SROEL, x)RT is in normal formif it admits the axioms of SROELM, x) KB in
normal form:

C(a) R(a,b) AC L TLCC AL {c} ACC AMBLCC
JRACC AC3IRB {a}CC 3JRSelfCC AL IRSelf
RCT RoSCT ROSCT AxBLCR RCCxD

(whereA,B,C,D € Nc, R, ST € Nr anda,b,c € N}) and, in addition, it admits axioms of the
form: AC T(B) and T(B) C C with A,B,C € Nc. Extending the results in (Baader et al. 2005)
and in [Krotzsch 2010a), it is easy to see that, giveBROELM, x)RT KB, a semantically
equivalent KB in normal form (over an extended signature)lma computed in linear time. For
details we refer td (Giordano and Theseider Dupré 2016¢revtt is proved that, for normalized
SROEI(M, x)RT KBs, rational entailment can be computed in polynomial tireploiting a
Datalog encoding extending the materialization calcutu$SROELM, x) in (Krdtzsch 2010a).

A small rank result can also be proved BROEI, x)RT. Let K be a knowledge base in
SROELM, x)RT and letCk be the set of the concepBssuch thafT (C) occurs inK. We prove
that, if K is satisfiable, then there is a modelkofsuch that the rank of each elementi#’ is
less than the numbenax of concepts irCg.

Theorem ISmall Rank

LetK = (TBox RBoxABoX be a normalize&ROEI(, x)RT knowledge base. Given any model
M = (B, <, of K, there exists a model’ = (A, <’,-"") of K (over the extended language)
such that, for alk € A: (i) k 4 (x) < max; (ii) for all C € N¢, x e CV iff x e C'; and (iii) for all
CeCx, xe (T(C)" iff xe (T(C))".

The proof can be found in Appendix A. As a consequence of #8slt, we can restrict our
consideration to models? of the KB such thak , : A+~ {0.. max}.

3 Minimal entailment

In Example 1, we cannot conclude using rational entailmieait all typical young Italians have
black hair (and that Luigi has black hair), as we do not knowthier there is some typical Italian
who is young. To support such a stronger nonmonotonic infarea minimal model semantics
can be used to select the interpretations where individaralas typical as possible.

While restricting to minimal models allows the typicality domain individuals to be max-
imised, some alternative notions of minimality have bearsaered in the literature (Giordano et al. 2013;
Casini et al. 2013; Giordano et al. 2015). In particularGmofdano et al. 2015) a notion of min-
imality is considered foALC with typicality where models with the same domains and timeesa
interpretations of concepts are compared and the ones imingnthe ranks of domain elements
are preferred.

Namely, an interpretation? =(A, <, 1) is preferred to#’ = (&, <" )|") (A < A#") if: A=
c'=c forall (non-extended) conceps for all x € A, Kk (X) <k ,(x), and there existg€ A
such thak 4 (y) <k 4 (y).

Given a queryQ (whereQ can be an assertioB(a) or T(C)(a) or an inclusionC = D or
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T(C) C D) we say that) is minimally entailedoy a knowledge basé if Q is satisfied in all the
minimal models oK.

It has been observed (Giordano et al. 2015), that this nofioninimality alone fails to select
the intended minimal models. For instance, considEr@ntaining the inclusions (c), (d), (e)
(f) from Example 1. With the above notion of minimaliff(NerdStudent Tall) = MathLover
is not entailed by, i.e. we cannot conclude that all the typical tall nerd shidare math lovers
(something we would like to conclude, given the irrelevaatbeing tall with respect to being
nerd students). Indeed, there is a minimal modélof K in which a typical tall nerd student is
not a math lover, as there is no tall nerd student which isals@ath lover in .

The explanation that# does not contain sufficiently many individuals has led tdriets
the consideration to models, callednonical that include a domain individual for any set of
concepts{Cy,...,Cy} consistent with the KB (where th&’s are non-extended concepts oc-
curring in KB or their negations). F&XLC andSHIQit has been shown (Giordano et al. 2015;
Giordano et al. 2014) that minimal canonical models pro@demantic characterization of the
rational closure of TBox which, however, is defined only f@dwhere typicality concepts only
occur on the I.h.s. of inclusions (we call thesimpleKBs). This holds in particular foEL" plus
typicality (which is a fragment 0ALC). In the general case, a KB BROEI(, x)RT may have
multiple minimal models with incomparable ranking functio Consider the following example:

Example 2

Let K be a knowledge base such thBBox= {C x D C R}, ABox= 0, andTBoxcontains the
inclusions (1)CrDC L, (2) T(T)N3IRT(T)C L, 3) T(C)CE, (3) T(D)C E. Observe
that, by theRBoxinclusion, eaclC elementis in relatio®R with all D elements and, by inclusion
(2) inTBox itis not the case that two elements of rank 0 (the rank otglpi’ elements) can be
in the relationR. So, it is not possible that@element and ® element have both rank 0 and, in
all minimal canonical models, eith€rhas rank 0 an@® has rank 1, or vice-versa.

The existence of alternative minimal models for a KB withefleccurrences of typicality was
observed in[(Booth et al. 20115) for Propositional Typigalitgic (PTL), a propositional lan-
guage with negation. While the existence of alternativeiméh canonical models is not per se
a problem, it may happen that a KB BROEI(, x)RT has no canonical modat all. This
problem was already pointed out for expressive logics sscBHOIQ (Giordano et al. 2014).
For instance, if a KB contains the inclusidibob} M StudentiWorkerC L, it cannot have a
canonical model. In fact, while the two sets of concedtsob}, Studenf and{{bob}, Worker:
are both consistent with the KB, there is no canonical mod@tkv contains an instance of
{bob} M Studentind one of bob} MWorker(asbobcan be a student or a worker, but not both).
Examples like this one suggest that an alternative req@ntéto the canonical model condition
would be needed to extend the minimal model semantics tgaraet oSROELM, x )R T KBs.
In essence, the canonical model condition requires thatdehmoust contain instances of all (the
sets of) concepts occurring in the KB that are consistertt iviThis condition can be weakened
by requiring thabnly for the concepts C such th&fC) occurs in the KB K (or in the querysn
instance ofC is required to exist in the model, whénis satisfiable ir (i.e., if there is a model
' of K such thaC" = 0). We call such model§-completeLetK be a KB andQ a query. Let
k.= {C | T(C) occurs inK orin Q andC is satisfiable irK}. When the query has the form
T(C) C D, % o also includes the two concef@s$1D andCr1—-D when satisfiable if.

Definition 3
A model.# is T-completgwrt K, Q) if, for all C € % o, C' # 0.
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AmongT-complete models, we select the minimal ones accordingetéaffowing preference
relation <1 over the set of ranked interpretatian&n interpretation# =(A, <,1) is preferred
to." = (O, <',I") (wrtK, Q), written.# <1 .4, if, forall C € Jk o, k#(C) <k 4(C), and
there existd € Ik g such thak , (D) <Kk /(D).

Definition 4
A is aT-minimal modebf K if it is a T-complete model oK (wrt Q) and it is minimal among
theT-complete models of wrt the preference relatiorT (wrt Q).

Definition 5(T-minimal entailment
Given a knowledge bag€ in SROEI(M, x)RT, a queryQ is T-minimally entailed by Kwritten
K Etmin Q, if, for all T-minimal models# of K (wrt Q), .# satisfiexQ.

It can be proved that there is a correspondence betweamimal models and minimal canoni-
cal models for knowledge baskssuch that: (i) a canonical model Kfexists and (ii) the ranking

K 4 of each canonical model of K is the same as the one determined by the Rational Clo-
sure construction. Ldtmin be the minimal entailment based on the minimal canonicaletsod
semantics (Giordano et al. 2015).

Theorem 2

LetK be a knowledge base satisfying conditions (i) and (ii) akan@Q an inclusionT (C) C D
(whereC andD are non extended concepts). ThEn=1min T(C) C D iff K }=min T(C) C D.

The proof can be found in Appendix A. In particular, theminimal models semantic and the
minimal canonical models semantic coincide for simple KBshie intersection oALC+ Tr
andSROELM, x)RT (i.e., inEL* plusT). For this fragment minimal canonical models provide
a semantic characterization of rational closure of simps KGiordano et al. 2015), so that con-
ditions (i) and (ii) hold. In additionT -minimal models can be defined also for KBs for which no
canonical model exists (for instance, the KB in Example 1dasiqueT-minimal model). In
particular, the presence in a KB of an inclusifsob} 1 StudentiWorkerC L, does not cause
the KB to have nal-minimal models, unless the KB contains other inclusiorchsas, for in-
stanceT ({bob} M Student C E andT ({bob} 1 Worker C F, which would require & -complete
model to contain instances @bob} 1 Studentnd of{bob} M Worker, which is not possible.

In Sectior# we show that for a normaliz8&ROELM, x )RT KB we can restrict our attention
to small models, whose size is linear in the KB size, and treatan generate such models as
the answer sets of an ASP encoding of the KB. In Seéfion 5 wednte a notion of preference
among answer sets, to define miniriatomplete answer sets of the KB. The following result,
proved in Appendix B, provides a lower bound on the compyesdtT-minimal entailment:

Theorem 3
Instance checking iIBROEL, x)RT underT-minimal model semantics 35-hard.

While we have introduced th&-minimal model semantics to capture the minimization of the
rank of concepts, th€-minimal semantics can be extended as well to maximize thieality of
named individuals. Indeed, in Example 1 we cannot conclbdeMary is a typical student and
hence she hates math, unless we assume that Mary is as @pipabsible by preferring those
models in which named individuals have the lowest rank. A netion of preference between
models can indeed be defined by reformulating, for Taminimal semantics, thpreference
wrt ABoxin (Giordano et al. 2015) (Def. 26), i.e., by selecting amdnginimal models those
which assign the lowest rank to individual names.
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We define a preferenceagox betweenT-minimal models, as follows. LéY, x be the named
individuals occurring irk and let#Z =(A, <,1) and.#’ = (&', <’,1") be twoT-minimal models
of K (wrt K, Q). We have that# <agox-#', if, forall ac Nk, k(@) <k, (a), and there
existsb € N, k such thak/,,(b') < k//,/(b' ). We call<agoxminimal theT-minimal models that
have no<agoxpreferredl -minimal model.

It is easy to see that also simple KBs satisfying conditignar(d (ii) of Theorenf R, having a
uniqgue minimal ranking assignment to concepts, may havépreiminimal ranking for named
individuals. Consider the following reformulation BROEI(M, x)RT of an example dealing
with the rational closure of ABox iALC+ Tr from (Giordano et al. 2015). The reformulation
is actually in the fragmerEL" plus typicality.

Example 3

Normally computer science cours€sS are taught by academic&); whereas business courses
(B) are normally taught by consultant)( while consultants and academics are disjoint, i.e., we
haveT Box= { Jis_.Teacherof.T(CS C A, Jis_Teacherof.T(B) CC, CrAL 1}, ABox=
{CYc1),B(c2),is_Teacherof (joe, c1),is_Teacherof (joe,c2)} andRBox= 0. In theT-minimal
models of the KB, all atomic concepts have rank 0. Obserweekier, that there is nd-minimal
model in which bottel' andc2! have rank 0, otherwisgoe would be a teacher of both a typical
computer science course and a typical business courses hemweould be both an academic and
a consultant, which is inconsistent. In th@goxrminimal models oK eithercl' has rank 0 and
c2' has rank 1, or vice-versa.

4 Modelsasanswer sets

We map a normalize@ROEIM, x)RT KB to an ASP program, extending the calculus by
Krotzsch [2010a) with a set of predicates to record the sasfkdomain elements as well as
the minimal ranks for concepts in a ranked model, thus progithe interpretation of typicality
concepts in the model. Alternative models of the KB, witHfatiént rank assignments, corre-
spond to alternative answer sets of the ASP program. Inqoiati we show that if the KB has a
model.#, then there is an answer set corresponding to a small motted &, which preserves
the relative ranks of the concepts.dik g (according to the small rank result above).

We show that a small number of auxiliary constants (nameig constanaux: for each
conceptT (C) occurring in the knowledge case) need to be introduced inAtBE program,
besides the auxiliary constaraax*="R¢ used by the calculus in (Krotzsch 2010a) to deal with
existential restriction. Generation of (small) modelstaf KB provides the basis for computing
minimal models, and then minimal entailment. We can show tharder to reason with minimal
entailment, we can restrict, without loss of generalityntndels over a domain containing named
individuals plus the auxiliary constants, i.e. to the dam@fithe models of the ASP encoding.

In this section, we consider the problem of verifying whethar a given normalized KB, there
is a model of the KB satisfying a query of the fofi{C)(a) or C(a) with C € Nc. In Sectior{’b
we address minimal entailment.

Given a normalized knowledge basewe defind1(K), the ASP program associated wikh
as the union of the following components:

1. Mk, the representation & in ASP, which is based on the input translatiori.in (Krotz286th0a

of a SROEIM, x) KB in normal form, with minor additions for the extended syxbf
SROEI(M, x)RT;

)
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2. Mg, the inference rules i _(Krotzsch 2010a), and additionfdrience rules for the ex-
tended syntax of inclusions wifh(C) concepts;
3. M, containing rules and constraints to enforce IMOELM, x )RT semantics;

Part 1. Mk is the representation &f in ASP according to rules that include the one$ in (KrotZ&eh0a),
where, to keep a DL-like notation, we do not follow the ASP\amtion where variable names
start with uppercase; in particuld, C, andR, are intended as ASP constants corresponding to
the same class/role namesKinin this representatiomom(a), cls(A), rol (R) are used foa € N

, A€ Nc, Re Ng, and, for example (the complete set of rules from (KrotZ4eh0a) is reported

in Appendix C):

e subClaséa, C), subClas§A, c¢), subClas§A, C) are used fo€(a), AC {c},ACC;
e SUPEXA,R,B,aux) is used forA C 3R.B;

In the translation oA C JR.B, aux is a new constant, different for each axiom of this form.
The ASP program identifies such names with a &aotsupetaux). The additional mapping for
the extended syntax of ttRROEIM, x )RT normal form is:

ALC T(B) — supTypA,B) T(B) C C — subTygB,C)

Also, we need to adtbp(T) to the input specification; moreover, for any concégiccurring
in K, the program includes a faetuxtqaux:, C) whereaux: is a new constant, used in the
following as a (name of) a representative typiCaln caseC is non-empty.

Part 2. Mg contains, with a small variant, the inference ruleslin s
(1-29) in Appendix C), for example:

010a) (see rules

inst(x,X) < nom(x)
inst(x, z) «+— subClass$y, z),inst(x,y)
inst(x, z) < SUbEXv,y, z), triple(x,v,X),inst(X,y)

Note thatinst(c,d) for c,d € N means[(Kr&tzsch 201Db) thét} C {d}, i.e.,c andd represent
the same domain elemefit;gr contains additional inference rules for inclusions withegexied
concepts:

(30) typ(x,2) < supTygy, z),inst(x,y)
(31) inst(x, 2) - subTygy, 2),typ(X,y)

Part 3. N, i.e. the set of rules and constraints to enforceSROELM, x)RT semantics, is as
follows. The rules and constraint (whehgj, k,k1,n are ASP variables, as well asix, used in
the next group of rules):

(32) ind(X) +~ nomX)

(33) ind(X) « auxsupefX)

(34) ind(X) + auxtdX,C)

(35) possrankO..n) < upperboundn)

(36) rank(x, k) « ind(x), possrankk), not hasdiffrankx, k)
(37) hasdiffrankx, k) < possrankk), rank(x,j),j! =k

(38) someat(k) + rank(x, k)

(39) < someat(kl),k1=k+ 1, possrankk),not someat(k)

define (32-34) the extended set of individual names; as€§{) to each individual name a
rank between 0 and, wheren is the number (asserted mpperboundn)), of T(C) concepts in
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the KB and the query; without loss of generality, state (38-39) thiao individual has rank,
no other individual has rank+ 1 (and then, ant > K); this is useful to reduce combinations of
rank assignments in case less timan1 different ranks can be used.

The following constraints and rules rely on the correspoicgén Propositiohl1 betwedr(C)
and (Cnd-C), and, usingboxnegk,C) to represent thafl-C holds for individuals at rank
k, relate it to membership of individuals (C) and to the semantics of typical instances as
maximally preferred instances of a concept:

(40) < —boxnegk,y),auxtqaux;,y), rank(aux,, h),k < h
(41) boxnegkly) + boxnegk,y),possrankkl), k1=k—1

(42) —inst(x,y) + boxnegk,y),rank(x,k1),k1=k—1

(43) —boxnegkl,y) < auxtqaux,y),rank(aux, k), inst(aux,,y),k1=k+1
(44) —boxnegkl,y) + —boxnegk,y), possrankkl),k1=k+1

(45) box.neg(n,y) < auxtqaux,,y), —inst(aux,, y),upperboundn)

(46) rank(y, h) + nom(y),inst(x,y), rank(x, h)

(47) inst(x,y) < typ(X,y)

(48) typ(x,y) « inst(x,y),rank(x, k), boxnegk,y)

(49) boxnegk,y) < typ(x,y), rank(x, k)

(50) box.negk,y) <— auxtqaux;,y), rank(aux;, k)

(51) inst(aux;,y) < auxtqaux,,y),inst(x,y)

(52) —inst(aux,,y) < auxtqaux;,y),not ins{aux,y)

(53) inst(aux;,y) < auxtqaux,,y),not —inst(aux;,y)

(54) + bot(z),inst(u, z)

Note that rules (35-37) assign a rank also to the additiovvidualsaux:. The constraint (40)
states that if araux: has rankh, -[J—C can only hold at ranks- h; rule (41) states that if
0-C holds at some rank, it also holds at lower ranks, where (dueléo42) individuals are not
instances o€C. Rule (43) states that dux: has rankk, and it is indeed an instance ©f then
—0-C holds atk+ 1, and (rule 44) at higher ranks. Rule (45) is for the case @#&ex: is not an
instance ofC; in this case, all domain elements are @atlements an@]—C holds for elements
at the highest rank (and then at all ranks).

The remaining rules state that: (46) the same rank is as$ifneonstants representing the
same individual; (47) typical members of a concept are mesi§é8) if (1-C holds atk, in-
stances ofC at rankk are typical instances; (49) if there is a typical instanceaak k, C1-C
holds atk; (50) (J—C holds at the rank odiux:; (51) aux is an instance o€ if there is an (other)
instance; (52) and (53) allow to assume thai is either an instance & or not, in case there
are no other instances. Rule (54) removes answer sets imwileconcept. has an instance.

The representatiorg of a queryQ of the formT(C)(a) or C(a) (with C € N¢) is as follows:
for a queryQ of the formT(C)(a), mg istyp(a,C); if Qs of the formC(a), iy isinst(a,C)). If
QisT(C)(a), thenauxtqaux:,C) is assumed to be if(K).

We establish a correspondence between models of a knowtedgK falsifying a queryQ
and answer sets of(K) U{—1}, i.e., the answer sets Bif(K) not containingt. First we show
that answer sets ¢1(K) U {—m} correspond to models & falsifying Q.

Proposition 2
Given a knowledge bag€ in normal form and a quer§, if there is an answer s&of the ASP
programi(K) U{—T}, then there is a mode# of K such that) is not satisfied in#.
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The next proposition shows that if there is a modekdalsifying a query, then there exists an
answer set of1(K) U{—mg}. As, by Propositiofil2, such an answer set corresponds to th sma
model ofK, Proposition§2 and] 3 together provide a small model resulSROEI(, x)RT.
Their proofs can be found in Appendix D.

Proposition 3
For aSROELM, x)RT knowledge bas& in normal form and a quer, if .# is a model oK
falsifying a queryQ, then there exists an answer Saif the ASP progranil(K) U {—mg}.

5 Computing minimal entailment

The T-minimality condition on models can be reformulated for #meswer sets of the ASP en-
coding. For a knowledge baseand a quengQ of the formC(a) or T(C)(a), we letAux g =
{auxc | T(C) occursinK or Q}.

Definition 6
An answer seBof M(K) is T-completevrt K, Qif inst(auxc, C) € Sfor all concept< satisfiable
in K and such thaaux: € Aux .
Given two answer set§; and$; of M(K), §; <1 S wrt K, Qif, for all auxc € Aux o:

(a) if {rank(auxc, hy),inst(auxc,C)} C S andrank(auxc, hy) € S, thenhy < hy;

(b) if inst(aux:,C) ¢ Sy, theninst(aux:,C) ¢ S.
An answer se$of of M(K) S isT-minimalwrt K, Q if Sis minimal, for=<t wrt K, Q, among the
answer sets dfl(K) which areT-complete wrK, Q.

In the definition of<t, note that (b) always holds foF-completeanswer sets. It is easy to
see (using Proposition$ 2 ahd 3) that for dryninimal model ofK falsifying Q there is aT -
minimal answer set dfl(K) not containingg, and vice-versa (see Appendix E, Proposition 5).
ThenK f=tmin Q if and only if 1 is in all theT-minimal answer sets dil (K) wrt K, Q.

In order to make the answer sets of the encodirgpmplete wrtK, Q, the following rules:

55) inst(x,y) < occurgy),auxtqx, y), satisfiabley)

56) satisfiabléy) «+— occurgy),cls(y), not unsatisfiablgy)

57) unsatisfiabléy) «+ occurgy),cls(y), cls(z),inst.s(x,z y), bot(z)
58) inst.s(y,y,y) < occurgy)

S~ o~~~

are added, and a fastcurgc) is asserted for all concep@ssuch thaux: € Aux q. Rule (55),
for all suchCs makes the auxiliary constant, representative of typi¥sl indeed an instance
of C, in caseC is satisfiable. Satisfiability is verified using, as done[indigsch 2010a) for
subsumption checking, a version of the basic calculus withdditional parameter. In rule (57),
predicateinst sis a version ofinst where the third parameter, a concept namespresents the
assumption that the concept is not empty; asin (Krotzsdi®ay the name of the concept itself
is used for a hypothetical instance of the concept, and B8gfrovides this membership. Rule
(57) then concludes that a concept is not satisfiable if aggpits non-emptiness leads to infer
that L has some instance.

The basic calculus, which is extended with the extra paramist, in our case, the Datalog
calculus for rational entailment showing that instancec&irgy under=¢ et can be performed
in polynomial time |(Giordano and Theseider Dupré 2016 ciSa calculus includes the basic
calculus in [[Krotzsch 2010a) (see Appendix C), and alket of rules to deal with typical-
ity, usingtyp(a,C) to represent (C)(a) as in sectiofil4, and including rules (30-31); however,
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unlike M+ in sectior4, rules imlrt do not assign a rank to each individual, only using predi-
catesleqRankx,y),sameRan(x,y) to constrain the ranks of two individuals. The extra param-
eter is added as follows: in all rulesccurgq) is added to the antecedent; in all literals for
predicatednst triple, self,occurstyp, leqRank sameRankpredicate names are replaced with
inst.s, triple_s, self_s, occurss, typ_s, leqRanks, sameRanls, andq is added as last parameter.

The T-minimal answer sets are computed using alsprin framework (Brewka et al. 2015)
for Answer Set Preferences, which uses multi-shot ASP sglvihe framework allows a user
to specify preferences, also using a library of preferenioetuding ways for composing basic
preferences. Th&-minimal answer sets can be selected adding a preferencdicgigon that
relies on such a library and is composed of a statement:

#preferencep;, lesgweight){X, X :: rank(aux, X) : possrankX)}

for eachaux € Aux g, that defines a preference, nanmgdfor a smaller rank ofwux; and the
statements:

#preferencep-tbox pareto{namepy);...;namep,)}
#optimizep-tbox)

which require an optimal solution with respect to the prefiee defined as thgaretocombina-

tion of the preferencep.-@. Then, givemTtmin(K,Q) , which isT(K) with the additional rules
and preference statements described in this sedtidarmin Q if and only if g is in all the

optimal solutions computed Bsprinfor Mtmin(K, Q).

Observe that deciding the existence of aminimal answer set of1(K) falsifying g is a
problem inzg’ (see Appendix E, Proposition 6) and it could also be solvedibgct encoding
in Disjunctive Datalog with negation (Eiter et al. 1997) endhe stable model semantics. By
Proposition 5 in Appendix E, checking whethef=rmin Qis then inM%, and, given the hardness
result in Theorerfl3, it i§15-complete.

In a similar way, answer set preferences indisprinframework allow to capture ABox min-
imization, i.e. minimization of the ranks of named indivalsi (assigning an higher priority to
concept rank minimization). In particular, this can be doneducing a statement:

#preferenceépy,, lesgweight){X, X :: rank(a;, X) : possrankX)}

for eacha € N k, that defines a preference, nammg for a smaller rank o&; and replacing
#optimizep-tbox) with the statements:

#preferencgp-abox pareto){namep,,); . ..;Namepy,) }
#preferencep-lex lexico){2 :: namép-tbox); 1 :: namep-abox }
#optimizep-lex)

which require an optimal solution with respect to the legi@phic combinatiorp-lex of the
paretocombinationp-tboxof the minimization of concept ranks, and, with smaller ptio the
paretocombinationp-aboxof the minimization of individual ranks.

In Tabled we report some results about the actual executibie sramework irasprin We use
Example 1 as a basis, using also minimization of the rankdi¥iduals, as described above. We
report the running times (in seconds) for variants of thergxXa as theABoxgrows, replicating

2 Such statements also minimize the rank ohaR whose corresponding concept is not satisfiable, but thisgkevant;
such a constant will not be instance of any concept, thenamy can be assigned to it.
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| 1x 2X 4x 6x 8x

Replication ofABox | 0.82 1.01 1.34 163 1.90

Replication ofkB | 082 1.96 3.87 27.28 40.62

Table 1. Some scalability results for Example 1

(up to 8 times) theABoxof Example 1, i.e., addin§tudentmary), friendOf(marid, mary),
and so on; and running times for variants where the wk@egrows, replicating, again up to
8 times, the entire exampl¢B, i.e., addingT (Italian’) = JhasHair.{BlacK},... as well as
Studenf{mary), and so on.

It can be seen that the basic example requires a small buhegligible running time (0.82
seconds); the approach scales up well (first row) with reisjpethe ABox and not equally well
in case (second row) both tAdBoxandTBoxgrow.

6 Conclusionsand Related Work

In this paper we have shown that Answer Set Programming carséeé for reasoning under
a minimal model semantics in a rational extension of the l@mpglexity description logic
SROEIL, x), which underlies the OWL EL ontology language. In particulee have defined
an ASP encodingl(K) of a knowledge baskK so that the answer sets Bf(K) correspond to
small (finite and polynomial) models &f. The encoding is based on the materialization calculus
for instance checking in Datalog by Krotzs¢h (2010a) fa libgic SROEL, x ). We propose

a T-minimal model semantics which is an alternative to the madicanonical model semantics
in (Giordano et al. 2015), but which coincides with it whemimal canonical models of the KB
exist and their ranking of concepts agrees with the rankimgpuited by rational closure. The ad-
vantage of th@ -minimal model semantics is that it can be defined also fores&Bs for which

no minimal canonical model exists. We show that instanceldhg undefT-minimal entailment

in SROEL, x)R T is N5-complete and we use ttasprinframework (Brewka et al. 2015) for
Answer Set Preferences to compute minimal entailment. Ppeoach is extended to deal with
ABox minimization, by minimizing the ranks of individual mees, and can be used to experiment
alternative notions of minimization.

Tableaux-based proof methods for a preferential extensidow complexity DLs including
EL' have been studied ih (Giordano et al. 2009b), based on netatjpns that are not required
to be modular, and on minimizingd—C concepts. For such a logic, in (Giordano et al. 2011) it
is shown that minimal entailment is®TIME-hard already for simple KBs, similarly to circum-
scriptive KBs [((Bonatti et al. 2011).

Nonmonotonic extensions of DLs include the formalisms fambining DLs with logic pro-
gramming rules, such as for instance, (Eiter et al. 2008yfivand Rosati 2010), (Knorr et al. 2012)
and Datalog +/{(Gottlob et al. 2014). In (Bonatti et al. 2)d on monotonic extension of DLs
is proposed based on a notion of overriding and supportimgality concepts. In particular, it
preserves the tractability of low complexity DLs, includiaL™ ™ andDL-lite. In (Knorr et al. 201PR)
a general DL language is introduced, which exteBBOIQwith nominal schemas and epistemic
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operators as defined in_(Motik and Rosati 2010), and encosepa®me of the most prominent
nonmonotonic rule languages, including ASP. The CKR fraoreBozzato et al. 2014), based
on SROIQ-RI. allows for defeasible axioms with local exceptions. It f@wn that instance
checking over a CKR reduces to (cautious) inference undesutiswer sets semantics.

The work in this paper could provide a starting point for dawj more effective approaches for
computingT-minimal entailment or alternative notions of defeasibiiea@ment in low complex-
ity DLs. In particular, for the fragment @ROELM, x )R T for which T-minimal entailment pro-
vides a characterization of the rational closure of the Kt tve expect to be larger than the in-
tersection withALC+ Tr , computingl -minimal entailment can be made more efficient through
the rational closure construction, since rational enteiitis polynomial (Giordano and Theseider Dupré 2016).
To this purpose, a combination with the polynomial Datalogagling of entailment iSROEI(M, x )R T
in (Giordano and Theseider Dupré 2016) can be exploitetirEwork may also include opti-
mizations based on modularity as in_(Bonatti et al. 2015e@ls as considering refinements of
the rational closure, such as the lexicographic closutepdiniced by Lehmann (1995) and ex-
tended toALCin (Casini and Straccia 2012), and the relevant closureqeegin[(Casini et al. 2014).
The combination of low complexity DLs and rule languagespaovide a convenient setting in
which alternative approaches to the definition of excetiorDLs can be compared, and can as
well be a source of challenging problems for ASP solvers.
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Appendix A Proofsof Theorems 1 and 2

Theorem 1 (Small Rank)

Let K=(TBox,RBox,ABox) be a normalized SROEL<)RT knowledge base. Given any model
M = (B, <, of K, there exists a model/’ = (A, <’,-"") of K (over the extended language)
such that, for all xe &: (i) k_,(x) < max; (i) for all C € Ne, xe C" iff x € C'; and (iii) for all
CeCx, xe (T(C) iffx e (T(C)).

Proof

We define the model#’ over the domai\ by letting =1 while changing the rank of the
elements inA. What is preserved from# is the relative order of the ranks of the typical
elements, foC € Cx. Remember that, from the definition of the rank of a concefat model,

k »(C) is equal to the rank of all the typic&ls in .# (which must have all the same rank). Let
us partition the sefx according to the ranks of the conceptsif:

Ho = { C e Ck | thereis nd € Cx withk (D) <k »(C)}

Hi={CeCk—(HoU...UHi_1) | thereis nd € Cx — (HoU...UH;_1) withk (D) < k ~(C)}
As the setC is finite and its cardinality isnax, there is some minimum < max, such that
Hn+1 =0.

We define the relatior:’ by setting the rank of all the domain elements#1 between 0 and
n+ 1. In particular, we want to let the rank of all the typi€aélements to be if C € H;. For all
xeAA:

-if K #(X) <K (C) for someC € Ho, then letk ,(x) = 0;
-if K 7 (B) <k #(X) <Kk ,(C) for someB € Hj_; andC € H; (0 < i < n), then letk ,,(X) =1;
-if K 7 (B) <k 4(x) for someB € Hy, then letk ,/(x) = n+ 1.

In particular, we let the rank of all the typidalelements to bg if C € H;. In fact, ifx € (T(C))'
thenk ,(x) =k #(C). In caseC € H;, thenk - (x) = 1.

Changing the ranks as above cannot make a domain element isha typicalC (for some
C € C), become a nontypicél element. In fact, ik € (T(C))", then for ally such thak , (y) <
k #(x),y ¢ C. Suppose a typical elementx gets the rankin .#’ (asC € H;). Somey can get
in .#' the same rank asif k ,(B) <k 4(y) <k «(C), for someB € H;_3. However, even if
the rank ofy becomes, x remains a typicaC element. Also, it is not the case that a nontypical
C elementz (for C € Ck) can become a typic& element. In fact, one sucghmust have a rank
Kk «(2) greater than the rank of any typidalelementx, i.e.,k »(X) < Kk #(2). If x gets rank in
A, sinceC € Hj, then (by definition of #’) z gets a rank higher thein Of course, this is not
true for the concept€ ¢ Cx. However, we can include as well in the €t all the concept€
such thafl (C) might occur in a query. [J

Theorem 2 Let K be a knowledge base satisfying the followongitions:
(i) a canonical model of K exists;
(ii) the ranking K of each canonical model/ of K is the same as the one determined
by the Rational Closure construction;
and let Q be an inclusiof (C) C D (where C and D are non-extended concepts). Thea;iin
T(C) C Diff K F=min T(C) T D.

Proof
(If) By contraposition. Suppose thi&tt-tmin Q, i.€. there is & -minimal model.# of K which
falsifiesQ. Let us consider any minimal canonical modé! of K (there is one by (i)).#" must
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give the same ranks a# to the concept€ € Jk . Firstitis not the case tha#’ <1 .#, other-
wise.# would not be a -minimal model. Also, it is not the case that there is a conCep % q
suchthak ,(C) < k 4 (C) =rank(C), as the rank of a concept in any modekofannot be lower
thanrank(C), the rank ofC in the Rational Closuﬁa(this property holds foBROELM, x)RT as

it holds forALC+ Tr (Giordano et al. 2015) and f@HIQRT (Giordano et al. 2014)). If there
is a concepC € Ik g such thak ,/(C) < k »(C) =rank(C), then as we have excluded that
AM' <1 A, there must be a concePt € Fk g such thak ,(C") < k ,(C') = rank(C), (i.e.,
the two models# and.#’ must be incomparable wrk+). But we have already seen that it not
possible that the rank &' in a model is lower than the rank 6f in the rational closure. Thus,
the minimal canonical mode#/’ assigns to the concepts ifi o the same rank as7.

We have to show tha#’ falsifies the quer@. LetQ beT(C) C D. As ./ falsifiesT(C) C D,
there is an elemente A such thak € (T(C))' (xis a typicalC elementin#) andx ¢ D'. Hence,
x € (Cn-D)'. Letk 4(x) =i (and hence ,(C) =1i). As .’ is a canonical modely’ must
contain a domain elemepte (Cr—D)"". Clearly,k ,(CA—D) >k 4 (C). If k ,»(CA-D) =i,
theny € T(C)" (asC has the same rarikn .# and in.#"), and.#’ falsifiesQ. We show that
assuming thak ,(CA-D) = j > i, leads to a contradiction. By hypothesis (i##’ assigns
to concepts the same rank as the rational closure, hemd€C A —-D) = j > i in the rational
closure. This contradicts the fact thay (C A —D) =i, as the rank of a concept in a modelkof
cannot be lower than the rank of that concept in the RatiofaCe.

(Only If) By contraposition. Let# is a minimal canonical model ¢f falsifying Q. We want
to show that there is @-minimal model.#’ falsifying Q. We can show that# is itself a
T-minimal model ofK (falsifying Q). Clearly,.# is aT-complete model oK. If .# were non-
minimal wrt. <7, there would be a model/” <1 .. In this case, there would beGie % o
such thak ,/(C) < k ,(C). This is not possible, due to the property that the rank ofreceptC
in a model ofK cannot be lower tharank(C), the rank of the conce in the Rational Closure.
As, from hypothesis (ii)k ,(C) = rank(C), it is not the case th&t ,(C) < k »(C). O

Appendix B Proof of Theorem 3: Lower Bound for T-minimal entailment

In this section we show that the problem of deciding instactoecking under th&-minimal
model semantics is @5-hard problem foSROEL, x )RT knowledge bases. To show this, we
provide a reduction of the minimal entailment problempokitive disjunctive logic programs
which has been proved to b&§-hard problem by Eiter and Gottlob in (Eiter and Gottlob 1995
A similar reduction has been used to prdvg-hardness of entailment for Circumscribed Left
Local EL* knowledge bases in (Bonatti et al. 2011).

Let PV = {p1,...,pn} be a set of propositional variables. A clause is formgle... VI,
where each literdy is either a propositional variabf® or its negatior-p;. A positive disjunctive
logic program (PDLP) is a set of claus8s= {yi,..., ym}, Where eacly; contains at least one
positive literal. A truth valuation foSis a setl C PV, containing the propositional variables
which are true. A truth valuation is a model 8ff it satisfies all clauses is. For a literall, we
write SE=min | if and only if every minimal model (with respect to subsetiirsion) of Ssatisfies

3 Observe that, the rank of a conceft can be determined in the rational closure construction fd<Bain
SROEIM, x)RT, by iteratively verifying exceptionality of the conceptwith respect to a set of inclusiofi accord-
ing to the iterative construction ih (Giordano et al. 2015)s exceptional wrt. Fiff Ei Esreirt T(T)MCLC L. For a
concepiC A —D, whereC andD are non extended concep® —D is exceptional wrt. Eiff Ej FEgroeit T(T)MCC D.
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[. The minimal-entailment problem can be then defined asvisligiven a PDLFSand a literal,
determine whethe8 =min I. In the following we sketch the reduction of the minimal-atent
problem for a PDLPS to the instance checking problem undeminimal entailment, from a
knowledge bas& constructed frons.

We define a KBK = (TBox RBoxABoX) in SROELM, x)RT as follows. We introduce a con-
cept namé?}, € N for each variablg, € PV (h=1,...,n). Also, we introduce iftNc an auxiliary
concepH, a concept namBs associated with the set of clausgésind a concept nani; asso-
ciated with each clausg in S(j = 1,...,m). We leta € N be an individual name, and we define
K as follows:

RBox= 0,

ABox= {P,(a),h=1,....n} U{T(H)(a),Ds(a)},
andTBoxcontains the following inclusions (whe@ andC/ are concepts associated with each
literal I} occurringiny; =1} v...v1}, as defined below):

OT(MNHE L . .

(2){ajnc/cD; forallyj=1{v...vl}inS

@){apnb;ncin...ncic L forallyj=Ijv...vI}inS

(4){a}FID1|_|...|_|Dm;DS

(5){a}MDsC D1M1...MDp, _
foreachh=1,....n,j=1....m and Wheré:iJ is defined as follows:

o _ { T(Ry) it 1) = pn
! JU.(T(T)MR) if 1) = —pp

o_ ) uamnR il =p
L TR if 1! = —pn

whereU is the universal role. Let us consider any modél= (A, <,-') of K. Observe that, all
the T(T) elements are alhH elements. Henced (being a typicaH) must have rank greater
then 0, and it will have rank 1 in all-minimal models. Th& -minimal models oK satisfying
Dg(a) are intended to correspond to the (propositional) minimtgrpretationsl satisfyingS.
Roughly speaking, the concefgsuch that! € (T(P,))' in .# correspond to the variables
in the minimal interpretatiod satisfyingS. In any T-minimal model ofK, eitherR, has rank 0
(andais not a typicalR,), or B, has rank 1 (and is a typicalR,). Clearly, by T-minimality, a
model ofK in which the ranking of a set d&’s is 0, is preferred to the models in which the
ranking of some of thosB,’s is higher (i.e. 1). This captures the subset inclusionimatity in
the interpretations of the positive disjunctive logic pram S. Inclusions (2)-(5) bind the truth
values of theR,(a) to the truth values of the clauses$rand of their conjunction. The assertion
Ds(a) in ABoxis required to select only those interpretations satigfyiire setS of disjunctions.
Observe also that arly-minimal model must contain al leasPaelement, foreach=1,... n,
ash, is a consistent concept.

In any minimal canonical model# of K satisfying Ds(a): either a' € (T(R,))' or
a € (AU.(T(T)MT(Pn)))". Hence, fora' the two concepts in the definition GF are disjoint

and complementary, almj is actually the concept representing the complemeﬁ;j ofsiven a
setSof clauses and a literdl, the following holds:

Proposition 4
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Given a seSof clauses and a literdl,
SEminL ifandonlyif K =1minCL(a)

whereC_ is the concept associated withi.e.,C. = T(pp) if L = pn, andCL = 3U.(T(T)MR,)
if L= —Pp.

From the reduction above and the fact that minimal entaitrfeePDLP isM5-hard (Eiter and Gottlob 1995),
it follows that minimal entailment und&i-minimal model semantics [85-hard, i.e. Theorem 3
holds.

Appendix C Calculusfor instance checking in SROEL, x)

We report the calculus fdBROELT, x ) instance checking from (Krdtzsch 2010a) used in sec-
tion 5 and, with a small variant, in section 4. The repred@naof a knowledge baseanput
translation is as follows, where, to keep a DL-like notation, we do ndiofe the ASP conven-
tion where variable names start with uppercase; in paaichl) B C, andR, S, T, are intended as
ASP constants corresponding to the same class/role naries in

aeN +—noma)
CeNc —cls(C)
ReNr — rol(R)

C(a) + subClas§a,C)
R(a,b) + supExa,R b,b)
TLCC —top(C)

AC 1 +— bot(A)
{a} CC > subClas$a,C)
AL {c} ~— subClas§Ac)
ALC C +— subClaséA C)
AMBLC C + subCon{A,B,C)

JRSelfE C + subSelfR C)

ALC 3R Self — supSelfA/R)
JRALCC — subEXRA,C)
ALC JRB +— supEXA R B,aux)

RCT + subRoléR T)
RoSC T + subRChaifR,S,T)
RCCxD ~ supProdR C,D)
AxBLCR — subProdA B,R)
RASC T ~ subRConjR S, T)

In the translation oA C 3R.B, aux is a new constant, different for each axiom of this form.
Theinference rulegincluded inlg in section 4) are the followirl?g

(1) inst(x,X) - nom(x)

X)
(2) self(x,v) + nomx), triple(x, v, x)
(3) inst(x, z) « top(2),inst(x,2)

4 Here,u,v,x,y,z,w, possibly with suffixes, are ASP variables.
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(4) L + bot(z),inst(u,2)
(5) inst(x, z) + subClass§y, z),inst(x,y)
(6) inst(x,z) + subCon{y1,y2,z),inst(x,y1),inst(x,y2)
(7) inst(x,z) < sUbEXv,y, z),triple(x,v,X),inst(X,y)
(8) inst(x,z) + SUbEXv,y,z),self(x,v),inst(x,y)
(9) triple(x,v,X) < sUpEXy, v,z X'),inst(x,y)
10) inst(X', z) + SUpEXy, v,z X),inst(X,y)
1) inst(x, z) «+ subSelfv, z), self(x, V)
12) self(x,v) « supSelfy,v),inst(x,y)
(13) triple(x,w,X') +— subRolév,w), triple(x,v,X)
(14) self(x,w) < subRolév,w), self(x, V)
(15) triple(x,w,X") +— subRChaifu, v,w), triple(x, u,x'), triple (X', v,x")
(16) triple(x,w,X') +— subRChaifu, v,w), self(x, u), triple(x, v,X)
(17) triple(x,w,X') +— subRChaifu, v,w), triple(x, u,x’), self(x’, v)
(18) triple(x, w, x) «— subRChaifu, v, w), self(x, u), self(x,Vv)
(19) triple(x,w,X') +— subRConjv1,v2 w),triple(x,v1,x),triple(x,v2 X)
(20) self(x,w) < subRConjv1,v2 w),self(x,v1),self(x,v2)
(21) triple(x,w,X') +— subProdyl,y2,w),inst(x,y1),inst(X,y2)
(22) self(x,w) < subProdyl,y2 w),inst(x,y1),inst(x,y2)
(23) inst(x,z1) + supProdv,z1 z2), triple(x,v,X)
(24) inst(x,z1) < supProdv,z1 z2), self(x, V)
(25) inst(X',z2) «+— supProdv, z1 z2), triple(x, v,X)
(26) inst(x,z2) «+ supProdv, z1 z2), self(x, V)
(
(

(
(1
(

(27) inst(y, z) < inst(x,y), nom(y),inst(x, z)
(28) inst(x, z) < inst(x,y),nom(y),inst(y, z)
(29) triple(z,u,y) « inst(x,y),nom(y), triple(z, u, x)

The version of the calculus if (Krotzsch 20110a), used irtiSe, contains the rule:
(4b) inst(x,y) < bot(z),inst(u,z),inst(x,Z ), cls(y)
instead of rule (4) above.

Appendix D Proofsfor Section 4
D.1 Proof of Proposition 2

Proposition 2. Given a normalized knowledge base K and aygQeif there is an answer set S
of the ASP prograrll(K) U {—Tiy}, then there is a model# = (A, <,-') of K such that Q is not
satisfied inZ.

The proof is similar to the one for Lemma 3 n (Krotzsch 201 ®hich proves the completeness
of the materialization calculus f@ROEL, x) by contraposition, building a model of the KB
from the minimal Herbrand model of the Datalog encoding.e5lgiven the answer s&tof the
programrl(K) U {—m} we build the model# falsifying Q exploiting the information irs.

In particular, we construct the domain ef from the seConstincluding all the name con-
stantsc € N, as well as all the auxiliary constants occurring in the ASBgpam (KB, Q),
defining an equivalence relation over constants and usioiyagnce classes to define domain
elements. For readability, we wrigaixX*="RC andaux, respectively, for the constants associated
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with inclusionsA C 3R.C and with the typicality concepf§(C). Observe that the answer &t
contains all the details about the definition of the rankifighe domain elements that can be
used to build the model/.

First, let us define a relatios between the constants@onst

Definition 7
Let = be the reflexive, symmetric and transitive closure of thatieh {(c,d) | inst(c,d) € S, for
c € Constandd € N, }.

It can be proved that:

Lemmal
Given a constargsuch that~ aforae Ny, if inst(c, A) (triple(c,R,d), triple(d, R, c), sel f(c,R),
rank(c,k)) is in S, theninst(a,A) (triple(a,R,d), triple (d,R,a), self(a,R), rank(a,k)) isin S.

The proof is similar to the proof of Lemma 2 in_(Krotzsch 268)L0For the predicateank, the
proof exploits rule (46). The vice-versa of Lemia 1 only sofdr some of the predicates,
namely:

Lemma 2
Given a constant such that ~ aforac Ny, if inst(a,A) (triple(a, R, d), rank(a,k)) is in S, then
inst(c,A) (triple(c,R,d), rank(c,k)) isin S.

Now, let[c] = {d | d ~ c} denote the equivalence classmfwe define the domain of the
interpretation as follows:A = {[c] | c € N } U {wy="RC wp="RC | inst(auxX*=7RC e) ¢ Sfor
somee and there is nd € N, such thauxX*="RC ~ d} u{zL,Z | inst(aux:,e) € Sfor somee
and there is nd € N, such thatiux: ~ d}. Two copies of auxiliary constants are introduced, as
in (Krotzsch 2010b), to handgelf statements.

For each elemerge A, we define a projection(e) to Constas follows:

-1([c)) =¢;

- 1 (WAETRC) — aupERE =1 2;

-1(Z5) = aux,i=1,2;

We define the interpretation of individual constants, cgteand roles ovek as follows:

-forallce N, ¢ =Id;

-foralld € A, d € Aliff inst(1(d),A) €S,

-foralld,ec A, (d,e) € R iff (triple(1(d),R,1(e)) € Sandd # €)

or (self(1(d),R) € Sandd = e).

We define the rank of the domain elementdim agreement with the extension of threnk
predicate irS:

-foralld € A, Kk ,(d)=h,iff rank(i(d),h) € S.

In particularzc has rankif rank(auxc, h) € Sandw”=RC has rankif rank (auxX*="R€ h) € S,
The rank functiork , ([c]) is well defined. In fact, there is exactly ohsuch thatank(i (d), h) €
Sfor eachi(d) (rules (36) and (37)). It is easy to see by Lenimha 1 and Lefdmaf when
aux~a(acN),ie.auc € [a), we havek ,([a]) = hiff rank(aux:,h) € S. As a consequence,
all the concept€ such thafl (C) occurs inK (or in Q) have that same rank i and inS.

To conclude the proof of Proposition 2 it suffices to prove thé is a model of KB, i.e. it
satisfies all the axioms in KB. The proof is as[in (KrotzscA@ff) (see Lemma 2), except that
we have to consider the additional axioAks T(B) andT(B) C C.

ForALC T(B) in KB, we havesupTygA,B) € S. Let us assume thatc A'. We want to prove
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thatd € (T(B))'. By constructiorinst(i(d),A) € S. By rule (30),typ(i (d),B) € S. By rule (47),
inst(1(d),B) € S i.e.,d € B'. Letrank(i(d),h) € S i.e.k »(d) = h.

To show thad is a typicalB, we have to show that, for all the domain elementgith rank
j <h,e¢B'. Giventhatyp(i (d), B) andrank(i (d), h) are inS, from rule (49) boxnegh,B) € S.
From the repeated application of rule (449x neqj,B) € S, forall j < h. Hence, fromrule (42),
for all e € A such thatank(i(e),j) € S(i.e.,k #(e) = j < h) —inst(i(e),B) € Sand therefore,
inst(1(e),B) ¢ S. Thus, for alle € A such thak ,(e) = j <h,e¢ B'. So,d € (T(B))".

ForT(B) CCin KB, we havesubTygB, C) € S. Letd € (T(B))'. We have to prove thatc A'.
Assume thak ,(d) = h, i.e.,rank(1(d),h) € S. Asd € (T(B))', d € B' and, for alle € A such
thatk ,(e) = j < h, e¢ B' (and hence, by constructioimst( (€),B) ¢ S). Fromd € B', by the
definition of ., inst(1(d),B) € S.

Consider also the rank alixs. Letrank(auxg,j) € S. By rule (51) it must be thabst(auxg, B) €
S. Either j = h or j # h. If j = h, then fromrank(auxg,h) € S, we conclude by rule (50)
that boxnegh,B) € S, and, given thainst(i(d),B) andrank(i(d),h) are inS, by rule (48),
typ(1 (d),B) € S. Thus, by rule (31)inst(1(d),C) € S.

We can exclude the cage# h, as both the hypothesjs< h and the hypothesis> hlead to a
contradiction. Fojj < h: the fact thatnst(auxg, B) € Scontradicts the fact that, for ale A such
thatk ,(e) = j < h,inst(1(e),B) € S. For j > h: fromrank(auxg,j) € S, we can conclude by (50)
thatboxnedj,B) € S, which would imply, by (41) and (42), thatinst(i(d),B) € S (from the
fact thatrank(i (d),h) € Sandh < j). Again a contradiction.

Hence,.# is a model of KB. ForQ = C(a), from the hypothesis-inst(a,C) € S, hence
inst(a,C) € Sand, by constructiora' ¢ C' in.#. ForQ=T(C)(a), from the hypothesistyp(a,
C) € S hencetyp(a,C) ¢ S. If inst(a,C) ¢ Sthen, by construction of#, a ¢ C' and, clearly,
a ¢ (T(C))". Instead, ifinst(a,C) € S, astyp(a,C) € S, it must be that, forank(a,h) and
rank(auxc,j) in S, h # j (otherwise, by rules (48) and (50), would conclugip(a,C) € ).
Also, it can be seen that the hypothelis j leads to a contradiction. Hende,> j and, by
constructionk (&) > k »(C) = j, so that! ¢ (T(C))".

This completes the proof of Proposition 2.

D.2 Proof of Proposition 3

Proposition 3. For a SROEL], x)RT knowledge base K in normal form and a query Qzf=
(A, <, is a model of K falsifying a query Q, then there exists an ansge S of the ASP

programf(K) U {—mg}.

Proof
Let Q be a quenfC(a) (respectivelyT (C)(a)). We show that such an answer Satan be con-
structed from the model” such thatinst(a,C) € S (respectivelytyp(a,C) € S). Without loss
of generality, we can assume that has no more thamax + 1 different rank values (from O
to max) and that the rank values have been made contiguous, aegdadirheorem 1. In the
ASP program we let the upper boundo be equal tanax and, in the following, we lehmax
be the maximum rank of domain elements.# (observe thahmax < max). We exploit.#Z
to construct the answer s8tby assigning the ranks to the constantdNjnand to the auxiliary
constantauxX*="R¢ andaux according to the ranks of the elementsa.

Let § contain the following facts:

0.nom(c) for c € Ni; auxsupesfc) for c = au*="RC; auxtqauxg,B) for all T(B) in K or Q;
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.ind(c) for all c € N; and for allc auxiliary constants;

.rank(c,h), if k ,(c') = h, for eachc € Ny;

.rank(ausg, h), if there existsx € (T(B))' andk , (x) = h;

.rank(auxg, hmay) if B' = 0;

rank(@u*=7RC h) if Al £ 0 andh = min{k ,(x) | x€ (CN3IR".A)'};

rank(auX*=7RC hnay if Al = 0;

.inst(auxg, B) € S, if B' # 0, for B € Nc and T (B) occurring inK; otherwise, let-inst(auxg, B) € S

8. —inst(a,C) € S if Q=C(a);

9.-typ(a,C) € S if Q=T(C)(a);

10.L € S for anyL € Nk, whereL is the ASP literal representing a rule kn(according to the input

translation in Section 4 (Part 1) andn Appendix C).

11.upperboundmax ), possrank(0),. .., possrank(max ),someat(0),...,someat(hmax)

~NOoO o~ WNBRE
ALA A

The rank ofc € N, is equal to the rank of' in .#. The rank ofaux is equal to the rank of any
typicalB elementin, if any (as all the typicaB elements have the same rankifi). aux*=="RC

is given the rankmay, WhenA! = 0, otherwise it is given a minimal rank of the elements in the
(CM3R.A)' concept interpretatiﬂnAlso, by item 5.auxg is set to be an instance of conc&pt

if and only if B has some instance iw .

As in the proof of soundness of the materialization calcidurotzsch 2010b) (see Lemma
2), we assign a concept expressiqft) to each constant occurring in the ASP prograiiK) U
{—mo}:

-if ce Ny, thenk(c) = {c};

-if c=aux*="RC thenk(c) =CM3R A

- if c=auxg, thenk(c) =T(B).

We say that a set of literas is satisfied in the mode# , if the following conditions hold:
-for B € N, if inst(c,B) € S, then.# = k(c) C B andk(c)' # 0
-ford € N,, if inst(c,d) € S then.# |= k(c) C {d} andk(c)' # 0
-for B € N, if typ(c,B) € S, then.# = k(c) C T(B) andk(c)' # 0
-for R€ N, if triple(c,R,d) € S then.# = k(c) C 3Rk (d) andk(c)' # 0
-for R€ N, if self(c,R) € S, then.# |= k(c) C IR.Sel fandk (c)' # 0
- if rank(c,h) € Sandk(c)' # 0, thenk ,(k(c)) =h
- if boxnegh,A) € Sthen, for allx € A such thak 4 (x) = h, x € (O-A)'

-if —boxnegh,A) € Sthen, for allx € As.t.k 4(x) = h, x ¢ (O-A)!
-for B € N, if —inst(c,B) € Sandk(c)' # 0, then.# = k(c) C B
-for B € N, if —typ(c,B) € Sandk(c)' # 0, then.# - k(c) C T(B)
-forBe N, if bot(B) € S, then.Z =BC L

-forBe N, if top(B) € S, then.Z =T C B

Notice that, from the previous conditions it is not the cdmsx bot(B) andinst(a, B) are both
in S, for someB € Nc, otherwise, we would have (froinst(a,B) € S) .# = k(a) C B with
k(a)' # 0 and (frombot(B) € S)that.# =BLC 1.

Let us consider the portio® the ASP progranil(K) U {—} containinglk, plus the rules
(32)-(39), the rules (52), (53) and the faetp. Once a unique rank is assigned to each constant
cin N, and to auxiliary constants, and the rank values are all goatis and start from 0 (as
required by rules (38) and (39)), and in particular the rafitke typicalB elements (if any) have

5 Notice that, although inverse roles are not in the langua@RDEI(M, x )RT, at the semantic level the set of domain
elements ifCM3R.A)' is well defined, according to the usual semantics of investasi{Horrocks et al. 2000), i.e.,
(3R.A)' = {x € A| existsy € A' such thaty,x) € R'}.
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been fixed (as in#) by introducingrank(auxg, h) in S, for someh, andinst(auxs, B) if B' # 0,
the sety satisfies the ASP rules By and is supported, that iSy is an answer set of the program
Po.

All the other rules in the program do not involve default negaand their application uniquely
determines an answer set, if it exists. So if there is an anseteof the ASP programi (K) U
{—mg} it can be obtained by repeatedly applying the rulgd inontaining all the ruleBl g (Part
2) and the rules (40)-(51), (54) Mt (Part 3).

We can show that the application of the rule of the progransemes the property th&
is satisfied in the model7. Starting fromSy, which is an answer set of the porti®g of the
program we show that the iterative application of the reing®ASP rules (those iR;) gives a
new setSof literals that is satisfied in/Z'.

The proof can be done by induction on the number of applinatad the rules used to add a
given literal inS.

Let Sbe the set of literals obtained after the exhaustive aptdicaf all the rules irP; starting
from &. Sis satisfied by the model” of KB. Hence,S cannot contain complementary literals
such asnst(b,A) and—inst(b, A), otherwiseSwould not be satisfied in#Z. Also, inst(a, C) and
bot(C) cannot be irSfor anya andC. ThereforeSis a consistent set of literals, and satisfies alll
the rules inP; as well as irP. Moreover, any literal ifSis supported irSbecause it either belongs
to S (and is supported iRy), or it is derived fromSy by a sequence of rule applications. Hence,
Sis an answer set dfl (K) U{—Tg}. By construction—inst(a,C) € S (resp.,—typ(a,C) € 9).

U

Appendix E Proofsfor Section 5

Proposition 5

Given a normalized knowledge bakeand a quenyQ, if there is a model# = (A, <,-') of K
which isT-minimal wrt K, Q and falsifiesQ, then there is an answer sgebf the ASP program
M(K), which isT-minimal wrtK,Q and such thatt ¢ S, and vice-versa.

Proof

Let.# = (A, <,-") of K which is T-minimal wrt K,Q and falsifiesQ. By Proposition 3, there
exists an answer s8bf the ASP prograrl (K)U{—m}. As.# is T-complete, by construction,
Sis alsoT-complete. Also, by construction, the ranks of the conc€pts.Z% g are the same in
A as inS(i.e., k (C) =h < w iff rank(auxc,h),inst(aux:,C) € S). We have to show the
is T-minimal wrt K, Q. Suppose, by absurdum, th&is not T-minimal. Hence, there is &-
complete answer s& of M(K) such thatS <t S By Proposition 2, fronS we can build a
model.#" of K such that the ranks of the conceftg % q are the same in#Z’ as inS (see
the construction if Appendix|D, Sectibn D.1). By constronti/Z’ is alsoT-complete. Hence,
there is aT-complete model#’ of K such that#’ <t .#, which contradicts the hypothesis
that.# is T-minimal.

Vice-versa, leGbe an answer set of the ASP progrBitK ), which isT-minimal wrtK, Q and
such thatnst(a,C) ¢ S. By Proposition 2, fron5S we can build a model# of K such that the
ranks of the concep@ € I g are the same inZ as inS. By construction# is T-complete (as
Sis T-complete). We have to show that is aT-minimal model oK. Suppose by absurdum that
. is notT-minimal. Then, there is anoth&complete model#’ of K such that#’ <t .# . By
Proposition 3, there exists an answerSeif the ASP prograril(K) U{—mg}. By construction,
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S is T-complete and assigns to the concé&pis Ik o the same ranks a#”’ (see the construction
in[Appendix O, Sectiof DI2). Hence, it must be ti$r S, which contradicts the hypothesis
thatSis T-minimal. [

Proposition 6
The problem of deciding the existence of aninimal answer set dfl (K) falsifying g is in Zg.

Proof

This problem can be solved by nondeterministically guegsirsetS of literals of polynomial
size in the size oK and then verifying that:

(1) Sis an answer set dfl (K);

(2) Sis T-complete wriK, Q;

@ m¢ES

(4) Sis T-minimal wrtK, Q among theT-complete answer sets Bf(K).

Verification of (1), (2) and (3) requires polynomial time inetsize ofK. In particular, for
(1) the Gelfond and Lifschitz’ transform &1(K) wrt S, IM(K)® (which has polynomial size and
does not contain default negation), can be computed in palyal time as well as its logical
consequences. For (2);completeness can be verified by checking#t(aux:,C) is in S, for
all theaux: € Aux g such thasatisfiabl¢C) holds (using the definition of predicasatisfiable
in Section 5 based on the polynomial encodindlah (Giordano and Theseider Dupré 2016)).
(4) can be checked by calling an NP oracle which verifies $iatT-minimal among theT -
complete answer sets &. In fact, the verification tha% is not aT-minimal answer set oK
can be done by an NP algorithm which nondeterministicallyegates a set of literalS' (of
polynomial size in the size d€) such thaS <t S(S =<1 Scan be checked in polynomial time).

Hence, the problem of deciding existenceTofminimal answer set offl(K) falsifying g is in
NPNP. O
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