
ar
X

iv
:1

60
8.

02
68

1v
2

 [
cs

.L
O

]
 1

7
Fe

b
20

17

Under consideration for publication in Theory and Practice of Logic Programming 1

First-Order Modular Logic Programs and

their Conservative Extensions

AMELIA HARRISON

University of Texas at Austin

(e-mail: ameliaj@cs.utexas.edu)

YULIYA LIERLER

University of Nebraska Omaha

(e-mail: ylierler@unomaha.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Modular logic programs provide a way of viewing logic programs as consisting of many independent, mean-

ingful modules. This paper introduces first-order modular logic programs, which can capture the meaning

of many answer set programs. We also introduce conservative extensions of such programs. This concept

helps to identify strong relationships between modular programs as well as between traditional programs.

We show how the notion of a conservative extension can be used to justify the common projection rewriting.

This note is under consideration for publication in Theory and Practice of Logic Programming.

1 Introduction

Answer set programming (ASP) is a prominent knowledge representation paradigm rooted in

logic programming. In ASP, a software developer represents a given computational problem by

a program whose answer sets (also called stable models) correspond to solutions. Then, the

developer uses an answer set solver to generate stable models for the program. In this paper we

show how some logic programs can be viewed as consisting of various “modules”, and how stable

models of these programs can be computed by composing the stable models of the modules.

We call collections of such modules first-order modular programs. To illustrate this approach

consider the following two rules

r(X ,Y)← in(X ,Y). (1)

r(X ,Y)← r(X ,Z),r(Z,Y). (2)

Intuitively, these rules encode that the relation r is the transitive closure of the relation in. The

empty set is the only answer set of the program composed of these rules alone. Thus, in some

sense the meaning of these two rules in isolation is the same as the meaning of any program

that has a single answer set that is empty. We show how we can view these rules as forming

a module and use the operator SM introduced by Ferraris et al. (2011) to define a semantics

that corresponds more accurately to the intuition associated with the rules above. The operator

SM provides a definition of the stable model semantics for first-order logic programs that does

not refer to grounding or fixpoints as does the original definition. The operator SM has proved

to be an effective tool for studying the properties of logic programs with variables. Since such

programs are the focus of this paper, we chose the operator SM as a technical tool here.

http://arxiv.org/abs/1608.02681v2

2 Harrison and Lierler

Modularity is essential for modeling large-scale practical applications. Yet research on modu-

lar answer set programming is at an early stage. Here we propose first-order modular programs

and argue their utility for reasoning about answer set programs. We use the Hamiltonian Cycle

problem as a running example to illustrate that a “modular” view of a program gives us

• a more intuitive reading of the parts of the program;

• the ability to incrementally develop modules or parts of a program that have stand-alone

meaning and that interface with other modules via a common signature;

• a theory for reasoning about modular rewritings of individual components with a clear

picture of the overall impact of such changes.

First-order modular programs introduced here can be viewed as a generalization of proposi-

tional modular logic programs (Lierler and Truszczyński, 2013). In turn, propositional modular

logic programs generalize the concept of lp-modules by Oikarinen and Janhunen (2008). ASP-

FO logic (Denecker et al., 2012) is another related formalism. It is a modular formalization of

generate-define-test answer set programming (Lifschitz, 2002) that allows for unrestricted inter-

pretations as models, non-Herbrand functions, and first-order formulas in the bodies of rules. An

ASP-FO theory is a set consisting of modules of three types: G-modules (G for generate), D-

modules (D for define), and T-modules (T for test). In contrast, there is no notion of type among

modules in the modular programs introduced here.

We also define conservative extensions for first-order modular programs. This concept is re-

lated to strong equivalence for logic programs (Lifschitz et al., 2001). If two rules are strongly

equivalent, we can replace one with the other within any program and the answer sets of the

resulting program will coincide with those of the original one. Conservative extensions allow

us to reason about rewritings even when the rules in question have different signatures. We can

justify the common projection rewriting described in Faber et al. (1999) using this concept. For

example, the rule

← not r(X ,Y),edge(X ,Z),edge(Z′,Y) (3)

says that every vertex must be reachable from every other vertex. This rule can be replaced with

the following three rules without affecting the stable models in an “essential way”

← not r(X ,Y)∧ vertex1(X)∧ vertex2(Y).

vertex1(X)← edge(X ,Y).

vertex2(Y)← edge(X ,Y).

Furthermore, this replacement is valid in the context of any program, as long as that program

does not already contain either of the predicates vertex1 and vertex2. Such rewritings can be jus-

tified using conservative extensions. Conservative extensions provide a theoretical justification

for rewriting techniques already commonly in use. Projection is one such technique, which of-

ten improves the performance of answer set programs. Currently, these performance-enhancing

rewritings are done manually. We expect the theory about conservative extensions developed here

will provide a platform for automating such rewritings in the future. We note that conservative

extensions are related to the notion of knowledge forgetting in Wang et al. (2014). However, that

work applies only to propositional programs.

This paper is structured as follows. In Sections 2 and 3 we review traditional programs and

the operator SM. In Section 4, we define first-order modular logic programs, and in Section 5

we show how they are related to traditional logic programs. Finally, in Section 6, we introduce

conservative extensions and show how they can be used to justify program rewritings.

First-Order Modular Logic Programs and their Conservative Extensions 3

2 Review: Traditional Programs

A (traditional logic) program is a finite set of rules of the form

a1; . . . ;ak← ak+1, . . . ,al ,not al+1, . . . ,not am,not not am+1, . . . ,not not an, (4)

(0 ≤ k ≤ l ≤ m ≤ n), where each ai is an atomic formula, possibly containing function sym-

bols, variables, or the equality symbol with the restriction that atomic formulas a1, . . . ,ak and

am+1, . . . ,an may not contain the equality symbol. The expression containing atomic formulas

ak+1 through an is called the body of the rule. A rule with an empty body is called a fact. An in-

stance of a rule R occurring in a program Π is a rule that can be formed by replacing all variables

occurring in R with ground terms formed from function symbols and object constants occurring

in Π. The process of grounding a traditional logic program consists of the following steps:

1. each rule is replaced with all of its instances by substituting ground terms for variables;

2. in each instance, every atomic formula of the form t1 = t2 is replaced by⊤ if t1 is the same

as t2 and by ⊥ otherwise.

It is easy to see that the resulting ground program does not have equality symbols and can be

viewed as a propositional program. The answer sets of a traditional program Π are stable models

of the result of grounding Π, where stable models are understood as in (Ferraris, 2005).

According to (Ferraris and Lifschitz, 2005) and (Ferraris, 2005), rules of the form (4) are suf-

ficient to capture the meaning of the choice rule construct commonly used in answer set pro-

gramming. For instance, the choice rule {p(X)}← q(X) is understood as the rule

p(X)← q(X), not not p(X).

In this paper we adopt choice rule notation. Traditional logic programs cover a substantial prac-

tical fragment of the input languages used in developing answer set programming applications.

Consider the traditional program consisting of the rule

s(X ,Z)← p(Z),q(X ,Y),r(X ,Y) (5)

and the facts

p(2). q(1,1). q(1,2). q(2,2). r(1,1). r(1,2). r(2,1). (6)

Grounding this program results in eight instances of (5) and the facts in (6). The only answer set

of this program is

{p(2),q(1,1),q(1,2),q(2,2),r(1,1),r(1,2),r(2,1),s(1,2)}. (7)

Consider the Hamiltonian Cycle problem on an undirected graph. This problem is often used

to introduce answer set programming. A Hamiltonian Cycle is a subset of the set of edges in a

graph that forms a cycle going though each vertex exactly once. A sample program that encodes

this can be constructed by adding rules (1), (2), and (3) to the following:

edge(a,a′). . . . edge(c,c′). (8)

edge(X ,Y)← edge(Y,X). (9)

{in(X ,Y)}← edge(X ,Y). (10)

← in(X ,Y), in(X ,Z),Y 6= Z. (11)

← in(X ,Z), in(Y,Z),X 6= Y. (12)

← in(X ,Y), in(Y,X). (13)

4 Harrison and Lierler

Each answer set of the Hamiltonian Cycle program above corresponds to a Hamiltonian cycle

of the given graph, specified by facts (8), so that the predicate in encodes these cycles. If an

atom in(a,b) appears in an answer set it says that the edge between a and b is part of the subset

forming the Hamiltonian cycle. Intuitively,

• the facts in (8) define a graph instance by listing its edges, and rule (9) ensures that this

edge relation is symmetric (since we are dealing with an undirected graph); the vertices of

the graph are implicit—they are objects that occur in the edge relation;1

• rule (10) says that any edge may belong to a Hamiltonian cycle;

• rules (11) and (12) impose the restriction that no two edges in a Hamiltonian cycle may

start or end at the same vertex, and rule (13) requires that each edge appears at most once

in a Hamiltonian cycle (recall that in(a,b) and in(b,a) both encode the information that

the edge between a and b is included in a Hamiltonian cycle);

• rules (1) and (2) define a relation r (reachable) that is the transitive closure of relation in;

• rule (3) imposes the restriction that every vertex in a Hamiltonian cycle must be reachable

from every other vertex.

Groups of rules of the Hamiltonian Cycle program have clear intuitive meanings as shown above.

Yet, considering these groups separately will not produce “meaningful” logic programs under the

answer set semantics as discussed in the introduction. In this paper, we show how we can view

each of these groups of rules as a separate module, and then use the SM operator introduced by

Ferraris et al. (2011), along with a judicious choice of “intensional” and “extensional” predicates

to achieve a more accurate correspondence between the intuitive reading of the groups of rules

and their model-theoretic semantics.

3 Review: Operator SM

The SM operator introduced by Ferraris et al. (2011) gives a definition for the semantics of logic

programs with variables different than that described in the previous section. The SM operator

bypasses grounding and provides a mechanism for viewing groups of rules in a program as

separate units or “modules”. Consider rule (5). Intuitively, we attach a meaning to this rule: it

expresses that relation s holds for a pair of objects when property p holds of the second object

and some object is in relation q and relation r with the first object. A program consisting only

of this rule has a single answer set that is empty, which is inadequate to capture these intuitions.

Ferraris et al. (2011) partition predicate symbols of a program into two groups: “intensional” and

“extensional”. If the predicate s is the only intensional predicate in rule (5), then the SM operator

captures the intuitive meaning of this rule seen as a program.

We now review the operator SM following (Ferraris et al., 2011). The symbols ⊥,∧,∨,→,∀,

and ∃ are viewed as primitives. The formulas¬F and⊤ are abbreviations for F→⊥ and⊥→⊥,

respectively. If p and q are predicate symbols of arity n then p ≤ q is an abbreviation for the

formula ∀x(p(x)→ q(x)), where x is a tuple of variables of length n. If p and q are tuples

p1, . . . , pn and q1, . . . ,qn of predicate symbols then p≤ q is an abbreviation for the conjunction

(p1 ≤ q1)∧·· ·∧ (pn ≤ qn),

1 This precludes graphs that include isolated vertices, but such vertices can be safely ignored when computing Hamilto-
nian cycles.

First-Order Modular Logic Programs and their Conservative Extensions 5

and p < q is an abbreviation for (p ≤ q)∧¬(q ≤ p). We apply the same notation to tuples of

predicate variables in second-order logic formulas. If p is a tuple of predicate symbols p1, . . . , pn

(not including equality), and F is a first-order sentence then SMp[F] (called the stable model

operator with intensional predicates p) denotes the second-order sentence

F ∧¬∃u(u < p)∧F∗(u),

where u is a tuple of distinct predicate variables u1, . . . ,un, and F∗(u) is defined recursively:

• pi(t)
∗ is ui(t) for any tuple t of terms;

• F∗ is F for any atomic formula F that does not contain members of p;

• (F ∧G)∗ is F∗∧G∗;

• (F ∨G)∗ is F∗∨G∗;

• (F →G)∗ is (F∗→ G∗)∧ (F → G);

• (∀xF)∗ is ∀xF∗;

• (∃xF)∗ is ∃xF∗.

Note that if p is the empty tuple then SMp[F] is equivalent to F . For intuitions regarding the

definition of the SM operator we direct the reader to (Ferraris et al., 2011, Sections 2.3, 2.4).

A signature is a set of function and predicate symbols. A function symbol of arity 0 is an object

constant. For an interpretation I over signature σ and a function symbol (or, predicate symbol)

t from σ by tI we denote a function (or, relation) assigned to t by I. Let σ and Σ be signatures

so that σ ⊂ Σ. For interpretation I over Σ, by I|σ we denote the interpretation over σ constructed

from I so that for every function or predicate symbol t in σ , tI = tI|σ .

By σ(F) we denote the the set of all function and predicate symbols occurring in formula F

(not including equality). We will call this the signature of F . An interpretation I over σ(F) is a

p-stable model of F if it satisfies SMp[F], where p is a tuple of predicates from σ(F). We will

sometimes refer to p-stable models where p denotes a set rather than a tuple of predicates. Since

the cardinality of p will always be finite, the meaning should be clear. It is easy to see that any

p-stable model of F is also a model of F . Similarly, it is clear that for any interpretation I, if

I|σ(F) is a p-stable model of F then I satisfies SMp[F]. We may refer to such an interpretation as

a p-stable model as well.

From this point on, we view logic program rules as alternative notation for particular types of

first-order sentences. For example, rule (5) is seen as an abbreviation for the first-order sentence

∀xyz((p(z)∧q(x,y)∧ r(x,y))→ s(x,z)). (14)

Similarly, we understand the Hamiltonian Cycle program presented in Section 2 as an abbrevia-

tion for the conjunction of the following formulas

edge(a,a′)∧ . . . ∧ edge(c,c′)

∀xy(edge(y,x)→ edge(x,y))

∀xy((¬¬in(x,y)∧ edge(x,y))→ in(x,y))

∀xyz((in(x,y)∧ in(x,z)∧¬(y = z))→⊥)

∀xyz((in(x,z)∧ in(y,z)∧¬(x = y))→⊥)

∀xy((in(x,y)∧ in(y,x))→⊥)

∀xy(in(x,y)→ r(x,y))

∀xyz((r(x,z)∧ r(z,y))→ r(x,y))

∀xyzz′((¬r(x,y)∧ edge(x,z)∧ edge(z′,y))→⊥)

(15)

6 Harrison and Lierler

where a,a′, . . .c,c′ are object constants and x,y,z,z′ are variables.2

Let S denote sentence (14). We now illustrate the definition of p-stable models. If s is the only

intensional predicate occurring in S then S∗(s) is

∀xyz(((p(z)∧q(x,y)∧ r(x,y))→ u(x,z))∧ ((p(z)∧q(x,y)∧ r(x,y))→ s(x,z)))

and SMs[S] is

S∧¬∃u((∀xz(u(x,z)→ s(x,z))∧¬∀xz(s(x,z)→ u(x,z)))∧S∗(s)

This second-order sentence is equivalent to the first-order sentence

∀xz(s(x,z)↔ (p(z)∧∃y(q(x,y)∧ r(x,y)))),

which reflects the intuitive meaning of the rule (5) seen as a program.

By π(F) we denote the set of all predicate symbols (excluding equality) occurring in F . The

following theorem is slight generalization of Theorem 1 from (Ferraris et al., 2011) as we con-

sider quantifier-free formulas that may contain equality.

Theorem 1

Let Π be a traditional logic program. If σ(Π) contains at least one object constant then for any

Herbrand interpretation X of σ(Π) the following conditions are equivalent

• X is an answer set of Π;

• X is a π(Π)-stable model of Π.

This theorem illustrates that the set of Herbrand edge,r, in-stable models of program (15)

coincide with the set of its answer sets.

4 Modular Logic Programs

In this section, we introduce first-order modular logic programs, which are similar to the propo-

sitional modular logic programs introduced in (Lierler and Truszczyński, 2013). In a nutshell, a

first-order modular logic program is a collection of logic programs, where the SM operator is

used to compute models of each individual logic program in the collection. The semantics of a

modular program is computed by finding the “intersection” of the interpretations that are mod-

els of its components. We call any formula of the form SMp[F], where p is a tuple of predicate

symbols and F is traditional logic program viewed as a first-order formula, a defining module (of

p in F) or a def-module. A first-order modular logic program (or, modular program) P is a finite

set of def-modules

{SMp1
[F1], . . . ,SMpn [Fn]}.

Let P be a modular program. By σ(P) we denote the set
⋃

SMp[F]∈P

σ(F),

2 In logic programming it is customary to use uppercase letters to denote variables. In the literature on logic it is the
specific letter used that indicates whether a symbol is an object constant or a variable (with letters drawn from the
beginning of the alphabet typically used for the former and letters from the end of the alphabet for the latter). We
utilize both of these traditions depending on the context.

First-Order Modular Logic Programs and their Conservative Extensions 7

called the signature of P. We say that an interpretation I over the signature σ(P) is a stable model

of modular program P if for every def-module SMp[F] in P, I|σ(F) is a p-stable model of F .

Let P,Q, and R stand for formulas

p(2), (16)

q(1,1)∧q(1,2)∧q(2,2), and (17)

r(1,1)∧ r(1,2)∧ r(2,1), (18)

respectively. Consider a modular program consisting of four def-modules

{SMp[P],SMq[Q],SMr[R],SMs[S]}, (19)

where S is defined as in the previous section. The Herbrand interpretation (7) is a stable model

of this modular program.

The stable models of modular program (19) coincide with the p,q,r,s-stable models of

SMp,q,r,s[P∧Q∧R∧S]. (20)

Recall that P∧Q∧R∧ S can be viewed as the logic program consisting of the facts (6) and the

rule (5). By Theorem 1, the Herbrand p,q,r,s-stable models of (20) coincide with the answer sets

of the logic program composed of rules in (5) and (6). These facts hint at the close relationship

between modular logic programs and traditional logic programs as written by answer set pro-

gramming practitioners. In the following, we formalize the relationship between modular logic

programs and traditional logic programs. This formalization is rooted in prior work on splitting

logic programs from Ferraris et al. (2009).

5 Relating Modular Programs and Traditional Programs

As mentioned earlier, we view a traditional logic program as an abbreviation for a first-order

sentence formed as a conjunction of formulas of the form

∀̃(ak+1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧¬¬am+1∧·· ·∧¬¬an→ a1∨·· ·∨ak), (21)

which corresponds to rule (4). The symbol ∀̃ denotes universal closure. We call the disjunction

in the consequent of a rule (21) its head, and the conjunction in the antecedent its body. The

conjunction ak+1∧·· ·∧al constitutes the positive part of the body. It is sometimes convenient to

abbreviate the body of a rule with the letter B and represent rule (21) as

∀̃(B→ a1∨·· ·∨ak). (22)

Let P denote a modular program. By π(P) we denote the set
⋃

SMp[F]∈P

π(F),

called the predicate signature of P. Similarly, by ι(P) we denote the set
⋃

SMp[F]∈P

p

called the intensional signature of P. By F (P) we denote the formula
∧

SMp[F]∈P

F.

8 Harrison and Lierler

A modular program is called simple when for every def-module SMp[F], every predicate sym-

bol p occurring in the head of a rule in F occurs also in the tuple p. For instance, modular

program (19) is simple. We note that this restriction is, in a sense, inessential. Indeed, consider

a def-module SMp[F] that is not simple. There is a straightforward syntactic transformation that

can be performed on each rule in F , resulting in a formula F ′ such that SMp[F] is equivalent to

SMp[F
′]. Let R be a rule of the form (22) and p be a tuple of predicate symbols. By shiftp(R) we

denote the universal closure of the following formula

B ∧
∧

π(ai)6∈p,

1≤i≤k

¬ai →
∨

π(ai)∈p,

1≤i≤k

ai.

In other words, any atomic formula in the head of a rule whose predicate symbol is not in p

is moved to the body of the rule and preceded by negation. For a traditional logic program F ,

shiftp(F) is the conjunction of formulas obtained by applying shiftp to each rule in F . Theorem 5

from Ferraris et al. (2011) shows that if the equivalence between any two first-order formulas

can be derived intuitionistically from the law of excluded middle formulas for all extensional

predicates occurring in those formulas, then they have the same stable models. The following

observation is a consequence of that theorem.

Observation 1

For a traditional logic program F, def-modules SMp[F] and SMp[shiftp(F)] are equivalent.

For any simple modular program P, the dependency graph of P, denoted DG[P], is a directed

graph that

• has all members of the intensional signature ι(P) as its vertices, and

• has an edge from p to q if there is a def-module SMp[F] ∈ P containing a rule with p

occurring in the head and q occurring in the positive part of the body.

For instance, the dependency graph of simple modular program (19) consists of four vertices

p,q,r,s and edges from s to p, from s to q, and from s to r. It is easy to see that this graph has

four strongly connected components, each consisting of a single vertex.

We call a simple modular program P coherent if

(i) for every pair of distinct def-modules SMp[F] and SMp′ [F
′] in P, tuples p ∩ p′ = /0, and

(ii) for every strongly connected component c in the dependency graph of P there is a def-

module SMp[F] ∈ P such that p contains all vertices in c.

It is easy to see, for example, that modular program (19) is coherent.

The following theorem is similar to the Splitting Theorem from Ferraris et al. (2009). That

theorem says that under certain conditions the stable models of a conjunction of two formulas

coincide with those interpretations that are stable models of both individual formulas with respect

to different sets of intensional predicates. The theorem below presents a similar result for coher-

ent programs and is more general in the sense that it applies to any finite number of def-modules,

rather than just two.

Theorem 2 (Splitting Theorem)

If P is a coherent modular program then an interpretation I is an ι(P)-stable model of F (P) iff

it is a stable model of P.

First-Order Modular Logic Programs and their Conservative Extensions 9

edge

in r

Fig. 1. Dependency graph for Phc.

Since modular program (19) is coherent, it is not by chance that its stable models coincide

with the Herbrand p,q,r,s-stable models of (20). Rather, this is an instance of a general fact. The

following theorem, which follows from Theorems 1 and 2, describes the relationship between

modular programs and traditional logic programs.

Theorem 3

For a coherent modular program P such that σ(P) contains at least one object constant and

π(P) = ι(P) and any Herbrand interpretation X of σ(P) the following conditions are equivalent

• X is an answer set of F (P);

• X is a stable model of P.

A modular program {SMp[q(1)→ p(1)], SMq[p(1)→ q(1)]} is an example of a non-coherent

program. Consider the Herbrand interpretation {p(1),q(1)}. This interpretation is a stable model

of this program. Yet, it is not an answer set of the traditional program consisting of the two rules

q(1)→ p(1). and p(1)→ q(1). The only answer set of this traditional program is the empty set.

We now illustrate how modular programs capture the encoding (15) of the Hamiltonian Cycle

so that each of its modules carries its intuitive meaning. The Hamiltonian Cycle modular program

presented below consists of five def-modules:

SMedge[edge(a,a′)∧ . . . ∧ edge(c,c′)∧∀xy(edge(y,x)→ edge(x,y)] (23)

SMin[∀xy((¬¬in(x,y)∧ edge(x,y))→ in(x,y))] (24)

SM[∀xyz((in(x,y)∧ in(x,z)∧¬(y = z))→⊥)∧ (25)

∀xyz((in(x,z)∧ in(y,z)∧¬(x = y))→⊥)∧

∀xy((in(x,y)∧ in(y,x))→⊥)]

SMr[∀xy(in(x,y)→ r(x,y))∧ (26)

∀xyz((r(x,z)∧ r(z,y))→ r(x,y))]

SM[∀xyzz′((¬r(x,y)∧ edge(x,z)∧ edge(z′,y))→⊥)] (27)

We call this modular program Phc. The def-modules shown above correspond to the intuitive

groupings of rules of the Hamiltonian Cycle encoding discussed in Section 2.

• An edge-stable model of def-module (23) is any interpretation I over σ(Phc) such that the

extension3 of the edge predicate in I corresponds to the symmetric closure of the facts

in (8).

3 The extension of a predicate in an interpretation is the set of tuples that satisfy the predicate in that interpretation.

10 Harrison and Lierler

• An in-stable model of def-module (24) is any interpretation I over σ(Phc) such that the

extension of the predicate in in I is a subset of the extension of the predicate edge in I.

• An /0-stable model of def-module (25) is any interpretation I over σ(Phc) that satisfies the

conjunction in (25).

• An r-stable model of def-module (26) is any interpretation I over σ(Phc), where relation r

is the transitive closure of relation in.

• An /0-stable model of def-module (27) is any interpretation I over σ(Phc) that satisfies the

conjunction in (27).

Any interpretation over σ(Phc) that satisfies the conditions imposed by every individual module

of Phc is a stable model of Phc.

The dependency graph of Phc is shown in Figure 1. The strongly connected components of this

graph each consist of a single vertex. It is easy to verify that the Hamiltonian Cycle program Phc

is coherent. By Theorem 3, it follows that the Herbrand models of Hamiltonian Cycle coincide

with the answer sets of (15) so that answer set solvers can be used to find these models.

Arguably, when answer set practitioners develop their applications they intuitively associate

meaning with components of the program. We believe that modular programs as introduced here

provide us with a suitable model for understanding the meaning of components of the program.

6 Conservative Extensions

In this section, we study the question of how to formalize common rewriting techniques used in

answer set programming, such as projection, and argue their correctness.

Let F and G be second-order formulas such that π(F) ⊆ π(G) and both formulas share the

same function symbols. We say that G is a conservative extension of F if

• {M|M is a model of F}= {M|σ(F)|M is a model of G}, and

• there are no distinct models M and M′ of G such that M|σ(F) = M′|σ(F).

The definition of a conservative extension for second-order formulas gives us a definition of a

conservative extension for def-modules, as they are second-order formulas. It is interesting to

note that the first condition of the definition holds if and only if F has the same models as the

second-order formula ∃p1 . . . pn G, where {p1, . . . pn}= π(G)\π(F). The second condition adds

another intuitive restriction. For example, consider the broadly used Tseitin transformation. In

this transformation, an arbitrary propositional formula is converted into conjunctive normal form

by (i) augmenting the original formula with “explicit definitions” and (ii) applying equivalent

transformations. The resulting formula is of a new signature, but both of the conditions of the

definition hold between the original formula and the result of Tseitin transformation. We can

state the definition of a conservative extension more concisely by saying that G is a conservative

extension of F if M 7→M|σ(F) is a 1-1 correspondence between the models of G and the models

of F .

In view of Theorem 1, the definition of a conservative extension can be applied to tradi-

tional logic programs: If Π1 and Π2 are traditional programs such that π(Π1) ⊆ π(Π2) and

both programs share the same function symbols, then Π2 is a conservative extension of Π1 if

M 7→M|σ(Π1) is a 1-1 correspondence between the answer sets of Π2 and the answer sets of Π1.

First-Order Modular Logic Programs and their Conservative Extensions 11

As an illustration of a conservative extension, consider the following formulas:

∀xz(s(x,z)↔ (p(z)∧∃y(q(x,y)∧ r(x,y)))) (28)

∀xz(s(x,z)↔ (p(z)∧ t(x)))∧∀v(t(v)↔∃w(q(v,w)∧ r(v,w))). (29)

It is easy to verify that the models of formulas (28) and (29) are in 1-1 correspondence so that

{M |M is a model of formula (28)}= {M|{s,p,q,r} |M is a model of formula (29)}.

In fact, formula (29) is obtained from formula (28) by introducing an explicit definition using

predicate symbol t. Recall the notion of an explicit definition: to extend a formula F by an

explicit definition using predicate symbol t means to add to the signature of F a new predicate

symbol t of arity n, and to add a conjunctive term to F of the form

∀x1 . . .xn(t(x1, . . . ,xn)↔ G), (30)

where x1 . . .xn are distinct variables and G is a formula over the signature of F . The result of

adding such a definition is a formula that is a conservative extension of F . Furthermore, con-

structing a formula from F by

• substituting every occurrence of subformula G in F with t(x1, . . . ,xn) (modulo proper sub-

stitution of terms) and

• extending this formula with a conjunctive term (30)

results in a conservative extension as well. This is the procedure that is used to obtain for-

mula (29) from (28).

Recall that S denotes sentence (14). By S′ we denote the sentence

∀xz((t(x)∧ p(z))→ s(x,z))∧∀xy((q(x,y)∧ r(x,y))→ t(x)). (31)

It can be verified that (28) is equivalent to SMs[S], and that (29) is equivalent to SMs,t [S
′].

The next proposition provides a general method for showing that one def-module is a conser-

vative extension of another.

Proposition 1

For any def-modules SMp[F] and SMp∪p′ [G] such that π(F) ⊆ π(G), both formulas share the

same function symbols, and p′ is a subset of predicate symbols π(G) \ π(F), if SMp[F] and

SMp∪p′ [G] are equivalent to first-order formulas F ′ and G′ respectively, and G′ is a conservative

extension of F ′ then SMp∪p′ [G] is a conservative extension of SMp[F] .

An analogous property holds for traditional programs:

Proposition 2

For any traditional programs Π1 and Π2 such that π(Π1)⊆ π(Π2) and both programs share the

same function symbols and contain at least one object constant, if SMπ(Π1)[Π1] and SMπ(Π2)[Π2]

are equivalent to first-order formulas Π′1 and Π′2 respectively, and Π′2 is a conservative extension

of Π′1, then traditional program Π2 is a conservative extension of Π1.

We now lift the definition of a conservative extension to the case of modular programs. We say

that modular program P′ is a conservative extension of P if M 7→M|σ(P) is a 1-1 correspondence

between the models of P′ and the models of P.

Let us recall the notion of strong equivalence (Lifschitz et al., 2001). Traditional programs Π1

and Π2 are strongly equivalent if for every traditional program Π, programs Π1∪Π and Π2∪Π

12 Harrison and Lierler

have the same answer sets. Strong equivalence can be used to argue the correctness of some pro-

gram rewritings used by answer set programming practitioners. However, the projection rewriting

technique, exemplified by replacing rule (14) with rules (31), cannot be justified using the notion

of strong equivalence. This rewriting technique is commonly used to improve the performance of

answer set programs (Buddenhagen and Lierler, 2015). Strong equivalence is inappropriate for

justifying this rewriting for a simple reason: the signature of the original program is changed. In

what follows we attempt to “adjust” the notion of strong equivalence to the context of modular

programs so that we may formally reason about the correctness of projection and other similar

rewriting techniques. We then translate these notions to the realm of traditional programs. We

start by restating the definition of strong equivalence given in (Ferraris et al., 2011) and recalling

some of its properties.

First-order formulas F and G are strongly equivalent if for any formula H, any occurrence of F

in H, and any list p of distinct predicate constants, SMp[H] is equivalent to SMp[H
′], where H ′ is

obtained from H by replacing F by G. In (Lifschitz et al., 2007) the authors show that first-order

formulas F and G are strongly equivalent if they are intuitionistically equivalent.

The following theorem, which is easy to verify, illustrates that classical equivalence between

second-order formulas is sufficient to capture the condition of “strong equivalence” for modular

programs. In other words, replacing a def-module by an equivalent def-module with the same

intensional predicates does not change the semantics of a modular program.

Theorem 4

Let SMp[F] and SMp[G] be def-modules. Then the following two conditions are equivalent:

(i) for any modular program P, the programs P∪{SMp[F]} and P∪{SMp[G]} have the

same stable models;

(ii) SMp[F] and SMp[G] are equivalent.

In (Ferraris et al., 2011, Section 5.2), the authors observe that if first-order formulas F and G are

strongly equivalent then def-modules of the form SMp[F] and SMp[G] are equivalent. Conse-

quently, to show that replacing SMp[F] by SMp[G] in any modular program results in a program

with the same models it is sufficient to prove that F and G are intuitionistically equivalent.

The following theorem lifts Theorem 4 to conservative extensions.

Theorem 5

Let SMp[F], SMp∪p′ [G] be def-modules such that π(F) ⊆ π(G), both formulas share the same

function symbols, and p′ is π(G)\π(F). Then the following two conditions are equivalent:

(i) for any modular program P such that π(P) contains no elements from p′, modular

program P∪{SMp∪p′ [G]} is a conservative extension of P ∪ {SMp[F]};

(ii) SMp∪p′ [G] is a conservative extension of SMp[F].

Theorem 5 tells us that we can replace def-modules in a modular program with their conservative

extensions and are guaranteed to obtain a conservative extension of the original modular program.

Thus, conservative extensions of def-modules allow us to establish something similar to strong

equivalence for modular programs with possibly different signatures.

For example, consider the choice rule {p}, a shorthand for the rule p← not not p. In some

answer set programming dialects double negation is not allowed in the body of a rule. It is then

common to simulate a choice rule as above by introducing an auxiliary atom p̂ and using the rules

¬p̂→ p and ¬p→ p̂. It is easy to check that SMp, p̂[(¬p̂→ p)∧ (¬p→ p̂)] is a conservative

First-Order Modular Logic Programs and their Conservative Extensions 13

extension of SMp[p∨¬p]. By Theorem 5, it follows that we can replace the latter with the

former within the context of any modular program not containing the predicate symbol p̂, and

get a conservative extension of the original program.

Proposition 1 and Theorem 5 equip us with a method for establishing the correctness of pro-

gram rewritings. For instance, the fact that formulas (28) and (29) are equivalent to def-modules

SMs[S] and SMs,t [S
′] respectively, translates into the assertion that the latter is a conservative ex-

tension of the former. Thus, replacing def-module SMs[S] in modular program (19) with SMs,t [S
′]

results in a modular program that is a conservative extension of (19). Similarly, replacing def-

module (27) in the Hamiltonian Cycle modular program presented in Section 5 by the def-module

SMvertex1,vertex2 [∀xy((¬r(x,y)∧ vertex1(x)∧ vertex2(y)→⊥) ∧

∀xz(edge(x,z)→ vertex1(x)) ∧

∀z′y(edge(z′,y)→ vertex2(y))]

(32)

results in a conservative extension of the original program. This is an instance of projection

rewriting. We now introduce some notation used to state a result about the general case of pro-

jection that will support our claim that (32) is a conservative extension of (27).

Let R be a rule (21) occurring in a traditional logic program F , and let x be a non-empty

tuple of variables occurring only in the body of R. By α(x,y) we denote the conjunction of all

conjunctive terms in the body of R that contain at least one variable from x, where y denotes all

the variables occurring in these conjunctive terms but not occurring in x. By β we denote the set

of all conjunctive terms in the body of R that do not contain any variables occurring in x. By γ

we denote the head of R. Let t be a predicate symbol that does not occur in F . Then the result of

projecting variables x out of R using predicate symbol t is the conjunction of the following two

rules

∀̃((t(y)∧β)→ γ) ,

∀xy(α(x,y)→ t(y)) .

For example, the result of projecting y out of (14) using predicate symbol t is (31). We can project

variables out of a traditional logic program by successively projecting variables out of rules. For

example, first projecting z out of the traditional logic program in (27) and then projecting z′ out

of the first rule of the resulting program yields the traditional logic program in (32).

Theorem 6

Let SMp1,...,pk
[F] be a def-module and R be a rule in F . Let x denote a non-empty tuple of

variables occurring in the body of R, but not in the head. If G is constructed from F by replacing R

in F with the result of projecting variables x out of R using a predicate symbol pk+1 that is not

in the signature of F , then SMp1,...,pk+1
[G] is a conservative extension of SMp1,...,pk

[F].

We now restate Theorem 6 in terms of traditional logic programs using the link between def-

modules and traditional programs established in Theorem 1.

Corollary 1

Let Π be a traditional logic program containing at least one object constant and R be a rule in Π.

Let x denote a non-empty tuple of variables occurring in the body of R, but not in the head. If Π′

is constructed from Π by replacing R in Π with the result of projecting variables x out of R using

a predicate symbol p that does not occur in Π, then Π′ is a conservative extension of Π.

14 Harrison and Lierler

7 Conclusion

In this paper, we introduced first-order modular logic programs that provide a way of viewing

logic programs as consisting of many independent, meaningful modules. We also defined con-

servative extensions, which like strong equivalence for traditional programs, can be useful for

reasoning about traditional programs and modular programs. We showed how these concepts

may be used to justify the common projection rewriting.

Acknowledgments

Many thanks to Joshua Irvin, Vladimir Lifschitz, and Miroslaw Truszczynski for useful dis-

cussions regarding ideas in this paper. Thanks as well to the anonymous referees for helpful

comments. Amelia Harrison was partially supported by the National Science Foundation under

Grant IIS-1422455.

References

Buddenhagen, M. and Lierler, Y. (2015). Performance tuning in answer set programming. In

Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR

2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, pages 186–198.

Denecker, M., Lierler, Y., Truszczynski, M., and Vennekens, J. (2012). A tarskian informal

semantics for answer set programming.

Faber, W., Leone, N., Mateis, C., and Pfeifer, G. (1999). Using database optimization techniques

for nonmonotonic reasoning. pages 135–139.

Ferraris, P. (2005). Answer sets for propositional theories. In Proceedings of International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 119–131.

Ferraris, P., Lee, J., and Lifschitz, V. (2011). Stable models and circumscription. Artificial

Intelligence, 175:236–263.

Ferraris, P., Lee, J., Lifschitz, V., and Palla, R. (2009). Symmetric splitting in the general theory

of stable models. In Proceedings of International Joint Conference on Artificial Intelligence

(IJCAI), pages 797–803.

Ferraris, P. and Lifschitz, V. (2005). Weight constraints as nested expressions. Theory and

Practice of Logic Programming, 5(1–2):45–74.

Lierler, Y. and Truszczyński, M. (2013). Modular answer set solving. In Proceedings of the 27th

AAAI Conference on Artificial Intelligence.

Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelligence,

138:39–54.

Lifschitz, V., Pearce, D., and Valverde, A. (2001). Strongly equivalent logic programs. ACM

Transactions on Computational Logic, 2:526–541.

Lifschitz, V., Pearce, D., and Valverde, A. (2007). A characterization of strong equivalence for

logic programs with variables. In Procedings of International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR), pages 188–200.

Oikarinen, E. and Janhunen, T. (2008). Achieving compositionality of the stable model semantics

for Smodels programs. Theory and Practice of Logic Programming, 5–6:717–761.

Wang, Y., Zhang, Y., Zhou, Y., and Zhang, M. (2014). Knowledge forgetting in answer set

programming. Journal of Artificial Intelligence Research, 50(1):31–70.

First-Order Modular Logic Programs and their Conservative Extensions 15

Appendix A Appendix: Proofs of Theorems

A.1 Proof of Splitting Theorem (Theorem 2)

Splitting Theorem. If P is a coherent modular program then an interpretation I is an ι(P)-stable

model of F (P) iff it is a stable model of P.

Proof

Let P be {SMp1
[F1], . . . ,SMpn [Fn]}. The proof is by induction on n. The base case is trivial. In

the induction step, we assume that for any simple modular program P of the form

{SMp1
[F1], . . . ,SMpk

[Fk]}

and meeting conditions (i) and (ii) of a coherent program, I is a stable model of P iff it is an

ι(P)-stable model of F (P). Consider a simple modular program

P′ = {SMp1
[F1], . . . ,SMpk

[Fk],SMpk+1
[Fk+1]}

meeting conditions (i) and (ii). Let P′k ⊂ P′ denote the set {SMp1
[F1], . . . ,SMpk

[Fk]}. Now, an

interpretation I is an ι(P′)-stable model of F (P′) iff it satisfies the formula

SMι(P′)[
∧

1≤i≤k

Fi ∧ Fk+1].

But by the Splitting Theorem from (Ferraris et al., 2009), this is the case iff I satisfies

SMι(P′
k
)[

∧

1≤i≤k

Fi] ∧ SMι(Fk+1)[Fk+1], (A1)

which is true iff I satisfies both conjunctive terms. But I satisfies

SMι(P′
k
)[

∧

1≤i≤k

Fi]

iff it is an ι(P′k)-stable model of F (P), and by the induction hypothesis, this is the case iff I is a

stable model of P′k. Interpretation I is a stable model of P′k iff it satisfies SMpi
[Fi] for 1≤ i≤ k. So

I satisfies (A1) iff it satisfies SMpi
[Fi] for 1 ≤ i ≤ k+ 1, which is the case iff I is a stable model

of P′.

A.2 Proofs of Propositions 1 and 2

Proposition 1. For any def-modules SMp[F] and SMp∪p′ [G] such that π(F) ⊆ π(G), both for-

mulas share the same function symbols, and p′ is a subset of predicate symbols π(G) \π(F), if

SMp[F] and SMp∪p′ [G] are equivalent to first-order formulas F ′ and G′ respectively, and G′ is a

conservative extension of F ′, then SMp∪p′ [G] is a conservative extension of SMp[F].

Proof

Consider def-modules SMp[F] and SMp∪p′ [G] and first-order formulas F ′ and G′, meeting the

conditions of the proposition. Then first-order formula F ′ has the same models as SMp[F] , and

first-order formula G′ has the same models as SMp∪p′ [G]. Furthermore, since G′ is a conservative

extension of F ′, M 7→M|σ(F ′) is a 1-1 correspondence between the models of G′ and the models

of F ′. It follows that this function is also a 1-1 correspondence between the models of SMp[F]

and SMp∪p′ [G].

The same reasoning shows that Proposition 2 holds

16 Harrison and Lierler

A.3 Proof of Theorem 5

Theorem 5. Let SMp[F], SMp∪p′ [G] be def-modules such that π(F) ⊆ π(G), both formulas

share the same function symbols, and p′ is π(G) \π(F), then the following two conditions are

equivalent

(i) for any modular program P such that π(P) contains no elements from p′, modular pro-

grams P∪{SMp∪p′ [G]} is a conservative extension of P ∪ {SMp[F]}.

(ii) SMp∪p′ [G] is a conservative extension of SMp[F].

Proof

Establishing that if condition (i) holds then condition (ii) also holds is not difficult. In the other

direction, assume SMp∪p′ [G] is a conservative extension of SMp[F] . We need to show that for

any modular program P such that π(P) does not contain any elements of p′, P∪{SMp∪p′ [G]} is

a conservative extension of P∪{SMp[F]}. Let M be a model of P∪{SMp[F]}. Then

(a) M|σ(F) is a model of SMp[F] and

(b) M|σ(H) is a model of each def-module SMq[H] in P.

By our initial assumption, M|σ(F) can be extended to the signature σ(G). That is, there is some

M′ such that M′|σ(F) = M|σ(F) and M′ is a model of SMp∪p′ [G]. Furthermore, there is a unique

M′ about which the above property holds (recall the condition on 1-1 correspondence). Since

the signature of G differs from the signature of F only by predicates in p′, and that none of

these predicates occur in the signature of P, M|σ(P)∪M′ is an interpretation over σ(P)∪σ(G).

Furthermore, it is clear that this interpretation is a model of P∪{SMp∪p′ [G]}. Finally, it is easy

to show that if M is a model of P∪{SMp∪p′ [G]} then M|σ(P)∪σ(F) is a model of P∪{SMp[F]}.

From the uniqueness of M′ the 1-1 correspondence condition of the definition of conservative

extensions for modular programs also holds.

A.4 Proof of Theorem 6

Theorem 6. Let SMp1,...,pk
[F] be a def-module and R be a rule in F so that x denotes a non-

empty tuple of variables occurring in atoms in the body of R, but not in the head. Let formula G

be constructed from F by replacing R in F with the result of projecting variables x out of R using

predicate symbol pk+1 not in the signature of F. Then SMp1,...,pk+1
[G] is a conservative extension

of SMp1,...,pk
[F].

Proof

By the definition of projection, formula G is constructed from F by replacing rule R in F of the

form (21) with rules

∀̃((pk+1(y)∧β)→ γ) , (A2)

and

∀xy(α(x,y)→ pk+1(y)) , (A3)

where we assume the notation introduced in the end of Section 6. Consider minimizing the scope

of the quantifiers in rule R as follows

∀̃ (((∃x α(x,y))∧β)→ γ) . (A4)

The transformation from R to (A4) is an intuitionistically equivalent transformation. Thus R

First-Order Modular Logic Programs and their Conservative Extensions 17

and (A4) are strongly equivalent formulas. Let F ′ denote the result of replacing R in F by (A4).

Since R and (A4) are strongly equivalent, it follows that SMp1,...,pk
[F] and SMp1,...,pk

[F ′] are

equivalent second-order formulas. Similarly, we can minimize the scope of the quantifiers in (A3)

which will result in the following rule

∀y((∃x α(x,y))→ pk+1(y)) . (A5)

Since the transformation from (A3) to (A5) is intuitionistically equivalent, it follows that

SMp1,...,pk+1
[G]

is equivalent to

SMp1,...,pk+1
[Γ∧∀̃((pk+1(y)∧β)→ γ)∧∀y((∃xα(x,y))→ pk+1(y))] (A6)

where Γ is the conjunction of rules in F other than R. It is sufficient to show that (A6) is a

conservative extension of SMp1,...,pk
[F ′]. Let M be a model of SMp1,...,pk

[F ′]. We will show that

we can construct an interpretation M′ that coincides with M on the symbols in σ(F ′) and is a

model of (A6). We construct M′ such that

• it coincides with M on all of the symbols in σ(F ′) and

• it interprets pk+1 so that the following equivalence is satisfied

∀y((∃x α(x,y))↔ pk+1(y)) . (A7)

It is easy to check that SMp1,...,pk
[F ′] is the conjunction of the formulas

Γ∧∀̃(((∃xα(x,y))∧β)→ γ) (A8)

and

¬∃u1, . . . ,uk((u1, . . . ,uk < p1, . . . , pk)∧

Γ∗(u1, . . . ,uk)∧

∀̃ (((∃x α(x,y))∧β)→ γ)∧

∀̃ (((∃x α(x,y)∗(u1, . . . ,uk))∧β ∗(u1, . . . ,uk))→ γ∗(u1, . . . ,uk))).

(A9)

Formula (A6) is the conjunction of the formulas

Γ∧∀̃((pk+1(y)∧β)→ γ)∧∀y((∃x α(x,y))→ pk+1(y)) (A10)

and

¬∃u1, . . . ,uk+1((u1, . . . ,uk+1 < p1, . . . , pk+1)∧ (A11)

Γ∗(u1, . . . ,uk)∧ (A12)

∀̃((pk+1(y)∧β)→ γ)∧ (A13)

∀̃((uk+1(y)∧β ∗(u1, . . . ,uk))→ γ∗(u1, . . . ,uk))∧ (A14)

∀y((∃x α(x,y))→ pk+1(y))∧ (A15)

∀y((∃x α(x,y)∗(u1, . . . ,uk))→ uk+1(y))). (A16)

Note that since Γ has no occurrences of pk+1, Γ∗(u1, . . . ,uk+1) and Γ∗(u1, . . . ,uk) are identical,

and similarly for α∗, β ∗, and γ∗. Expressions (A12,A14,A16) reflect this observation.

We now introduce some additional notation required to state the proof. Let U denote the

universe of interpretation M′ (which is also the universe of M). For predicate symbol q and

18 Harrison and Lierler

interpretation I, let qI denote the function assigned to q by I. For a formula H, let HI denote the

truth value assigned to H by interpretation I.

It is clear from the construction of M′ that if M is a model of (A8) then M′ is a model of (A10).

It remains to show that if M is a model of SMp1,...,pk
[F ′] then M′ is a model of formula (A11-

A16).

Proof by contradiction. Assume M′ is not a model of formula (A11-A16). Then there exists a

tuple of functions that we denote by uM′

1 , . . . ,uM′

k+1, from U n(i) (where n(i) is the arity of predicate

variable ui) to {f, t}, such that

1. for every 0 < i≤ k+ 1 the set of tuples mapped to t by the function uM′

i is a subset of the

set of tuples mapped to t by the function pM′

i , and

2. there is some 0 < i≤ k+1 for which the set of tuples mapped to t by the function uM′

i is a

proper subset of the set of tuples mapped to t by the function pM′

i and furthermore,

3. M′ satisfies conjunctive terms (A12)–(A16).

Case 1. Consider the case when ui (i < k+ 1) is the element in tuple u1, . . . ,uk+1 for which

condition 2 holds. We will illustrate that given the set of functions uM′

1 , . . . ,uM′

k and interpreta-

tion M all four conjunctive terms of (A9) are satisfied. This observation contradicts the assump-

tion that M is a model of (A9) as we found the set of functions to interpret the predicate variables

u1, . . . ,uk so that all conjunctive terms of (A9) are satisfied.

Conjunctive term 1: By condition 1 and the assumption of this case, the functions uM′

1 , . . . ,uM′

k

are such that the conjunctive term (u1, . . . ,uk < p1, . . . , pk) of (A9) is satisfied by interpreta-

tion M.

Conjunctive term 2: Since M′ satisfies (A12) when functions uM′

1 , . . . ,uM′

k are used to inter-

pret u1, . . . ,uk it follows that M satisfies (A12) when the same functions are used to interpret

u1, . . . ,uk. (Note, Γ has no occurrence of pk+1). Expression (A12) is the second conjunctive term

of (A9).

Conjunctive term 3: Since pM′

k+1 = (∃x α(x,y))M′ = (∃x α(x,y))M (following from the con-

struction of M′ and the fact that ∃x α(x,y) is over signature of M) and since M′ satisfies (A13),

it follows that M satisfies the third conjunctive term of (A9).

Conjunctive term 4: From the fact that M′ satisfies (A14) and (A16) when functions

uM′

1 , . . . ,uM′

k+1

are used to interpret u1, . . . ,uk+1 and the fact that the fourth conjunctive term of (A9) has no

occurrence of uk+1 or pk+1, it follows that M satisfies the fourth conjunctive term of (A9) when

the same functions are used to interpret u1, . . . ,uk.

Case 2. Consider the case when uk+1 is the element in tuple u1, . . . ,uk+1 for which condition 2

above holds. Consider a tuple Θ in U n (where n is arity of pk+1) so that pM′

k+1 maps Θ to t, while

uM′

k+1 maps Θ to f. By the construction of M′ we know that pM′

k+1 = (∃x α(x,y))M′ . From the last

two sentences and the fact that M′ satisfies (A15) it follows that

(∃x α(x,Θ))M′ = t (A17)

To satisfy (A16) for the case of tuple Θ given that uM′

k+1(Θ) = f, the condition

(∃x α(x,Θ)∗(u1, . . . ,uk))
M′ = f

must hold.

Case 2.1. The expression α(x,Θ) contains no predicate symbols p1, . . . , pk. Then α(x,Θ)

First-Order Modular Logic Programs and their Conservative Extensions 19

and α(x,Θ)∗(u1, . . . ,uk) coincide. Recall that condition (A17) holds. It follows that this case is

impossible.

Case 2.2. The expression α(x,Θ) contains symbols from p1, . . . , pk+1.

Case 2.2.1. For every symbol pi in α(x,Θ), it holds that pM′

i = uM′

i . It follows that

(∃x α(x,Θ))M′ = (∃x α(x,Θ)∗(u1, . . . ,uk))
M′
.

Recall that condition (A17) holds. It follows that this case is impossible.

Case 2.2.2. For some symbol pi in α(x,Θ), it holds that the set of tuples mapped to t by the

function uM′

i is a proper subset of the set of tuples mapped to t by the function pM′

i . Note that

i < k+ 1 as pk+1 does not occur in α(·, ·). The argument of Case 1 applies.

Second claim to show. (Illustration of 1-1-correspondence) We have to show that given an

interpretation M of SMp[F
′], M′ constructed in the first claim is the only interpretation that is a

model of (A6) and that coincides on symbols in M. This claim follows from Theorem 10 from

Ferraris et al. (2011).

Third claim to show. Given a model of (A6) show that it is a model of SMp[F
′]. This is a

simple direction. E.g., by contradiction.

	1 Introduction
	2 Review: Traditional Programs
	3 Review: Operator SM
	4 Modular Logic Programs
	5 Relating Modular Programs and Traditional Programs
	6 Conservative Extensions
	7 Conclusion
	Appendix A Appendix: Proofs of Theorems
	A.1 Proof of Splitting Theorem (Theorem 2)
	A.2 Proofs of Propositions 1 and 2
	A.3 Proof of Theorem 5
	A.4 Proof of Theorem 6

