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Abstract

We present an extension of Logic Programming (under stable models semantics) that, not only allows con-
cluding whether a true atom is a cause of another atom, but also deriving new conclusionsfrom these
causal-effect relations. This is expressive enough to capture informal rules like “if some agent’s actionsA
have beennecessaryto cause an eventE then conclude atomcaused(A, E),” something that, to the best
of our knowledge, had not been formalised in the literature.To this aim, we start from a first attempt that
proposed extending the syntax of logic programs with so-called causal literals. These causal literals are
expressions that can be used in rule bodies and allow inspecting the derivation of some atomA in the pro-
gram with respect to some query functionψ. Depending on how these query functions are defined, we can
model different types of causal relations such as sufficient, necessary or contributory causes, for instance.
The initial approach was specifically focused on monotonic query functions. This was enough to cover suf-
ficient cause-effect relations but, unfortunately, necessary and contributory are essentiallynon-monotonic.
In this work, we define a semantics for non-monotonic causal literals showing that, not only extends the
stable model semantics for normal logic programs, but also preserves many of its usual desirable proper-
ties for the extended syntax. Using this new semantics, we provide precise definitions ofnecessaryand
contributory causal relations and briefly explain their behaviour on a pair of typical examples from the
Knowledge Representation literature. (Under consideration for publication in Theory and Practice of Logic
Programming)

1 Introduction

An important difference between classical models and most Logic Programming (LP) seman-
tics is that, in the latter, true atoms must be founded or justified by a given derivation. Con-
sequently, falsity is understood as absence of proof: for instance, a common informal way of
reading for default literalnotA is “there is no way to deriveA.” Although this idea seems quite
intuitive and, in fact, several approaches have studied howto syntactically build these derivations
or justifications(Specht 1993; Pemmasani et al. 2004; Pontelli et al. 2009; Denecker et al. 2015;
Schulz and Toni 2016), it actually resorts to a concept, theways to deriveA, outside the scope
of the standard LP semantics.

Such information on justifications for atoms can be of great interest for Knowledge Repre-
sentation (KR), and especially, for dealing with problems related to causality. For instance, in
the area of legal reasoning where determining a legal responsibility usually involves finding out
which agent or agents have eventually caused a given result,regardless the chain of effects in-
volved in the process. In this sense, an important challengein causal reasoning is the capability
of not only deriving facts of the form “A has causedB,” but also being able to represent and
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reason about them. As an example, take the assertion:

“If somebody causes an accident, (s)he would receive a fine” (1)

This law does not specify the possible ways in which a person may cause an accident. Depending
on a representation of the domain, the chain of events from the agent’s action(s) to the final effect
may be simple (a direct effect) or involve a complex set of indirect effects and defaults like inertia.
Focussing on representing (1) in an elaboration tolerant manner (McCarthy 1998), we should be
able to write a single rule whose body only refers to theagent involved and theaccident. For
instance, consider the following program

accident ← oil (2)

oil ← suzy (3)

suzy (4)

representing thataccident is an indirect effect of Suzy’s actions. We may then represent (1) by
the following rule

fine(suzy) ← suzy necessary for accident (5)

that states that Suzy would receive afine whenever the factsuzy was necessary to cause the
atomaccident.

With this long term goal in mind, (Cabalar et al. 2014a) proposed a multi-valued semantics for
LP that extends the stable model semantics (Gelfond and Lifschitz 1988) and where justifications
are treated asalgebraicconstructions. In this semantics,causal stable modelsassign, to each
atom, one of these algebraic expressions that captures the set of all non-redundant logical proofs
for that atom. Recently, this semantics was used in (Fandinno 2015b) to extend the syntax of
logic programs with a new kind of literal, calledcausal literal, that allow representing rules like

fine(suzy) ← suzy sufficient for accident (6)

and derive, from a programP1 containing rules (2-4,6), thatfine(suzy)holds. However, the ma-
jor limitation of this semantics is that causal literals must be monotonic and, therefore, rule (5)
cannot be represented. It is easy to see that rule (5) is non-monotonic: in a programP2 contain-
ing rules (2-5), the factsuzy is necessary foraccident is satisfied and, thus,fine(suzy) must
hold, but in a programP3 obtained by adding a factoil to this last program,suzy is not longer
necessary and, thus,fine(suzy) should not be a conclusion.

In this paper, we present a semantics for logic programs withcausal literals defined in terms of
non-monotonicquery functions. More specifically, we summarise our contributions as follows. In
Section 2, we define the syntax of causal literals and a multi-valued semantics for logic programs
whose causal values rely on a completely distributive lattice based on causal graphs. Section 3
shows that positive monotonic program has a least model thatcan be computed by an extension
of the direct consequences operator (van Emden and Kowalski1976). In Section 4, we define
semantics for programs with negation and non-monotonic causal literals and show that it is a
conservative extension of the standard stable model semantics. Besides, with a running example,
we show how causal literals can be used to derive new conclusion from necessary causal relations
and, in Section 5, briefly relate this notion with the actual cause literature. In this section, we also
formalise the weaker notion ofcontributory cause, also related to the actual cause literature, and
show how causal literals may be used to derive new conclusionfrom them. In Section 6, we
show that our semantics satisfy the usual properties of the stable modles semantics for the new



syntax. Finally, Section 7 concluded the paper. The online appendices include the definition of
our semantics with nested expression in the body, the formalrelation with (Fandinno 2015b), the
proof of formal results from the paper and the formalisationof a Splitting Theorem for causal
programs analgous to (Lifschitz and Turner 1994).

2 Causal Programs

We start by reviewing some definitions from (Cabalar et al. 2014a).

Definition 1 (Term). Given a set of labelsLb, a term t is recursively defined as one of the
following expressions

t ::= l
∣

∣

∣

∏

S
∣

∣

∣

∑

S
∣

∣

∣
t1 · t2

wherel ∈ Lb is a label,t1, t2 are in their turn terms andS is a (possibly empty and possible
infinite) set of terms.

WhenS = {t1, . . . , tn} is a finite set, we will writet1 ∗ . . . ∗ tn and t1 + . . . + tn instead
of

∏

S and
∑

S, respectively. WhenS = ∅, we denote
∏

S and
∑

S by 1 and0, respectively.
We assume that application ‘·’ has higher priority than product ‘∗’ and, in its turn, product ‘∗’
has higher priority than addition ‘+’. Application‘ ·’ represents application of a rule label to a
previous justifications. For instance, the justification inprogramP1 for atomsuzy is the fact
suzy itself. If rules (2-3) in programP1 are labelled in the following way

r1 : accident ← oil (7)

r2 : oil ← suzy (8)

we may represent the justification ofoil assuzy·r2, in other words,oil is true because of the the
application of ruler2 to the factsuzy. Similarly, we may represent the justification ofaccident
assuzy·r2·r1. Addition ‘+’ is used to capture alternative independent causes: each addend is
one of those independent causes. For instance, the justification of oil, in programP3, may be
represented assuzy·r2 + oil and the justification ofaccident as(suzy·r2 + oil) · r1. As we
will see below application distributes over addition, so that, the justification ofaccident can
also be written assuzy·r2·r1 + oil·r1, which better illustrates the existence of two alternatives.
Product ‘∗’ represents conjunction or joint causation. For instance,in a programP4 obtained by
adding the factbilly to P3 and replacing rule (8) by

r2 : oil ← suzy, billy (9)

the justifications ofoil will be (suzy ∗ billy)·r2 + oil. Similarly, the justification ofaccident
will be (suzy ∗ billy)·r2·r1 + oil·r1. Intuitively, terms without addition ‘+’ represent individ-
ual causes while terms with addition ‘+’ represent sets of causes. It is worth to mention that
these algebraic expressions are in a one-to-one correspondence with non-redundant proofs of an
atom (Cabalar et al. 2014a) and that they may also be understood as a formalisation of Lewis’
concept of causal chain (Lewis 1973) (see Fandinno 2015b).

Definition 2 (Value). (Causal) valuesare the equivalence classes of terms under axioms for a
completely distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figure 1.
The set of values is denoted byVLb. Furthermore, byCLb we denote the subset of causal values
with some representative term without sums ‘+’.



Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

l · l = l

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c · d · e = (c · d) ∗ (d · e) with d 6= 1
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Fig. 1. Properties of the ‘·’operators:t, u, w are terms,l is a label andc, d, e are terms with-
out ‘+’. Addition and product distributivity are also satisfied over infinite sums and products.

All three operations, ‘∗’, ‘ +’ and ‘·’ are associative. Product ‘∗’ and addition ‘+’ are also
commutative, and they satisfy the usual absorption and distributive laws with respect to infinite
sums and products of a completely distributive lattice. Thelattice order relation is defined as:

t ≤ u iff t ∗ u = t iff t+ u = u

An immediately consequence of this definition is that product, addition,1 and0 respectively
are the greatest lower bound, the least upper bound and the top and the bottom element of the
≤-relation. Term1 represents a value which holds by default, without an explicit cause, and will
be assigned to the empty body. Term0 represents the absence of cause or the empty set of causes,
and will be assigned to false. Furthermore, applying distributivity (and absorption) of product and
application over addition, every term can be represented in(minimal) disjunctive normal formin
which addition is not in the scope of any other operation and every pair of addends are pairwise
≤-incomparable. In the following, we will assume that every term is in disjunctive normal form.

This semantics was used in (Fandinno 2015b), to define the concept of causal query, here
m-query: a monotonic functionφ : CLb −→ {0, 1}. Unfortunately, m-queries are not expressive
enough to capture necessary causation for two reasons:(i) they are monotonic and(ii) they
cannot capture relations between sets of causes. We introduced here the following definition
which removes these two limitations.

Definition 3 (Causal query). A causal queryψ : CLb×VLb −→ {0, 1} is a function mapping
pairs cause-value into1 (true) and0 (false) which is anti-monotonic in the second argument,
that is,ψ(G, t) ≤ ψ(G, u) for everyG ∈ CLb and{t, u} ⊆ VLb such thatt ≥ u.

Syntax. We define the semantics of logic programs using its grounding. Therefore, for the re-
mainder of this paper, we restrict our attention to ground logic programs. Asignatureis a triple
〈At, Lb,Ψ〉 whereAt, Lb andΨ respectively represent sets ofatoms(or propositions), labels
and causal queries. We assume the signature of every programcontains a causal queryψ1 ∈ Ψ

s.t.ψ1(G, t) def= 1 for everyG ∈ CLb and valuet ∈ VLb.

Definition 4 (Causal literal). A (causal) literalis an expression(ψ :: A) whereA ∈ At is an
atom andψ ∈ Ψ is a causal query.

A causal atom(ψ1 :: A) is said to beregular and, by abuse of notation, we will use atomA
as shorthand for regular causal literals of the form(ψ1 :: A). We will see below the justification
for this notation. Aliteral is either a causal literal(ψ :: A) (positive literal), or a negated causal
literalnot(ψ :: A) (negative literal) or a double negated causal literalnot not(ψ :: A) (consistent
literal) with A ∈ At an atom andψ ∈ Ψ a causal query.



Definition 5 (Causal program). A (causal) programP is a set of rules of the form:

ri : A ← B1, . . . , Bm (10)

where0 ≤ m is a non-negative integer,ri ∈ Lb is a label orri = 1, A (theheadof the rule) is
an atom and eachBi with 1 ≤ i ≤ m (thebodyof the rule) is a literal or a term.

A rule r is said to bepositiveiff all literals in its body are positive and it is said to beregular
if all causal literals in its body are regular. Whenm = 0, we say that the rule is afact and omit
the body and sometimes the symbol ‘←.’ Furthermore, for clarity sake, we also assume that, for
every atomA ∈ At, there is an homonymous labelA ∈ Lb and that the label of an unlabelled
rule is assumed to be its head. In this sense, a factA in a program actually stands for the labelled
rule(A : A←). A programP is positiveor regularwhen all its rules are positive (i.e. it contains
no default negation) or regular, respectively. Astandard programis a regular program in which
the label of every rule is ‘1 :’.

Semantics. A (causal) interpretationis a mappingI : At −→ VLb assigning a value to each
atom. For interpretationsI andJ , we writeI ≤ J whenI(A) ≤ J(A) for every atomA ∈ At.
Hence, there is a≤-bottom interpretation0 (resp. a≤-top interpretation1) that stands for the
interpretation mapping every atomA to 0 (resp.1). For an interpretationI and atomA ∈ At, by
max I(A) we denote the set

max I(A) def=
{

G ∈ CLb

∣

∣ G ≤ I(A) and there is noG′ ∈ CLb s.t.G < G′ ≤ I(A)
}

containing the maximal terms without addition (or individual causes) ofA w.r.t. I.

Definition 6 (Causal literal valuation). Thevaluation of a causal literalof the form(ψ :: A) with
respect to an interpretationI, in symbolsI(ψ :: A), is given by

I(ψ :: A) def=
∑

{

G∈ max I(A)
∣

∣ ψ(G, I(A) ) = 1
}

We say thatI satisfies a causal literal(ψ :: A), in symbolsI |= (ψ :: A), iff I(ψ :: A) 6= 0.

Notice now thatI(ψ1 :: A) = I(A) for any atomA and, thus, writing a standard atomA as a
shorthand for causal literal(ψ1 :: A) does not modify its intended meaning. Causal literals can
be used to represent the body of rule (5). For instance, givena set of labelsA ⊆ Lb representing
the actions of some agentA, we may define the query function

ψnec
A (G, t) def=

{

1 if t ≤
∑

A

0 otherwise
(11)

and represent the body of rule (5) by a causal literal of the form (ψnec
Suzy :: accident) whereSuzy

is the set of labels{suzy}. In the sake of clarity, we usually will write(A necessary for A)

in rule bodies instead(ψnec
A :: A).

If we consider an interpretationI which assigns to the atomaccident its justification in pro-
gramP2, that is,I(accident) = suzy·r2·r1, then any term without additionG ∈ CLb, satisfies

ψnec
Suzy(G, I)(accident) = 1 iff suzy·r2·r1 ≤

∑

{suzy}

iff suzy·r2·r1 ≤ suzy

iff suzy·r2·r1 + suzy = suzy



which holds applying application identity, associativityand absorption w.r.t. addition

suzy·r2·r1 + suzy = 1 · suzy · (r2·r1) + suzy = suzy

Similarly, in programP3, ψnec
Suzy(G, I

′(accident)) = 1 iff suzy·r2·r1 + oil ≤ suzy which does
not hold. In other words, Suzy’s actions has been necessary in programP2 but not in programP3.

The valuation of a causal termt is the class of equivalence oft. The valuation of non-positive
literals is defined as follows

I(not(ψ :: A)) def=

{

1 iff I(ψ :: A) = 0

0 otherwise

I(not not(ψ :: A)) def=

{

1 iff I(ψ :: A) 6= 0

0 otherwise

Furthermore, for any literal or termL, we writeI |= L iff I(L) 6= 0.

Definition 7 (Causal model). Given a ruler of the form(10), we say that an interpretationI
satisfiesr, in symbolsI |= r, if and only if the following condition holds:

(

I(B1) ∗ . . . ∗ I(Bm)
)

· ri ≤ I(A) (12)

An interpretationI is a causal modelof P , in symbolsI |= P , iff I satisfies all rules inP .

Let P5 be the program containing rules (7) and (8) plus the labelledfact (suzy : suzy ←)

andP6 be the program containing rules (7) and (9) plus the labelledfacts(suzy : suzy ←)

and (billy : billy ←). Then, it can be checked that these programs respectively have unique
≤-minimal modelsI5 andI6 which satisfy

I5(accident) = suzy·r2·r1 I6(accident) = (suzy ∗ billy)·r2·r1 + oil

Let nowP7 andP8 be the labelled programs respectively obtained by adding the following rule

r3 : fine(suzy) ← suzy necessary for accident (13)

(resulting of labelling rule (5) withr3) to programsP5 andP6. Then it can be checked that these
programs also have unique≤-minimal modelsI7 andI8 which respectively agree withI5 and
I6 in all atoms but infine(suzy) and, as we have seen above,

I7(ψ
nec
Suzy :: accident) = I7(accident) = suzy·r2·r1 I8(ψ

nec
Suzy :: accident) = 0

Furthermore, by definition, it holds thatIj(fine(suzy)) = Ij(ψ
nec
Suzy :: accident)·r3 for

j ∈ {7, 8} which implies that

I7(fine(suzy))) = suzy·r2·r3

I8(fine(suzy))) = 0·r3 = 0

That is, Suzy would receive a fine for causing the accident,I7 |= fine(suzy), w.r.tP7, but not
w.r.t. programP8 becauseI8 6|= fine(suzy).

It is worth to note that positive programs may contain non-monotonic causal literals that,
somehow, play the role of negation and, hence, they may have several≤-minimal causal models.
Consider, for instance, the following positive programP9

r1 : p r2 : q ← A1 necessary for p



whereA1
def={r1}. ProgramP9 has two≤-minimal causal models. The first one which satisfies

I9(p) = r1 andI9(q) = r1·r2; and a second unintended one which satisfiesI ′9(p) = r1 + r2
andI ′9(q) = 0. In the following section, we introduce the notion ofmonotonic programswhich
have a least model and a well-behaved direct consequences operator (when they are positive). In
Section 4, we will see that, in fact, onlyI9 is a causal stable model of programP9.

3 Positive monotonic Programs

A causal queryψ is said to bemonotoniciff ψ(G, u) ≤ ψ(G′, w) for any values{G,G′} ⊆ CLb

and{u,w} ⊆ VLb such thatG ≤ G′. A causal literal(ψ :: A) is monotonicif ψ is monotonic. A
programP is monotoniciff P all causal literals occurring inP are monotonic. We show next that
every monotonic program can be reduced to the syntax and semantics of (Fandinno 2015b). For
space reasons, we omit here the details of (Fandinno 2015b),which can be found in Appendix C.

Definition 8. Given a queryψ (resp. m-queryφ), its corresponding m-query (resp. query)is
given byφψ(G)

def= ψ(G, 1) (resp.ψφ(G, t)
def= φ(G)). Similarly, for any programP (resp. m-

programQ) its corresponding m-programQ (resp. programP ) is obtained by replacing every
queryψ in P (resp. m-queryφ in Q) by its corresponding m-queryφψ (resp.queryψφ).

Theorem 1. If P is the corresponding program of some positive m-programQ with the syntax of
Definition 5 orQ is the corresponding m-program of some positive monotonic programP , then
an interpretationI is a model ofP iff I is a model ofQ.

An immediate consequence of Theorem 1, plus Theorem 3.8 in (Fandinno 2015b), is that pos-
itive monotonic programs have a least model that can be computed by iteration of the following
extension of the direct consequences operator of van Emden and Kowalski (1976).

Definition 9 (Direct consequences). Given a causal programP , the operator ofdirect conse-
quencesis a functionTP from interpretations to interpretations such that

TP (I)(A)
def=

∑

{ (

I(B1) ∗ . . . ∗ I(Bm)
)

· r1
∣

∣ (ri : A ← B1, . . . , Bm) ∈ P
}

for any interpretationI and any atomA ∈ At. The iterative procedure is defined as usual

T
↑α
P (0) def= TP (T

↑α−1
P (0)) if α is a successor ordinal

T
↑α
P (0) def=

∑

β<α

T
↑β
P (0) if α is a limit ordinal

As usual0 and ω respectively denote the first limit ordinal and the first limit ordinal that is
greater than all integers. Thus,T↑0P (0) = 0.

Corollary 1. Any (possibly infinite) positive monotonic programP has a least causal modelI
which (i) coincides with the least fixpointlfp(TP ) of the direct consequences operatorTP and
(ii) can be iteratively computed from the bottom interpretation I = lfp(TP ) = T

↑ω
P (0).

Corollary 1 guarantees that the least fixpoint ofTP is well-behaved and corresponds to the
least model of the programP . In fact, we can check now that the least modelI6 of programP6
satisfiesI6(accident) = (suzy ∗ billy)·r2·r1+oil·r1. First note, that programP6 contains facts
suzy, billy andoil whose label is the same as the name atom and, thus,T

↑1
P6

(0)(A) = A for each

atomA ∈ {suzy, billy, oil}. Then, sinceT↑1P6
(0)(suzy) = suzy, T↑1P6

(0)(billy) = billy and



rule (8) and factoil belong to programP6, it follows thatT↑2P6
(0)(oil) = (suzy∗billy) ·r2+oil.

Similarly, we can check that

T
↑3
P6

(0)(accident) = ( (suzy ∗ billy) · r2 + oil) · r1 = (suzy ∗ billy)·r2·r1 + oil·r1

and, thus,I6 = T
↑3
P6

(0) is the least fixpoint ofTP6 . Checking thatT↑3P5
(0) = I5, thatT↑4P7

(0) =

I7 and thatT↑4P8
(0) = I8 are the least fixpoint and the least models respectively of programsP5,P7

andP8 is analogous.
It is easy to see that every true atom, according to the standard least model semantics, has a

non-zero causal value associated in the causal least model of the program, that is, some associated
cause. An interpretationI is two-valuedwhen it maps each atom into the set{0, 1}. By Icl, we
denote the two-valued (or “classic”) interpretation corresponding to some interpretationI s.t.

Icl(A) def=

{

1 iff I(A) > 0

0 iff I(A) = 0

Corollary 2. Let P be a regular, positive monotonic program andQ its standard unlabelled
version obtained by removing all labels from the rules inP . Let I andJ be the least models of
P andQ, respectively. Then,Icl = J .

4 Non-monotonic causal queries and negation

We introduce now the semantics for programs with non-monotonic causal queries and negation
by extending the concept of reduct (Gelfond and Lifschitz 1988) to causal queries.

Definition 10 (Reduct). For any termt, byψt we denote a query such that

ψt(G, u) def=

{

1 iff exists someG′ ≤ G s.t.G′ ∈ max t andψ(G′, t) = 1

0 otherwise

Thereductof a causal literal(ψ :: A) w.r.t some interpretationI is itself ifψ is monotonic and
(ψI(A) :: A) if ψ is non-monotonic. The reduct of a programP w.r.t. an interpretationI, in
symbolsP I , is the result of (i) removing all rules whose body contains anon satisfied negative
or consistent literal, (ii) removing all the negative and consistent literals for the remaining rules
and (iii) replacing the remaining causal literals(ψ :: A) by their reducts(ψ :: A)I .

It is easy to see that the reductP I of any programP is a positive monotonic program and,
therefore, it has a least causal model.

Definition 11 (Causal stable model). We say that an interpretationI is a causal stable modelof
a programP iff I is the least model of the positive programP I .

We can check now that interpretationI9 is, in fact, the unique causal stable model of pro-

gramP9. LetQ = P
I9
9 be the reduct of programP9 w.r.t. I9 consisting in the following rules

r1 : p r2 : q ← (ψ :: p)

whereψ(G, t) = 1 iff there exists someG′ ≤ G s.t.G′ ∈ max I9(p) = r1 andψnec
A1

(G′, I9(p))

iff r1 ≤ G andr1 ≤
∑

A1 = r1 iff r1 ≤ G. First note thatT↑αQ (0)(p) = r1 = I9(p) for
any ordinalα ≥ 1 becauser1 is the only rule with the atomp in the head. Then, note that



T
↑α
Q (0)(ψ :: p) = T

↑α
Q (0)(p) becauser1 ≤ G for everyG∈ maxT↑αQ (0)(p) = r1 (there is only

one suchG = r1) and, thus,

T
↑β
Q (0)(q) = T

↑α
Q (0)(ψ :: p)·r2 = T

↑α
Q (0)(p)·r2 = r1·r2 = I9(q)

for any ordinalβ ≥ 2. Hence,I9 is a causal stable model ofP9. On the other hand, we can

check thatI ′9 is not a causal stable model ofP9. LetQ′ = P
I′9
9 be the reduct of programP9

w.r.t. I ′9 consisting in the same rules than programQ, but replacingψ byψ′ whereψ′(G, t) = 1

iff there exists someG′ ≤ G s.t.G′ ∈ max I ′9(p) = r1 + r2 andψnec
A1

(G′, I ′9(p)). As above,

T
↑α
Q′ (0)(p) = r1 6= I ′9(p) = r1 + r2 for any ordinalα ≥ 1 and, therefore,I9 is not a causal

stable model of programP9.
It is worth to mention that, as happened with positive programs, we can stablish a correspon-

dence between the causal stable models of regular programs and the standard stable models of
their standard version.

Definition 12 (Two-valued equivalence). Two programsP andQ are said to betwo-valued
equivalentiff for every causal stable modelI ofP there is an unique causal stable modelJ ofQ
such thatIcl = Jcl, and vice-versa.

Theorem 2. LetP be a regular program andQ be its corresponding standard program obtained
by removing all labels inP . ThenP andQ are two-valued equivalent.

Theorem 2 asserts that, labelling a standard program does not change which atoms are true
or false in its stable models, in other words, the causal stable semantics presented here is a
conservative extension of the standard stable model semantic.

5 Contributory cause and its relation with actual causation

Until now we have considered that an agent is a cause of an event when its actions have been nec-
essary to cause that event. This understanding is similar tothe definition of themodified Halpern-
Pearl definition of causalitygiven by Halpern (2015). However, in some scenarios it makessense
to consider a weaker definition in which those agents whose actions havecontributedto that event
are also considered causes, even if their actions have not been necessary (Pearl 2000). Consider,
for instance, the following example from (Hopkins and Pearl2003).

Example 1. For a firing squad consisting of shooters Billy and Suzy, it isJohn’s job to load
Suzy’s gun. Billy loads and fires his own gun. On a given day, John loads Suzy’s gun. When the
time comes, Suzy and Billy shoot the prisoner. The agents whocaused the prisoner death would
be punished with imprisonment.

In this example, although the actions of any of the agents arenot necessary for the prisoner’s
death, commonsense tells that all three should be considered responsible of it. If we represent
Example 1 by the following programP10

r1 : dead ← shoot(suzy), loaded

r2 : dead ← shoot(billy)

r3 : loaded ← load(john)

rA : long prison(A) ← A necessary for dead

shoot(suzy)

shoot(billy)

load(john)



forA ∈ {suzy, billy, john}, it can be shown that its unique causal stable modelI10 satisfies

I10(dead) =
(

load(john)·r3 ∗ shoot(suzy)
)

· r1 + shoot(billy)·r2

Recall that, we assume that every fact has a label with the same name. According toI10, the
actions of the three agents appear in the causes of the atomdead, but there is no agent whose
actions occur in all causes. Then, the causal literal(A necessary for dead) is not satisfied
for any agentA and, therefore, it holds thatI10(long prison(A)) = 0 for every agentA ∈
{suzy, billy, john}. That is, no agent is punished with imprisonment for the prisoner’s death.
On the other hand, ifP11 is a program obtained by replacing rulesrA by rules

cA : short prison(A, dead) ← A contributed to dead

in programP10, we may expect thatshort prison(A) holds, in its unique causal stable modelI11,
for anyA ∈ {suzy, billy, john}. We formalise this by defining the following query

ψcont
A (G, t) def=

{

1 if G ≤
∑

A

0 otherwise
(14)

In the sake of clarity, we will write(A contributed to dead) instead of(ψcont
A :: dead). It

can be checked that
(

load(john)·r3 ∗ shoot(suzy)
)

· r1 ≤ load(john) and, therefore,

I11(john contributed to dead) =
(

load(john)·r3 ∗ shoot(suzy)
)

· r1

Consequently,I11(short prison(john)) =
(

load(john)·r3 ∗ shoot(suzy)
)

· r1 · cjohn. Sim-
ilarly, it can be shown that

I11(short prison(suzy)) =
(

load(john)·r3 ∗ shoot(suzy)
)

· r1·csuzy

I11(short prison(billy)) = shoot(billy)·r2 · cbilly

It is worth to note that contributory causes are non-monotonic when defaults are taken into
account. Consider now the following variation of Example 1.

Example 2. Now Suzy also loads her gun as Billy does. However, Suzy’s gunwas broken and
John repaired it.

As in Example 1, John’s repairing action is necessary in order for Suzy to be able to fire
her gun. However, in this case, it seems too severe to consider that John has contributed to
the prisoner’s death. This consideration has been widely attributed to the fact that we con-
sider that, by default, things are not broken and that causesmust be events that deviate from
the norm (Maudlin 2004; Hall 2007; Halpern 2008; Hitchcock and Knobe 2009). If we represent
this variation by a programP12 containing the following rules1

r1 : dead ← shoot(suzy), un broken

r2 : dead ← shoot(billy)

r3 : un broken ← repair(john)

cA : short prison(A) ← A contributed to dead

shoot(suzy)

shoot(billy)

repair(john)

1 We have chosen this representation in order to illustrate the non-monotonicity of contributory cause. However, solving
the Frame and Qualification Problems (McCarthy and Hayes 1969; McCarthy 1987) would require the introduction of
time and the inertia laws, plus the replacement of ruler1 by the pair of rules(r1 : dead ← shoot(suzy), notab)
and (ab ← broken). For a detailed discussion of how causality and the inertia laws can combined we refer
to (Fandinno 2015a).



forA ∈ {suzy, billy, john}, then it is easy to see that

I12(dead) =
(

repair(john)·r3 ∗ shoot(suzy)
)

· r1 + shoot(billy)·r2

whereI12 is the least model of programP12 and, thus,responsible(john, dead) will be a con-
clusion of it. Just note that programP12 is the result of replacing atomsloaded andload(john)
in programP11 by un broken andrepair(john), respectively. Note also that nothing in pro-
gramP12 reflects the fact that by default guns areun broken. We state that guns areun broken
by default adding the following rule

1 : un broken ← notbroken (15)

If P13 is the result of adding rule (15) to programP12 andI13 is the least model ofP13, then

I13(un broken) = I12(un broken) + 1 = 1

and, consequently,

I12(dead) =
(

1·r3 ∗ shoot(suzy)
)

· r1 + shoot(billy)·r2

=
(

r3 ∗ shoot(suzy)
)

· r1 + shoot(billy)·r2

which shows that John is not considered to have contributed to the prisoner’s death. Hence,
short prison(john) is not a conclusion of programP13. It is worth to mention that besides the
two syntactic differences between causal queries and m-queries already mentioned, there is a,
perhaps, less noticeable difference in the evaluation of causal literals. Note that,

(

repair(john)·r3 ∗ shoot(suzy)
)

· r1 ≤
(

r3 ∗ shoot(suzy)
)

· r1

and, thus, if we replacedG∈ max I(A) byG ≤ I(A) in Definition 6 (as done in Fandinno 2015b),
it would follows that atomshort prison(john) would be an unintended conclusion of pro-
gramP13. It is also worth to mention that, besides (Pearl 2000) approach, the notion of con-
tributory cause is also behind the definitions of actual cause given in (Halpern and Pearl 2005;
Hall 2007).

6 Properties of causal logic programs

Theorem 2 established a correspondence for regular programs, but they say nothing about pro-
grams with causal queries. For instance, positive program with non-monotonic causal literals
may have more than one causal stable model. Consider the following positive programP14

r1 : p

r3 : q

r2 : q ← A1 necessary for p

r4 : p ← A2 necessary for q

obtained by adding rulesr3 andr4 to programP9 and whereA2
def={r3}. ProgramP14 has two

causal stable causal models. The first that satisfiesI14(p) = r1 + r3·r4 andI14(q) = r3. The

secondI ′14(p) = r1 andI ′14(q) = r3 + r1·r2. Let nowQ = P
I14
14 be the reduct of programP14

w.r.t. I14, which consists in the following rules

r1 : p

r3 : q

r2 : q ← (ψ1 :: p)

r4 : p ← (ψ2 :: q)

whereψ1(G, t) = 1 iff there exists someG′ ≤ G such thatG′ ∈ max I14(p) = r1 + r3·r4 and
ψnec
A1

(G′, I14(p)) andψ2(G, t) = 1 iff there existsG′ ≤ G such thatG′ ∈ max I14(q) = r3



andψnec
A2

(G′, I14(p)). First, note thatψnec
A1

(G′, I14(p)) iff I14(p) = r1 + r3·r4 ≤
∑

A1 = r1
which does not hold. Thus,ψ1(G, t) = 0 for everyG ∈ CLb andt ∈ VLb. Then, it is clear
that the body of ruler2 is never satisfied and, therefore,T↑αQ (0)(q) = r3 for any ordinalα ≥ 1.

It can also be checked thatψ2(r3, T
↑α
Q (0)(q)) = 1 because there existsG′ = r3 such that

G′ ∈ max I ′14(q) = r3 andψnec
A2

(G′, I14(q)) = ψnec
A2

(r3, r3) = 1 sincer3 ≤
∑

A2 = r3. Hence,

sincer3 ∈ maxT↑αQ (0)(q) andψ2(r3, T
↑α
Q (0)(q)) = 1, it follows thatT↑αQ (0)(ψ2 :: q) = r3 and

T
↑β
Q (0)(p) = r1 + T

↑α
Q (0)(q)·r4 = r1 + r3·r4 = I9(p) for any ordinalβ ≥ 2. Hence,I14 is

the least model ofP
I14
14 and a causal stable model of programP14. Showing thatI ′14 is also a

causal stable model ofP14 is symmetric.
In the following we revise some desired general properties for a LP semantics. First, causal

stable models should also be supported models. Note that theconcept of supported model bellow
is analogous to the usual concept used in standard LP, but it is stronger in the sense that, not only
requires that true atoms are supported, but also all their causes must be supported by a rule and a
cause of its body.

Definition 13. A interpretationI is a (causally) supported modelof a programP iff I is a model
ofP and for every true atomA and causeG ∈ CLb such thatG ≤ I(A) there is a ruler in P of
the form of(10)such thatG ≤ ( I(B1) ∗ . . . ∗ I(Bm)) · ri.

Proposition 1. Any causal stable modelI of a programP is a also supported model ofP .

Furthermore, as happen with programs with nested negation under the standard stable models
semantics (where stable models may not be minimal models of the program), causal stable mod-
els may not be minimal models either. In fact, this may happeneven when the nested negation is
replaced by a non-monotonic causal literal. Consider, for instance, the following programP15

r1 : p r2 : p ← not(A1 necessary for p)

whereA1
def={r1}. ProgramP15 has two causal models. One which satisfiesI15(p) = r1. The

other which satisfiesI ′15(p) = r1 + r2. We define now the notion ofnormal programwhose
causal stable models are also≤-minimal models. A programP is normal iff no body rule inP
contains a consistent literal (double negated literal) nora negated non-monotonic causal literal.
In other words, a program is normal iff it does not contains nested negation nor non-monotonic
causal literals in the scope of negation.

Proposition 2. Any causal stable modelI of normal programP is also a≤-minimal model.

Splitting programs. The intuitive meaning of the causal rule (13) in programsP7 andP8 is
to cause the atomfine(suzy) whenever the causal query expressed by its body is true with
respect to a programsP5 andP6, respectively. This intuitive understanding can be formalised as
a splitting theorem in (Lifschitz and Turner 1994).

Theorem 3 (Splitting). Let 〈Pb, Pt〉 a partition of a programP such that no atom occurring in
the head of a rule inPt occurs inPb. An interpretationI is a causal stable model ofP iff there
is some causal stable modelJ ofPb such thatI is a causal stable model of(J ∪ Pt).

In our running example, the bottom part areP7,b = P5 andP8,b = P6 while their top part
P7,t = P8,t is the program containing the rule (13). This result can be generalised to infinite
splitting sequences as follows.



Definition 14. A splitting sequenceof a programP is a family(Pα)α<µ of pairwise disjoint
sets such thatP =

⋃

α<µ Pα and no atom occurring in the head of a rule in somePα occurs in
the body of a rule in

⋃

β<α Pβ . A solutionof a splitting(Pα)α<µ is a family(Iα)α<µ such that
align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is a stable model ofP0,

2. Iα is a stable model of(Jα ∪ Pα) for any ordinal0 < α < µ whereJα =
∑

β<α Iβ .

A splitting sequence is said to bestrict in α if, in addition, no atom occurring in the head of a
rule in Pα occurs (in the head of a rule) in

⋃

β<α Pβ and it is said to bestrict if it is strict in α
for everyα < µ.

Theorem 4 (Splitting sequences). Let (Pα)α<µ a splitting sequence of some programP . An
interpretationI is a causal stable model ofP iff there is some solution(Iα)α<µ of (Pα)α<µ
such thatI =

∑

α<µ Iα. Furthermore, if such solution is strict inα, thenIα = I|Sα
whereSα

is the set of all atoms not occurring in the head of any rule in
⋃

α<β<µ Pβ andI|Sα
denotes the

restriction if I to Sα.

A programP is said to bestratifiedif there is a some ordinalµ and mappingλ from the set of
atomsAt into the set of ordinals{α < µ} such that, for every rule of the form (10) and atomB
occurring in its body, it satisfiesλ(A) ≥ λ(B) if B does not occur in the scope of negation nor
in a non-monotonic causal literal, andλ(A) > λ(B) if B does occur under the scope of negation
or in a non-monotonic causal literal.

Proposition 3. Every stratified causal programP has a unique causal stable model.

7 Conclusions, related work and open issues

The main contribution of this work is the introduction of a semantics for non-monotoniccausal
literals that allow deriving new conclusions by inspecting the causal justifications of atoms in
an elaboration tolerantmanner. In particular, we have used causal literals to definenecessary
andcontributory causal relationswhich are intuitively related to some of the most established
definitions of actual causation in the literature (Pearl 2000; Halpern and Pearl 2005; Hall 2007;
Halpern 2015). Besides, by some running examples we have shown that causal literals allow,
not only to derive whether some event is the cause or not of another event, but also to derive
new conclusions from this fact. From a technical point of view, we have shown that our seman-
tics is a conservative extension of the stable model semantics and that satisfy the usual desired
properties for an LP semantics (casual stable models are supported models, minimal models
in case of normal programs and can be iteratively computed bysplit table programs). It worth
to mention that, besides the syntactic approaches to justifications in LP, the more related ap-
proach to our semantics is (Damásio et al. 2013), for which aformal comparative can be found
in (Cabalar and Fandinno 2016a) and that (Pontelli et al. 2009) allows a Prolog system to reason
about justifications of an ASP program, but justifications cannot be inspected inside the ASP
program.

Regarding complexity, it has been shown in (Cabalar et al. 2014b) that there may be an ex-
ponential number of causes for a given atom w.r.t. each causal stable model. Despite that, the
existence of stable model for programs containing only monotonic queries evaluable in polyno-
mial time isNP-complete (Fandinno 2015b). For programs containing only necessary causal lit-
erals we can proveNP-complete (NP-hard holds even for programs containing a single negated



regular literal or positive programs containing a single constraint, see Proposition 35 in the Ap-
pendix). The complexity for programs including other non-monotonic causal literals (like con-
tributory) is still an open question. A preliminary prototype extending the syntax of logic pro-
grams with causal literals capturing sufficient, necessaryand contributory causal relation can be
tested on-line athttp://kr.irlab.org/cgraphs-solver/nmsolver.

In a companion paper (Cabalar and Fandinno 2016b), the causal semantics used here has been
extended to disjunctive logic programs, which will be useful for representing non-deterministic
causal laws. Interesting topics include a complexity assessment or studying an extension to arbi-
trary theories as with Equilibrium Logic (Pearce 2006) for the non-causal case; and formalise the
relation between our notions of necessary and contributorycause with the above definitions of
the actual causation and, in particular, with (Vennekens 2011) who has studied it in the context of
CP-logic. A promising approach seems to translate structural equations into logic programs in a
similar way as it has been done to translate them into the causal theories (Giunchiglia et al. 2004;
Bochman and Lifschitz 2015).

References

BOCHMAN, A. AND L IFSCHITZ, V. 2015. Pearl’s causality in a logical setting. InProceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.,
B. Bonet and S. Koenig, Eds. AAAI Press, 1446–1452.

CABALAR , P.AND FANDINNO , J. 2016a. Enablers and inhibitors in causal justificationsof logic programs.
Theory and Practice of Logic Programming, TPLP, (First View).

CABALAR , P. AND FANDINNO , J. 2016b. Justifications for programs with disjunctive andcausal-choice
rules.Theory and Practice of Logic Programming TPLP. (to appear).

CABALAR , P., FANDINNO , J.,AND FINK , M. 2014a. Causal graph justifications of logic programs.Theory
and Practice of Logic Programming TPLP 14,4-5, 603–618.

CABALAR , P., FANDINNO , J., AND FINK , M. 2014b. A complexity assessment for queries involving
sufficient and necessary causes. InLogics in Artificial Intelligence - 14th European Conference, JELIA
2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, E. Fermé and J. Leite, Eds.
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Appendix A. Nested expressions in rule bodies

In this section we extend the syntax presented in Section 2 inorder to allow nested expressions
in rule bodies (Lifschitz et al. 1999).

Definition 15. A formulaF is recursively defined as one of the following expressions

F ::= t | C | E,H | E;H | notE

wheret is a term,C is a causal literal (Definition 4) and both,E andH are formulas in their
turn.

A formulaF is said to beelementaryiff it is a termt or a causal literalC. It is said to beregular
iff every causal literal occurring in it is regular and is said to bepositiveiff the operatornotdoes
not occur in it.F is said tomonotoniciff every causal literal occurring inF is monotonic. In
formulas, we will write⊤ and⊥ instead of1 and0, respectively.

Definition 16 (Causal logic program). Given a signature〈At, Lb,Ψ〉, a (causal logic) program
P is a set of rules of the form:

ri : A ← F (A1)

whereri ∈ Lb is a label orri = 1, A ∈ At (theheadof the rule) is an atom orA = ⊥ andF
(thebodyof the rule) is a formula.

A rule r is said to beregular iff its body is regular and its said to bepositiveiff its body is
positive andA 6= ⊥. It is said to bemonotoniciff F is monotonic. IfF = ⊤, we say the rule is
a fact and omit the body and sometimes the symbol ‘←.’ A programP is regular, positiveor
monotonicwhen all its rules are regular, positive or monotonic, respectively. A standard program
is a regular in which the label of every rule is ‘1 :’. Definition 16 extends Definition 5 by allowing
nested expressions in the rule bodies. A causal program in the sense of Definition 5 is a program
in which the bodyF of all rules are conjunctions of regular causal literals or their negation. Note
that every rule of the form of (10) withm = 0 corresponds to a rule of the form of(ri : A ← ⊤).

Semantics. The semantics of causal logic programs with nested expressions is given as follows.

Definition 17 (Valuation). The valuation of causal literals and causal terms is as givenby Defi-
nition 6. Otherwise, the valuation of a formulaF is recursively defined as follows

I(E,H) = I(E) ∗ I(H)

I(E;H) = I(E) + I(H)
I(notE) =

{

1 iff I(E) = 0

0 otherwise

We say thatI satisfies a formulaF , in symbolsI |= F , iff I(F ) 6= 0.

Definition 18 (Causal model). Given a ruler of the form(A1), we say that an interpretationI
satisfiesr, in symbolsI |= r, if and only if the following condition holds:

I(F ) · ri ≤ I(A) (A2)

An interpretationI is a causal modelof P , in symbolsI |= P iff I satisfies all rules inP .

The following result shows that Definition 18 agrees with Definition 7 for programs within the
syntax of Definition 5 and, thus, the former is a conservativeextension of the last to programs
with nested expressions in the body.



Proposition 4. For any programP with the syntax of Definition 5, an interpretationI is a model
ofP w.r.t. Definition 7 iffI is a model ofP w.r.t. Definition 18.

We also can extend the definition of the direct consequences operator to programs with nested
expressions as follows.

Definition 19 (Direct consequences). Given a causal program with nested expressionsP , the
operator of direct consequencesis a functionTP from interpretations to interpretations such
that

TP (I)(A)
def=

∑

{

I(F ) · r1
∣

∣ (ri : A ← F ) ∈ P
}

for any interpretationI and any atomA ∈ At. The iterative procedure is defined as usual

T
↑α
P (0) def= TP (T

↑α−1
P (0)) if α is a successor ordinal

T
↑α
P (0) def=

∑

β<α

T
↑β
P (0) if α is a limit ordinal

As usual0 and ω respectively denote the first limit ordinal and the first limit ordinal that is
greater than all integers. Thus,T↑0P (0) = 0.

We will show in the Appendix C that, ifP is monotonic and positive, then theTP operator has
a least fixpoint that can be computed by iteration from the bottom interpretation0.

Causal stable models of programs with nested expressions.

Definition 20 (Reduct). The reduct of a causal literal and terms is as in Definition 10.The reduct
of formulas is inductively defined as follows

(E,H)I = (EI , HI)

(E;H)I = (EI ;HI)
(notE)I =

{

⊥ if I |= EI

⊤ otherwise

The reduct of programP is the program

P I def= { rI
∣

∣ r ∈ P }

where the reductrI of a ruler like (10) is given by(ri : H ← F I).

Definition 21 (Formula equivalence). A formulaF is said to beequivalentto a formulaE, in
symbolsF ⇔ E, iff any pair of causal interpretationsI andJ satisfy thatI(F J) = I(EJ ).

Proposition 5. For any formulaF , the following simplifications are valid align=Center, left-
margin=10pt, itemindent=0.5pt

1. (F,⊤)⇔ F and(⊤, F )⇔ F .

2. (F ;⊤)⇔ ⊤ and(⊤;F )⇔ ⊤.

3. (F,⊥)⇔ ⊥ and(⊥, F )⇔ F

4. (F ;⊥)⇔ F and(⊥;F )⇔ F .

Definition 22 (Causal stable model). We say that an interpretationI is acausal stable modelof a
program with nested expressionsP iff I is the least model of the positive monotonic programP I

(Definition 20).



Proposition 6. For any programP with the syntax of Definition 5, the reduct ofP w.r.t. to
an interpretationI and Definition 10 is the same as the reduct ofP w.r.t. I and Definition 20
after applying the simplifications from Proposition 5 and removing all rules whose body is⊥.
Consequently, the causal stable models ofP w.r.t. Definitions 11 and 22 are the same.

Proposition 7. LetP be a causal program with nested expressions. Any causal stable modelI
ofP is a model ofP .

Proposition 8. LetP be a causal program with nested expressions. Any causal stable modelI
of aP is a also supported model ofP .

Proposition 9. Let P be a causal program with nested expressions. Then, any causal stable
modelI ofP is also a≤-minimal model ofP .

Note that Propositions 1 and 2 in the main part of the paper, are direct consequences of Propo-
sition 6 together with Propositions 8 and 9, respectively.

Splitting programs. The intuitive meaning of the causal rule (13) in programsP7 andP8 is to
cause the atomresponsible(suzy, accident) whenever the causal query expressed by its body
is true with respect to a programsP5 andP6, respectively. This intuitive understanding can be
formalised as a splitting theorem in (Lifschitz and Turner 1994).

Theorem 5 (Splitting). Let 〈Pb, Pt〉 a splitting of some program with nested expressionsP . An
interpretationI is a causal stable model ofP iff there is some causal stable modelJ of Pb such
that I is a causal stable model of(J ∪ Pt). Furthermore, if〈Pb, Pt〉 is a strict splitting, then
J = I|S whereS is the set of atoms of all atoms not occurring in the head of anyrule in Pt.

In our running example, the bottom part areP7,b = P5 andP8,b = P6 while their top part
P7,t = P8,t is the program containing the rule (13). We also can generalise this to infinite
splitting sequences.

Definition 23. A splitting sequenceof a programP is a family(Pα)α<µ of pairwise disjoint
sets such thatP =

⋃

α<µ Pα and no atom occurring in the head of a rule in somePα occurs in
the body of a rule in

⋃

β<α Pβ . A solutionof a splitting(Pα)α<µ is a family(Iα)α<µ such that
align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is a stable model ofP0,

2. Iα is a stable model of(Jα ∪ Pα) for any ordinal0 < α < µ whereJα =
∑

β<α Iβ .

A splitting sequence is said to bestrict in α if, in addition, no atom occurring in the head of a
rule in Pα occurs (the head of a rule) in

⋃

β<α Pβ and it is said to bestrict if it is strict in α for
everyα < µ.

Theorem 6 (Splitting sequences). Let (Pα)α<µ a splitting sequence of some program with
nested expressionsP . An interpretationI is a causal stable model ofP iff there is some so-
lution (Iα)α<µ of (Pα)α<µ such thatI =

∑

α<µ Iα. Furthermore, if such solution is strict
in α, thenIα = I|Sα

whereSα is the set of all atoms not occurring in the head of any rule
in

⋃

α<β<µ Pβ .

A programP is said to bestratifiediff there is a some ordinalµ and mapping mappingλ from
the set of atomsAt into the set of ordinals{α < µ} such that, for every rule of the form (A1)
and atomB occurring in the bodyF , it satisfiesλ(A) ≥ λ(B) if B does not occur in the scope



of negation or a non-monotonic causal literal, andλ(A) > λ(B) if B does occur under the scope
of negation or a non-monotonic causal literal.

Proposition 10. Every stratified causal program with nested expressionsP has a unique causal
stable model if it does not contain any rule whose head is⊥.

Propositions 3, in the main part of the paper, is a direct consequence of Propositions 6 and 10.

Normal form. Proposition 6 show that Definition 22 is a conservative extension of Defini-
tions 11. In the following we show that, in fact, the syntax ofDefinition 5 is a normal form,
that is, for every programP in the syntax of Definition 16, there is some programQ with the
syntax of Definition 5 which has exactly the same causal stable models thanP .

Definition 24. For programP andQ we writeP ⇔ Q whenI satisfies all rules inP J iff I
satisfies all rules inQJ for any pair of causal interpretationsI andJ .

Definition 25 (Strong equivalence). Two programsP andQ are said to bestrongly equivalent
iff for every programP ′, (P ∪ P ′) and(Q ∪ P ′) have the same causal stable models.

Proposition 11. Any two causal programsP andQ s.t.P ⇔ Q are strongly equivalent.

Proposition 12. LetP be a causal program, and letF andE be a pair of equivalent formulas,
that isF ⇔ E. Any program obtained fromP by replacing some occurrences ofF by E is
strongly equivalent toP .

The following result collects some of equivalence among formulas that correspond to those
in (Lifschitz et al. 1999).

Proposition 13. For any formulasF ,E andH , align=Center, leftmargin=10pt, itemindent=0.5pt

1. F,E ⇔ E,F andF ;G⇔ G;F .

2. F, (E,H)⇔ (F,E), H andF ; (E;H)⇔ (F ;E);H .

3. F, (E;H)⇔ (F,E); (F,H) andF ; (E,H)⇔ (F ;E), (F ;H).

4. not(F,E)⇔ I(notF ; notE) andnot(F ;E))⇔ notF, notE.

5. not not notF ⇔ notF .

6. F,⊤ ⇔ F andF ;⊤ ⇔ ⊤.

7. F,⊥ ⇔ ⊥ andF ;⊥ ⇔ F .

8. not⊤ ⇔ ⊥ andnot⊥ ⇔ ⊤.

A formulaF is said to be asimple conjunction(resp.simple disjunction) iff is a conjunction
(resp. disjunction) of elementary formulas.

Proposition 14. Any formulaF is equivalent to a formula of the form align=Center, leftmar-
gin=10pt, itemindent=0.5pt

1. F1; . . . ;Fn wheren ≥ 1 and eachFi is a simple conjunction, and

2. F1, . . . , Fn wheren ≥ 1 and eachFi is a simple disjunction.

Proposition 15. A causal rule (ri : A← F ;E) is equivalent to

ri : A ← F

ri : A ← E

for any labelri, atomA and formulasF andE.



Proposition 16. Any program is strongly equivalent of a set of rules of the form (10) if ⊥ is
allowed in the head.

Proposition 17. For every programP , there is some programQ with the syntax of Definition 5
which has exactly the same causal stable models thanP .

Appendix B. Uniform reduct for monotonic and non-monotonicqueries

An issue with Definitions 10 and 20 is that it is necessary to know whether a causal query is
monotonic or not to apply the reduct. This can be provided by the user, but otherwise automat-
ically checked whether a causal query is monotonic or not canbe computationally costly. In
the following, we show that, in fact, this distinction is notnecessary and that the reduct can be
applied uniformly to monotonic and non-monotonic causal literals.

Definition 26 (Reduct). Thereductof causal queries is defined as in Definition 10. The reduct of
a causal literal is given by(ψI(A) :: A) for any causal literal of the form of(ψ :: A). The reduct
of formulas, rules and programs is then defined as in Definition 20.

Definition 26 applies the reduct uniformly to monotonic and non-monotonic causal literals. A
consequence of this fact is that the reduct of monotonic programs is not itself and, in fact, the
least model of the reduct of a monotonic programP Iw.r.t. an interpretationI can be different
according to Definitions 20 and 26. Despite that, the following result shows that the causal stable
models of a programP are the same in spite of whether Definition 20 or Definition 26 is used.

Proposition 18. Let P be a causal program with nested expressions. An interpretation I is
the least model ofP I (according to Definition 20) iffI is the least model ofP I (according to
Definition 26).

Appendix C. Comparative with (Fandinno 2015b)

In this section we revise the syntax and semantics of causal programs given in (Fandinno 2015b)
and show how programs in this framework can be translated in ours.

Syntax. A m-queryis a monotonic functionφ : GLb −→ {0, 1} assigning true or false to every
causal graphsG ∈ CLb. A signatureis a triple〈At, Lb,Φ〉 whereAt, Lb andΦ respectively
represent sets ofatoms(or propositions), labelsand query functions.

Definition 27 (m-literal). A m-literal is an expression(φ :: A) whereA ∈ At is an atom and
φ ∈ Φ is a m-query.

Formulas, rules and programs are defined as in our framework (Section A), but replacing
causal literals (Definition 4) by m-literals (Definition 27).

Semantics. The semantics of m-programs is as follows.

Definition 28 (Valuation). Thevaluation of a causal literalof the form(φ :: A) with respect to
an interpretationI is given by

I(φ :: A) def=
∑

{

G ∈ GLb

∣

∣ G ≤ I(A) and φ(G) = 1
}

The valuation of causal terms and formulas is inductively defined as in Definition 17.



The definition of causal models and theTP operator is as in Definitions 18 and 19, respectively,
but evaluating formulas according to Definition 28 instead of Definition 17.

Theorem 7 (From Fandinno 2015b). LetP be a (possibly infinite) positive logic program (with
nested expressions). Then, (i) lfp(TP ) is the least model ofP and (ii) lfp(TP ) = T

↑ω
P (0).

Theorem 8 (From Fandinno 2015b). LetP be a regular positive program (with nested expres-
sions) andQ its standard unlabelled version. Then, the least modelJ = Icl of Q is the two-
valued interpretation corresponding to the least modelI ofP .

The definition of reduct and causal stable models is as Definitions 20 and Definition 22.

Theorem 9(From Fandinno 2015b). LetP be a regular program (with nested expressions) and
Q be its corresponding standard program obtained by removingall labels inP . Then,P andQ
are two-valued equivalent.

Encoding (Fandinno 2015b) m-programs in our framework. In the following we show that
every program according to (Fandinno 2015b) can be fitted in our framework.

Definition 29. Given a m-programQ, its corresponding programP consists of rule of the form

ri : A ← F ′

for every rule of the form(ri : A ← F ) in Q whereF ′ is the result of replacing every m-query
φ by its corresponding queryψ given byψ(G, t) = φ(G).

Proposition 19. If P is the corresponding program of some positive m-program (with nested
expressions)Q, then an interpretationI is a model ofP iff I is a model ofQ.

Encoding of monotonic programs into (Fandinno 2015b). It is clear that not every program in
our framework can be fitted into a m-program because the last only allows monotonic queries.
However, if all causal queries in a program are monotonic, then there is an equivalent m-program
given as follows.

Definition 30. Given a program with nested expressionsP in which all causal queries are mono-
tonic, its corresponding m-programQ consists of rule of the form

ri : A ← F ′

for every rule of the form(ri : A ← F ) in Q whereF ′ is the result of replacing every query
ψ by its corresponding queryφ given byφ(G) = ψ(G, 1).

Proposition 20. If Q is the corresponding m-program of some positive monotonic program with
nested expressionsP , then an interpretationI is a model ofP iff I is a model ofQ.

Note that Theorem 1 is a direct consequence of Proposition 4 together with the result of Propo-
sitions 19 and 20. Furthermore, the following Corollaries 3, 4 and 5 are direct consequences of
Proposition 20 together with the results of Theorems 7, 8 and9, respectively. Corollary 6 is a
direct consequence of Corollary 5.

Corollary 3. Any (possibly infinite) positive monotonic causal program with nested expres-
sionsP has a least causal modelI which (i) coincides with the least fixpointlfp(TP ) of the
direct consequences operatorTP and (ii) can be iteratively computed from the bottom interpre-
tationI = lfp(TP ) = T

↑ω
P (0).



Corollary 4. LetP be a regular positive monotonic program with nested expressions andQ its
standard unlabelled version obtained by removing all labels from the rules inP . LetI andJ be
the least models ofP andQ, respectively. Then,Icl = J .

Corollary 5. LetP be a regular program with nested expressions andQ be its corresponding
standard program obtained by removing all labels inP . ThenP andQ are two-valued equiva-
lent.

Corollary 6. Any two regular programs with nested expressions that only differ in their labels
are two-valued equivalent.

Corollaries 1 and 2 and Theorem 2 in the main part of the paper are direct consequences of
Proposition 4 plus Corollaries 3, 4 and 5, respectively.

Appendix D. Proof of Results

Preliminary facts

Proposition 21 (From Cabalar et al. 2014a). Addition, product and application are monotonic
operations, that is,t + u ≤ t′ + u′, t ∗ u ≤ t′ ∗ u′ and t · u ≤ t′ · u′ for any causal values
{t, u, t′, u′} ⊆ VLb such thatt ≤ t′ antu ≤ u′.

Proposition 22 (From Cabalar et al. 2014a). Every causal valueG ∈ CLb without addition is
completely addition-prime, that is,G ≤

∑

t∈T t implies thatG ≤ t for somet ∈ T where
T ⊆ VLb is a set of causal values.

Properties of the causal queries and causal literals

Proposition 23. The evaluation of a causal literal(ψ :: A) is≤-monotonic for every monotonic
causal queryψ, that is,J(ψ :: A) ≤ I(ψ :: A) for every pair of interpretationsI andJ such
thatJ ≤ I.

Proof. By definition, it follows that

X(ψ :: A) def=
∑

{

G ∈ CLb

∣

∣ G∈ maxX(A) and ψ(G, X(A) ) = 1
}

with X ∈ {I, J}. For the sake of contradiction, suppose thatJ(ψ :: A) 6≤ I(ψ :: A). Then,
there isG∈ maxJ(ψ :: A) such thatG 6≤ I(ψ :: A). Note thatG∈ max J(ψ :: A) implies
G∈ maxJ(A) and, sinceJ ≤ I, this implies that there existsG′ ∈ max I(A) such thatG ≤ G′.
Hence, sinceJ ≤ I andψ is monotonic,ψ(G, J(A) ) = 1 impliesψ(G′, I(A) ) = 1 and,
therefore,G ≤ G′ ≤ I(ψ :: A) which contradicts the assumption.

Proposition 24. The reduct of a causal queryψ w.r.t. termt, in symbolsψt is monotonic.

Proof. Suppose thatψt is not monotonic. Then there areG,G′′ ∈ CLb andu,w ∈ VLb such
thatG ≤ G′′ andψt(G, u) = 1, butψt(G′′, w) = 0. By definition,

ψt(G, u) = 1 iff exists someG′ ≤ G s.t.G′ ∈ max t andψ(G′, t) = 1 (D1)

Similar forG′′ andw. Pick someG satisfying (D1). SinceG′ ≤ G andG ≤ G′′, it follows
that G′ ≤ G′′ and, sinceG′ ≤ G′′ andG′ ∈ max t andψ(G′, t) = 1, it also follows that
ψt(G′′, w) = ψt(G′′, u) = 1 which is a contradiction with the assumption. Hence,ψt is mono-
tonic.



Proposition 25. Any monotonic causal queryψ satisfies thatψt(G, u) ≤ ψ(G, u) for any causal
valuesG ∈ CLb and{t, u} ⊆ VLb.

Proof. Suppose thatψt(G, u) 6≤ ψ(G, u). Then,ψt(G, u) = 1 andψ(G, u) = 0. By definition,

ψt(G, u) def=

{

1 iff exists someG′ ≤ G s.t.G′ ∈ max t andψ(G′, t) = 1

0 otherwise

and, thus, there exists someG′ ≤ G such thatG′ ∈ max t and thatψ(G′, t) = 1. Sinceψ is
monotonic,G′ ≤ G andψ(G′, t) = 1 implies thatψ(G, u) = 1 for anyu ∈ VLb which is a
contradiction with the fact thatψ(G, u) = 0.

Proposition 26. Let I andJ be two interpretations. Then,J(ψ :: A)I ≤ J(ψ :: A) for any
atomA ∈ At and any a monotonic causal queryψ.

Proof. Pick anyG∈ max J(ψ :: A)I . By definition,G∈ maxJ(A) andψI(A)(G, J(A)) = 1.
Furthermore, from Proposition 25,ψI(A)(G, J(A)) = 1 impliesψ(G, J(A)) = 1 and, thus,
G ≤ J(ψ :: A). Therefore,J(ψ :: A)I ≤ J(ψ :: A).

Note that in generalJ(ψ :: A)I 6= J(ψ :: A) may hold even ifJ ≤ I. Consider, for instance,
a pair of interpretationJ(A) = a ∗ b andI(A) = a and a monotonic causal queryψ(a ∗ b) =
ψ(a) = 1. Then,J(ψ :: A) = a ∗ b, butJ(ψ :: A)I = 0 becausea ∗ b 6∈ max I(A).

Properties of formulas

Proposition 27. Any monotonic formulaF is≤-monotonic, that is,J(F ) ≤ I(F ) for any causal
interpretationsI andJ such thatJ ≤ I.

Proof. In case thatF is a causal literal of the form(ψ :: A), from Proposition 23, it follows
thatJ(ψ :: A) ≤ I(ψ :: A). Otherwise, we proceed by structural induction assuming the lemma
holds for every subformula ofF . In case thatF = (E,A), by induction hypothesisE andA are
≤-monotonic and, thus, since product is also monotonic, it follows thatF is≤-monotonic. The
caseF = (E;A) is analogous. Finally, for the caseF = notE, just note thatF is not positive
and, thus,F is not monotonic by definition.

Proposition 28. Any causal interpretationI and formulaF satisfyI(F I) = I(F ).

Proof. In case thatF is a causal literal of the form(ψ :: A), its reduct(ψ :: A)I is (ψI(A) :: A).
Furthermore, by definition,

ψI(A)(G, t) = 1 iff exist G′ ≤ G s.t.G′ ∈ max I(A) andψ(G′, I(A))

Then,G∈ max I(ψI(A) :: A) implies thatG∈ max I(A) and there exists someG′ ≤ G

such thatG′ ∈ max I(A) andψ(G′, I(A)) = 1. Note that, sinceG′ ≤ G∈ max I(A) and
G′ ∈ max I(A), it follows thatG = G′. Then,ψ(G′, I(A)) = 1 implies thatψ(G, I(A)) = 1

and, consequently,G ≤ I(ψ :: A). That is,I(F I) ≤ I(F ). The other way around.G∈ max I(ψ ::

A) implies thatG∈ max I(A) andψ(G, I(A)) = 1 which in turn imply thatψI(A)(G, I(A)) =

1 andG∈ max I(ψI(A) :: A). Consequently,I(ψI(A) :: A) = I(ψ :: A).

In any other case, we proceed by structural induction assuming the lemma holds for every sub-
formula ofF . In case thatF = (E,H), by definition,

I(F I) = I(E,H)I = I(EI , HI) = I(EI) ∗ I(HI)



Furthermore, by induction hypothesisI(EI) = I(E) andI(HI) = I(H) and, thus,

I(F I) = I(E) ∗ I(H) = I(E,H) = I(F )

The caseF = (E;H) is analogous. Finally, for the caseH = notE, just note thatI(notE)I =

I(⊥) = 0 iff I |= EI iff I |= E iff I(notE) = 0. OtherwiseI(notE)I = I(⊤) = 1 and
I(notE) = 1.

Lemma D.1. Let I and J be two interpretations. Then,J(F I) ≤ J(F ′) ≤ J(F ) for any
monotonic formulaF andF ′ whereF ′ is eitherF I or the result of replacing inF I some reduced
causal queryψt by its non-reduced formψ.

Proof. In case thatF is a causal literal of the form(ψ′ :: A), from Proposition 26, it follows that
J(F I) = J(ψI(A) :: A) ≤ J(ψ :: A) = J(F ). Furthermore, if in additionψ′ = ψ, it follows
thatF ′ = F and the lemma statement follow from the above inequality. OtherwiseF ′ = F I and
the result follow in a similar way.

We proceed by structural induction assuming the statement holds for every subformula ofF . In
case thatF = (E,H), by definition,

J(F I) = J( (E,H)I ) = J(EI , HI) = J(EI) ∗ J(HI)

J(F ′) = J( (E,H)′ ) = J(E′, H ′) = J(E′) ∗ J(H ′)

Furthermore, by induction hypothesis,J(EI) ≤ J(E′) ≤ J(E) andJ(HI) ≤ J(H ′) ≤ J(H)

and, since product∗ is monotonic, it follows that,

J(F I) = J(EI) ∗ J(HI) ≤ J(E′) ∗ J(H ′) = J(E′, H ′) = J(F ′)

J(F ′) = J(E′) ∗ J(H ′) ≤ J(E) ∗ J(H) = J(E,H) = J(F )

The caseF = (E;H) is analogous. Finally, note thatF = notE is not a positive formula and,
by definition, it is not a monotonic formula either.

Proposition 29. LetF be a monotonic formula andI be an interpretation. Then,J(F I) ≤ J(F )
for any interpretationJ such thatJ ≤ I.

Proof. It follows directly from Lemma D.1.

Proposition 30. LetF be a normal formula andI be an interpretation. Then,J(F I) ≤ J(F )

for any interpretationJ such thatJ ≤ I.

Proof. In case thatF is a causal literal of the form(ψ :: A), its reduct(ψ :: A)I is (ψI(A) :: A).
Note thatG∈ maxJ(ψI(A) :: A) impliesG∈ maxJ(A) andψI(A)(G, J(A)) = 1. Further-
more, by definition,

ψI(A)(G, J(A)) = 1 iff exist G′ ≤ G s.t.G′ ∈ max I(A) andψ(G′, I(A))

SinceG′ ≤ G ≤ J(A) ≤ I(A) andG∈ max I(A), it follows thatG = G′. Then, since
J ≤ I, queries are anti-monotonic in the second argument andψ(G, I(A)) = 1, it follows
thatψ(G, J(A)) = 1 and, sinceG∈ maxJ(A), it also follows thatG ≤ J(ψ :: A). That is,
J(F I) ≤ J(F )

Otherwise, we proceed by structural induction assuming thelemma holds for every subformula
of F . In case thatF = (E,A), by definition,

J(F I) = J( (E,H)I ) = J(EI , HI) = J(EI) ∗ J(HI)



Furthermore, by induction hypothesis,J(EI) ≤ J(E) andJ(HI) ≤ J(H) and, since product∗
is monotonic, it follows that,

J(F I) = J(EI) ∗ J(HI) ≤ J(E) ∗ J(H) = J(E,H) = J(F )

The caseF = (E;H) is analogous. Finally, in caseF = notE, sinceF is a normal formula,E
is positive and every queryψ occurring inE is monotonic. Hence, from the factJ ≤ I and the
fact that monotonic formulas are also≤-monotonic, it followsJ(E) ≤ I(E) (Proposition 27).
Furthermore,

if J( (notE)I ) = 1 thenI 6|= EI

thenI(EI) = 0

thenI(E) = 0 (Proposition 28)

thenJ(E) = 0

thenJ(notE) = 1

That is,J( (notE)I ) = 1 implies thatJ(notE) = 1. Otherwise,J(notE)I = 0 and the term0
is smaller than any causal value and, thus,J( (notE)I ) ≤ J(notE) holds and, consequently, it
follows thatJ(F I) ≤ J(F ).

Proof of Proposition 4

Proof of Proposition 4. Assume thatI is a model ofP w.r.t. Definition 7 and suppose thatI is
not a model ofP w.r.t. Definition 18. Then, there is a ruler of the form of(r1 : A ← B1, . . . , Bm)

such thatI(B1, . . . , Bm) · ri 6≤ A, but thatI(B1) ∗ . . . ∗ I(Bm) · ri ≤ A. If m > 0, then from
Definition 17 it follows thatI(B1, . . . , Bm) = I(B1) ∗ . . . ∗ I(Bm) which is a contradiction. If
m = 0, then

∏

∅ = 1 = I(⊤) which is also a contradiction. The other way around is symmetri-
cal.

Proof of Proposition 5

Proof of Proposition 5. For(i), note that⊤ = 1, then

I((F,⊤)J ) = I(F J ,⊤J)

= I(F J) ∗ I(⊤)

= I(F J) ∗ I(1)

= I(F J) ∗ 1

= I(F J)

The remaining cases are analogous. Just note that⊥ = 0.

Proof of Proposition 6

Proof of Proposition 6. Let r be a rule of the form of

ri : A ← B1, . . . , Bm, Bm+1, . . . , Bn



whereBj is a positive literal with1 ≤ j ≤ m andBj is either a negative or a consistent literal
with m + 1 ≤ j ≤ n. According to Definition 20, ifI |= Bj with m + 1 ≤ j ≤ n, then the
reduct of ruler is a rulerI of the form

ri : A ← C1, . . . , Cm,⊤, . . . ,⊤

whereCj is the reduct of causal literalBj for 1 ≤ j ≤ m. After applying the simplifications in
Proposition 5, it follows thatrI becomes

ri : A ← C1, . . . , Cm

which agrees with Definition 10. On the other hand, ifI 6|= Bj for somem + 1 ≤ j ≤ n, it
follows thatBIJ = ⊥ and, therefore,

(B1, . . . , Bm, Bm+1, . . . , Bj−1, Bj , Bj+1 . . . , Bn)
I = ⊥

Hence,rI is of the from

ri : A ← ⊥

andrI does not belong toP I after removing all rules whose body is⊥. Therefore, the reduct
according to Definition 20 is the same as the Definition 10 for programs with the syntax of
Definition 5 and the causal stable models w.r.t. Definitions 11 and 22 are the same, too.

Proof of Proposition 19

Lemma D.2. LetF be some m-formula andF ′ be is corresponding formula obtained by replac-
ing every m-queryφ by its corresponding queryψ given byψ(G, t) = φ(G). Then, it holds that
I(F ) = I(F ′) for every interpretationI.

Proof. In case thatF = (φ :: A) is a m-literal, by definition

I(φ :: A) =
∑

{

G ∈ GLb

∣

∣ G ≤ I(A) and φ(G) = 1
}

Furthermore, sinceφ is monotonic, for everyG ≤ I(A) such thatφ(G) = 1, there is someG′

such thatG ≤ G′ ∈ max I(A) andφ(G) = 1 and, thus,

I(φ :: A) =
∑

{

G ∈ GLb

∣

∣ G∈ max I(A) and φ(G) = 1
}

Then, sinceψ(G, t) = φ(G) for anyt ∈ VLb, it is clear that

I(φ :: A) =
∑

{

G ∈ GLb

∣

∣ G∈ max I(A) and ψ(G, I(A)) = 1
}

= I(ψ :: A)

In case thatF is not a m-literal, the proof follows by structural induction assuming as induction
hypothesis thatI(E) = I(E′) for every subformulaE of F .

Proof of Proposition 19. Assume thatI is a model andQ and suppose thatI is not a model
of P . Then, there is some ruler of the form(ri : A ← F ) in P such thatI(F ) · r1 6≤ I(A).
However, sincer is inP there is a ruler′ of the form(ri : A ← F ) in Q whereF ′ is the result
of replacing every m-queryφ by its corresponding queryψ. Then, from Lemma D.2, it follows
thatI(F ′) = I(F ) and, thus,I(F ′) · r1 6≤ I(A) which is a contradiction with the assumption



thatI is a model ofQ.

The other way around is symmetrical. Assume thatI is a model andP and suppose thatI is
not a model ofQ. Then, there is some ruler′ of the form (ri : A ← F ′) in Q such that
I(F ′) · r1 6≤ I(A). However, sincer′ is inQ there is a ruler of the form(ri : A ← F ) in P
whereF ′ is the result of replacing every m-queryφ by its corresponding queryψ. Then, from
Lemma D.2, it follows thatI(F ′) = I(F ) and, thus,I(F ) · r1 6≤ I(A) which is a contradiction
with the assumption thatI is a model ofP .

Proof of Proposition 20

Lemma D.3. LetF be some formula andF ′ be is corresponding m-formula obtained by replac-
ing every queryψ by its corresponding m-queryφ given byφ(G) = ψ(G, 1). Then, it holds that
I(F ) = I(F ′) for every interpretationI.

Proof. In case thatF = (ψ :: A) is a causal literal, by definition

I(ψ :: A) =
∑

{

G ∈ GLb

∣

∣ G∈ max I(A) and ψ(G, I(A)) = 1
}

Furthermore, sinceψ is monotonic,ψ(G, I(A)) = ψ(G, 1)) and, thus

I(ψ :: A) =
∑

{

G ∈ GLb

∣

∣ G∈ max I(A) and ψ(G, 1) = 1
}

Then, sinceφ(G) = ψ(G, 1), it is clear that

I(ψ :: A) =
∑

{

G ∈ GLb

∣

∣ G∈ max I(A) and φ(G) = 1
}

= I(φ :: A)

In case thatF is not a m-literal, the proof follows by structural induction assuming as induction
hypothesis thatI(E) = I(E′) for every subformulaE of F .

Proof of Proposition 20. Assume thatI is a model andQ and suppose thatI is not a model
of P . Then, there is some ruler of the form(ri : A ← F ) in P such thatI(F ) · r1 6≤ I(A).
However, sincer is inP there is a ruler′ of the form(ri : A ← F ) in Q whereF ′ is the result
of replacing every m-queryφ by its corresponding queryψ. Then, from Lemma D.3, it follows
thatI(F ′) = I(F ) and, thus,I(F ′) · r1 6≤ I(A) which is a contradiction with the assumption
thatI is a model ofQ.

The other way around is symmetrical. Assume thatI is a model andP and suppose thatI is
not a model ofQ. Then, there is some ruler′ of the form (ri : A ← F ′) in Q such that
I(F ′) · r1 6≤ I(A). However, sincer′ is inQ there is a ruler of the form(ri : A ← F ) in P
whereF ′ is the result of replacing every m-queryφ by its corresponding queryψ. Then, from
Lemma D.3, it follows thatI(F ′) = I(F ) and, thus,I(F ) · r1 6≤ I(A) which is a contradiction
with the assumption thatI is a model ofP .

Proof of Theorem 1

Proof of Theorem 1. If P is the corresponding program of some positive m-programQ, the



result directly follows from Proposition 19 plus Proposition 4 and ifQ is the corresponding m-
program of some monotonic programP , the result directly follows from Proposition 20 plus
Proposition 4.

Proof of Corollary 1 and 3

Proof of Corollary 3 . This is an immediately consequence of Theorem 7 and Proposition 20.
Just note that the that from Proposition 20 we can translate aprogram into its corresponding
m-program and, then, use theTP operator for m-programs to compute its least model. Note also
that, from Lemma D.3, theTP operators for m-programs and programs give the same results.

Proof of Corollary 1 . Note that, from Proposition 4, the causal stable models of programs w.r.t.
Definition 7 and 18 agree and, therefore, the statement directly follows from Corollary 3.

Proof of Corollary 2 and 4

Proof of Corollary 4 . This is an immediately consequence of Theorem 8 and Proposition 20.
Just note that regular programs only contain the queryψ1 which is monotonic.

Proof of Corollary 2 . Note that, from Proposition 4, the causal stable models of programs w.r.t.
Definition 7 and 18 agree and, therefore, the statement directly follows from Corollary 4.

Proof of Theorem 2 and Corollary 5

Proof of Corollary 5 . Suppose there is some causal stable modelI of P which is not a causal
stable model ofQ and letP ′ andQ′ be the corresponding m-programs ofP I andQI , respec-
tively. Then,I is the least model ofP I and, from Proposition 20,I is also the least model of
P I . Just note that regular programs only contain the queryψ1 which is monotonic. SinceQ is
the result of removing all labels inP , thenQI andQ′ are the result of removing all labels inP I

andP ′, respectively. From, Theorem 9, this implies thatI is the least model ofQ′. Then, from
Proposition 20 again, this implies thatI is the least model ofQI which is a contradiction with
the assumption thatI is not a causal stable model ofQ. The other way around is analogous.

Proof of Theorem 2. Note that, from Proposition 4, the causal stable models of programs w.r.t.
Definition 7 and 18 agree and, therefore, the statement directly follows from Corollary 5.

Proof of Corollary 6

Proof of Corollary 6 . Just note that any two programs that only differ in their labels share the
same unlabelled versionQ and, thus, the proof immediately follows from Corollary 2.

Proof of Proposition 18

For any programP and interpretationsI andJ , byTP,I(J) we denote an interpretation satisfying

TP,I(J)(A)
def=

∑

{

G ∈ CLb

∣

∣ G ≤ TP (J)(A) andG∈ max I(A)
}

for every atomA ∈ At.



Lemma D.4. Let I be the least model of some monotonic programP . ThenI = T
↑ω
P,I(0).

Proof. It is clear thatT↑αP,I(0) ≤ T
↑α
P (0) for every ordinalα. Furthermore, from Theorem 1, it

follows thatI = T
↑ω
P (0) and, thus,T↑ωP,I(0) ≤ I. Suppose for the sake of contradiction that this

inequality is strict, that is,T↑ωP,I(0) < I holds. Then, there is some atomA and causal value

G∈ max I(A) such thatG 6≤ T
↑α
P,I(0) for everyα < ω. SinceI = T

↑ω
P (0) andG ≤ I(A),

it follows that there is someα < ω such thatG ≤ T
↑α
P (0)(A). But G ≤ T

↑α
P (0)(A) and

G∈ max I(A) implies thatG ≤ T↑αP,I(0)(A) which is a contradiction.

Lemma D.5. Let I be the least model of some monotonic programP andα be an ordinal. Let
ψ be a causal query and letQ be eitherP I or the result of replacing inP I the reduced causal
queryψt by its non-reduced formψ. If T↑αP,I(0) ≤ T

↑α
Q (0) ≤ I, thenT↑αP,I(0)(F ) ≤ T

↑α
Q (0)(F ′)

for every monotonic formulaF andF ′ whereF ′ is eitherF I or the result of replacing inF I the
reduced causal queryψt by its non-reduced formψ.

Proof. If F = (ψ′ :: A) is a causal literal andψ′ = ψ, thenF ′ = F and the result trivially holds.
Then, assume thatψ′ 6= ψ. Thus,G∈ maxT↑αP,I(0)(ψ :: A) holds only if

• G∈ maxT↑αP,I(0)(A), and

• ψ(G, T↑αP,I(0)(A)) = 1.

By definition, it follows thatG∈ maxT↑αP,I(0)(A) holds only ifG∈ max I(A). Furthermore, by

hypothesis, it follow thatG∈ maxT↑αP,I(0)(A) ≤ T
↑α
Q (0)(A) ≤ I(A). Then,G∈ max I(A) and

G ≤ T↑αQ (0)(A) ≤ I(A) imply

G ∈ max T
↑α
Q (0)(A) (D2)

On the other hand,G∈ maxT↑αP,I(0)(ψ :: A) imply thatψ(G, T↑αP,I(0)(A)) = 1 which, sinceψ
is monotonic, implies thatψ(G, I(A)) = 1. Then, sinceG∈ max I(A) andψ(G, I(A)) = 1, it
follows thatψI(A)(G, u) = 1 for everyu ∈ VLb. This plus (D2) implyG ≤ T↑αQ (0)(ψI(A) :: A).

Let us define the rank of a formula such that the rank of a causalliteral is 0 and the rank of
any other formula is the greater than the rank of all their subformulas and assume as induction
hypothesis thatT↑αP,I(0)(E) ≤ T↑αQ (0)(E′) for every monotonic formulaE of less rank thanF .

In case thatF = (E,H), it follows thatG∈ maxT↑αP,I(0)(F ) holds only if there are causal

valuesG1 andG2 such thatG1 ≤ T
↑α
P,I(0)(E) andG2 ≤ T

↑α
P,I(0)(H) such thatG ≤ G1 ∗G2.

SinceE andH have less rank thanF , by induction hypothesis, it follows that

G1 ≤ T
↑α
P,I(0)(E) ≤ T

↑α
Q (0)(E′) (D3)

G2 ≤ T
↑α
P,I(0)(H) ≤ T

↑α
Q (0)(H ′) (D4)

and, thus,G ≤ G1 ∗G2 ≤ T
↑α
Q (0)(F ′).

Finally, note that the case in whichF = (E;H) is analogous and that sinceF is monotonic the
caseF = notE is not valid.

Lemma D.6. LetI be the least model of some monotonic programP . Then,I is the least model
of programQ whereQ is the result of replacing some causal literal(ψ :: A) in Q by its reduced
form (ψI(A) :: A).



Proof. Suppose for the sake of contradiction thatI is not a model of programQ. Then, there
is a ruler′ = (ri : A ← F ′) is Q such thatI(F ′)·ri 6≤ I(A) whereF ′ is the result of re-
placing inF some causal literal(ψ :: A) in Q by its reduced form(ψI(A) :: A). Since, from
Lemma D.1, it follows thatI(F ′) ≤ I(F ) and ‘·’ is monotonic,I(F ′)·ri 6≤ I(A) implies that
I(F )·ri 6≤ I(A) which is a contradiction with the fact thatI is a model ofP because there is a
ruler = (ri : A ← F ) in P .

To show thatI is the least model ofQ assume as induction hypothesis thatT
↑β
P,I(0) ≤ T

↑β
Q (0)

for every ordinalβ < α. Note that, ifα = 0, thenT↑0P,I(0) = 0 and, thus, the hypothesis trivially
holds.

In case thatα is a successor ordinal,G∈ maxT↑αP,I(0)(A) holds only ifG∈ max I(A) and there

is some ruler = (ri : A ← F ) in P and causal valueG′ ∈ CLb such thatG′ ≤ T
↑α−1
P,I (0)(F )

andG ≤ G′·ri. Furthermore, by induction hypothesis, it follows thatT
↑α−1
P,I (0) ≤ T

↑α−1
Q (0)

and, thus, Lemma D.5 implies thatT↑α−1
P,I (0)(F ) ≤ T

↑α−1
Q (0)(F ′) for every monotonic for-

mulaF and, thus,G ≤ T↑αQ (0)(A).

In case thatα is a limit ordinal,G ≤ T
↑α
P,I(0) impliesG ≤ T

↑β
P,I(0) for someβ < α which, by

induction hypothesis, impliesG ≤ T↑βQ (0) ≤ T↑αQ (0).

Consequently,T↑αP,I(0) ≤ T
↑α
P I (0) for every ordinalα. Furthermore, from Theorem 1, it follows

thatT↑ωQ (0) is the least model ofQ and, from Lemma D.4 and the fact thatI is the least model

of P it follows thatI = T
↑ω
P,I(0). SinceI is a a model ofQ andI ≤ T

↑ω
Q (0), it follows thatI

must be the least model ofQ.

Proof of Proposition 18. LetQ be the reduct of programP w.r.t. I and Definition 10 andQ′ be
the reduct of programP w.r.t. I and Definition 26. Then,Q is monotonic and, from Lemma D.6,
it follows thatI is the least model ofQ iff I is the least model ofQ′.

Proof of Proposition 7

Proof of Proposition 7. Suppose thatI is not a model ofP . Then there is a ruler in P of the
form of (10) such thatI(F )·ri 6≤ I(A). Since ruler is in P , rulerI of the form

ri : A ← F I (D5)

is in P I . Furthermore,I(F ) = I(F I) from Proposition 28 and, thus,I(F I)·ri 6≤ I(A). That is,
I is not a model ofrI and, consequently, is not a model ofP I which contradicts the assumption
thatI is a causal stable model ofP .

Lemma D.7. LetP be a program,I be an interpretation andα be an ordinal. LetQ be the result
of replacing inP I the reduced causal queryψt of every monotonic query by its non-reduced
form ψ. If T↑αQ,I(0) ≤ T

↑α
P I (0) ≤ I, thenT↑αQ,I(0)(F

′) ≤ T
↑α
P I (0)(F

I) for every monotonic
formulasF ′ andF I whereF ′ is the result of replacing inF I the reduced causal queryψt of
every monotonic query by its non-reduced formψ.

Proof. If F = (ψ :: A) is a causal literal andψ is not a monotonic causal query, thenF ′ = F I



and the result trivially holds. Then, assume thatψ is a monotonic causal query. This implies that
G∈ maxT↑αQ,I(0)(ψ :: A) holds only if

• G∈ maxT↑αQ,I(0)(A), and

• ψ(G, T↑αQ,I(0)(A)) = 1.

By definition, it follows thatG∈ maxT↑αQ,I(0)(A) holds only ifG∈ max I(A). Furthermore,

by hypothesis, it follow thatG∈ maxT↑αQ,I(0)(A) ≤ T
↑α
P I (0)(A) ≤ I(A). Then,G∈ max I(A)

andG ≤ T↑αQ,I(0)(A) ≤ I(A) imply

G ∈ max T
↑α
P I (0)(A) (D6)

On the other hand,G∈ maxT↑αQ (0)(ψ :: A) imply thatψ(G, T↑αQ (0)(A)) = 1 which, sinceψ
is monotonic, implies thatψ(G, I(A)) = 1. Then, sinceG∈ max I(A) andψ(G, I(A)) = 1,
it follows thatψI(A)(G, u) = 1 for every causal valueu ∈ VLb. This plus (D6) imply that
G ≤ T↑α

P I (0)(ψ
I(A) :: A) = T

↑α
P I (0)(F

I).

Let us define the rank of a formula such that the rank of a causalliteral is 0 and the rank of
any other formula is the greater than the rank of all their subformulas and assume as induction
hypothesis thatT↑αQ,I(0)(E

′) ≤ T↑α
P I (0)(E

I) for every monotonic formulaE of less rank thanF .

In case thatF = (E,H), it follows thatG∈ maxT↑αQ (0)(F ) holds only if there are causal values

G1 andG2 such thatG1 ≤ T
↑α
Q (0)(E′) andG2 ≤ T

↑α
Q (0)(H ′) such thatG ≤ G1 ∗G2. SinceE

andH have less rank thanF , by induction hypothesis, it follows that

G1 ≤ T
↑α
Q (0)(E′) ≤ T

↑α
Q (0)(EI) (D7)

G2 ≤ T
↑α
Q (0)(H ′) ≤ T

↑α
Q (0)(HI) (D8)

and, thus,G ≤ G1 ∗G2 ≤ T
↑α
P I (0)(F

I).

The case in whichF = (E;H) is analogous. In case thatF = notE, by definition it follows
thatF ′ = ⊥ iff F I = ⊥ andF ′ = ⊤ iff F I = ⊤

Proof of Proposition 1 and 8

Lemma D.8. The reductF I of a formulaF w.r.t. any interpretationI is≤-monotonic, that is,
J(F I) ≤ K(F I) for all causal interpretationsJ andK such thatJ ≤ K.

Proof. From Proposition 24, the reduct of any queryψI(A) is monotonic. Furthermore, the reduct
of any formulaF I is positive. Hence,F I is monotonic and, from Proposition 27, it follows that
formulaF I is≤-monotonic.

Proof of Proposition 8. From Proposition 7, any causal stable modelI of a programP is
a model ofP . Suppose thatI is not supported, that is, there is some true atomA and cause
G ≤ I(A) sucht that no ruler in P of the form of (10) satisfiesG ≤ I(F )·ri. Furthermore, from
Proposition 28, it follows thatI(F I) = I(F ). That is, no rulerI in P I satisfiesG ≤ I(F I)·ri.

Let J be a causal interpretation such thatJ(B) = I(B) for every atomB 6= A andJ(A) =
∑

{ G′ ∈ CLb

∣

∣ G′ ≤ I(A) andG 6≤ G′ }. ClearlyJ < I and, sinceI is a≤-minimal model
of P I , J cannot be a model ofP I . That is, there is a rulerI in P I of the form of (10) such that



J(F I)·ri 6≤ J(A). Then there is a causeG′ ≤ J(F I)·ri such thatG′ 6≤ J(A). SinceI ≤ J , it
follows thatJ(F I) ≤ I(F I) (Lemma D.8) and thus, since application is monotonic, it follows
thatG′ ≤ I(F I)·ri. Note thatG′ ≤ I(F I)·ri, but no rule inP I with A in the head satisfies
G ≤ I(F I)·ri. ThenG 6≤ G′. Moreover, sinceI |= rI , it follows thatG′ ≤ I(A) and then,
sinceG 6≤ G′, it follows thatG′ ≤ J(A), which is a contradiction with the fact thatG′ 6≤ J(A).
Consequently,I is a supported model ofP .

Proof of Proposition 1. Note that, from Proposition 4, the causal stable models of programs
w.r.t. Definition 7 and 18 agree and, therefore, the statement directly follows from Proposition 8.

Proof of Proposition 2 and 9

Lemma D.9. Let P be a normal program andI andJ be two causal interpretation such that
J ≤ I. If J is a model ofP , thenJ is a model ofP I .

Proof. Suppose thatJ is a model ofP and not a model ofP I . Then, there is a ruler in P of the
form of (10) such thatJ(F )·ri ≤ J(A) andJ(F I)·ri 6≤ J(A). Note that, sinceP is a normal
program, the formulaF must also be normal. Then, sinceJ ≤ I, Proposition 30 implies that
J(F I) ≤ J(F ). Furthermore, since application ‘·’ is monotonic, it follows that

J(F I)·ri ≤ J(F )·ri ≤ J(A)

which is a contradiction with the fact thatJ(F I)·ri 6≤ J(A).

Proof of Proposition 9. If I is a causal stable model ofP , then, Proposition 7 implies thatI is
a model ofP . Suppose thatI is not≤-minimal. Then there exists an interpretationJ ≤ I such
thatJ is a model ofP . But, sinceP is a normal program, from Lemma D.9,J must be a model
of P I and, thus,I is not a≤-minimal model ofP I which contradicts the assumption thatI is a
causal stable model ofP .

Proof of Proposition 2. Note that, from Proposition 4, the causal stable models of programs
w.r.t. Definition 7 and 18 agree and, therefore, the statement directly follows from Proposition 9.

Proof of Theorem 3 and 5

Definition 31. A splitting of a programP is a pair 〈Pb, Pt〉 of pairwise disjoint sets such that
P = (Pb ∪ Pt) and no atom occurring in the head of a rule inPt occurs in the body of a rule
in Pb. A splitting is said to bestrict if, in addition, no atom occurring in the head of a rule inPt
occurs (the head of a rule) inPb.

Lemma D.10. LetPb andPt be two monotonic programs such that no atom occurring in a body
in Pb is a head atom ofPt. Let I andJ be the least models of(Pb ∪ Pt) andPb, respectively.
Then,I is also the least model of program(J ∪ Pt). Furthermore,J|S = I|S whereS is the set
of atoms of all atoms not in the head of any rule inPt.

Proof. Since interpretationJ is the least model of the programJ andJ ≤ I, it follows thatI
satisfies all rules in programJ . In addition, sinceI is the least model of program(Pb ∪ Pt), it
is clear thatI also satisfies all rules inPt and, thus,I satisfies all rules in program(J ∪ Pt).
Suppose thatI is not the least model of(I ∪ Pt). Then, there is a modelI ′ of (J ∪ Pt) such



thatI ′ < I. SinceI is the least model of program(Pb ∪ Pt) andI ′ < I, it follow that I ′ does
not satisfy some ruler = (ri : A← F ) in (Pb ∪ Pt). That is,I ′(F ) · ri 6≤ I ′(A). SinceI ′

is a model of(J ∪ Pt), it is clear thatJ ≤ I ′ and, since in additionI ′ < I, it follows that
I(F ) · ri 6≤ J(A) also holds. Furthermore,I ′ satisfy all rules inPt becauseI ′ is a model of
(J ∪Pt) and, thus, ruler must be inPb and no atom occurring inF occurs in the head of a rule in
Pt. Hence,I(F ) = J(F ) and, thus,I(F ) ·ri 6≤ J(A) implies thatJ(F ) ·ri 6≤ J(A) which is a
contradiction with the hypothesis thatJ is a model ofPb and the fact thatr in Pb. Consequently,
I is also the least model of program(J ∪Pt). Furthermore, sinceI is the least model of program
(J ∪ Pt) and no atom inS occurs in the head of any rule inPt, it follows thatI|S = J|S .

Proof of Theorem 5. For the only if direction. Assume thatI is a causal stable model of program
(Pb∪Pt). Then,I is the least model of the monotonic program(Pb∪Pt)I = (P Ib ∪P

I
t ). LetJ be

the least model ofP Ib . SinceI andJ respectively are the least models of(P Ib ∪ P
I
t ) andP Ib and

no atom occurring in a body inP Ib is in the head of any rule inP It , from Lemma D.10, it follows
thatI is the least model of program(J ∪P It ) = (J ∪Pt)I and, consequently,I is a causal stable
model of(J ∪ Pt) andI|S = J|S whereS is the set of atoms of all atoms not occurring in the
head of any rule inPt. In addition, sinceI|S = J|S and all atoms in the body of some rule inPb
are inS, it follows thatP Ib = P Jb and, therefore,J is the least model ofP Ib = P Jb and a causal
stable model ofPb. Furthermore, if no atom occurring inPb occurs in the head of a rule inPt,
thenJ|S = J (note thatS contains all atoms inPb since no atom occurring inPb occurs in the
head of a rule inPt) and, thus,I|S = J .

The other way around. IfI is a causal stable model of(J ∪ Pt), then I is the least model
of (J ∪ Pt)I = (J ∪ P It ). Let S be the of all atoms not occurring in the head of a rule inPt.
Then,S contains all atoms occurring in the body of the rules inPb and, sinceI is the least model
of (J ∪P It ), it follows thatI|S = J|S and, thus,P Ib = P Jb . Then, sinceJ is a causal stable model
of Pb, it follows thatJ is the least model ofP Ib . From Lemma D.10, this implies thatI is the
least model of program(P Ib ∪ P

I
t ) = (Pb ∪ Pt)I = P I and, thus,I is a causal stable model

of P .

Proof of Theorem 3. Note that, from Proposition 4, the causal stable models of programs w.r.t.
Definition 7 and 18 agree and, therefore, the statement directly follows from Theorem 5.

Proof of Theorem 6

Lemma D.11. Let (Pα)α<µ a splitting sequence of some monotonic programP . Then, there is
a unique solution(Iα)α<µ of (Pα)α<µ and it satisfies (i)I =

∑

α<µ Iα and (ii) Iα|Sα
= I|Sα

whereI is the least model ofP andSα is the set of all atoms not occurring in the head of any
rule in

⋃

α<β<µ Pβ .

Proof. First note that, sinceP is a monotonic program, everyPα with α < µ is also monotonic
and, thus, there is a unique causal stable modelI0 of P0. Suppose that there is a solution(I ′α)α<µ
of (Pα)α<µ such thatI ′α 6= Iα for someα < µ. Let α be the first ordinal such thatI ′α 6= Iα.
Then,0 < α < µ and there are two different causal stable modelsIα andI ′α of (Jα ∪Pα) which
is a contradiction with the fact that(Jα ∪ Pα) is monotonic.

Let I =
∑

α<µ Iα and we will show thatI is the least model ofP and thatIα = I|Sα
. Assume



as induction hypothesis that the lemma statement holds for every ordinalµ′ < µ and note that,
in case thatµ = 0, it follows thatP =

⋃

α<0 Pα = ∅ and thatI =
∑

α<0 Iα = 0 and that0 is
the least model of the empty program.

In case thatµ is a successor ordinal, letµ′ = µ − 1 be its predecessor, letQ =
⋃

α<µ′ Pα and
J be the least model ofQ. Then,(Iα)α<µ′ is solution of(Pα)α<µ′ , 〈Q,Pµ′〉 is a splitting ofP ,
and, by induction hypothesisJ =

∑

α<µ′ Iα andIα|Sα
= J|Sα

for everyα < µ′.
Let Iµ′ be the least model of(J ∪ Pµ′ ). SinceIµ′ is the least model of(J ∪ Pµ′), it follows

thatIµ′ ≥ J and, thus,I =
∑

α<µ Iα = Iµ′ +
∑

α<µ′ Iα = Iµ′ + J = Iµ′ . That is,I = Iµ′ is
the least model of(J ∪ Pµ′) and, sinceJ is the least model ofQ, from Lemma D.10, it follows
thatI is the least model ofP = (Q∪Pµ′ ) and, that,Iµ′

|Sµ′

= I|Sµ′
. Furthermore, since no atom

in Sα with α < µ′ occurs in the head of any rule inPµ′ it follows that I|Sα
= J|Sα

for every
α < µ′. ConsequentlyIα|Sα

= I|Sα
for everyα < µ.

In case thatµ is a limit ordinal, by induction hypothesisIα|Sα
= I|Sα

for everyα < µ′ and, thus,
since all atoms occurring in the body of any rule inPα belong toSα, it follows thatP Iαα = P Iα.
Furthermore, since(Iα)α<µ is solution of(Pα)α<µ, it follows that Iα is the least model of
(Jα ∪ Pα) and, thus,Iα is a model ofP Iαα = P Iα. SinceI =

∑

α<µ Iα ≥ Iα, thenI is a model
of P Iα for everyα < µ′ and, consequently,I is a model ofP I .

Suppose thatI is not the least model ofP . Then, there is a modelI ′ of P such thatI ′ < I.
SinceI =

∑

α<µ Iα andI ′ < I, it follows thatIα 6≤ I ′ for some first ordinalα < µ. Sinceα is
the first ordinal such thatIα 6≤ I ′, it follows thatJα =

∑

β<α Iβ ≤ I ′ and, thus,I ′ satisfies all
rules inJα. Furthermore, sincePα ⊆ P andI ′ is model ofP , it follows thatI ′ also satisfies all
rules inPα. That is,I ′ is a model of(Jα ∪Pα) andIα 6≤ I which is a contradiction with the fact
thatIα is the least model of(Jα ∪ Pα). Consequently,I is the least model ofP .

Suppose now thatIα|Sα
6= I|Sα

for someα < µ and letα be the first such ordinal. Then,
there is some first ordinalα′ and atomA ∈ Sα such thatIα(A) 6≤ Iα′(A). Note thatα′ ≤ α

implies thatIα′ ≤ Iα and, thus, it must be thatα < α′. Sinceα′ first ordinal that satisfies
Iα(A) 6≤ Iα′(A) it follows thatIβ(A) ≤ Iα(A) for everyβ < α′ and, thus,Jα′(A) ≤ Iα(A).
SinceJα′(A) ≤ Iα(A) 6≤ Iα′(A) andIα′ is the least model of(Jα′ ∪ Pα′), there must be some
rule r = (ri : A ← F ) ∈ Pα′ which is a contradiction with the fact thatA ∈ Sα andα < α′.
Consequently,Iα|Sα

= I|Sα
for all α < µ.

Proof of Theorem 6. For the only if direction. Assume thatI is a causal stable model ofP . Then,
I is the least model of the monotonic programP I and, from Lemma D.11 there is a unique
solution(Iα)α<µ of programP I and it satisfies (i) I =

∑

α<µ Iα and (ii) Iα|Sα
= I|Sα

.
Furthermore, by definition, align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is the least model ofP I0 ,

2. Iα is a stable model of(Jα ∪ P Iα) for any ordinal0 < α < µ whereJα =
∑

β<α Iβ .

SinceIα|Sα
= I|Sα

and all atoms occurring in the body of any rule inPα belong toSα, it follows
thatP Iα = P Iαα and, thus, align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is the least model ofP Iα0 ,

2. Iα is a stable model of(Jα ∪ Pα)Iα = (Jα ∪ P Iαα ) for any ordinal0 < α < µ where
Jα =

∑

β<α Iβ .



Consequently,(Iα)α<µ is a solution of(Pα)α<µ and it satisfiesI =
∑

α<µ Iα andIα|Sα
= I|Sα

.

The other way around. Assume there is some solution(Iα)α<µ of (Pα)α<µ and letI =
∑

α<µ Iα.
By definition, align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is the least model ofP I00 ,

2. Iα is the least model of(Jα ∪ P Iαα ) for any ordinal0 < α < µ whereJα =
∑

β<α Iβ .

SinceSα contains all atoms not in the head of any rule in
⋃

α<β<µ Pβ , it follows that

∑

β<α

Iβ |Sα
= Jα|Sα

≤ Iα|Sα
= Jα+1|Sα

= Iα+1|Sα
= . . . =

∑

β<µ

Iβ |Sα
= I|Sα

and, sinceSα contains all atoms occurring in the body of all rules inPα, it follows thatP Iα = P Iαα
and, thus, align=Center, leftmargin=10pt, itemindent=0.5pt

1. I0 is the least model ofP I0 ,

2. Iα is the least model of(Jα ∪ P Iα) for any ordinal0 < α < µ whereJα =
∑

β<α Iβ .

Hence,(Iα)α<µ of (P Iα)α<µ and, from Lemma D.11, it follows thatI is the least model ofP I

and a causal stable model ofP .

Furthermore, if(Iα)α<µ is a strict solution inα, then no atom occurring inPα occurs in the head
of a rule in anyPβ with α < β < µ, and, thus, every atom occurring in(Jα∪Pα) belongs toSα.
Consequently,Iα = Iα|Sα

= I|Sα
.

Proof of Proposition 3 and 10

Proof of Proposition 10. LetPα+1 be the set of rules of the form of (A1) such thatλ(A) = α

andPα = ∅ if α is a limit ordinal. Then,(Pα)α<µ is a strict splitting sequence ofP and, from
Theorem 6, an interpretationI is a causal stable model ofP iff there is some solution(I|Sα

)α<µ
of (Pα)α<µ such thatI =

∑

α<µ I|Sα
. whereSα is the set of all atoms not occurring in the head

of any rule in
⋃

α<β<µ Pβ . Hence, it is enough to show that everyPα has a unique causal stable
model.

By definition, it is clear thatPα has the0 interpretation as its unique causal stable model when
α is a limit ordinal. In case thatα is a successor ordinal, suppose that there are two different
causal stable modelsJ andJ ′ of Pα. SinceP is stratified, there is no rule in

⋃

α−1<β<µ Pβ with
an atom occurring inPα under the scope of negation or a non-monotonic causal literal in Pα.
Hence,J(B) = J ′(B) = I|Sα−1

(B) for every atomB occurring under the scope of negation

or a non-monotonic causal literal and, thus,P J = P J
′

andJ andJ ′ must be equal which is a
contradiction with the assumption.

Proof of Proposition 3. Note that, from Proposition 4, the causal stable models of programs
w.r.t. Definition 7 and 18 agree and, therefore, the statement directly follows from Proposition 10.
Just note that, according to Definition 5,⊥ is not allowed in the head of the rules.



Proof of Proposition 11

Proof of Proposition 11. LetR be any causal program over the signatureσ of P andQ. Let
I, J respectively be the sets of causal stable models of programP ∪ R andQ ∪ R. Any causal
stable modelI ∈ I is the least model of the positive program(P ∪ R)I = P I ∪ RI . That is,I
satisfies all rules in bothP I andRI and, sinceP ⇔ Q, I satisfies all rules inQI . Suppose there
existsI ′ which satisfies all rules in(Q ∪ R)I andI ′ < I. By the same reasoningI ′ satisfies all
rules inP I (an also inRI ) contradicting the assumption thatI is the lest model of(P ∪ R)I .
Hence,I is the least model of(P ∪ R)I , and so, an stable model of(P ∪ R). That is,I ∈ J .
The other way around is analogous.

Proof of Proposition 12

Lemma D.12. LetF ,G andH be formulas such thatF ⇔ G. If a formulaH ′ is obtained from
H by replacing some regular occurrences ofF byG, thenH ⇔ H ′.

Proof. By structural induction like Lemma 4 in (Lifschitz et al. 1999). If H is elementary. Then
eitherH = F andH ′ = G or H = H ′. In both casesH ⇔ H ′. Otherwise, ifH = F and
H ′ = G, then alsoH ⇔ H ′. Hence, in the following we assume thatH 6= F .

1. In caseH = H1, H2, thenH ′ = H ′
1, H

′
2 and, by induction hypothesis,Hi ⇔ H ′

i with
i ∈ {1, 2}. Then

I(HJ) = I((H1, H2)
J)

= I(HJ
1 , H

J
2 )

= I(HJ
1 ) ∗ I(H

J
2 )

= I((H ′
1)
J ) ∗ I((H ′

2)
J)

= I((H ′
1, H

′
2)
J)

= I((H ′)J )

2. The caseH = H1;H2 is similar to the previous one.
3. In caseH = notH1, thenH ′ = notH ′

1 and, by induction hypothesis,H1 ⇔ H ′
1.

I(HJ) = 1 iff I((notH1)
J) = 1

iff J(HJ
1 ) = 0

iff J((H ′
1)
J) = 0

iff I((notH ′
1)
J) = 1

iff I((H ′)J ) = 1

andI(HJ ) = 0 otherwise, that is, iffI((H ′)J ) = 0

Proof of Proposition 12. Similar to the proof of Proposition 3 in (Lifschitz et al. 1999). Let
Q be the program obtained by replacing some occurrences ofF by G in P . Assume thatI is
satisfies all rules inQJ . Take any rule(ri : A← F ) in P . Its corresponding rule(ri : A← E)

in Q must satisfy

I(EJ ) · ri ≤ I(A)



and, by Lemma D.12, it follows thatI(F J ) = I(EJ ). Consequently,

I(F J ) · ri ≤ I(A)

Hence,I satisfies all rules inP . The other way around is similar. Hence,I satisfies all rules
in P J iff I satisfies all rules inQJ . That isP ⇔ Q and, by Proposition 11,P andQ are strongly
equivalent.

Proof of Proposition 13

Proof of Proposition 13. For(i) note that

I((F,E)J ) = I(F J , EJ )

= I(F J) ∗ I(EJ )

= I(EJ) ∗ I(F J )

= I((E,F )J )

Similarly,I((F ;E)J ) = I((E;F )J ). Note that product and addition are both commutative. The
same reasoning applies for(ii) and(iii) by noting that product and addition are also associative
and distributes over one over the other.

For (iv),

I((not not notF )J ) = 1 iff J((notnotF )J) = 0

iff J((notF )J ) = 1

iff J((notF )J ) = 1

iff J(F J) = 0

iff I((notF )J ) = 1

andI((not not notF )J) = 0 otherwise, that isI((notF )J) = 0.

Similarly, for (v),

I((not(F ;E))J ) = 1 iff J(F J ;EJ) = 0

iff J(F J ) + J(EJ) = 0

iff J(F J ) = 0 andJ(EJ ) = 0

iff I((notF )J) = 1 andI((notE)J ) = 1

iff I((notF )J) ∗ I((notE)J) = 1

iff I((notF, notE)J ) = 1



andI(not(F ;E)J) = 0 otherwise, that isI((notF, notE)J ) = 0. Furthermore

I((not(F,E))J ) = 1 iff J((F,E)J ) = 0

iff J(F J ) ∗ J(EJ ) = 0

iff J(F J ) = 0 or J(EJ ) = 0

iff I((notF )J) = 1 or I((notE)J ) = 1

iff I((notF )J) + I((notE)J ) = 1

iff I((notF ; notE)J ) = 1

and I((not(F,E))J ) = 0 otherwise, that isI((notF ; notE)J ) = 0. (vi) and (vii) directly
follows from Proposition 5. Finally, for(viii), I(not⊤) = 0 = ⊥ andI(not⊥) = 1 = ⊤.

Proof of Proposition 14

Proof of Proposition 14. The proof follows by structural induction using Proposition 13 and Lemma D.12
exactly as in (Lifschitz et al. 1999). Note that we do not consider strong negation, so all formulas
are regular.

Proof of Proposition 15

Proof of Proposition 15. Note thatI |= (ri : A← F ;E)J iff I |= (ri : A← F J ;EJ)

(

I(F J) + I(EJ )
)

· ri ≤ I(A)

which, by application distributivity over addition, is equivalent to

I(F J )·ri + I(GJ ) · ri ≤ I(A)

which in turn holds iffI |= (ri : A ← F )J andI |= (ri : A ← E)J .

Proof of Proposition 16

Proof of Proposition 16. Propositions 11, 12 and 14 show that any program is stronglyequiva-
lent to a set of rules of the form

ri : A ← F1; . . . ;Fm, (D9)

where eachFi is a simple conjunction. Similarly, Propositions 11, 12 and15 show that such set
of rules is strongly equivalent to a set of rules of the form

ri : A ← F (D10)

where eachF is a simply conjunction. That is, a set of rule of the form (10)in which the head
can be⊥.



Proof of Proposition 17

Proof of Proposition 17. From Proposition 17, every program can be writing as an equivalent
program where all rulesr are of the form

ri : A ← B1, . . . , Bm (D11)

whereA is an atom or⊥. If A is an atom, thenr is already of the form of (10). Otherwise, replace
ruler by a ruler′ of the form of

ri : auxr ← B1, . . . , Bm, notauxr (D12)

whereauxr is a new auxiliary predicate. LetQ be the result of replacingr by r′ in P . If I is a
causal stable model ofP , thenI 6|= Bj for some1 ≤ j ≤ m and, thus, it is a causal stable model
of Q. The other way around, ifI is a causal stable model ofQ, eitherI |= auxr or I 6|= Bj for
some1 ≤ j ≤ m. If the former, ruler′ does not belong toQI and, thus, there is no rule which
auxr which contradicts the fact thatI must be the least model ofQJ . Hence,I 6|= auxr and
I 6|= Bj for some1 ≤ j ≤ m and, therefore,I is a causal stable model ofP .

Appendix E. Complexity assessment

First, it has been showed in (Cabalar et al. 2014b) that theremay an exponential number of causes
for some atom with respect to a casual stable model. For instance, consider the positive pro-
gramP16 consisting of following the rules:

a : p1

c : q1

b : p1

d : q1

mi : pi ← pi−1, qi−1 for i ∈ {2, . . . , n}

ni : qi ← pi−1, qi−1 for i ∈ {2, . . . , n}

Since programP16 is positive it has unique causal stable modelI16. Furthermore, it is easy to
see that the interpretation of atomsp1 andq1 with respect to interpretationI16 area + b and
c+ d, respectively. The interpretation forp2 corresponds to:

I16(p2) = (I(p1) ∗ I(q1)) ·m2 = ((a+ b) ∗ (c+ d)) ·m2

= (a ∗ c) ·m2 + (a ∗ d) ·m2 + (b ∗ c) ·m2 + (b ∗ d) ·m2

This addition cannot be further simplified. Analogously,I16(q2) can also be expressed as a sum
of four sufficient causes – we just replacem2 by n2 in I(p2). But then,I16(p3) corresponds
to (I16(p2) ∗ I16(q2)) · m3 and, applying distributivity, this yields a sum of4 × 4 sufficient
causes. In the general case, each atompn or qn has22

n−1

sufficient causes so that expanding the
complete causal value into this additive normal form becomes intractable. Furthermore, it also
has been in (Cabalar et al. 2014b) that deciding whether a term without additionG is a brave
necessary cause with respect to some regular programP is ΣP

2-complete and, thus, deciding the
existence of causal stable model isΣP

2-hard even for the class of programs that only contain a
unique necessary causal literal.

Proposition 31 (From Cabalar et al. 2014b). Given a causal term without additionG ∈ CLb

and an causal termt ∈ VLb in which the right-hand operand of every application “·” is a label,
deciding whetherG ≤ t is feasible in polynomial time.

Proposition 32. Let{t, u} ⊆ VLb be two causal term in which the right-hand operand of every
application “·” is a label. Then deciding whethert ≤ u is in coNP.



Proof. Note hatt ≤ u iff everyG ∈ CLb such thatG ≤ t also satisfyG ≤ uwhich are decidable
in polynomial time (Proposition 31). Consequently, deciding whethert ≤ u is coNP.

Definition 32 (Causal graph). Given a set of labelsLb, a causal graph (c-graph)G ⊆ Lb × Lb

is a set of edges transitively and reflexively closed. ByGLb we denote the set of all c-graphs that
can be formed with labels fromLb.

Theorem 10 (From (Fandinno 2015b)). For any finite and definite programP with n rules,
lfp(TP )=T

↑n
P (0) is its least model.

Definition 33. LetP be a program andI be an interpretation. Bysimply− nec(P I) we denote
the program obtained fromP I by replacing every causal literal of the form(ψnec

A :: A)I(A) byA
if I(A) ≤

∑

A; and by0 otherwise.

Lemma E.1. Let P be a program andI be an interpretation. IfT↑α
P I (0) ≤ T

↑α
Q (0) ≤ I, then

T
↑α+1
P I (0) ≤ T↑α+1

Q (0) ≤ I whereQ = simply− nec(P I).

Proof. Suppose first thatT↑α+1
P I (0)(A) 6≤ T

↑α+1
Q (0)(A) for some atomA. Then, since appli-

cation and addition are≤-monotonic, there must be some rule of the form of (A1) such that
T
↑α
P I (0)(F ) 6≤ T

↑α
Q (0)(F ′) whereF ′ is just the result of replacing each causal literal of the

form (ψnec
A :: A)I(A) byA if I(A) ≤

∑

A; and by0 otherwise. Since products and addition are
monotonic, it is enough to show that

• T
↑α
P I (0)(ψ

′ :: A) ≤ T
↑α
Q (0)(A) if I(A) ≤

∑

A, and

• T
↑α
P I (0)(ψ

′ :: A) = 0 otherwise.

where

ψ′(G, I(A)) def=

{

1 iff exists someG′ ≤ G s.t.G′ ∈ max I(A) andI(A) ≤
∑

A

0 otherwise

By definition,

T
↑α
P I (0)(ψ

nec
A :: A)I(A) def=

∑

{

G∈ maxT↑α
P I (0)(A)

∣

∣ ψ′(G, I(A) ) = 1
}

One the one hand,T↑α
P I (0)(ψ

′ :: A) ≤ T↑α
P I (0)(A) holds for every causal literal(ψ′ :: A) and, by

hypothesis, it holds thatT↑α
P I (0)(A) ≤ T

↑α
Q (0)(A) and, therefore,T↑α

P I (0)(ψ
′ :: A) ≤ T↑αQ (0)(A)

also holds. On the other hand,I(A) 6≤
∑

A implies thatψ′(G, I(A) ) = 0 for everyG ∈ CLb

and, thus,T↑α+1
P I (0)(ψ′ :: A) = 0 ≤ T↑α+1

Q (0)(A).

Similarly, to show thatT↑αQ (0) ≤ I is enough to showT↑α
P I (0)(A) ≤ I(ψ

′ :: A) whenI(A) ≤
∑

A. Note that, in case thatI(A) 6≤
∑

A, the causal literal(ψ′ :: A) has been replaced by0.
Then, for everyG ≤ T

↑α
Q (0)(ψ′ :: A) there is someG′ ∈ max I(A) andψ′(G′, I(A)) = 1 and,

consequently, it follows thatG ≤ G′ ≤ I(ψ′ :: A).
Furthermore, it is easy to see thatT↑αQ (0) ≤ I impliesT↑αQ (0)(A) ≤ I(ψ′ :: A) for every

causal literal(ψ′ :: A). Just note that ifG ≤ T
↑α
Q (0)(ψ′ :: A), thenG ≤ T

↑α
Q (0)(A) ≤ I(A)

and there is someG′ ≤ G such thatG′ ∈ max I(A) andI(A) ≤
∑

A. Notice that factsG ≤
I(A), G′ ∈ max I(A) andG′ ≤ G implies thatG = G′ and, thus,G∈ max I(A). Therefore,
G ≤ I(ψ′ :: A) and, thus,

T
↑α
Q (0)(ψ′ :: A) ≤ I(ψ′ :: A)



Note now that the evaluation of conjunctions and disjunctions is≤-monotonic and, thus, it can
be probed by induction that

T
↑α
P I (0)(F ) ≤ T

↑α
Q (0)(F ) ≤ I(F )

for every formulaF . Finally, since addition and application are also≤-monotonic, it can be
shown by induction that

T
↑α
P I (0)(F )·ri ≤ T

↑α
Q (0)(F )·ri ≤ I(F )·ri

and, thus,

T
↑α+1
P I (0)(A) ≤ T

↑α+1
Q (0)(A) ≤ I(A)

for every labelri ∈ Lb and atomA ∈ At.

Lemma E.2. LetP be a program andI be an interpretation. ThenT↑ω
P I (0) ≤ T

↑ω
Q (0) ≤ I where

Q = simply− nec(P I).

Proof. By definition,T↑0
P I (0) = T

↑0
Q (0) = 0 ≤ I and, thus, by induction using Lemma E.1,

it follows that T↑α
P I (0) ≤ T

↑α
Q (0) ≤ I for every successor ordinalα. For a limit ordinalα,

G ≤ T↑α
P I (0) iff there is someβ < α s.t.G ≤ T↑β

P I (0) ≤ T
↑β
Q (0) ≤ T↑αQ (0) and, thus,T↑α

P I (0) ≤

T
↑α
Q (0). The proof ofT↑αQ (0) ≤ I is analogous. Hence,T↑ω

P I (0) ≤ T
↑ω
Q (0) ≤ I.

Lemma E.3. LetP be a program andI be an interpretation andQ = simply− nec(P I). If
for every atomA and causal term without additionG ≤ T

↑α
Q (0)(A) such thatG∈ max I(A),

it holds thatG ≤ T
↑α
P I (0)(A), then for every atomA and causal term without additionG ≤

T
↑α+1
Q (0)(A) such thatG∈ max I(A), it holds thatG ≤ T↑α+1

P I (0)(A)

Proof. Suppose there is some atomA and causal term without additionG ∈ CLb such that
G ≤ T

↑α+1
Q (0)(A) andG∈ max I(A), butG 6≤ T

↑α+1
Q (0)(A). Then, since application and

addition are≤-monotonic, there must be some causal term without additionG′ ∈ CLb and rule
of the form of (A1) such thatG ≤ G′·ri andG′ ≤ T

↑α
Q (0)(F ′), butG′ 6≤ T

↑α
P I (0)(F ) whereF ′

is just the result of replacing each causal literal of the form (ψnec
A :: A)I(A) byA if I(A) ≤

∑

A;
and by0 otherwise. Since products and addition are monotonic and every causal literal inF of
the form of(ψ′ :: A) is replaced by0 in F ′ whenI(A) 6≤

∑

A, it is enough to show that

• G ≤ T↑αQ (0)(A) andG ∈ ∈ max I(A) impliesG ≤ T↑α
P I (0)(ψ

′ :: A) whenI(A) ≤
∑

A

whereψ′ def=(ψnec
A )I(A). Indeed, by hypothesis, fromG ≤ T

↑α
Q (0)(A) andG∈ max I(A) it fol-

lows thatG ≤ T
↑α
P I (0)(A). Furthermore,G∈ max I(A) and I(A) ≤

∑

A also imply that

(ψ′(G, I(A)) = 1 holds and, consequently, it follows thatG ≤ T↑α
P I (0)(ψ

′ :: A).

Lemma E.4. Let P be a program andI be an interpretation andQ = simply− nec(P I).
Then,I = T

↑ω
Q (0) iff I = T

↑ω
P I (0)

Proof. First, assume thatI = T
↑ω
P I (0). From Lemma E.2, it follows thatT↑ω

P I (0) ≤ T
↑ω
Q (0) ≤ I

and, thus,I = T
↑ω
P I (0) impliesI = T

↑ω
Q (0).

The other way around. AssumeI = T
↑ω
Q (0) and assume as induction hypothesis thatG ≤

T
↑β
Q (0)(A) andG∈ max I(A), imply G ≤ T

↑β
P I (0)(A) for every ordinalβ < α. By definition,

T
↑0
Q (0) = 0 and the hypothesis holds vacuous. Furthermore, using LemmaE.3, the hypothesis

holds for every successor ordinalα. For a limit ordinalα, G ≤ T
↑α
Q (0) iff there is someβ < α



s.t.G ≤ T
↑β
Q (0) and, thus,G ≤ T

↑β
P I (0) ≤ T

↑α
P I (0). Then, for everyG ≤ I(A) = T

↑ω
Q (0) there

is someG′ ∈ CLb such thatG′ ∈ max I(A) = T
↑ω
Q (0) and, thus,G ≤ G′ ≤ T

↑ω
P I (0)(A). That

is, T↑ωQ (0) ≤ T
↑ω
P I (0). Finally, from Lemma E.2, it follows thatT↑ω

P I (0) ≤ T
↑ω
Q (0) and, thus, it

also holdsI = T
↑ω
P I (0).

Lemma E.5. Let P be a program andI be an interpretation andQ = simply− nec(P I).
Then,I is a causal stable model ofP iff T↑ωQ (0) = I.

Proof. By definition,I is a causal stable model ofP iff I is the least model ofP I iff T↑ω
P I (0) = I

(Theorem 3) iffT↑ω
P I (0) = I (Lemma E.4).

Proposition 33. Let t be a term andA be a set of labels. Then,t ≤
∑

A is decidable in
polynomial time.

Proof. If t ∈ Lb is a label, thent ≤
∑

A iff t ∈ A which is clearly decidable in polynomial
time. Otherwise, we assume as induction hypothesis thatu ≤

∑

A andw ≤
∑

A are decidable
in polynomial time for every subtermsu andw of t. In case thatt = u + w, thent ≤

∑

A iff
u ≤

∑

A andw ≤
∑

A which are both decidable in polynomial time. Similarly, in case that
t = u ∗ w or t = u · w, thent ≤

∑

A iff u ≤
∑

A or w ≤
∑

A which are both decidable in
polynomial time.

Proposition 34. Let P be a causal program containing only necessary causal literals. Then,
deciding whether there exists a causal stable model ofP or not is inNP.

Proof. First, note that there exists some causal stable modelI of P iff there must exists some
programQ and casual stable modelI such thatQ is the result of replacing every maximal sub-
formula inP of the formnotE by 1 if I |= notE and by0 otherwise. Just note thatQI = P I for
every interpretationI. Then, from Lemma E.5,I is a causal stable model ofP iff I is a causal
stable model ofQ iff T↑ωQ′ (0) = I whereQ′ = simply− nec(P I).

Hence, instead of guessing an interpretationI we will guess a programQ′. LetQ for every
maximal subformula be the result of replacing every maximalsubformula inP of the formnotE
by a guessed0 or 1 and letQ′ be he result of replacing every necessary causal literal inQ of
the form of(ψnec

A :: A) by a guessed0 or A. Note that, sinceP only contains necessary causal
literals,Q′ is a positive regular (hence monotonic) program. From Theorem 10, it follows that
T
↑n
Q′(0) = T

↑ω
Q′ (0) is the least fixpoint ofTQ′ and the least model ofQ′ wheren is the number of

rules inQ, which is the same as the number of rules inP . Let us defineI = T
↑n
Q′(0). SinceQ′ is

a regular program each step ofTQ′ only involves the creation of a term from its subterms, which
is feasible in polynomial time and, thus,I can be computable in polynomial time.

Let us now check whetherQ′ = simply− nec(P I). Then,fail if I = T
↑n
Q′(0) do not satisfy

one of the following conditions

• I |= notE for some maximal subformula whose guessed value was0

• I 6|= notE for some maximal subformula whose guessed value was1

• I(A) ≤
∑

A for some necessary causal literal(ψnec
A :: A) whose guessed value was0

• I(A) 6≤
∑

A for some necessary causal literal(ψnec
A :: A) whose guessed value wasA

If reached this point, thenQ′ = simply− nec(P I) and, hence, we the proceduresucceed.
It just remain to show that these four conditions can be checked in polynomial time. The two
first only involve checking whetherI(E) = 0 which is feasible simply simplifying the obtained
causal term and looking whether it is0 or not. Finally, sinceA ⊆ Lb is a set of labels, from
Proposition 33, it follows thatI(A) ≤

∑

A can be checked in polynomial time.



Proposition 35. Let P be a causal program containing only necessary causal literals. Then,
deciding whether there exists a causal stable model ofP or not is inNP-complete (it isNP-hard
even inP only contains a single negated regular literal orP is positive but contains a single
constraint).

Proof. NP membership follows directly from Proposition 34 whileNP-hard follows from the
fact that every regular program in also a causal program and deciding the existence of stable
model for standard programs inNP-complete. To show that it isNP-hard even whenP only
contains a negated regular literal, we reduce the existenceof stable model for standard program
to the satisfiability of a CNF Boolean formulaϕ to the existence of causal stable model of a
programP . We assume without of generality that no clause inϕ has complementary variables.
For every variablexk occurring inϕ, letPk be a program containing rules of the form

xk : xk ←

txk
: xk ← Atk necessary for xk

fxk
: xk ← Afk necessary for xk

whereAtk = {txk
, xk} andAfk = {fxk

, xk}. For each clausecj in ϕ, let P ′
j be a program

containing a rule of the form of

cj ← Ajk necessary for xk (E1)

for each variablexk in cj , whereAjk = {txk
, xk} if xk occurs positively in the clausecj and

Ajk = {fxk
, xk} if xk occurs negatively incj and letP ′′ be a program containing the following

rule

p ← c1, . . . , cm

wherec1, . . . , cm are all the clauses inϕ. Note that no atom occurring in the body of a program
Pk occurs in the head of a programP ′

j norP ′′ and no atom occurring in the body of a program
P ′
j occurs in the head of a programP ′′. Hence, we can use the Splitting Theorem (Theorem 5).
Each programPk has two causal stable modelsIk andJk that satisfyIk(xk) = xk + txk

and
Jk(xk) = xk + fxk

and, thus,P =
⋃

k≤n Pn has2n causal stable models heren is the number
of variables inϕ: each causal stable modelI satisfyingI(xk) = xk + txk

or I(xk) = xk + fxk

for each variablexk. We say that an variablexk is true in an interpretationI if I(xk) = xk+ txk

and that is false ifI(xk) = xk + fxk
. Then,(P ∪ P ′

j) also has2n causal models models where
each causal stable modelI satisfy

I(cj) =
∑

{ xk + txk

∣

∣ I(xk) = xk + txk
andxk occurs positively incj }

+
∑

{ xk + fxk

∣

∣ I(xk) = xk + txk
andxk occurs negatively incj }

That is,I(cj) 6= 0 iff there is some variablexk such thatxk is true inI and occurs positively
in cj or there is some variablexk such thatxk is false inI and occurs negatively incj iff I
represents an assignment that satisfies the clausecj . Let P ′ =

⋃

j≤m P
′
j . Then,P ′ also has2n

causal models models: each causal stable modelI satisfy for each clausecj that I(cj) 6= 0 iff
represents an assignment that satisfies the clausecj . It is easy to see now that(P ′ ∪ P ′′) has2n

causal stable models whereI(p) 6= 0 iff every cj satisfyI(cj) 6= 0 iff I represents an assignment
that satisfy all clausescj in ϕ iff I represents an assignment that satisfyϕ. Finally, letP be the



result of adding, to the program(P ′ ∪ P ′′), the following rule

p ← notp

Then,P has a causal stable model iff there is a causal stable modelI of (P ′ ∪ P ′′) such that
I(p) 6= 0 iff I represents an assignment that satisfyϕ. Alternatively, letQ′ be the result of
adding, to the program(P ′ ∪ P ′′), the following rules

q : q ←

q ← p

andQ be the result of adding toQ′ the constraint

⊥ ← Ap necessary for q

whereAp = {q}. Then,Q′ has2n causal stable models: each causal stable modelI satisfying
I(q) = q+ I(p) andQ has a causal stable modelI iff there is a causal stable modelI ofQ′ such
that I(q) > q iff there is a causal stable modelI of Q′ such thatI(p) 6= 0 iff I represents an
assignment that satisfyϕ.
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