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Abstract

We present an extension of Logic Programming (under stabliefa semantics) that, not only allows con-
cluding whether a true atom is a cause of another atom, batd&sving new conclusionfrom these
causal-effect relations. This is expressive enough toucaphformal rules like “if some agent’s actiont
have beemecessaryo cause an everf then conclude atomaused(.A, E),” something that, to the best
of our knowledge, had not been formalised in the literatticethis aim, we start from a first attempt that
proposed extending the syntax of logic programs with stedalausal literals These causal literals are
expressions that can be used in rule bodies and allow iriegabe derivation of some atom in the pro-
gram with respect to some query functignDepending on how these query functions are defined, we can
model different types of causal relations such as sufficieetessary or contributory causes, for instance.
The initial approach was specifically focused on monotonierg functions. This was enough to cover suf-
ficient cause-effect relations but, unfortunately, nemgsand contributory are essentiatipn-monotonic

In this work, we define a semantics for non-monotonic cautakls showing that, not only extends the
stable model semantics for normal logic programs, but atesgeves many of its usual desirable proper-
ties for the extended syntax. Using this new semantics, weige precise definitions afiecessarand
contributory causal relations and briefly explain their behaviour on & phtypical examples from the
Knowledge Representation literature. (Under considem&tr publication in Theory and Practice of Logic
Programming)

1 Introduction

An important difference between classical models and mogid_Programming (LP) seman-
tics is that, in the latter, true atoms must be founded oifiedtby a given derivation. Con-
sequently, falsity is understood as absence of proof: fetaimce, a common informal way of
reading for default literahot A is “there is no way to derivel.” Although this idea seems quite
intuitive and, in fact, several approaches have studiedtb@yntactically build these derivations
or justifications(Specht 1993; Pemmasani et al. 2004: Pontelli et al.|2008ebleer et al. 2015;
Schulz and Toni 2016), it actually resorts to a conceptythgs to derived, outside the scope
of the standard LP semantics.

Such information on justifications for atoms can be of gresgriest for Knowledge Repre-
sentation (KR), and especially, for dealing with problerlated to causality. For instance, in
the area of legal reasoning where determining a legal resipitity usually involves finding out
which agent or agents have eventually caused a given resgérdless the chain of effects in-
volved in the process. In this sense, an important challengausal reasoning is the capability
of not only deriving facts of the formA has caused®,” but also being able to represent and
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reason about them. As an example, take the assertion:
“If somebody causes an accident, (s)he would receive a fine” 1) (

This law does not specify the possible ways in which a persayecause an accident. Depending
on a representation of the domain, the chain of events fremagient’s action(s) to the final effect
may be simple (a direct effect) or involve a complex set oifriect effects and defaults like inertia.
Focussing on representirid (1) in an elaboration toleramtia(McCarthy 1998), we should be
able to write a single rule whose body only refers to dlgent involved and theiccident. For
instance, consider the following program

accident < oil (2)
oil — suzy 3)
suzy (4)

representing thatccident is an indirect effect of Suzy’s actions. We may then repreBnoy
the following rule

fine(suzy) < suzy necessary for accident (5)

that states that Suzy would receivefae whenever the factuzy was necessary to cause the
atomaccident.

With this long term goal in mind|_(Cabalar et al. 2014a) prsguba multi-valued semantics for
LP that extends the stable model semantics (Gelfond andHiiis1988) and where justifications
are treated aalgebraicconstructions. In this semantiocsausal stable modelassign, to each
atom, one of these algebraic expressions that capturesttbéal non-redundant logical proofs
for that atom. Recently, this semantics was used_in (Faod2@i5b) to extend the syntax of
logic programs with a new kind of literal, calle@gusal literal that allow representing rules like

fine(suzy) < suzy sufficient for accident (6)

and derive, from a prograi, containing ruled(234]6), thgtine(suzy) holds. However, the ma-
jor limitation of this semantics is that causal literals s monotonic and, therefore, rulg (5)
cannot be represented. It is easy to see that[rlile (5) is momtmnic: in a progran®, contain-
ing rules [Z5), the factuzy is necessary fosiccident is satisfied and, thugine(suzy) must
hold, but in a progran®; obtained by adding a faet! to this last programsuzy is not longer
necessary and, thugine(suzy) should not be a conclusion.

In this paper, we present a semantics for logic programsaaitisal literals defined in terms of
non-monotoniquery functions. More specifically, we summarise our cbntions as follows. In
Sectiori 2, we define the syntax of causal literals and a naaltied semantics for logic programs
whose causal values rely on a completely distributivedatbased on causal graphs. Sedifibn 3
shows that positive monotonic program has a least modet#rabe computed by an extension
of the direct consequences operaior (van Emden and Kowid3Ki). In Sectiofi]4, we define
semantics for programs with negation and non-monotonisadiierals and show that it is a
conservative extension of the standard stable model s@saBesides, with a running example,
we show how causal literals can be used to derive new conclfisim necessary causal relations
and, in Sectiohlb, briefly relate this notion with the actuaise literature. In this section, we also
formalise the weaker notion @bntributory causgalso related to the actual cause literature, and
show how causal literals may be used to derive new concldstn them. In Sectiofil6, we
show that our semantics satisfy the usual properties ofti#esmodles semantics for the new



syntax. Finally, Sectiohl7 concluded the paper. The onlpeadices include the definition of
our semantics with nested expression in the body, the famtegtion with (Fandinno 2015b), the
proof of formal results from the paper and the formalisatiba Splitting Theorem for causal
programs analgous to (Lifschitz and Turner 1994).

2 Causal Programs
We start by reviewing some definitions from (Cabalar et al.£2).

Definition 1 (Term). Given a set of labeld.b, a term¢ is recursively defined as one of the

following expressions
t = l’ HS’ ZS’tl-tQ

wherel € Lbis a label,t;,t, are in their turn terms and is a (possibly empty and possible
infinite) set of terms. O

WhenS = {ti1,...,t,} is a finite set, we will writet; * ... * ¢, andt; + ... + ¢, instead
of [ .S and}_ S, respectively. Wheis' = (), we denotg | S and}_ S by 1 and0, respectively.
We assume that application has higher priority than produck® and, in its turn, products’
has higher priority than additiont’. Application‘-’ represents application of a rule label to a
previous justifications. For instance, the justificatiorpiegramiy) for atomsuzy is the fact
suzy itself. If rules [2E3) in progranfy are labelled in the following way

r1: accident < oil @)

ro: oil — suzy (8)

we may represent the justification@f assuzy-ro, in other wordspil is true because of the the
application of ruler; to the factsuzy. Similarly, we may represent the justificationa@fcident
assuzy-ro-r1. Addition ‘+' is used to capture alternative independent causes: eat#gmedds
one of those independent causes. For instance, the justifiaaf oil, in program/jg, may be
represented asuzy-ro + oil and the justification oticcident as (suzy-re + oil) - r1. As we
will see below application distributes over addition, satththe justification ofzccident can
also be written asuzy-ro-r1 + oil-r1, which better illustrates the existence of two alternative
Product %’ represents conjunction or joint causation. For instaita,programP, obtained by
adding the facbilly to g and replacing rule(8) by

ro:  oil + suzy, billy (9)

the justifications obil will be (suzy * billy)-ro + oil. Similarly, the justification oficcident

will be (suzy * billy)-re-m1 + oil-r1. Intuitively, terms without addition+’ represent individ-
ual causes while terms with additios" represent sets of causes. It is worth to mention that
these algebraic expressions are in a one-to-one correspoaavith non-redundant proofs of an
atom [(Cabalar et al. 2014a) and that they may also be underatoa formalisation of Lewis’
concept of causal chain (Lewis 1973) (5ee Fandinno 2015b).

Definition 2 (Value). (Causal) valueare the equivalence classes of terms under axioms for a
completely distributive (complete) lattice with meetdnd join ‘+’ plus the axioms of Figurel1.
The set of values is denoted Wy,;,. Furthermore, byC;, we denote the subset of causal values
with some representative term without sums * O



Associativity Absorption Identity Annihilator

t-(uvw) = (tu) w t = t+u-t-w t = 1-t 0 = t-0
u-t-w = txu-t-w t = t-1 0 = 0-t

Indempotence Addition distributivity Product distributivity
l-1=1 t - (utw) = (tu) + (tw) c-d-e = (c-d)yx(d-e)ywithd #1

t+u)-w = (tw)+ (vw) c-(dxe) = (c-d)yx(c-e)

cxd)-e = (c-e)*x(d-e)

Fig. 1. Properties of the'operators:it, u, w are terms/ is a label and:, d, ¢ are terms with-
out ‘4. Addition and product distributivity are also satisfiedepinfinite sums and products.

All three operations,#’, ‘ +' and ‘-’ are associative. Product™ and addition 4+’ are also
commutative, and they satisfy the usual absorption andlalisive laws with respect to infinite
sums and products of a completely distributive lattice. IHice order relation is defined as:

t<u iff txu=t iff t+u=u

An immediately consequence of this definition is that pradaddition,1 and0 respectively
are the greatest lower bound, the least upper bound and ghentbthe bottom element of the
<-relation. Terml represents a value which holds by default, without an eigiase, and will
be assigned to the empty body. Tebmrepresents the absence of cause or the empty set of causes,
and will be assigned to false. Furthermore, applying distivity (and absorption) of productand
application over addition, every term can be representéahinimal) disjunctive normal forrm
which addition is not in the scope of any other operation arahyepair of addends are pairwise
<-incomparable. In the following, we will assume that evemnt is in disjunctive normal form.

This semantics was used in_(Fandinno 2015b), to define theepbrof causal query, here
m-query a monotonic functior : Cr, — {0, 1}. Unfortunately, m-queries are not expressive
enough to capture necessary causation for two reagonthey are monotonic an@i) they
cannot capture relations between sets of causes. We icdduere the following definition
which removes these two limitations.

Definition 3 (Causal query)A causal queryy: Cr, x Vi, — {0,1} is a function mapping
pairs cause-value inta (true) and0 (false) which is anti-monotonic in the second argument,
thatis, v (G, t) < ¢¥(G,u) for everyG € Cr;, and{t,u} C Vy; such that > w. O

Syntax. We define the semantics of logic programs using its groundihgrefore, for the re-
mainder of this paper, we restrict our attention to groumgid@rograms. Asignatureis a triple
(At, Lb, ¥) where At, Lb and ¥ respectively represent sets abms(or proposition$, labels
and causal queries. We assume the signature of every pragratains a causal quety' € ¥
s.t.yl(G,t) ¥ 1 for everyG € Cyr, and value € Vi,

Definition 4 (Causal literal) A (causal) literais an expressioriy) :: A) whereA € At is an
atom andy) € W is a causal query. O

A causal aton{z)! :: A) is said to baegular and, by abuse of notation, we will use atom
as shorthand for regular causal literals of the fdgim :: A). We will see below the justification
for this notation. Aliteral is either a causal literdl) :: A) (positive litera), or a negated causal
literalnot(v :: A) (negative litera) or a double negated causal literadt no{+) :: A) (consistent
literal) with A € At an atom and) € ¥ a causal query.



Definition 5 (Causal program)A (causal) progran® is a set of rules of the form:
T - A(—Bl,...,Bm (10)

where0 < m is a non-negative integer; € Lb is a label orr; = 1, A (theheadof the rule) is
an atom and eacl; with 1 < i < m (thebodyof the rule) is a literal or a term. O

A rule r is said to bepositiveiff all literals in its body are positive and it is said to begular
if all causal literals in its body are regular. When= 0, we say that the rule isfact and omit
the body and sometimes the symbe}." Furthermore, for clarity sake, we also assume that, for
every atomA € At, there is an homonymous labél € Lb and that the label of an unlabelled
rule is assumed to be its head. In this sense, afanta program actually stands for the labelled
rule (A : A «<). A programP is positiveor regularwhen all its rules are positive (i.e. it contains
no default negation) or regular, respectivelystandard progranis a regular program in which
the label of every rule isl':".

Semantics. A (causal) interpretatioris a mappingl : At — Vp;, assigning a value to each
atom. For interpretationsand.J, we writeI < J whenI(A) < J(A) for every atomA € At.
Hence, there is a-bottom interpretatio® (resp. a<-top interpretationl) that stands for the
interpretation mapping every atorto 0 (resp.1). For an interpretatiot and atomA € At, by
max I (A) we denote the set

max [(A) ¥ {GeCp | G<I(A)andthereisnd’ € Cp, s.t.G <G <I(A) }
containing the maximal terms without addition (or indivedgauses) ol w.r.t. I.

Definition 6 (Causal literal valuation)Thevaluation of a causal literalf the form(¢) :: A) with
respect to an interpretatiof, in symbols/ (v :: A), is given by

I(p 2 A) 2 Y { GemaxI(A) | Y(G, I(4)) =1}
We say thaf satisfies a causal literakp :: A), in symbold = (v :: A),iff I(y : A) #£0. O

Notice now thatl (¢! :: A) = I(A) for any atomA and, thus, writing a standard atafnas a
shorthand for causal liter&l)! :: A) does not modify its intended meaning. Causal literals can
be used to represent the body of rlile (5). For instance, givsat of labelsd C Lb representing
the actions of some agedt, we may define the query function

1 if t<>A

) (11)
0 otherwise

and represent the body of rulé (5) by a causal literal of the eSS, = accident) whereSuzy
is the set of label§suzy}. In the sake of clarity, we usually will write4 necessary for A)
in rule bodies instea@)’°:: A).
If we consider an interpretatiohwhich assigns to the atonvcident its justification in pro-
gram iy, thatis,I (accident) = suzy-r2-r1, then any term without additio € C,;, satisfies
PEC (G, I)(accident) =1 iff  suzyrory < Z{suzv}

Suzy
iff  suzyrory < suzy

iff  suzyro-ry +suzy = suzy



which holds applying application identity, associativéiyd absorption w.r.t. addition
suzy-rory + suzy = 1-suzy-(rory) + suzy = suzy

Similarly, in programfs, ¢&7, (G, I' (accident)) = 1iff suzy-re-r1 + 0il < suzy which does

Suzy
nothold. In other words, Suzy’s actions has been necessarggramify but notin prograntyg.

The valuation of a causal tertris the class of equivalence ofThe valuation of non-positive
literals is defined as follows

1 iffI(p:2A) =0
0 otherwise

I(not(vy :: A)) e {

1 iffI(v: A 0
T(notnoty :: A)) = {O Iothe(:\fvise) g

Furthermore, for any literal or terth, we write! = L iff I(L) # 0.

Definition 7 (Causal model) Given a ruler of the form(T1d), we say that an interpretatioh
satisfies, in symbold = r, if and only if the following condition holds:

(I(B1)*...xI(Bw))-r < I(A) (12)
An interpretation/ is acausal modebf P, in symbold |= P, iff I satisfies all rules irP. O

Let P5 be the program containing ruldg (7) ahdl (8) plus the labdlet(suzy : suzy <)
and Py be the program containing ruldg (7) afdl (9) plus the labdiets (suzy : suzy <)
and (billy : billy +<). Then, it can be checked that these programs respectived Unaque
<-minimal modelsl[5] andl[ﬁl which satisfy

Igaccident) = suzy-ra-m Igaccident) = (suzy * billy)-re-r1 + 0il
Let now P; and P; be the labelled programs respectively obtained by addiadaftowing rule
r3: fine(suzy) + suzy necessary for accident (13)

(resulting of labelling rule[(5) withrs) to programshs and Hg. Then it can be checked that these
programs also have unique-minimal modelskz and Ig) which respectively agree withy and
Iginall atoms butinfine(suzy) and, as we have seen above,

(Vs = accident) = Fp(accident) = suzy-ro-r IR(VS5sy = accident) = 0
Furthermore, by definition, it holds thdj(fine(suzy)) = I;(¢§, = accident)-rs for

j € {8} which implies that

I(fine(suzy))) = suzyrars
fg(fine(suzy)) = 03 =0
That is, Suzy would receive a fine for causing the accident= fine(suzy), w.r.t Bz, but not

w.r.t. program/ig becausdg = fine(suzy).

It is worth to note that positive programs may contain nomuotonic causal literals that,
somehow, play the role of negation and, hence, they may leseza<-minimal causal models.
Consider, for instance, the following positive progrén

rn: p ro: q + Ai necessary for p



def

whereA; < {r}. Programfg) has two<-minimal causal models. The first one which satisfies
l[g}(p) =17 andl[gl(q) = ry-r; and a second unintended one which satis@&) =71+ 1re
andll’gl(q) = 0. In the following section, we introduce the notionrabnotonic programsvhich
have a least model and a well-behaved direct consequeneestop(when they are positive). In
Sectiori %, we will see that, in fact, only;is a causal stable model of progréy.

3 Positive monotonic Programs

A causal query) is said to bemonotonidff (G, u) < (G, w) for any value§ G, G’} C Cy,
and{u,w} C Vp; suchthatG < G'. A causal literalv :: A) is monotonidf ¢ is monotonic. A
programP is monotonidff P all causal literals occurring iF? are monotonic. We show next that
every monotonic program can be reduced to the syntax andngiesiaf (Fandinno 2015b). For
space reasons, we omit here the detail5 of (Fandinno 206y can be found in Appendix C.

Definition 8. Given a queryy (resp. m-queryp), its corresponding m-query (resp. query)
given by¢, (G) £ (G, 1) (resp.vy(G,t) & ¢(G)). Similarly, for any programP (resp. m-
program()) its corresponding m-prograi@ (resp. progranP) is obtained by replacing every
queryy in P (resp. m-query in Q) by its corresponding m-quegy, (resp.queryy). O

Theorem 1. If P is the corresponding program of some positive m-progéamith the syntax of
Definition[3 or(Q is the corresponding m-program of some positive monotamigram P, then
an interpretation/ is a model ofP iff I is a model of). O

An immediate consequence of Theolem 1, plus Theorem 3.&imdiRno 2015b), is that pos-
itive monotonic programs have a least model that can be ctedfy iteration of the following
extension of the direct consequences operator of van EmmdeK@awalski (1976).

Definition 9 (Direct consequences)siven a causal progran®, the operator ofdirect conse-
guencess a functionT’» from interpretations to interpretations such that

Tp(I)(A) = > { (I(B1)*...«I(Bp))-r1 | (ri: A< By,...,By)€P }

for any interpretation/ and any atomd € At. The iterative procedure is defined as usual

T (0) % Tp(TH'(0)) if « is a successor ordinal
75(0) = " 1(0) if « is a limit ordinal
B<a

As usual0 and w respectively denote the first limit ordinal and the first lirardinal that is
greater than all integers. Thuﬁf(o) =0. O

Corollary 1. Any (possibly infinite) positive monotonic progrdfrhas a least causal modél
which (i) coincides with the least fixpoilip (T’») of the direct consequences operafds and
(i) can be iteratively computed from the bottom interpteta I = Ifp(7%) = T}“(O). O

Corollary[d guarantees that the least fixpointiaf is well-behaved and corresponds to the
least model of the prograifi. In fact, we can check now that the least mofjgbf program/g
satisfieslg|(accident) = (suzy*billy)-ro-r1 + oil-ry . First note, that prograrfjg contains facts
suzy, billy andoil whose label is the same as the name atom and,Iﬁ%]:sO)(A) = Aforeach

atomA € {suzy, billy, oil}. Then, Sincéf%(ﬂ)(suzy) = suzy, T%(O)(billy) = billy and



rule (8) and facbil belong to prograntig), it follows thatT%(O)(oz’l) = (suzy*billy)-ra+oil.
Similarly, we can check that

T%(O) (accident) = ((suzyx*billy)-ro+0il)-r1 = (suzy*billy)re-ry + oil-ry

and, thusJg = T%(O) is the least fixpoint OT;E]. Checking thaT%(O) = I thatT%(O) =
Inand that/ ™ (0) = Igare the least fixpoint and the least models respectivelyagframs/is), f7

andfg is analogous.

It is easy to see that every true atom, according to the stdriéast model semantics, has a
non-zero causal value associated in the causal least nfatlelgrogram, that is, some associated
cause. An interpretatiohis two-valuedwhen it maps each atom into the §ét 1}. By I, we
denote the two-valued (or “classic”) interpretation cepending to some interpretatidrs.t.

Fel(a) {1 ff 1(4) > 0
0 iff 7(A) =0

Corollary 2. Let P be a regular, positive monotonic program agdits standard unlabelled
version obtained by removing all labels from the rulesinLet I and J be the least models of
P andQ, respectively. Therc! = J. O

4 Non-monotonic causal queries and negation

We introduce now the semantics for programs with non-mariotcausal queries and negation
by extending the concept of redulct (Gelfond and Lifschit&)3o causal queries.

Definition 10 (Reduct) For any termt, by ! we denote a query such that

1 iff exists som&’ < G s.t.G' € maxt andy(G', t) =1
0 otherwise

e |

Thereductof a causal literal(+ :: A) w.r.t some interpretatiod is itself if > is monotonic and
(x4 . A) if ¢ is non-monotonic. The reduct of a prografw.r.t. an interpretationZ, in
symbolsP’, is the result of (i) removing all rules whose body contairsoa satisfied negative
or consistent literal, (ii) removing all the negative andwsistent literals for the remaining rules
and (iii) replacing the remaining causal literalg) :: A) by their reductgv :: A)Z. O

It is easy to see that the reduf of any programP is a positive monotonic program and,
therefore, it has a least causal model.

Definition 11 (Causal stable model)Ve say that an interpretatiohis a causal stable modef
a programP iff I is the least model of the positive program. O

We can check now that interpretatidy is, in fact, the unique causal stable model of pro-
gramfg. Let@ = P[égl be the reduct of prograrfg w.r.t. fgj consisting in the following rules

riiop rgi g4 (Y:p)

wherey)(G,t) = 1 iff there exists somé&’ < G s.t.G’ € max Ig|(p) = 1 andyFA(G’, Ig|(p))
iff m < Gandry < > A; = r iff r; < G. First note thatl”g‘(o)(p) =1 = Ig(p) for
any ordinalee > 1 becauser; is the only rule with the atomnp in the head. Then, note that



T5(0)(¥ = p) = Ti5'(0)(p) because; < G for everyG € max Ty, (0)(p) = r1 (there is only
one suchG = ry) and, thus,

T 0)(q) = T5(0)(W =p)re = T (0)p)r2 = rima = Igla)
for any ordinal3 > 2. Hence,[q is a causal stable model @f;. On the other hand, we can

check thatl[é] is not a causal stable model 8f. Let Q' = Pégl be the reduct of prograrfy
W.I.L. I[’Q] consisting in the same rules than progr@ybut replacing) by ¢’ wherey’(G,t) = 1
iff there exists som&’ < G s.t. G’ € max I['g](p) =171 +ry and w?ff(G’,I[’g](p)). As above,
Tg,‘(o)(p) =1 # I[’gl(p) = r1 + o for any ordinala > 1 and, thereforefg is not a causal
stable model of prograrfig.

It is worth to mention that, as happened with positive pratgawe can stablish a correspon-
dence between the causal stable models of regular progmuainthe standard stable models of
their standard version.

Definition 12 (Two-valued equivalence)Two programsP and () are said to betwo-valued
equivaleniff for every causal stable modélof P there is an unique causal stable modedf @)
such that/*! = J¢!, and vice-versa. O

Theorem 2. Let P be a regular program and) be its corresponding standard program obtained
by removing all labels irP. ThenP and (@ are two-valued equivalent. O

Theoreni® asserts that, labelling a standard program daeshange which atoms are true
or false in its stable models, in other words, the causallstsd#mantics presented here is a
conservative extension of the standard stable model s@&@nant

5 Contributory cause and its relation with actual causation

Until now we have considered that an agent is a cause of anwhem its actions have been nec-
essary to cause that event. This understanding is simithetdefinition of thenodified Halpern-
Pearl definition of causalitgiven by Halpern (2015). However, in some scenarios it makase

to consider a weaker definition in which those agents whasersthavecontributedto that event
are also considered causes, even if their actions have antrieeessary (Pearl 2000). Consider,
for instance, the following example froin (Hopkins and P2af3).

Example 1. For a firing squad consisting of shooters Billy and Suzy, ilaén’s job to load
Suzy’s gun. Billy loads and fires his own gun. On a given dayy Joads Suzy’s gun. When the
time comes, Suzy and Billy shoot the prisoner. The agentcatlmed the prisoner death would
be punished with imprisonment. O

In this example, although the actions of any of the agentsar@ecessary for the prisoner’s
death, commonsense tells that all three should be considesponsible of it. If we represent
Exampldl by the following prograr® o

r1 @ dead + shoot(suzy),loaded shoot(suzy)
ro : dead + shoot(billy) shoot (billy)
rs : loaded + load(john) load(john)

ra: long_prison(A) < A necessary for dead



for A € {suzy, billy, john}, it can be shown that its unique causal stable mdgglsatisfies
Im(dead) = (load(john)-rs  shoot(suzy)) -1 + shoot(billy)-ry

Recall that, we assume that every fact has a label with the seme. According tdgg, the
actions of the three agents appear in the causes of the &tadn but there is no agent whose
actions occur in all causes. Then, the causal litefalnecessary for dead) is not satisfied
for any agent4 and, therefore, it holds thd(long prison(.A)) = 0 for every agentd <
{suzy, billy, john}. Thatis, no agent is punished with imprisonment for theqés’s death.
On the other hand, iP;; is a program obtained by replacing ruleg by rules

ca : short_prison(A,dead) < A contributed to dead

in programf{r, we may expect thathort_prison(.A) holds, inits unique causal stable modgt;,
forany A € {suzy, billy, john}. We formalise this by defining the following query
1 ifG <Y A

) (14)
0 otherwise

NGy o {
In the sake of clarity, we will writ§. A contributed to dead) instead of(yS™ :: dead). It
can be checked thétoad(john)-rs = shoot(suzy)) - r1 < load(john) and, therefore,
Irq(john contributed to dead) = (load(john)-rs* shoot(suzy)) -1

Consequentlyfyy|(short_prison(john)) = (load(john)-rs * shoot(suzy)) - 11 - Cjohn. SimM-
ilarly, it can be shown that

Iq(short_prison(suzy)) = (load(john)-rs * shoot(suzy)) - 1-Couzy
Iqy(short_prison(billy)) = shoot(billy)T2 - chiy

It is worth to note that contributory causes are non-moriotanen defaults are taken into
account. Consider now the following variation of Exanidle 1.

Example 2. Now Suzy also loads her gun as Billy does. However, Suzy'svgsrbroken and
John repaired it. O

As in Example[dl, John’s repairing action is necessary in ofdeSuzy to be able to fire
her gun. However, in this case, it seems too severe to canfide John has contributed to
the prisoner’'s death. This consideration has been widéhbatted to the fact that we con-
sider that, by default, things are not broken and that camsest be events that deviate from
the norm|(Maudlin 2004; Hall 2007; Halpern 2008; Hitchcocki&nobe 2009). If we represent
this variation by a progran®;» containing the following ruI@s

r1 : dead + shoot(suzy),un_broken shoot(suzy)
ro @ dead « shoot(billy) shoot(billy)
r3 : un-broken « repair(john) repair(john)

ca @ short_prison(A) < A contributed to dead

1 We have chosen this representation in order to illustraetim-monotonicity of contributory cause. However, savin
the Frame and Qualification Problems (McCarthy and Haye$}Id6Carthy 198]7) would require the introduction of
time and the inertia laws, plus the replacement of ryléy the pair of rulegr; : dead «+ shoot(suzy), notab)
and (ab < broken). For a detailed discussion of how causality and the inegt@s|can combined we refer
to (Fandinno 2015a).



for A € {suzy, billy, john}, thenitis easy to see that
Iy(dead) = (repair(john)-rs * shoot(suzy)) -1 + shoot(billy)-ry

wherefgis the least model of prografiz and, thusresponsible(john, dead) will be a con-
clusion of it. Just note that prograffyyis the result of replacing atonisaded andload(john)

in program{[y) by un_broken andrepair(john), respectively. Note also that nothing in pro-
gramijrg reflects the fact that by default guns ane broken. We state that guns ater_broken

by default adding the following rule

1: wun_broken < notbroken (15)
If P53 is the result of adding rul€_(15) to prograffyy and I3 is the least model offrg, then
Ig(un_broken) = Irg(unbroken) + 1 = 1
and, consequently,

Iry(dead) = (Lg% shoot(suzy)) -1 + shoot(billy)-ry
= (rg* shoot(suzy))-r1 + shoot(billy)-rs
which shows that John is not considered to have contribidetié prisoner’'s death. Hence,
short_prison(john) is not a conclusion of progradjr. It is worth to mention that besides the

two syntactic differences between causal queries and megualready mentioned, there is a,
perhaps, less noticeable difference in the evaluationudalditerals. Note that,

(repair(john)-rs « shoot(suzy)) -r1 < (rs* shoot(suzy)) - 1

and, thus, if we replace@ € max I(A) by G < I(A) in Definition[8 (as done in Fandinno 2015b),
it would follows that atomshort_prison(john) would be an unintended conclusion of pro-
gram g It is also worth to mention that, besides (Pearl 2000) apgothe notion of con-
tributory cause is also behind the definitions of actual eazigen in [(Halpern and Pearl 2005;
Hall 2007).

6 Properties of causal logic programs

Theoreni? established a correspondence for regular pregtarnthey say nothing about pro-
grams with causal queries. For instance, positive progrétim mon-monotonic causal literals
may have more than one causal stable model. Consider tlogvfiolf positive progran, 4
T P ro: ¢ < Ai necessary for p
rg: g T4 P Ao necessary for q
obtained by adding rules; andr, to programfjg and whereA, “{r3}. Programfz has two
causal stable causal models. The first that satidfigé) = 1 + r3-r4 andfyz(q) = rs. The
second’@(p) =r andI’@](q) =r3—+r1-r9. LEt NnOWQ = P[E be the reduct of prograrfirg
w.r.t. Iz, Which consists in the following rules
Ti:op T2t ¢« (YD)
r3: g re: p < (Y2::q)
wherey; (G, t) = 1 iff there exists somé&’ < G such thaiG’ € max l[E](p) =71 + r3-r4 and
YRAG, Ig(p)) andya(G,t) = 1 iff there existsG’ < G such thatG’ € max Ig(q) = 73



andy*(G’, frz(p))- First, note that)"e(G’, I (p)) iff Irg(p) = r1 +r3ra <3 A1 =1
which does not hold. Thusg);(G,t) = 0 for everyG € Cyp; andt € Vi,. Then, it is clear
that the body of rule-; is never satisfied and, therefoﬂ%a(o)(q) = rg for any ordinale > 1.

It can also be checked thaxg(rg,Tg”(O)(q)) = 1 because there exists’ = r3 such that
G’ € max I’E](q) =r3 andyPA(G’, Ig(q)) = ¥s(rs, r3) = 1sincers < 3~ As = r3. Hence,
sincers € max Tg‘(o)(q) andis(rs, Tg‘(o)(q)) =1, it follows thatTg‘(O)(wQ i q) = rs and
T&B(O)(p) =r + Tg"(o)(q)~r4 = r1 + 314 = Ig(p) for any ordinals > 2. Hence,fz is

the least model OPE and a causal stable model of progréfyy. Showing thatln’zl is also a
causal stable model dfyz is symmetric.

In the following we revise some desired general propertiegfLP semantics. First, causal
stable models should also be supported models. Note theptizept of supported model bellow
is analogous to the usual concept used in standard LP, utitinger in the sense that, not only
requires that true atoms are supported, but also all thesesamust be supported by a rule and a
cause of its body.

Definition 13. A interpretation/ is a(causally) supported modef a programP iff I is a model
of P and for every true atord and causes € Cyp,;, such that7 < I(A) thereis a ruler in P of
the form of (I0) such thatG < (I(By) *...* I(Bw)) - 7. O

Proposition 1. Any causal stable modélof a programP is a also supported model &f. [

Furthermore, as happen with programs with nested negatidaerihe standard stable models
semantics (where stable models may not be minimal modefgeqiriogram), causal stable mod-
els may not be minimal models either. In fact, this may hapgpem when the nested negation is
replaced by a non-monotonic causal literal. Consider,fstaince, the following prograif s

r: op ro: p 4 nNOt(A; necessary for p)

whereA; #{r,}. Programfyz has two causal models. One which satisfjgg(p) = 1. The
other which satisfieiis](p) = r1 + ro. We define now the notion aformal programwhose
causal stable models are alseminimal models. A progran® is normaliff no body rule inP
contains a consistent literal (double negated literal)anegated non-monotonic causal literal.
In other words, a program is normal iff it does not containste@ negation nor non-monotonic
causal literals in the scope of negation.

Proposition 2. Any causal stable modélof normal programP is also a<-minimal model. [

Splitting programs. The intuitive meaning of the causal rule113) in prograffygand Fgj is

to cause the atonfine(suzy) whenever the causal query expressed by its body is true with
respect to a programigs) and fig, respectively. This intuitive understanding can be forseal as

a splitting theorem in (Lifschitz and Turner 1994).

Theorem 3(Splitting). Let (P, P;) a partition of a programP such that no atom occurring in
the head of a rule irP, occurs inP,. An interpretation/ is a causal stable model @ iff there
is some causal stable modebf P, such thatl is a causal stable model ¢§ U P;). O

In our running example, the bottom part dfg, = Hs and Hg), = I{g while their top part
Ha, = Hy, is the program containing the rule{13). This result can heegdised to infinite
splitting sequences as follows.



Definition 14. A splitting sequencef a programP is a family (P, ).<, of pairwise disjoint
sets such thaP = Ua@ P, and no atom occurring in the head of a rule in sofmgoccurs in
the body of a rule irU[Ka Pg. Asolutionof a splitting (P, )<, is a family (1, )<, such that
align=Center, leftmargin=10pt, itemindent=0.5pt

1. I, is a stable model oF,

2. I, is a stable model ofJ, U P,) for any ordinal0 < a < p whereJ,, = Zﬂm 1.
A splitting sequence is said to s#rict in « if, in addition, no atom occurring in the head of a
rule in P, occurs (in the head of a rule) ipJ;_,, P and it is said to bestrictif it is strict in «
for everya < p. O

Theorem 4 (Splitting sequences)Let (P, )<, a splitting sequence of some program An
interpretation/ is a causal stable model @? iff there is some solutiofi/, )<, Of (Py)a<u
such thatl = Za@ I,. Furthermore, if such solution is strict in, thenl, = I s, wheresS,
is the set of all atoms not occurring in the head of any rulejig<ﬁ<# Ps and g, denotes the
restriction if I to S,,. O

A programP is said to bestratifiedif there is a some ordinal and mapping\ from the set of
atomsAt into the set of ordinal$a < i} such that, for every rule of the forin(10) and atdn
occurring in its body, it satisfies(A) > A\(B) if B does not occur in the scope of negation nor
in a non-monotonic causal literal, andA) > A\(B) if B does occur under the scope of negation
or in a non-monotonic causal literal.

Proposition 3. Every stratified causal prograri® has a unique causal stable model. O

7 Conclusions, related work and open issues

The main contribution of this work is the introduction of arsntics for non-monotonicausal
literals that allow deriving new conclusions by inspecting the cajsifications of atoms in
an elaboration tolerantmanner. In particular, we have used causal literals to def@oessary
andcontributory causal relationsvhich are intuitively related to some of the most establishe
definitions of actual causation in the literature (Pearl®08alpern and Pearl 2005; Hall 2007;
Halpern 201b). Besides, by some running examples we hawenstitat causal literals allow,
not only to derive whether some event is the cause or not ahan@vent, but also to derive
new conclusions from this fact. From a technical point ofwiee have shown that our seman-
tics is a conservative extension of the stable model sensatid that satisfy the usual desired
properties for an LP semantics (casual stable models angosigl models, minimal models
in case of normal programs and can be iteratively computesphi/table programs). It worth
to mention that, besides the syntactic approaches to gstidns in LP, the more related ap-
proach to our semantics is (Damasio et al. 2013), for whitdrmal comparative can be found
in (Cabalar and Fandinno 2016a) and that (Pontelli et al9pallows a Prolog system to reason
about justifications of an ASP program, but justificationarz@ be inspected inside the ASP
program.

Regarding complexity, it has been shown[in (Cabalar et dl4Epthat there may be an ex-
ponential number of causes for a given atom w.r.t. each tatedale model. Despite that, the
existence of stable model for programs containing only ni@mio queries evaluable in polyno-
mial time isNP-complete[(Fandinno 2015b). For programs containing oatessary causal lit-
erals we can provP-complete NP-hard holds even for programs containing a single negated



regular literal or positive programs containing a singlasteaint, see Propositibn135 in the Ap-
pendix). The complexity for programs including other noosatonic causal literals (like con-

tributory) is still an open question. A preliminary protpty extending the syntax of logic pro-
grams with causal literals capturing sufficient, necesaarn/contributory causal relation can be
tested on-line @http://kr.irlab.org/cgraphs—solver/nmsolver.

In a companion paper (Cabalar and Fandinno 2016b), thelcsmeantics used here has been
extended to disjunctive logic programs, which will be usébu representing non-deterministic
causal laws. Interesting topics include a complexity assest or studying an extension to arbi-
trary theories as with Equilibrium Logit (Pearce 2006) fog hon-causal case; and formalise the
relation between our notions of necessary and contribuitange with the above definitions of
the actual causation and, in particular, with (VennekerddP@ho has studied it in the context of
CP-logic. A promising approach seems to translate strat@guations into logic programs in a
similar way as it has been done to translate them into theattheories|(Giunchiglia et al. 2004;
Bochman and Lifschitz 2015).
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Appendix A. Nested expressions in rule bodies

In this section we extend the syntax presented in Setiorozder to allow nested expressions
in rule bodies|(Lifschitz et al. 1999).

Definition 15. AformulaF is recursively defined as one of the following expressions
F ==t |C | E/H | E;H | notk

wheret is a term,C is a causal literal (Definitiof 4) and bothf and H are formulas in their
turn. O

Aformula F is said to beelementaryff it is atermt¢ or a causal literal’. It is said to beegular
iff every causal literal occurring in it is regular and isé# bepositiveiff the operatomotdoes
not occur in it. F' is said tomonotoniciff every causal literal occurring id” is monotonic. In
formulas, we will writeT and_L instead ofl and0, respectively.

Definition 16 (Causal logic program)Given a signaturé At, Lb, ¥), a (causal logic) program
Pis a set of rules of the form:

ri: A+ F (A1)

wherer; € Lbis alabel orr; = 1, A € At (theheadof the rule) is an atom oA = | and F’
(thebodyof the rule) is a formula. O

A rule r is said to beregular iff its body is regular and its said to lpgositiveiff its body is
positive andA # L. Itis said to bemonotoniaff F'is monotonic. IfF' = T, we say the rule is
afactand omit the body and sometimes the symbet.” A program P is regular, positiveor
monotoniavhen all its rules are regular, positive or monotonic, resipely. A standard program
is a regular in which the label of every rule is:". Definition[18 extends Definitioln]5 by allowing
nested expressions in the rule bodies. A causal prograneisethse of Definitionl5 is a program
in which the bodyF' of all rules are conjunctions of regular causal literalsheit negation. Note
that every rule of the form of (10) witlm = 0 correspondsto arule of the form@f, : A <+ T).

Semantics. The semantics of causal logic programs with nested express given as follows.

Definition 17 (Valuation) The valuation of causal literals and causal terms is as givgDefi-
nition[d. Otherwise, the valuation of a formukais recursively defined as follows

I(E,H) = I(E) = I(H) I(notE) — {1 iff I(E)- —0
I(E;H) = I(E)+I(H) 0 otherwise
We say thaf satisfies a formuld’, in symbold = F, iff I(F) # 0. O

Definition 18 (Causal model) Given a ruler of the form(AI), we say that an interpretatioh
satisfiesr, in symbold = r, if and only if the following condition holds:

I(F)-r < I(4) (A2)
An interpretation/ is a causal modebf P, in symbold |= P iff I satisfies all rules inP. O

The following result shows that Definitian118 agrees with Bigion[7 for programs within the
syntax of Definitior[ b and, thus, the former is a conservagxtension of the last to programs
with nested expressions in the body.



Proposition 4. For any programP with the syntax of Definitidd 5, an interpretatidris a model
of P w.r.t. DefinitionT iff] is a model ofP w.r.t. Definition 18. O

We also can extend the definition of the direct consequerastor to programs with nested
expressions as follows.

Definition 19 (Direct consequences)siven a causal program with nested expressidhghe
operator of direct consequenceés a functionTp from interpretations to interpretations such
that

Tp(I)(A) < Y { I(F)-r1 | (ri: A« F)eP }

for any interpretation/ and any atomd € At. The iterative procedure is defined as usual

T (0) < Tp(T'(0)) if « is a successor ordinal
7(0) = " 11(0) if « is a limit ordinal
B<a

As usual0 and w respectively denote the first limit ordinal and the first lirardinal that is
greater than all integers. Thuﬁf(o) =0. O

We will show in the Appendik I that, iP is monotonic and positive, then thi& operator has
a least fixpoint that can be computed by iteration from thédnotinterpretatior®.

Causal stable models of programswith nested expressions.

Definition 20 (Reduct) The reduct of a causal literal and terms is as in Definifioh Tioe reduct
of formulas is inductively defined as follows

(EaH)I = (ElvHI) (nOtE)I — 1 IfI|:EI
(B;H) = (E';H T otherwise
The reduct of progran® is the program
pl & {TI‘T‘EP}
where the reduct! of a ruler like (L0)is given by(r; : H « FT). O

Definition 21 (Formula equivalence)A formula F' is said to beequivalentto a formulaF, in
symbolsF < E, iff any pair of causal interpretations and.J satisfy thatl (F/) = I(E7).

Proposition 5. For any formulaF’, the following simplifications are valid align=Center, tef
margin=10pt, itemindent=0.5pt
1. (F,T)< Fand(T,F
2. (F;T)e Tand(T; F
3. (F,1)e Land(L,F
4. (F; 1)< Fand(L;F

< F.

~—

S T

~

s F
< F. O

e —

Definition 22 (Causal stable model)We say that an interpretatiohis acausal stable modef a
program with nested expressioRsiff I is the least model of the positive monotonic prog&m
(Definition[20). O



Proposition 6. For any programP with the syntax of Definitionl 5, the reduct £f w.r.t. to
an interpretation/ and Definition 1D is the same as the reductiofv.r.t. I and Definitio 2D
after applying the simplifications from Propositibh 5 andn@ving all rules whose body is.
Consequently, the causal stable model&af.r.t. Definitiong 1L anf 22 are the same. O

Proposition 7. Let P be a causal program with nested expressions. Any causdestaddel/
of P is a model ofP. O

Proposition 8. Let P be a causal program with nested expressions. Any causdestaddel/
of a P is a also supported model &f. O

Proposition 9. Let P be a causal program with nested expressions. Then, any tatade
modell of P is also a<-minimal model ofP. O

Note that Propositiorid 1 afdl 2 in the main part of the papewiaect consequences of Propo-
sition[@ together with Proposition$ 8 9, respectively.

Splitting programs. The intuitive meaning of the causal rule(13) in prografysand Fg) is to
cause the atomesponsible(suzy, accident) whenever the causal query expressed by its body
is true with respect to a progranig) and fg, respectively. This intuitive understanding can be
formalised as a splitting theorem [n (Lifschitz and Turn@94).

Theorem 5(Splitting). Let (P,, P;) a splitting of some program with nested expressiBns\n
interpretation! is a causal stable model @ iff there is some causal stable modebf P, such
that I is a causal stable model ¢f7 U P;). Furthermore, if(P,, P;) is a strict splitting, then
J = I,s whereS$ is the set of atoms of all atoms not occurring in the head ofratgyin P;. [

In our running example, the bottom part dfg, = Hs and g, = I while their top part
Ha, = Iy, is the program containing the rule_{13). We also can gerserdlhiis to infinite
splitting sequences.

Definition 23. A splitting sequencef a programPpP is a family (P,).<, of pairwise disjoint
sets such thaP = Ua<“ P,, and no atom occurring in the head of a rule in sofgoccurs in
the body of a rule irUB@ Pg. Asolutionof a splitting (Pu ) o<, is a family (I,)a<, such that
align=Center, leftmargin=10pt, itemindent=0.5pt

1. I is a stable model oF,

2. I, is a stable model ofJ,, U P,) for any ordinal0 < o < p whereJ,, = ng Ig.

A splitting sequence is said to s&rict in « if, in addition, no atom occurring in the head of a
rule in P, occurs (the head of a rule) iUgm Pg and it is said to bestrictif it is strict in o for
everya < p. O

Theorem 6 (Splitting sequences)Let (P,).<, a splitting sequence of some program with
nested expression8. An interpretation/ is a causal stable model d@? iff there is some so-
lution (In)a<y Of (Pa)a<, such thatl = Z(KM I,,. Furthermore, if such solution is strict
in o, thenl, = I5, whereS, is the set of all atoms not occurring in the head of any rule

inUa<B<MP[5. O

A programP is said to bestratifiediff there is a some ordinal and mapping mapping from
the set of atomsit into the set of ordinal$a < p} such that, for every rule of the forma (A1)
and atomB occurring in the body, it satisfies\(A) > A\(B) if B does not occur in the scope



of negation or a non-monotonic causal literal, anjd) > A\(B) if B does occur under the scope
of negation or a non-monotonic causal literal.

Proposition 10. Every stratified causal program with nested expressiBiieas a unique causal
stable model if it does not contain any rule whose head.is O

Proposition§13, in the main part of the paper, is a directequence of Propositiof$ 6 and 10.

Normal form. Proposition[ 6 show that Definition 22 is a conservative esitam of Defini-
tions[11. In the following we show that, in fact, the syntaxQfinition[d is a normal form,
that is, for every progran® in the syntax of Definitioi 16, there is some progrghwith the
syntax of Definitiot b which has exactly the same causal stalgdels tharP.

Definition 24. For program P and Q we write P < @ when/ satisfies all rules inP/ iff I
satisfies all rules irQ” for any pair of causal interpretationsand.J. O

Definition 25 (Strong equivalence)Two programsP and @ are said to bestrongly equivalent
iff for every programP’, (P U P’) and(Q U P’) have the same causal stable models.

Proposition 11. Any two causal program® and@ s.t. P < @ are strongly equivalent. [

Proposition 12. Let P be a causal program, and It and E' be a pair of equivalent formulas,
that is F < E. Any program obtained fron® by replacing some occurrences bfby E is
strongly equivalent td>. O

The following result collects some of equivalence amongnigas that correspond to those
in (Lifschitz et al. 1990).

Proposition 13. For any formulast, E andH, align=Center, leftmargin=10pt, itemindent=0.5pt
1. FE<S E, FandF;G < G; F.

F,(E,H) < (F,E),HandF;(E;H) < (F;E); H.

F,(E;H) < (F,E);(F,H)andF;(E,H) < (F;E),(F;H).

no(F, E) < I(notF;notE) andnot(F; E)) < notF, notE.

notnotnot’ < notF.

FTs FandF; T < T.

Fls landF; 1L < F.

8. notT < | andnotl & T. O

No o~ wN

A formula F' is said to be aimple conjunctiorfresp.simple disjunctiopiff is a conjunction
(resp. disjunction) of elementary formulas.

Proposition 14. Any formulaF' is equivalent to a formula of the form align=Center, leftmar
gin=10pt, itemindent=0.5pt
1. Fy;...; F, wheren > 1 and each¥F; is a simple conjunction, and
2. Fy,..., F, wheren > 1 and eachF; is a simple disjunction. O
Proposition 15. A causal rule ¢; : A « F'; E) is equivalent to
ri: A« F
ri: A+« F

for any labelr;, atomA and formulast’ and E. O



Proposition 16. Any program is strongly equivalent of a set of rules of thenf@@0) if L is
allowed in the head. O

Proposition 17. For every programP, there is some progra with the syntax of Definition 5
which has exactly the same causal stable models than O

Appendix B.  Uniform reduct for monotonic and non-monotonic queries

An issue with Definition§ 10 arld R0 is that it is necessary tovkmvhether a causal query is
monotonic or not to apply the reduct. This can be providedieyuser, but otherwise automat-
ically checked whether a causal query is monotonic or notklEcomputationally costly. In
the following, we show that, in fact, this distinction is nwcessary and that the reduct can be
applied uniformly to monotonic and non-monotonic caugetdils.

Definition 26 (Reduct) Thereductof causal queries is defined as in Definition 10. The reduct of
a causal literal is given by () :: A) for any causal literal of the form of :: A). The reduct
of formulas, rules and programs is then defined as in DefimiZ0. O

Definition[26 applies the reduct uniformly to monotonic amsthfmonotonic causal literals. A
consequence of this fact is that the reduct of monotonicnarog is not itself and, in fact, the
least model of the reduct of a monotonic progr&fw.r.t. an interpretatiod can be different
according to Definitions 20 afhd26. Despite that, the follmyiesult shows that the causal stable
models of a progran® are the same in spite of whether Definitfon 20 or Definifioh®6sed.

Proposition 18. Let P be a causal program with nested expressions. An interpeetat is
the least model oP! (according to Definitiofi 20) iff is the least model oP’! (according to
Definition[26). O

Appendix C. Comparative with (Fandinno 2015b)
In this section we revise the syntax and semantics of causgtgms given in (Fandinno 2015b)
and show how programs in this framework can be translatedris. o

Syntax. A m-queryis a monotonic functiop : G, — {0, 1} assigning true or false to every
causal graphs&’ € Cyp,. A signatureis a triple (At, Lb, ®) where At, Lb and ® respectively
represent sets @toms(or proposition3, labelsand query functions.

Definition 27 (m-literal). A m-literalis an expressiofi¢ :: A) whereA € At is an atom and
¢ € ®is am-query. O

Formulas, rules and programs are defined as in our framev@w&tion[A), but replacing
causal literals (Definitionl4) by m-literals (Definitionl27)
Semantics. The semantics of m-programs is as follows.

Definition 28 (Valuation) Thevaluation of a causal literadf the form(¢ :: A) with respect to
an interpretation/ is given by

I(¢:A) ¥ Y {GeGy | G<I(A)and ¢(G) =1}

The valuation of causal terms and formulas is inductiveljngel as in Definition 17.



The definition of causal models and the operator is as in Definitiohis 18 and 19, respectively,
but evaluating formulas according to Definitiod 28 insteiBefinition[17.

Theorem 7 (From[Fandinno 2015b)Let P be a (possibly infinite) positive logic program (with
nested expressions). Thef),l{p (Tp) is the least model aP and () Ifp(Tp) = T}“’(O). O

Theorem 8(From[Fandinno 2015b)Let P be a regular positive program (with nested expres-
sions) andQ its standard unlabelled version. Then, the least matet ¢ of Q is the two-
valued interpretation corresponding to the least matef P. O

The definition of reduct and causal stable models is as Diefisl20 and Definitioh 22.

Theorem 9(From Fandinno 2015b)Let P be a regular program (with nested expressions) and
Q be its corresponding standard program obtained by remowlhtabels in P. Then,P andQ
are two-valued equivalent. O

Encoding (Fandinno 2015b) m-programs in our framework. In the following we show that
every program according to (Fandinno 2015b) can be fittedirframework.

Definition 29. Given a m-progrand), its corresponding progran® consists of rule of the form
T - A« F

for every rule of the fornr; : A « F)in Q whereF” is the result of replacing every m-query
¢ by its corresponding query given by (G, t) = ¢(G). O

Proposition 19. If P is the corresponding program of some positive m-progranth(wested
expressions)), then an interpretatiod is a model ofP iff I is a model of). O

Encoding of monotonic programsinto (Fandinno 2015b). It is clear that not every program in
our framework can be fitted into a m-program because the tdgtatlows monotonic queries.
However, if all causal queries in a program are monotonén there is an equivalent m-program
given as follows.

Definition 30. Given a program with nested expressidns which all causal queries are mono-
tonic, its corresponding m-prograf consists of rule of the form

r;: A« F'

for every rule of the fornfr; : A « F)in Q whereF" is the result of replacing every query
¥ by its corresponding query given by (G) = ¥(G, 1). O

Proposition 20. If @) is the corresponding m-program of some positive monotaoigram with
nested expressior3, then an interpretatior is a model ofP iff I is a model of). O

Note that Theorefl1 is a direct consequence of PropoEitiogettier with the result of Propo-
sitions[I9 an@ 20. Furthermore, the following Corollalitdand® are direct consequences of
Propositior 2D together with the results of Theoréiris 7, 8@mespectively. Corollaryl6 is a
direct consequence of Corolldry 5.

Corollary 3. Any (possibly infinite) positive monotonic causal prograithwested expres-
sions P has a least causal modélwhich (i) coincides with the least fixpoitfp(7p) of the
direct consequences operatfp and (ii) can be iteratively computed from the bottom interpr
tation I = Ifp(Tp) = T3 (0). O



Corollary 4. Let P be a regular positive monotonic program with nested expoessandQ its
standard unlabelled version obtained by removing all lIadedm the rules inP. LetI and J be
the least models aP and Q, respectively. Ther? = J. O

Corollary 5. Let P be a regular program with nested expressions ghtie its corresponding
standard program obtained by removing all labels/l ThenP and ) are two-valued equiva-
lent. O

Corollary 6. Any two regular programs with nested expressions that oifigrdn their labels
are two-valued equivalent. O

Corollariedl anfll2 and Theorém 2 in the main part of the paggediaect consequences of
Propositio 4 plus Corollari€s @] 4 alnd 5, respectively.

Appendix D. Proof of Results
Preliminary facts

Proposition 21 (From[Cabalar et al. 2014ajddition, product and application are monotonic
operations, thatist +u < t' + v/, txu < t' x«' andt - u < t' - o/ for any causal values
{t,u,t’,u'} C Vg, suchthat < ¢ antu < u'. O

Proposition 22 (From[Cabalar et al. 2014afvery causal valu& € Cp, without addition is
completely addition-prime, that i€; < >, _,. ¢ implies thatG < ¢ for somet € T where
T C Vi, is a set of causal values. O

Properties of the causal queries and causal literals

Proposition 23. The evaluation of a causal literdt) :: A) is <-monotonic for every monotonic
causal queryy, thatis, J(¢ :: A) < I(¢ :: A) for every pair of interpretationg and J such
thatJ < I. O

Proof. By definition, it follows that
X(@=A) ¥ Y {GeCu | GemaxX(A)and (G, X(4)) =1}

with X € {I, J}. For the sake of contradiction, suppose thiét :: A) £ I(¢ :: A). Then,
there isG € max J(¢) :: A) such thatG £ I(v :: A). Note thatG € max J(¢) :: A) implies
G € max J(A) and, sinceJ < I, this implies that there exists’ € max I(A) such thaG < G'.
Hence, sinceJ < T andt is monotonic,y(G, J(A)) = 1 impliesy(G’, I(A)) = 1 and,
thereforeG < G’ < I(¢ :: A) which contradicts the assumption. O

Proposition 24. The reduct of a causal quetyw.r.t. termt, in symbols)? is monotonic. O

Proof. Suppose that! is not monotonic. Then there aég G” € Cr, andu,w € Vr, such
thatG < G” andy! (G, u) = 1, buty)!(G”,w) = 0. By definition,

PG, u) =1 iff exists somel’ < G s.t.G' € maxt andy)(G', t) = 1 (D1)
Similar for G” andw. Pick someG satisfying [D1). SinceZ’ < G andG < G”, it follows
that @ < G” and, sinceG’ < G” and G’ € maxt and¢(G’,t) = 1, it also follows that

PHG",w) = ¢'(G”,u) = 1 which is a contradiction with the assumption. Hengéjs mono-
tonic. O



Proposition 25. Any monotonic causal quetysatisfies that! (G, u) < (G, u) for any causal
valuesG € Cr, and{t,u} C Vi,. O

Proof. Suppose thap! (G, u) £ (G, u). Theny!(G,u) = 1 andy (G, u) = 0. By definition,

wt (G, u) def

1 iffexists someG’ < G s.t.G' € maxtandy(G', t) =1
0 otherwise

and, thus, there exists som¥ < G such that?’ € maxt and thaty(G’, t) = 1. Sincey is
monotonic,G' < G andy(G’,t) = 1 implies thaty)(G,u) = 1 for anyu € V, which is a
contradiction with the fact that(G, u) = 0. O

Proposition 26. Let I and J be two interpretations. Thenl (v :: A)! < J( = A) for any
atomA € At and any a monotonic causal quety

Proof. Pick anyG € max J(¢ :: A)!. By definition,G € max J(A) andy! (G, J(A)) = 1.
Furthermore, from Propositidn P%;’(4Y) (G, J(A)) = 1 implies(G,J(A)) = 1 and, thus,
G < J(¢ :: A). Therefore J (v :: A) < J(3 2 A). O

Note that in general (¢ :: A)! # J(¢ :: A) may hold even if/ < I. Consider, for instance,
a pair of interpretation/(A) = a x b andI(A) = a and a monotonic causal quefya * b) =
Y(a) = 1. Then,J (¢ :: A) = a*b, butJ(¢ :: A)f =0 because b & max I(A).

Properties of formulas

Proposition 27. Any monotonic formul’ is <-monotonic, thatis/(F) < I(F') for any causal
interpretations/ andJ such that/ < I. O

Proof. In case thatF" is a causal literal of the fornw) :: A), from Propositio 283, it follows
thatJ(¢ :: A) < I(¢ :: A). Otherwise, we proceed by structural induction assumiedemma
holds for every subformula df'. In case that’ = (E, A), by induction hypothesi& and A are
<-monotonic and, thus, since product is also monotonic|libfics that /' is <-monotonic. The
caseF = (E; A) is analogous. Finally, for the cagé = notFE, just note thatF is not positive
and, thusF' is not monotonic by definition. O

Proposition 28. Any causal interpretatiod and formulaF” satisfyl (F1) = I(F). O

Proof. In case thaf is a causal literal of the forrayy :: A), its reduct(y = A)! is (p1(4) =2 A).
Furthermore, by definition,

P! (G ) =1 iffexist G < G s.t.G' € max I(A) andy(G', I(A))

Then, G € max I(yp!(Y) :: A) implies thatG € max I(A) and there exists som@’ < G
such thatG’ € max I(A) andy(G’,I(A)) = 1. Note that, sinc&?’ < G € maxI(A) and
G’ € max I(A), it follows thatG = G’. Then,y»(G’, I(A)) = 1 implies thaty(G, I(A)) = 1
and, consequentlyy < I(v :: A). Thatis,I(F!) < I(F). The other way around: € max I (¢ ::
A) implies thatG' € max I(A) andw(G, I(A)) = 1 which in turn imply thaw)! () (G, I(A)) =
1 andG € max I(y!(4) :: A). Consequently] (/1) :: A) = I(z) :: A).

In any other case, we proceed by structural induction assythie lemma holds for every sub-
formula of F'. In case that" = (E, H), by definition,

I(FY = (E,H)Y = I(E',H") = I(E")+I(H")



Furthermore, by induction hypothediéE’) = I(E) andI(H') = I(H) and, thus,

I(FY = I(E)xI(H) = I(E,H) = I(F)
The caseF’ = (E; H) is analogous. Finally, for the cagé = notE, just note thaf (notE)! =
I(L) =0iff I = ETiff I & Eiff I(notE) = 0. Otherwisel (notE)! = I(T) = 1 and
I(notE) = 1. O
Lemma D.1. Let I and J be two interpretations. Thenj(F!) < J(F') < J(F) for any

monotonic formula” and F’ whereF" is either F'! or the result of replacing i’/ some reduced
causal query)! by its non-reduced formp. O

Proof. In case thaf' is a causal literal of the forrfy)’ :: A), from Propositiof 26, it follows that
J(FTYy = J'A) oo A) < J(y :» A) = J(F). Furthermore, if in addition)’ = 4, it follows
thatF’ = F and the lemma statement follow from the above inequalithe@®tiseF’ = F! and
the result follow in a similar way.

We proceed by structural induction assuming the staten@dshior every subformula of'. In
case thaf’ = (F, H), by definition,
J(FY = J((B,H)") = JELH) = JE)«J(H)
JF'Y = J((E,H)) = J(E' H) = JE)xJH)
Furthermore, by induction hypothesi&,E?) < J(E') < J(E) andJ(H!) < J(H') < J(H)
and, since productis monotonic, it follows that,
JFY = JEH«JHY < JEY«JH') = J(E,H) = JF)
JF = JENY«JH) < JE)xJH) = JE,H) = J(F)
The casd’” = (FE; H) is analogous. Finally, note that = notE is not a positive formula and,
by definition, it is not a monotonic formula either. O

Proposition 29. Let F be a monotonic formula antibe an interpretation. Thew(F!) < J(F)
for any interpretation/ such that/ < I.

O O

Proof. It follows directly from LemmaD.lL.

Proposition 30. Let F' be a normal formula and be an interpretation. Then](F) < J(F)
for any interpretation/ such that/ < I. O

Proof. In case thaf is a causal literal of the forrayy :: A), its reduct(y = A)! is (p1(4) =2 A).
Note thatG € max J (! :: A) implies G € max J(A) and'(Y) (G, J(A)) = 1. Further-
more, by definition,

PG, J(A) =1 iffexistG’ < G'st.G' € maxI(A) andy(G’, I(A))

SinceG'’ < G < J(A) < I(A) andG € maxI(A), it follows thatG = G’. Then, since
J < I, queries are anti-monotonic in the second argumentfdd I(A)) = 1, it follows
thaty (G, J(A)) = 1 and, sinceG € max J(A), it also follows thatG < J(y :: A). That is,
J(FT) < J(F)

Otherwise, we proceed by structural induction assumindetimena holds for every subformula
of F. In case that’ = (E, A), by definition,

J(FYY = J((B,H)") = JE,H) = JE)*«JH



Furthermore, by induction hypothesi§,E?) < J(FE) andJ(H') < J(H) and, since product
is monotonic, it follows that,
J(FYy = JEH«JHY < JE)xJH) = JE,H) = J(F)

The casel’ = (E; H) is analogous. Finally, in cagé = notF, sinceF is a normal formulaf
is positive and every quenry occurring inE is monotonic. Hence, from the fadt< I and the
fact that monotonic formulas are alsemonotonic, it follows.J(E) < I(E) (Propositior 2[7).
Furthermore,
if J((notE)") =1thenI j£ E'
thenI(E') =0
thenI(E) = (Propositio 2B)
thenJ(E) =
thenJ(notE )
Thatis,J( (notE)! ) = 1 implies that/(notE) = 1. Otherwise,J (notE)! = 0 and the ternd

is smaller than any causal value and, thiisinot £)! ) < J(notE) holds and, consequently, it
follows thatJ(F1) < J(F). O

Proof of Proposition[4

Proof of Proposition[4 Assume thaf is a model ofP w.r.t. Definition[7 and suppose thais
nota model ofP w.r.t. Definitio 18. Then, there is a rutef the form of(r; : A < By,..., Bn)
such thatl (By,...,By) -1 £ A, butthatl (By) *...x I[(By,) - r; < A.If m > 0, then from
Definition[17 it follows that/ (B, . .., B,,) = I(By) * ... * I(B,,) which is a contradiction. If
m = 0, then[[® = 1 = I(T) which is also a contradiction. The other way around is symimet
cal.

Proof of Proposition

Proof of Proposition[3 For (7), note thatT = 1, then
I(FT)) = I(F7,T7)

I(F7)y« I(T)
= I(F))%I(1)
= I(F)x1
= I(F’)

The remaining cases are analogous. Just notelthat0.

Proof of Proposition

Proof of Proposition[@ Letr be a rule of the form of

ri: A+ Bl,...,Bm,Bm+1,...,Bn



whereB; is a positive literal withl < j < m andB; is either a negative or a consistent literal
with m + 1 < j < n. According to Definitio 2D, iff = B; with m + 1 < j < n, then the
reduct of ruler is a ruler! of the form

ri: A C’l,...,C'm,T,...,T

whereC} is the reduct of causal literd; for 1 < j < m. After applying the simplifications in
Propositio b, it follows that! becomes

T A Cl,...,Cm

which agrees with Definition 10. On the other hand] if~4 B; for somem + 1 < j < n, it
follows thatB = | and, therefore,

(Bi,...,Bm, Bmy1,---,Bj_1,B;,Bjs1...,B,)" = L
Hence;! is of the from
T A~ 1

andr! does not belong t@! after removing all rules whose body is. Therefore, the reduct
according to Definitio_20 is the same as the Definifioh 10 fagpams with the syntax of
Definition[ and the causal stable models w.r.t. Definitloiead 22 are the same, too.

Proof of Proposition

Lemma D.2. Let F' be some m-formula anBl’ be is corresponding formula obtained by replac-
ing every m-query by its corresponding query given by (G, t) = ¢(G). Then, it holds that
I(F) = I(F') for every interpretatior. O

Proof. In case that' = (¢ :: A) is a m-literal, by definition
I(¢:4) = Y {GeGp | G<I(A)and (G) =1}

Furthermore, since is monotonic, for every? < I(A) such thatp(G) = 1, there is somé&’
such thalG < G’ € max I(A) and¢(G) = 1 and, thus,

I(¢:A) = > {GeG | GemaxI(A)and ¢(G) =1}
Then, since)(G,t) = ¢(G) for anyt € Vi, itis clear that
(¢ A) = > {GeGy, | GemaxI(A)and (G, I(A) =1}

= I(y:: A)
In case thaf' is not a m-literal, the proof follows by structural induatiassuming as induction
hypothesis thaf (F) = I(E’) for every subformuld& of F. O

Proof of Proposition[I8 Assume thaf is a model and) and suppose thdtis not a model
of P. Then, there is some rufeof the form(r; : A <« F)in P suchthat/(F) - r; £ I(A).
However, since is in P there is a rule’ of the form(r; : A < F)in Q whereF" is the result
of replacing every m-query by its corresponding query. Then, from Lemm&aD]2, it follows
thatI(F’) = I(F) and, thusI(F’) - r; £ I(A) which is a contradiction with the assumption



thatl is a model ofQ.

The other way around is symmetrical. Assume tha a model andP and suppose that is
not a model of@Q). Then, there is some rulé of the form(r; : A « F’) in @ such that
I(F')-r; £ I(A). However, since”’ is in  there is a rule- of the form(r; : A < F)in P
whereF” is the result of replacing every m-quegyby its corresponding query. Then, from
LemmdD.2, it follows thaf (F’) = I(F) and, thus](F) - r; £ I(A) which is a contradiction
with the assumption thdtis a model ofP.

Proof of Proposition

Lemma D.3. Let F' be some formula ané” be is corresponding m-formula obtained by replac-
ing every query) by its corresponding m-quegygiven bys(G) = (G, 1). Then, it holds that
I(F) = I(F') for every interpretatior. O

Proof. In case thaf" = (¢ :: A) is a causal literal, by definition
I A) = Y {GeGp | GemaxI(A)and (G, I(A) =1}
Furthermore, sincé is monotonicy (G, I(A)) = ¢(G, 1)) and, thus
I A) = > {GeGp | GemaxI(A)and (G, 1) =1}
Then, since’(G) = ¥(G, 1), itis clear that
IW=A) = > {GeGu | GemaxI(A)and ¢(G) =1}

= I(¢:: A)
In case thaf' is not a m-literal, the proof follows by structural induatiassuming as induction
hypothesis thal (E) = I(E’) for every subformuld of F. O

Proof of Proposition[20 Assume thaf is a model and) and suppose thdtis not a model
of P. Then, there is some rufeof the form(r; : A <« F)in P such that/(F) - r; £ I(A).
However, since is in P there is a rule’ of the form(r; : A < F)in Q whereF"” is the result
of replacing every m-query by its corresponding query. Then, from Lemm&aD]3, it follows
thatI(F’) = I(F) and, thusI(F’) - r1 £ I(A) which is a contradiction with the assumption
that! is a model ofQ).

The other way around is symmetrical. Assume thag a model andP and suppose that is
not a model ofQ. Then, there is some rulé of the form(r; : A « F’) in Q such that
I(F’)-ry £ I(A). However, since” is in Q there is a rule- of the form(r; : A « F)in P
whereF” is the result of replacing every m-quegyby its corresponding query. Then, from
LemmdD.3, it follows thaf (F’) = I(F) and, thus/(F') - r £ I(A) which is a contradiction
with the assumption thdtis a model ofP.

Proof of Theorem([d

Proof of Theorem[1 If P is the corresponding program of some positive m-progéanthe



result directly follows from Propositidn 19 plus Propasiti4 and ifQ is the corresponding m-
program of some monotonic prograf the result directly follows from Propositidn 20 plus
Proposition 4.

Proof of Corollaryland[@

Proof of Corollary Bl This is an immediately consequence of Theofém 7 and Pramu&0.
Just note that the that from Propositign] 20 we can translae@gram into its corresponding
m-program and, then, use tiie operator for m-programs to compute its least model. Not als
that, from Lemm&D]3, thé&r operators for m-programs and programs give the same results

Proof of Corollary [l Note that, from Propositidd 4, the causal stable modelsaxfiams w.r.t.
Definition[4d and_IB agree and, therefore, the statementtljifetiows from Corollary[3.

Proof of Corollary@and[4
Proof of Corollary &l This is an immediately consequence of Theofém 8 and PrtiqoZ0.
Just note that regular programs only contain the quérwhich is monotonic.

Proof of Corollary Bl Note that, from Propositidd 4, the causal stable modelsaxfiams w.r.t.
Definition[4 and_IB agree and, therefore, the statementtljifetiows from Corollary4.

Proof of Theorem@and Corollaryd

Proof of Corollary Bl Suppose there is some causal stable méaé|P which is not a causal
stable model of) and letP’ andQ’ be the corresponding m-programs®@f andQ’, respec-
tively. Then, I is the least model o’ and, from Proposition 20, is also the least model of
PT. Just note that regular programs only contain the quéryhich is monotonic. Sinc€) is
the result of removing all labels iR, thenQ’ andQ’ are the result of removing all labels i/
and P, respectively. From, Theorelm 9, this implies tlias the least model of)’. Then, from
Propositior 2D again, this implies thais the least model of)’ which is a contradiction with
the assumption thdtis not a causal stable model @ The other way around is analogous.

Proof of Theorem[2 Note that, from Propositidd 4, the causal stable modelsagmams w.r.t.
Definition[7 and_IB agree and, therefore, the statementtljifetiows from Corollary[5.

Proof of Corollary[d

Proof of Corollary Bl Just note that any two programs that only differ in theielalshare the
same unlabelled versiap and, thus, the proof immediately follows from Corollaty 2.

Proof of Proposition[18
For any progranP and interpretationsand.J, by Tp ;(J) we denote an interpretation satisfying
Tpr(J)(A) €Y { GeCpL | G<Tp(J)(A)andG € maxI(A) }
for every atomA € At.



Lemma D.4. Let! be the least model of some monotonic progianThenl = T}‘f,(o). O

Proof. It is clear thaﬂ”}f‘l(o) < T}"‘(O) for every ordinaky. Furthermore, from Theoref 1, it
follows that! = T}“’(O) and, thus7'57;(0) < I. Suppose for the sake of contradiction that this
inequality is strict, that is7(0) < I holds. Then, there is some atahand causal value
G € maxI(A) such thatG £ T5';(0) for everya < w. Sincel = T5°(0) andG < I(A),

it follows that there is some: < w such thatG' < T (0)(A). But G < T&*(0)(A) and

G € max I(A) implies thatG < T}i’,(o)(A) which is a contradiction. O

Lemma D.5. Let I be the least model of some monotonic progfrand « be an ordinal. Let
1 be a causal query and l&@ be eitherP’ or the result of replacing inP! the reduced causal
queryy! by its non-reduced formp. If 73", (0) < 75;'(0) < I, thenT",(0)(F) < Ti5'(0)(F")
for every monotonic formul& and F’ whereF is either F! or the result of replacing itF'! the
reduced causal query? by its non-reduced formp. O

Proof. If ' = (¢’ :: A)isacausalliteral ang’ = ¢, thenF’ = F and the result trivially holds.
Then, assume that' # . Thus,G € max T}f‘,(o)(q/) :: A) holds only if

o G€maxTy(0)(A), and

o H(G, T (0)(4) = 1.
By definition, it follows thatG € max T}?I(O)(A) holds only ifG € max I(A). Furthermore, by
hypothesis, it follow tha€' € max T}?I(O)(A) < TE‘(O)(A) < I(A).Then,G € maxI(A)and
G < Ty'(0)(A) < I(A) imply

G €max Tj;'(0)(A) (D2)

On the other hand7 € maxT}?‘I(O)(w ;o A) imply thaty (G, T}‘?‘I(O)(A)) = 1 which, sincey
is monotonic, implies thap(G, I(A)) = 1. Then, since5 € max I(A) andy(G, I(A)) = 1,it
follows thaty! (D (G, u) = 1 for everyu € Vr,,. This plus[D2) implyG' < T35 (0)('™) :: A).

Let us define the rank of a formula such that the rank of a cdiisedl is 0 and the rank of
any other formula is the greater than the rank of all theif@ubulas and assume as induction
hypothesis thﬂ}fl(o)(E) < Tg"(o)(E’) for every monotonic formuld of less rank thar".

In case thatF" = (E, H), it follows thatG € max T}?,(O)(F) holds only if there are causal
valuesG; andG, such thaiGy < T4, (0)(E) andGs < Th',(0)(H) such thaiG' < G * Go.
SinceFE andH have less rank thaf, by induction hypothesis, it follows that

Gi < TRy (0)(B) < TH(0)(E) (D3)
Gy < TR(0)(H) < Ty (0)(H) (D4)

and, thusG < G; x G5 < TE‘(O)(F’).

Finally, note that the case in whidh = (F; H) is analogous and that sinééis monotonic the
caseF’ = notE is not valid. O

Lemma D.6. Let [ be the least model of some monotonic progi@nThen,I is the least model
of program@ whereQ is the result of replacing some causal litefal :: A) in @ by its reduced
form (¢! (A) :: A). O



Proof. Suppose for the sake of contradiction ttias not a model of progran®. Then, there
isaruler’ = (r; : A+ F’)is Q such that/(F’)-r; £ I(A) whereF” is the result of re-
placing in I some causal literghy :: A) in Q by its reduced forn{yp! (A) :: A). Since, from
Lemm&D., it follows thaff (F’) < I(F) and “’ is monotonic,I(F’)-r; £ I(A) implies that
I(F)-r; £ I(A) which is a contradiction with the fact thatis a model ofP because there is a
ruler =(r; : A « F)in P.

To show that/ is the least model of) assume as induction hypothesis tﬁﬁl(o) < TZ?B(O)

for every ordinal3 < a. Note that, ifa = 0, thenT}?I(O) = 0 and, thus, the hypothesis trivially
holds.

In case thaty is a successor ordinak; € max T}‘fl(o)(A) holds only ifG € max I(A) and there
issomeruler = (r; : A «+ F)in P and causal valu&’ € Cy,; such that?’ < T}f’l_l(o)(F)
andG < G’-r;. Furthermore, by induction hypothesis, it follows tﬁéfffl(o) < Tg"’l(o)
and, thus, LemmgDl5 implies thﬁﬂf‘[l(o)(F) < Tg"’l(o)(F’) for every monotonic for-
mula F and, thusG < TE‘(O)(A).

In case thaty is a limit ordinal,G < T}‘?‘I(O) impliesG < T}?I(O) for somef < a which, by
induction hypothesis, implie§ < Tgﬁ(o) < Tg"(o).

Consequent! }‘?‘1(0) < T;"j (0) for every ordinakv. Furthermore, from Theorel 1, it follows
thatTgJ(O) is the least model of) and, from Lemm&DI4 and the fact thats the least model

of P it follows that ] = 77(0). Sincel is a a model ofp andI < T’(0), it follows that 7
must be the least model ¢f. O

Proof of Proposition[I8 Let(Q be the reduct of progra® w.r.t. I and Definitio ID and)’ be
the reduct of progran® w.r.t. I and Definitior 26. Theny is monotonic and, from LemniaD.6,
it follows that [ is the least model of) iff I is the least model af)’.

Proof of Proposition[7]

Proof of Proposition[4 Suppose thaf is not a model ofP. Then there is a rule in P of the
form of (I0) such thaf (F)-r; £ I(A). Since ruler is in P, ruler! of the form

ri: A« FI (D5)

isin P1. Furthermore] (F) = I(F!) from Proposition 28 and, thug(F7)-r; £ I(A). That s,
I'is not a model of-’ and, consequently, is not a model®f which contradicts the assumption
that/ is a causal stable model &.

Lemma D.7. Let P be a program/ be an interpretation and be an ordinal. Let) be the result
of replacing in P! the reduced causal quenry® of every monotonic query by its non-reduced
form «. If Tg’,‘I(O) < T;‘}(O) < I, thenTg’,‘I(O)(F’) < T}‘} (0)(FT) for every monotonic
formulasF’ and F! where F’ is the result of replacing irf’! the reduced causal query’ of
every monotonic query by its non-reduced fafm O

Proof. If ' = (1 :: A) is a causal literal angh is not a monotonic causal query, theh = F!



and the result trivially holds. Then, assume thhas a monotonic causal query. This implies that
G € max Ty (0)(4) :: A) holds only if

o Ge€maxT}(0)(A), and

o V(G T(0)(4) = 1.
By definition, it follows thatG € max Tgfl(o)(A) holds only if G € max I(A). Furthermore,
by hypothesis, it follow tha6' € max Tj;'(0)(A) < T3} (0)(A) < I(A). Then,G € max I(A)
andG < 733", (0)(A) < I(A) imply

G €max T (0)(A) (D6)

On the other handy € max 7};'(0)(¢ :: A) imply thaty(G, 75" (0)(A)) = 1 which, sincey
is monotonic, implies that'(G, I(A)) = 1. Then, sinc&? € max I(A) andy(G,I(A)) = 1,
it follows that /(Y (G, u) = 1 for every causal valua € V. This plus [D8) imply that
G < TI(0)(' ™) A) = T5 (0)(F7).

Let us define the rank of a formula such that the rank of a cdiisedl is 0 and the rank of
any other formula is the greater than the rank of all theifeubulas and assume as induction
hypothesis thafg_fj(())(E’) < T}"; (0)(ET) for every monotonic formul& of less rank thar.

Incase that’ = (E, H), it follows thatG € max TZ?“(O)(F) holds only if there are causal values
G andG5 such thats; < Tga(o)(E’) andG, < Tg”(o)(H’) such thatG < G; * Gs. SinceE
andH have less rank thaf, by induction hypothesis, it follows that

Gi < THO)(E) < T (0)(E') (D7)
Gy < Ty (0)(H') < T (0)(H") (D8)

and, thus( < Gy * G2 < T (0)(F7).

The case in whiclF" = (FE; H) is analogous. In case that = notE, by definition it follows
thatF’ = Liff F/ = LandF' =Tiff FI =T O

Proof of Proposition[land

Lemma D.8. The reductF’! of a formulaF w.r.t. any interpretatiory is <-monotonic, that is,
J(FT) < K(F') for all causal interpretations/ and K such that/ < K. O

Proof. From Propositioi 24, the reduct of any quér“) is monotonic. Furthermore, the reduct
of any formulaF'! is positive. HenceF! is monotonic and, from Propositién]27, it follows that
formulaF’ is <-monotonic. O

Proof of Proposition From Propositio]7, any causal stable mofl@f a programP is
a model of P. Suppose thaf is not supported, that is, there is some true atérand cause
G < I(A) suchtthat no rule in P of the form of [10) satisfie& < I(F)-r;. Furthermore, from
Propositiod 2B, it follows thaf(F?) = I(F). Thatis, no rule-! in P! satisfiesG < I(FT)-r;.

Let J be a causal interpretation such tdtB) = I(B) for every atomB # A andJ(A) =
>{G € Cpp \ G' < I(A)andG £ G’ }. ClearlyJ < I and, sincel is a<-minimal model
of P, J cannot be a model aP’. That is, there is a rule’ in P’ of the form of [I0) such that



J(FH)-r; £ J(A). Thenthere is a caus® < J(FT)-r; such thatG’ £ J(A). Sincel < J, it
follows thatJ(F) < I(F!) (LemmaD.8) and thus, since application is monotonic, iofes
thatG’ < I(FT)-r;. Note thatG’ < I(FT)-r;, but no rule inP! with A in the head satisfies
G < I(F%)-r;. ThenG £ G'. Moreover, sincd = rf, it follows thatG’ < I(A) and then,
sinceG £ G', it follows thatG’ < J(A), which is a contradiction with the fact th&t £ J(A).
Consequently] is a supported model a?.

Proof of Proposition[I Note that, from Propositionl 4, the causal stable modelsafams
w.r.t. Definition7 an@ 18 agree and, therefore, the statédiezctly follows from Propositiohl8.

Proof of Proposition[2and

Lemma D.9. Let P be a normal program and and J be two causal interpretation such that
J < I1.1f J is amodel ofP, then.J is a model ofP!. O

Proof. Suppose thaf is a model ofP and not a model oP!. Then, there is a rulein P of the
form of (I0) such that/(F)-r; < J(A) andJ(F!)-r; £ J(A). Note that, sinceP is a normal
program, the formuld must also be normal. Then, sinde< I, Propositiod 3D implies that
J(FT) < J(F). Furthermore, since applicatior s monotonic, it follows that

J(FDYry < J(F)r; < J(A)
which is a contradiction with the fact that F'7)-r; £ J(A). O

Proof of Proposition[d If I is a causal stable model &f, then, Proposition]7 implies thdtis
a model of P. Suppose thaf is not<-minimal. Then there exists an interpretatién< I such
that.J is a model ofP. But, sinceP is a normal program, from Lemma D.9,must be a model
of P and, thus/ is not a<-minimal model of P’ which contradicts the assumption thais a
causal stable model d@f.

Proof of Proposition[2 Note that, from Propositionl 4, the causal stable modelsafams
w.r.t. Definition7 an@ 18 agree and, therefore, the statéiezctly follows from Propositioh]9.

Proof of Theorem[3and&

Definition 31. A splitting of a programP is a pair (P,, P;) of pairwise disjoint sets such that
P = (P, U P,) and no atom occurring in the head of a rule i occurs in the body of a rule
in P,. A splitting is said to betrictif, in addition, no atom occurring in the head of a rule iy
occurs (the head of a rule) iR, O

Lemma D.10. Let P, and P; be two monotonic programs such that no atom occurring in aybod
in P, is a head atom of’,. LetI and J be the least models ¢F, U P;) and P,, respectively.
Then,I is also the least model of prografa U P;). Furthermore,Jjs = I 5 wheres is the set
of atoms of all atoms not in the head of any rulefin O

Proof. Since interpretatiory is the least model of the prograshandJ < I, it follows that !
satisfies all rules in programh. In addition, since is the least model of progra®, U P;), it
is clear thatl also satisfies all rules i, and, thus,/ satisfies all rules in prografy U P;).
Suppose thal is not the least model aff U P;). Then, there is a modél of (J U P,) such



thatl’ < I. Sincel is the least model of progra(®, U P;) andI’ < I, it follow that I’ does
not satisfy some rule = (r; : A+ F)in (P, UP,). Thatis,I'(F)-r; £ I'(A). Sincel’

is a model of(J U B,), it is clear that/ < I’ and, since in additiod’ < I, it follows that
I(F)-r, £ J(A) also holds. Furthermord, satisfy all rules inP, becausd’ is a model of
(JUP;) and, thus, rule must be inP, and no atom occurring if occurs in the head of a rule in
P..Hence[(F) = J(F)and, thus](F)-r; £ J(A)impliesthat/(F)-r; £ J(A)whichisa
contradiction with the hypothesis thétis a model ofP, and the fact that in P,. Consequently,
I is also the least model of programi U P;). Furthermore, sincéis the least model of program
(J U P;) and no atom ir§ occurs in the head of any rule i, it follows thatls = Js-. O

Proof of Theorem[3 For the only if direction. Assume thaiis a causal stable model of program
(P,UP;). Then,I is the least model of the monotonic progréMm U P,)! = (PLUP}). Let.J be
the least model of?/. Sincel and.J respectively are the least models(éf/ U P/) and P/ and
no atom occurring in a body i/ is in the head of any rule i/, from LemmdD.1D, it follows
that is the least model of prograd U P!) = (JU P;)! and, consequently,is a causal stable
model of (J U P;) and]js = Jig whereS is the set of atoms of all atoms not occurring in the
head of any rule irP;. In addition, sincd|s = Jis and all atoms in the body of some rulef
are inS, it follows that P/ = P/ and, therefore/ is the least model oP/ = P/ and a causal
stable model of?,. Furthermore, if no atom occurring i, occurs in the head of a rule iR,
thenJis = J (note thatS contains all atoms itP, since no atom occurring i, occurs in the
head of a rule in?%) and, thus/ g = J.

The other way around. If is a causal stable model ¢ U P;), thenI is the least model
of (JU P)! = (J U P}). Let S be the of all atoms not occurring in the head of a rule’in
Then,S contains all atoms occurring in the body of the rule®jrand, sincd is the least model
of (JUP/), it follows that]s = Jjs and, thusP/ = P;. Then, sinceJ is a causal stable model
of Py, it follows thatJ is the least model onI. From LemmaD.10, this implies thdtis the
least model of progrant?! U P!) = (P, U P,)! = P! and, thus/ is a causal stable model
of P.

Proof of Theorem[3 Note that, from Propositidd 4, the causal stable modelsagiams w.r.t.
Definition[7 andIB agree and, therefore, the statementtljifetiows from Theoreni b.

Proof of Theorem[@

Lemma D.11. Let (P, )a<, & splitting sequence of some monotonic prog&nThen, there is
a unique solution{l, )<, 0f (Py)a<, and it satisfies (i)I = Z(KM I, and (i) Ins, = 1Is,
where! is the least model of and S,, is the set of all atoms not occurring in the head of any

ruleinU, <5<, Ps- O

Proof. First note that, sinc® is a monotonic program, evely, with o < p is also monotonic
and, thus, there is a unique causal stable mégdet P,. Suppose that there is a solutiof, ) o<,
of (Pa)a<y such thatl/, # I, for somea < . Let o be the first ordinal such thdf, # I,.
Then,0 < a < p and there are two different causal stable modgland’, of (J, U P,) which
is a contradiction with the fact th&f,, U P, ) is monotonic.

Letl = I, and we will show thaf is the least model of and thatl,, = Iis,. Assume

a<p



as induction hypothesis that the lemma statement holds/Aayerdinaly’ < 1 and note that,
in case thap = 0, it follows thatP = | J,_, P. = 0 and that/ = 3 _, I, = 0 and that0 is

the least model of the empty program.

In case thaj: is a successor ordinal, let = ;1 — 1 be its predecessor, |6} = an, P, and
J be the least model &. Then,(I,)a<, is solution of(Py)a<,, (@, P.) is a splitting of P,
and, by induction hypothesis=3_  _ , I, andla s, = Jis, for everya < 4.

Let I,» be the least model df/ U P,). Sincel,, is the least model ofJ U P,), it follows
thatl,, > Jand,thus] =3 _ Ia =1y + 3, pla =1Ly +J =1y Thatis] =1, is
the least model of.J U P,/) and, sinceJ is the least model of), from Lemmd D.1D, it follows
that! is the least model oP = (Q U P,/) and, that[u/lsw =Is,. Furthermore, since no atom
in S, with o < p’ occurs in the head of any rule iR, it follows that 1,5, = .Jjg, for every
a < p'. Consequently, g, = Is, foreverya < p.

In case that: is a limit ordinal, by induction hypothesis, s, = 15, for everya < n’ and, thus,
since all atoms occurring in the body of any ruleftp belong toS,,, it follows that P/« = P!,
Furthermore, sincél,).<, is solution of (P,)a<,, it follows that I, is the least model of
(Jo U P,) and, thus/, is a model ofPl= = P! Sincel =Y. __ I, > I,, thenI is a model
of P! for everya < p/ and, consequently,is a model ofP!.

Suppose thal is not the least model aP. Then, there is a moddl of P such thatl’ < I.
Sincel = ZKN I, andI’ < I, it follows thatl, £ I’ for some first ordinakv < . Sincea is
the first ordinal such thak, £ I, it follows that.J, = Zﬂm Ig < I' and, thus]’ satisfies all
rules inJ,. Furthermore, sinc®, C P and’ is model ofP, it follows thatl’ also satisfies all
rulesinP,. Thatis,I’ is a model of( J,, U P,) andl, £ I which is a contradiction with the fact
thatl, is the least model ofJ,, U P,). Consequently] is the least model oP.

Suppose now thak, g, # Is, for somea < p and leta be the first such ordinal. Then,
there is some first ordinal’ and atomA € S,, such that/,(A) £ I,.(A). Note thate’ < «
implies thatl,, < I, and, thus, it must be that < «'. Sincec’ first ordinal that satisfies
I,(A) £ I, (A) it follows thatIg(A) < I,(A) for everys < o and, thusJ, (A) < I, (A).
SinceJ, (A) < I,(A) £ I,-(A) andl, is the least model ofJ,- U P,), there must be some
ruler = (r; : A + F) € P, which is a contradiction with the fact that € S, anda < «’.
Consequentlyl, s, = /s, foralla < p. O

a<p

Proof of Theorem[@ For the only if direction. Assume thais a causal stable model 8f Then,
I is the least model of the monotonic progra®i and, from Lemma& D.11 there is a unique
solution (I, )a<,, of programP! and it satisfies ()1 = ZKH I, and (i) s, = Is,-
Furthermore, by definition, align=Center, leftmargin=t,@gmindent=0.5pt

1. I is the least model of,

2. 1, is a stable model ofJ,, U P!) for any ordinald < o < pz whereJ,, = > p<als

Sincel, s, = I s, and all atoms occurring in the body of any rule/tp belong toS,, it follows
thatP! = Pl~ and, thus, align=Center, leftmargin=10pt, iteminderip0.
1. I, is the least model P!,

2. I, is a stable model ofJ, U P,)!= = (J, U Pl=) for any ordinal0 < o < p where
Jo =Y geals.



Consequently,/, )a<, is a solution of P, )<, and it satisfied = Iyandly s, = Is,-

a<p

The other way around. Assume there is some solytigh, <, of (Py)a<, andletl = Z(KM 1,.
By definition, align=Center, leftmargin=10pt, iteminde@t5pt

1. I, is the least model oPl°,

2. I, is the least model ofJ,, U PI=) for any ordinald < o < p whereJ,, = ng Ig.

SincesS,, contains all atoms not in the head of any rulé jp Pg, it follows that

<B<p

ZIB‘SQ = J(y|SQ S IOt‘SQ = (y+1lsa = 0¢+1\Sa = ... = Z’[ﬂ|sa — ‘Sa
B<a fn

and, sinces,, contains all atoms occurring in the body of all ruleiy, it follows thatP. = pla
and, thus, align=Center, leftmargin=10pt, itemindenbp.

1. I, is the least model aP/,

2. I, is the least model of.J,, U PI) for any ordinald < a < p whereJ,, = Z[Ka Ig.

Hence,(14)a<, of (P)a<, and, from LemmaD.11, it follows thdtis the least model oP!
and a causal stable model Bf

Furthermore, if{I,)q </, is a strict solution iry, then no atom occurring iR, occurs in the head
of arule in anyPs with o < 8 < p, and, thus, every atom occurring(ifh, U P, ) belongs taS,,.
Consequentlyl, = In s, = s, -

Proof of Proposition[3and

Proof of Proposition[10 Let P, be the set of rules of the form df (A1) such thdtd) = o
andP, = (0 if o is a limit ordinal. Then(P, ).« is a strict splitting sequence &f and, from
Theoreni b, an interpretatidnis a causal stable model éfiff there is some solutiofs,, )a<u

of (Py)a<, such thatl = Za@ I s, . whereS, is the set of all atoms not occurring in the head
of any rule in|J Pg. Hence, it is enough to show that every has a unique causal stable
model.

a<fB<u

By definition, it is clear thaf’, has theD interpretation as its unique causal stable model when
« is a limit ordinal. In case that is a successor ordinal, suppose that there are two different
causal stable modelsand.J’ of F,. SinceP is stratified, there is no rule ig),,_, 5., Ps with

an atom occurring irP, under the scope of negation or a non-monotonic causallliterg,, .
Hence,J(B) = J'(B) = Is,_,(B) for every atomB occurring under the scope of negation
or a non-monotonic causal literal and, this, = P/ and.J and.J’ must be equal which is a
contradiction with the assumption.

Proof of Proposition[3 Note that, from Propositionl 4, the causal stable modelsafams
w.r.t. Definition 7 and 18 agree and, therefore, the statédiegctly follows from Proposition 10.
Just note that, according to Definitibh_b,is not allowed in the head of the rules.



Proof of Proposition [I1]

Proof of Proposition[I1 Let R be any causal program over the signataref P andQ. Let
7, J respectively be the sets of causal stable models of progtanz and@ U R. Any causal
stable model € 7 is the least model of the positive progrdi U R)! = PY U R!. Thatis,I
satisfies all rules in botP’ and R’ and, sinceP < @, I satisfies all rules il)!. Suppose there
existsI’ which satisfies all rules i6Q U R)? andI’ < I. By the same reasoning satisfies all
rules in P (an also inR!) contradicting the assumption thats the lest model of P U R)’.
Hence,I is the least model of P U R)?, and so, an stable model 6P U R). Thatis,I € J.
The other way around is analogous.

Proof of Proposition

Lemma D.12. Let F', G and H be formulas such that' < G. If a formulaH’ is obtained from
H by replacing some regular occurrencesioby G, thenH < H'. O

Proof. By structural induction like Lemma 4 i _(Lifschitz et al. 199If H is elementary. Then
eitherH = FandH' = G or H = H'. In both cased! & H’. Otherwise, ifH = F and
H' = G, then alsaH < H'. Hence, in the following we assume thdt+ F.

1. IncaseH = Hi, H,, thenH' = Hi, H) and, by induction hypothesi#f; < H/ with
i€ {1,2}. Then

I(H)) =1

= I((H3, Hy)7)
= I((H")7)

2. The casé! = Hy; H, is similar to the previous one.
3. IncaseH = notHy, thenH’ = notH; and, by induction hypothesi&l; < Hj.

I(H?) =1 iff I((notH;)”) =1

iff J(H{)=0
iff J((H)”)=0
iff I((notH;)”) =1
iff 1(H)”)=1
andI(H’) = 0 otherwise, that s, iff (H')’) = 0 O
O

Proof of Proposition[I2 Similar to the proof of Proposition 3 in_(Lifschitz et al.9%9). Let
Q be the program obtained by replacing some occurrencéstmf G in P. Assume thaf is
satisfies all rules i))”. Take any rulgr; : A < F)in P. Its corresponding rulé; : A + E)
in @ must satisfy

I(E7) - r; < I(A)



and, by Lemm&aD.12, it follows thd{ F/) = I(E”). Consequently,
I(F7)-r; <I(A)

Hence,! satisfies all rules inP. The other way around is similar. Hencegsatisfies all rules
in PY iff I satisfies all rules i)”. ThatisP < @ and, by Proposition 117 and( are strongly
equivalent.

Proof of Proposition

Proof of Proposition[I3 For (7) note that

I(F.B)") =

|
~

Similarly, I((F; E)’) = I((E; F)”). Note that product and addition are both commutative. The
same reasoning applies f@t) and(éi7) by noting that product and addition are also associative
and distributes over one over the other.

For (iv),

I((notnotnotF)”’) = 1iff J((notnotF)”) = 0
iff J((notF)”) =1
iff J((notF)” ) =1
iff J(F7) =
iff I((notF)J) =1

and/((notnotnotF)”) = 0 otherwise, that ig ((notF)”’) =
Similarly, for (v),

I((not(F; E))’) = 1iff J(F/; EY) =

iff J(F7)+ J(E ) 0

iff J(F7)=0andJ(E’)=0

iff I((notF)”) =1 andI((notE)’) =
iff I((notF)”) « I((notE)”) =

iff I((notF,notE)”) =



andI(not(F; E)’) = 0 otherwise, that i§ ((notF, notE)”/) = 0. Furthermore

I((not(F, E))’) = 1iff J(F,E)’)=0
iff J(F)sJ(E7)=0
iff J(F/)=00rJ(E’)=0
iff I((notF)’?) =1orI((notk)’) =1
iff I((notF)”) + I((notE)’) =1
iff 7((notF;notE)’) =1

andI((not(F, E))”) = 0 otherwise, that ig((notF;notE)’) = 0. (vi) and (vii) directly
follows from Propositiois. Finally, fofviii), I(notT) =0 = L and/(notLl)=1=T.

Proof of Proposition[14]

Proof of Proposition[I4 The proof follows by structural induction using Propasitl3 and LemmaD.12
exactly as in[(Lifschitz et al. 1999). Note that we do not édesstrong negation, so all formulas
are regular.

Proof of Proposition[15
Proof of Proposition[I8 Notethat/ |= (r; : A+ F;E)/iff [ = (r;: A< F/;E’)
(I(F7) + I(E7)) -r; < I(A)
which, by application distributivity over addition, is egalent to
I(F7Yry + I(G7) - < I(A)

which in turn holds iffl |= (r; : A < F)? andl = (r;: A «+ E)7.

Proof of Proposition

Proof of Proposition[18 Proposition§ 111,12 and4 show that any program is strcemlyva-
lent to a set of rules of the form

rit A« Fi;...F,, (D9)

where eaclt; is a simple conjunction. Similarly, Propositidns [1] 12 B&dshow that such set
of rules is strongly equivalent to a set of rules of the form

ri: A« F (D10)

where each is a simply conjunction. That is, a set of rule of the fofml (ifOyvhich the head
canbel.



Proof of Proposition[17]

Proof of Proposition[IZ From Propositiof 17, every program can be writing as anvedgrit
program where all rules are of the form

TiSA(—Bl,...,Bm (Dll)

whereA is an atom orL. If A is an atom, then is already of the form of(10). Otherwise, replace
ruler by a ruler’ of the form of

r; . aur, < Bi,...,Bpy,notauz, (D12)

whereauz, is a new auxiliary predicate. L&) be the result of replacingby ' in P. If T'is a
causal stable model @, thenI [~ B; for somel < j < m and, thus, it is a causal stable model
of Q. The other way around, if is a causal stable model ¢, either! |= aux, or I (£~ B; for
somel < j < m. If the former, ruler’ does not belong t6)! and, thus, there is no rule which
aux, which contradicts the fact thdt must be the least model ¢f’. Hence,I }~ auz, and

I |~ B; for somel < j < m and, therefore] is a causal stable model &.

Appendix E. Complexity assessment

First, it has been showed in (Cabalar et al. 2014b) that thasean exponential number of causes
for some atom with respect to a casual stable model. Forniostaconsider the positive pro-
gram P;¢ consisting of following the rules:

a:pi1 b:pr m; @ Pi < Pi—1, qi—1 fOI’iE{Q,...,TL}
c:q d:q N; Qi < Pie1, Qi1 fori € {2,...,n}

Since prograntirg is positive it has unique causal stable moflgj. Furthermore, it is easy to
see that the interpretation of atoms andg; with respect to interpretatiofig area + b and
¢ + d, respectively. The interpretation fpg corresponds to:

Irg(p2) = (I(p1) * L(q1)) - m2 = ((a +b) * (c+ d)) - m2
=(axc)-mg + (axd)-ma2 + (bxc)-ma + (bxd) mg

This addition cannot be further simplified. Analogoudjig|(¢2) can also be expressed as a sum
of four sufficient causes — we just replaeg by ny in I(p2). But then, fg(p3) corresponds

to (fg(p2) * f1g(q2)) - ms and, applying distributivity, this yields a sum éfx 4 sufficient
causes. In the general case, each atgror ¢, has22" " sufficient causes so that expanding the
complete causal value into this additive normal form bec®mg&actable. Furthermore, it also
has been in(Cabalar et al. 2014b) that deciding whethema wéthout additionG is a brave
necessary cause with respect to some regular progr#t.5-complete and, thus, deciding the
existence of causal stable modebi§-hard even for the class of programs that only contain a
unigue necessary causal literal.

Proposition 31 (From[Cabalar et al. 2014b)Given a causal term without additiof € Cp;
and an causal term € Vi, in which the right-hand operand of every applicatiofi is a label,
deciding whethe€r < t is feasible in polynomial time. O

Proposition 32. Let {¢,u} C Vi, be two causal term in which the right-hand operand of every
application “-" is a label. Then deciding whethér< w is in coNP. O



Proof. Note hat < wiffeveryG € Cp;, such thatz < t also satisfyG' < u which are decidable
in polynomial time (Proposition 31). Consequently, degifivhethett < wu is coNP. O

Definition 32 (Causal graph)Given a set of labeléb, a causal graph (c-grapl) C Lb x Lb
is a set of edges transitively and reflexively closed@y we denote the set of all c-graphs that
can be formed with labels frothb. O

Theorem 10 (From (Fandinno 2015h))For any finite and definite progran® with n rules,
Ifp(Tp) =T (0) is its least model. O

Definition 33. Let P be a program and be an interpretation. Bgimply — nec(P!) we denote
the program obtained fron®’ by replacing every causal literal of the forfg"ee :: A)(A) by A
if I(A) <3 A; and by0 otherwise. O

Lemma E.1. Let P be a program and be an interpretation. Iﬂ“}j} (0) < Tgl(o) < I, then
T;O}'H(O) < TZ;H(O) < I whereQ = simply — nec(P7'). O

Proof. Suppose first thaﬁ;ﬁ“(o)(A) £ Tg’“(o)(A) for some atomA. Then, since appli-
cation and addition arel-monotonic, there must be some rule of the form[of]l(Al) suclt th
T}j} (0)(F) £ TZ;’(O)(F’) where F’ is just the result of replacing each causal literal of the
form (ynec:: A)I(A) py Aif 1(A) < 3° A; and by0 otherwise. Since products and addition are
monotonic, it is enough to show that

o TH1(0)(¢' : A) < Ti'(0)(A)if I(A) < YA, and

o TI5(0)(¥' :: A) = 0 otherwise.
where

1 iff exists some?’ < G s.t.G' € maxI(A)andI(4) <> A
0 otherwise

V(G I(4) = {

By definition,
T053(0) (5 A)') 8 N "L Ge max Tl (0)(A) | /(G, I(A)) =1}

One the one handﬂjﬁ 0)(¢ = A) < Tgﬁ (0)(A) holds for every causal literd@l)’ :: A) and, by
hypothesis, it holds thal:} (0)(A) < 755 (0)(A) and, thereforel s} (0) (v’ :: A) < Ti5"(0)(A)

also holds. On the other hanf(,A) £ > A implies thaty’(G, I(A)) = 0 for everyG € Cy,,

and, thus77 ' (0) (v == A) = 0 < T5 1 (0)(A).

Similarly, to show thaTg‘(O) < I'isenoughto shovﬁf} (0)(A) < I(y' :: A)whenI(4) <
>~ A. Note that, in case thdi(A) £ > A, the causal litera{yy’ :: A) has been replaced fiy
Then, for evenG < Tg‘(o)(w’ 2 A) there is somé&’ € max I(A) andy’(G',1(A)) = 1 and,
consequently, it follows that < G’ < I(¢' :: A).

Furthermore, it is easy to see thﬁg’(o) <I impIiesTg“(O)(A) < I(y' :: A) for every
causal literal(yy’ :: A). Just note that it7 < Tg‘(o)(d)’ : A), thenG < TE‘(O)(A) < I(A)
and there is som&’ < G such thatG’ € maxI(A) andI(A) < > .A. Notice that facts? <
I(A), G’ e maxI(A) andG < G implies thatG = G’ and, thusG € max I(A). Therefore,
G < I(¢/':: A) and, thus,

TH(0)( = A) < I : A)



Note now that the evaluation of conjunctions and disjumgiis <-monotonic and, thus, it can
be probed by induction that

TR (0)(F) < T5(0)(F) < I(F)

for every formulaF'. Finally, since addition and application are atlsemonotonic, it can be
shown by induction that

T (0)(F)ri < Ty (0)(F)r; < I(F)r
and, thus,
T 0)(A) < THHH0)(4) < I(4)
for every label; € Lband atomA € At. O

Lemma E.2. Let P be a program and be an interpretation. Theﬁ’}“ﬁ (0) < Tg“(o) < I where
Q = simply — nec(P7). O
Proof. By definition, 7%, (0) = T}, (0) = 0 < I and, thus, by induction using LemmaE.1,
it follows that Tfj} (0) < Tg’(o) < I for every successor ordinal. For a limit ordinala,
G < T33(0) iff there is some? < a s.t.G' < T1(0) < T, (0) < T55'(0) and, thus7’} (0) <

T557(0). The proof of7;' (0) < I is analogous. Hencéys; (0) < 757(0) < I. O

Lemma E.3. Let P be a program and be an interpretation and) = simply — nec(P’). If
for every atomA and causal term without additioy < TE‘(O)(A) such thatG € max I(A),
it holds thatG < T}C} (0)(A), then for every aton? and causal term without additio& <
Ti5771(0)(A) such thatG € max I(A), it holds thatG' < T%5;!(0)(A) O
Proof. Suppose there is some atafnand causal term without additic@ € Cp; such that
G < Ty "'(0)(A) and G € max I(A), but G £ Tiy"'(0)(A). Then, since application and
addition are<-monotonic, there must be some causal term without addiffoa C;; and rule
of the form of [A1) such tha& < G'-r; andG’ < Ti;'(0)(F’), butG’ % T's; (0)(F) whereF"
is just the result of replacing each causal literal of thefop"ec :: A)/(4) by Aif I(A) <" A;
and by0 otherwise. Since products and addition are monotonic aadyeausal literal inF' of
the form of ()’ :: A) is replaced by in F” whenI(A) £ > A, itis enough to show that

o G <T5(0)(A) andG € € maxI(A) impliesG < 7%} (0)(¢)' : A) whenI(A) <3~ A
wherey)’ (4769 () Indeed, by hypothesis, froi < 77;*(0)(A) andG € max I(A) it fol-
lows thatG < T}‘} (0)(A). FurthermoreG € maxI(A) andI(A4) < > A also imply that
(¥'(G,I(A)) = 1 holds and, consequently, it follows that< T}j} (0)(¢ :: A). O
Lemma E.4. Let P be a program and be an interpretation and) = simply — nec(P?).
Then,I =755 (0) iff I = T7;(0) O
Proof. First, assume that = T}“ﬁ (0). From Lemma&EDR, it follows thaf;“j (0) < TE’(O) <I
and, thus] = T}“ﬁ (0) implies! = TE’(O).

The other way around. Assunie= Tg“(o) and assume as induction hypothesis tak
T (0)(A) andG € max I(A), imply G < T%;(0)(A) for every ordinald < a. By definition,
T&O(O) = 0 and the hypothesis holds vacuous. Furthermore, using LdEnahe hypothesis
holds for every successor ordinal For a limit ordinale, G < Tgl(o) iff there is somes < «



st.G < Ty (0) and, thusG < T%;(0) < T3 (0). Then, for evenG < I(A) = T}y’ (0) there
is someG’ € Cy, such thatG’ € maxI(A) = Ty’(0) and, thusG < G’ < T (0)(A). That
is, 70y(0) < T's;(0). Finally, from LemmdEL, it follows thal's; (0) < Tj;’(0) and, thus, it

also holdsl = T}“} (0). O
Lemma E.5. Let P be a program and be an interpretation and) = simply — nec(P?).
Then,I is a causal stable model @t iff Tg’(o) =1 O
Proof. By definition,I is a causal stable model &fiff I is the least model aP? iff T;“} 0)=1
(Theoreni B) iﬁT}‘j (0) = I (LemmdE.4). O
Proposition 33. Let ¢ be a term andA be a set of labels. Then, < " A is decidable in
polynomial time. O

Proof. If ¢t € Lbis a label, thert < >~ A iff t € A which is clearly decidable in polynomial
time. Otherwise, we assume as induction hypothesisthad .4 andw < > A are decidable

in polynomial time for every subtermsandw of ¢. In case that = u + w, thent < >~ A iff

u < Y Aandw < Y A which are both decidable in polynomial time. Similarly, iase that

t=uxwort=u-w,thent <Y Aiff u <> Aorw <Y Awhich are both decidable in
polynomial time. O

Proposition 34. Let P be a causal program containing only necessary causal liserahen,
deciding whether there exists a causal stable modél of not is inNP. O

Proof. First, note that there exists some causal stable mb@é¢lP iff there must exists some
program@ and casual stable mod&kuch that) is the result of replacing every maximal sub-
formulain P of the formnotE by 1 if I = notE and by otherwise. Just note th@’ = P! for
every interpretatiod. Then, from Lemm&ZE]5 is a causal stable model &f iff I is a causal
stable model of) iff Tg‘,’(o) = I whereQ’ = simply — nec(P7’).

Hence, instead of guessing an interpretatione will guess a progran’. Let @ for every
maximal subformula be the result of replacing every maxisoaformula inP of the formnot £
by a guesse@ or 1 and letQ’ be he result of replacing every necessary causal liter@l of
the form of (/7 :: A) by a guessed or A. Note that, since” only contains necessary causal
literals, Q' is a positive regular (hence monotonic) program. From Té@gf0, it follows that
Tgf(o) = Tgf(o) is the least fixpoint ofy, and the least model @’ wheren is the number of

rules in@, which is the same as the number of ruleinLet us defind = Tgf(o). SinceQ®’ is
aregular program each step@j, only involves the creation of a term from its subterms, which
is feasible in polynomial time and, thuscan be computable in polynomial time.

Let us now check wheth&)’ = simply — nec(P’). Then,failif I = Tgf(o) do not satisfy
one of the following conditions
I = notE for some maximal subformula whose guessed valuevas
I I~ notE for some maximal subformula whose guessed valuelwas
I(A) < Afor some necessary causal litefaly°:: A) whose guessed value was
I(A) £ >~ Afor some necessary causal litefal° :: A) whose guessed value was
If reached this point, thefy)’ = simply — nec(P’) and, hence, we the procedusecceed.
It just remain to show that these four conditions can be ob@dk polynomial time. The two
first only involve checking whethel( E') = 0 which is feasible simply simplifying the obtained
causal term and looking whether it Gsor not. Finally, sinced C Lb is a set of labels, from
Propositiori 3B, it follows thaf(A) < > A can be checked in polynomial time. O



Proposition 35. Let P be a causal program containing only necessary causal liserahen,
deciding whether there exists a causal stable modé&! of not is inNP-complete (it iSNP-hard
even inP only contains a single negated regular literal &t is positive but contains a single
constraint). O

Proof. NP membership follows directly from Proposition]34 whi&-hard follows from the
fact that every regular program in also a causal program &eilithg the existence of stable
model for standard programs ¥iP-complete. To show that it i8/P-hard even wherP only
contains a negated regular literal, we reduce the existeihstable model for standard program
to the satisfiability of a CNF Boolean formulato the existence of causal stable model of a
programP. We assume without of generality that no clauseihas complementary variables.
For every variable:;, occurring ingp, let P, be a program containing rules of the form

T Tl <
tey @ Tp A necessary for xj

fert xr + Ayi necessary for

where Ay, = {tz,,zr} and Ay, = {fs,,zx}. For each clause; in ¢, let P; be a program
containing a rule of the form of

¢j + Ajr necessary for z (E1)

for each variable;, in ¢;, whereA;;, = {t,,,zx} If x, occurs positively in the clausg and
A = {fz,., zi } If x5 OCcurs negatively ie; and letP” be a program containing the following
rule

P < Cly...,Cm

wherecy, . .., ¢, are all the clauses ip. Note that no atom occurring in the body of a program
Py, occurs in the head of a prografj nor P and no atom occurring in the body of a program
P; occurs in the head of a prograff'. Hence, we can use the Splitting Theorem (Thedrem 5).
Each progran®;; has two causal stable moddjsand.J,, that satisfyly (xy) = xj, + t,, and
Je(xr) = zx + fz, and, thusp = |J, ., P, has2™ causal stable models herds the number
of variables inp: each causal stable rﬁodbisatisfyingl(xk) =Tf + ty, OV I(zk) = T + [,
for each variable;,. We say that an variable, is true in an interpretatiofif I(xy) = xy + ta,
and that is false if (z.) = @1 + fz,. Then,(P U P}) also ha®" causal models models where
each causal stable modesatisfy

I(¢;) = > {ak+ta, | I(zx) = 21 + L, andz; occurs positively inc; }
+ Z{ Tk + fa, ] I(zy) = x + t,, andxy occurs negatively ir; }

That is,I(c;) # 0 iff there is some variable;, such thatcy, is true inI and occurs positively
in ¢; or there is some variable, such thatz, is false inI and occurs negatively in; iff [
represents an assignment that satisfies the clguset ' = (J,;_,,, /. Then,P’ also hag"
causal models models: each causal stable mbdatisfy for each clause; thatI(c;) # 0 iff
represents an assignment that satisfies the clguseis easy to see now thaP’ U P”’) has2”
causal stable models whef&p) # 0 iff every ¢; satisfyI(c;) # 0iff I represents an assignment
that satisfy all clauses; in ¢ iff I represents an assignment that satisfyrinally, let P be the



result of adding, to the progra®’ U P"), the following rule
p + notp

Then, P has a causal stable model iff there is a causal stable nfodk(P’ U P") such that
I(p) # 0iff I represents an assignment that satisfyAlternatively, letQ’ be the result of
adding, to the prograrfi®’ U P"), the following rules

q: q <
q < p
and@ be the result of adding t@’ the constraint
1 + A, necessary for ¢

where A, = {q}. Then,Q’ has2™ causal stable models: each causal stable mbdatisfying
I(q) = ¢+ I(p) and@ has a causal stable modeiff there is a causal stable modebf Q' such
that7(q) > ¢ iff there is a causal stable modElof Q' such that/(p) # 0 iff I represents an
assignment that satisfy. O
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