
ar
X

iv
:1

70
2.

07
88

9v
1

 [
cs

.L
O

]
 2

5
Fe

b
20

17

Under consideration for publication in Theory and Practice of Logic Programming 1

Contractibility for Open Global Constraints

Michael J. Maher

Reasoning Research Institute

Canberra, Australia

E-mail: michael.maher@reasoning.org.au

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Open forms of global constraints allow the addition of new variables to an argument
during the execution of a constraint program. Such forms are needed for difficult constraint
programming problems where problem construction and problem solving are interleaved,
and fit naturally within constraint logic programming. However, in general, filtering that
is sound for a global constraint can be unsound when the constraint is open. This paper
provides a simple characterization, called contractibility, of the constraints where filtering
remains sound when the constraint is open. With this characterization we can easily
determine whether a constraint has this property or not. In the latter case, we can use
it to derive a contractible approximation to the constraint. We demonstrate this work on
both hard and soft constraints. In the process, we formulate two general classes of soft
constraints.

Under consideration in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: global constraints; open constraints; soft constraints

1 Introduction

Constraint Logic Programming (CLP) (Jaffar and Maher 1994) provides the ability to add
variables and constraints to a constraint store during the course of an execution. In this
it is not alone: linear and integer programming solvers and solvers presented as libraries
for an underlying programming language also allow the introduction of new variables
and constraints in an incremental way. In some problems it is natural for the presence
of some variables to be contingent on the value of other variables. This is true of con-
figuration problems and scheduling problems that involve process-dependent activities
(Mittal and Falkenhainer 1990; Barták 2003). More generally, for difficult problems the
intertwining of problem construction and problem solving provides a way to manage the
complexity of a problem, and thus new variables and constraints may arise after solv-
ing has begun. Thus CLP is particularly well-suited for such problems, in contrast to
compilation-based modelling languages such as MiniZinc (Nethercote et al. 2007) where
all variables and constraints must be fixed at compilation time.

CLP also supports global constraints, which have been an important part of the success
of constraint programming. However, most implementations of global constraints adopt
a non-incremental approach: the variables constrained by a global constraint are fixed
when the constraint is imposed. Thus the collection of variables they constrain is closed,
rather than open. This restricts the exploitation of incrementality that is available in CLP
languages. Delaying the imposition of a global constraint until all variables it might involve
have been generated can leave the filtering effect of the global constraint until too late

http://arxiv.org/abs/1702.07889v1

in the execution, resulting in a large search space. Open global constraints remove this
limitation by allowing variables to be added dynamically.

A major difficulty in implementing open constraints is that a propagator for a closed
constraint may be unsound for the corresponding open constraint. That is, the propagator
may make an inference that turns out to be unjustified once the sequence of variables is
extended. In this paper we focus on the issue of identifying constraints for which a closed
propagator is sound as an open propagator. These constraints have a simple characteri-
zation, which we call contractibility, and which allows us to easily determine whether a
given constraint has this property. This characterization is also convenient for finding the
tightest contractible approximation of an uncontractible constraint, which can be the basis
for an open propagator of the constraint. We illustrate our results with a wide variety of
global constraints, including both hard and soft constraints.

As part of our treatment of soft constraints we formulate two very general classes of
soft constraints based, respectively, on constraint decomposition and edit distance. These
classes unify and generalize several different proposals in the literature. Using these for-
mulations, we introduce general results and techniques for establishing that a constraint
is contractible. It turns out that finding a tightest contractible approximation is more
difficult for soft constraints than for hard constraints. In particular, while we can math-
ematically characterize the tightest approximation, and define some pragmatic generic
non-tight approximations, we show that the tightest contractible approximation cannot
always be represented in the edit-distance framework.

This paper is arranged as follows. After some preliminaries in Section 2 and a discussion
of open constraints in Section 3, we introduce contractibility in Section 4. We show that
it characterizes those constraints for which closed propagators remain sound when the
constraint is open, and develop an algebra for constructing contractible constraints. We
conclude Section 4 by characterizing contractibility in language-theoretic terms, and use
that characterization to identify contractible constraints (Section 5) and tight approxima-
tions of uncontractible constraints (Section 6). We show that, with a tight approximation,
a proposal of Barták for implementing open uncontractible constraints achieves an appro-
priate consistency. We then address the same issues for soft constraints (Sections 7 and
8).

This paper incorporates results announced in (Maher 2009c; Maher 2009b; Maher 2009d;
Maher 2010). It includes unpublished proofs, strengthened results, new results and some
additional discussion.

2 Background

The reader is assumed to have a basic knowledge of constraint programming, CSPs,
global constraints, and filtering, as might be found in (Dechter 2003; Rossi et al. 2006;
Beldiceanu et al. 2005).

For the purposes of this paper, a global constraint is a relation over a single sequence of
variables. Other arguments of a constraint are considered parameters and are assumed to
be fixed before execution. Throughout this paper, a sequence of variables will be denoted,
interchangeably, by ~X or [X1, . . . , Xn]. We make no a priori restriction on the variables
that may participate in the sequence except that, in common with most work on global
constraints, we assume that no variable appears more than once in a single constraint.

There are some specific global constraints that we define for completeness. These and
other global constraints are discussed more completely in (Beldiceanu et al. 2005) and the
references therein. As with variables, a sequence of values vi is expressed by ~v. The con-
straint AllDifferent([X1, . . . , Xn]) (Régin 1994) states that the variables X1, . . . , Xn

take distinct values. The global cardinality constraint
GCC(~v,~l, ~u, [X1, . . . , Xn]) (Régin 1996) states that, for every i, the value vi occurs be-

2

tween li and ui times in the list of variables. The constraint NValue([X1, . . . , Xn], N)
(Pachet and Roy 1999) states that there are exactly N distinct values in X1, . . . , Xn. The
constraint Regular(A, [X1, . . . , Xn]) (Pesant 2004) states that the value of the list of vari-
ables, when considered as a word, is accepted by the automaton A. Similarly, the constraint
CFG(G, [X1, . . . , Xn]) (Quimper and Walsh 2006; Sellmann 2006) (called Grammar in
(Quimper and Walsh 2006)) states that the value of the list of variables, when considered
as a word, is generated by the context-free grammar G.

The constraint Sequence(l, u, k, [X1, . . . , Xn], ~v) (Beldiceanu and Contejean 1994) states
that any consecutive sequence of k variables Xj , . . . , Xj+k−1 contains between l and u oc-
currences of values from ~v. The constraint SlidingSum(l, u, k, [X1, . . . , Xn]) (Beldiceanu and Carlsson 2001)
states that the sum of any consecutive sequence of k variables lies between l and u. The con-
straint Contiguity([X1, . . . , Xn]) (Maher 2002) states that the variables Xi take values
from {0, 1} and the variables taking the value 1 are consecutive. The lexicographical order-
ing constraint [X1, . . . , Xn] ≤lex [Z1, . . . , Zn] (Frisch et al. 2002) states that the sequence
of X variables is lexicographically less than or equal to the sequence of Z variables, where
we assume some ordering on the underlying values. The precedence constraint s ≺ ~X t

(Law and Lee 2004) states that if t appears in the sequence ~X then s appears at a lower
index.

For some constraints, like AllDifferent, GCC and NValue, the order of variables is
immaterial to the semantics of the constraint. We say a constraint C is order-free if

C([X1, . . . , Xn]) ↔ C([Xπ(1), . . . , Xπ(n)])

for every permutation π of 1..n. The other constraints mentioned above are not order-free.
We assume that the argument ~X of a use of a global constraint has a static type T

that assigns, for every position i, a set of values. Thus every variable X in ~X has a static
type T (X) of values that it may take. We will also view T as a unary predicate on the
variables of ~X, where T (X) is true iff X takes a value from its static type. In addition,
generally, each variable has an associated set S ⊆ T (X) of values, called its domain. We
will view this simultaneously as: a function D : ~X → 2V alues where D(X) = S and
V alues =

⋃
Xin ~X T (X), a unary relation D(X) which is satisfied only when the value of

X is some s ∈ S, and the pointwise extension of D to sequences of variables.
We formalize the semantics of a global constraint C as a formal language LC . A word

d1d2 . . . dn appears in LC iff the constraint C([X1, X2, . . . , Xn]) has a solution X1 =
d1, . . . Xn = dn. Thus, for example, the semantics of AllDifferent is {a1 . . . an | ∀i, j i 6=
j → ai 6= aj , n ∈ N} and the semantics of Regular(A, ~X) is L(A), the language accepted
by A. When it is convenient, we will describe languages with Kleene regular expressions
(Hopcroft and Ullman 1979). For a given use of a constraint C(~X), we write T (~X) for the
language defined by the static type of C(~X).

The following definitions will be important later. Let P (L) = {w | ∃u wu ∈ L} denote
the set of prefixes of a language L, called the prefix-closure of L. We say L is prefix-closed
if P (L) = L. We say two languages L and L′ are prefix-equivalent if P (L) = P (L′).

3 Open Constraints

There are many problems that are dynamic in nature but to which we would like to apply
constraint techniques. (Barták 1999) describes a class of complex processing environments
where there may be alternative processing routes, different production formulas and al-
ternative raw materials. In addition to the core products of the processes, there may be
by-products and co-products which require additional processing. Some instances of prod-
ucts may be re-processed or recycled. Because of storage limits and/or a necessity to work
with the instances while they are still in an amenable state, such instances might need to
be re-processed or recycled promptly. In such environments, process scheduling must be

3

dynamic: additional tasks may arise from re-processing, and additional raw materials may
arise.

Many production processing environments have these characteristics. Consider, for ex-
ample, sugar cane processing. Juice is extracted from the sugar cane and clarified before
it is refined. Refining involves repeated crystallization and centrifuging processes, with
molasses produced as a by-product. Usually three repetitions of these processes are per-
formed but, through natural variation of the raw materials, an additional repetition may
be needed. Such a need can be identified through monitoring the refinement process.

Now consider a constraint-based approach to the problem of the on-going scheduling
of these processes. We might use a Cumulative constraint to express the limited avail-
ability of centrifuges. When a batch requires an additional repetition, a new task must be
added to that constraint and additional constraints concerning the task must be added to
the problem. Thus we require that Cumulative be an open constraint – able to accept
additional tasks.

Open constraints pre-suppose the existence of a meta-program that can impose con-
straints, close an open constraint, add variables to an open constraint, (possibly) create
new variables, and interact with the execution of the constraint system, possibly control-
ling it. In this paper we will abstract away the details of the meta-program so that we can
focus on the open constraints. We assume that the collection of variables forms a sequence,
to which variables may be added at the right-hand end only.1 The scope of constraints
changes during the execution, and we refer to the state of the constraint at some point in
the execution as an occurrence of the constraint. In open global constraints C the length
of the sequence of variables varies and consequently the semantics in terms of the language
LC is particularly appropriate.

There are three models of open constraint that have been proposed.2 (Barták 2003)
first formulated this issue and described a straightforward model: the constraint involves
a sequence of variables to which variables may be added. Thus the arity and type of the
constraint are unchanged, whether the constraint is open or closed. (Barták 2003) outlined
a generic implementation technique to make open versions for the class ofmonotonic global
constraints. Barták focussed on a specific implementation of the open AllDifferent con-
straint. This is an order-free constraint, and details of the model, such as where variables
are added to the sequence, are left unspecified. The remaining models extend this model by
incorporating more details about the possible extension of the sequence; for these models
the constraint has a different arity or type.

The model of (van Hoeve and Régin 2006) only applies to order-free constraints ex-
pressed in the form C(S). It uses a set variable S describing a set of object variables,
rather than a sequence, to represent the collection of variables in the constraint.3 The
lower bound of S is the set of variables that are committed to appear in the constraint;
the upper bound is the set of variables that are permitted to appear in the constraint.
Thus there is a finite set of variables that might appear in the constraint, and these are
fixed in advance. The authors refer to the constraint as open “in a closed world” since the
set of variables that might be added to the constraint is closed. The model makes elegant
use of existing implementations of set variables and their associated bounds. However,

1 There is a brief discussion of the effect of alternatives in Section 9.
2 The terminology “open constraint satisfaction problem” was introduced by
(Faltings and Macho-Gonzalez 2002; Faltings and Macho-Gonzalez 2005). However, that
use refers to problems in which the set of variables is closed but the domains are open, that
is, extra values can be added to variable domains. That work is not technically related to
“open constraints” as used in this paper, but it shares with this paper an interest in constraint
problems that may change over time.

3 A set variable S ranges over sets and is constrained by two fixed finite sets L and U which are
a lower and upper bound on the value of the variable: L ⊆ S ⊆ U . See (Gervet 1997).

4

the use of a constraint in this model requires knowing all the variables that might appear
before imposing the constraint. As a result, it cannot deal well with contingent variables.
They create a similar problem to the one faced by closed constraints: the constraint may
be imposed late in the execution, creating a larger search space.

The third model (Maher 2009b) is, in some ways, intermediate between that of (Barták 2003)
and (van Hoeve and Régin 2006). Under this model, a constraint C(~X,N) acts on both a
sequence of variables ~X and an integer variable N representing the length of the sequence
once it is closed. Variables can only be added at the right-hand end of the sequence. This
is a more detailed model than Barták’s. In one sense, this model is an abstraction of the
model of (van Hoeve and Régin 2006): if N is subject only to lower and upper bounds,
then the bounds on N correspond to the cardinalities of the bounds of S. It does not have
the weakness of that model that the variables that might appear are fixed in advance. On
the other hand, the van Hoeve-Regin model has more information about how ~X might be
extended, and so might be able to perform stronger propagation.

The model we employ here is Barták’s model where we specify that variables may be
added only at the right-hand end of the sequence. It is equivalent to a weak form of the
model of (Maher 2009b) where there are no restrictions on N . However, the notion of
contractibility, to be introduced in the next section, is relevant for other models of open
constraints. Some results are given in (Maher 2009b) for the model treated there. We will
assume that the only operations that can be applied to an open constraint are adding a
variable and designating the constraint closed, so that no more variables may be added.

Constraint programming with open constraints is a special case of dynamic CSPs in
the broad sense described in (Dechter and Dechter 1988). Work on dynamic CSPs has
focussed on the addition and retraction of constraints (Hentenryck and Provost 1991;
Bessière 1991; Georget et al. 1999; Debruyne et al. 2003). It does not directly address the
addition of variables to a constraint, although that can be viewed as a combined retraction
and addition of constraints. See (Verfaillie and Jussien 2005) for a survey on dynamic con-
straint solving. Work on conditional CSPs, initiated in (Mittal and Falkenhainer 1990),
addresses contingent variables by explicitly embedding the contingent nature within a
CSP, but that work does not address the addition of variables to constraints.

Other forms of dynamism have been addressed in the context of constraints by allowing
variable domains to be initially incomplete and expand over time (Faltings and Macho-Gonzalez 2005;
Gavanelli et al. 2005), or by formulating constraints over a stream of values (Lallouet et al. 2011).
That work is not technically related to the work in this paper.

We take filtering or propagation to refer to any algorithm f that reduces domains, that
is, ∀X f(D)(X) ⊆ D(X). A filtering algorithm f for a constraint C is sound if every
solution of C in D also appears in f(D). Some filtering algorithms are characterized by
consistency conditions. For closed constraints, the strongest filtering/consistency condi-
tion that addresses each constraint separately is domain consistency. A closed constraint
C(X1, X2, . . . , Xn) is domain consistent if for every i where 1 ≤ i ≤ n and every d ∈ D(Xi)
there is a word d1 . . . dn in LC such that di = d and dj ∈ D(Xj) for j = 1, . . . , n.

Because some of the variables in an open constraint will be unspecified during part of the
execution, we need to adapt the definition of consistency. The following is an appropriate
form of domain consistency for Barták’s model.

Definition 1

Given a domain D, an occurrence of a constraint C(~X) is open D-consistent if, for every
Xi ∈ ~X and every d ∈ D(Xi), there is a word d1 . . . dm in LC such that di = d, | ~X| ≤ m,
and dj ∈ D(Xj) for j = 1, . . . , | ~X |.

When C is closed, the only words of interest in LC are those of length | ~X |. In that case
open D-consistency reduces to domain consistency.

5

4 Contractibility

Wewant to extend a constraint C([X1, . . . , Xn]) with an extra variable Y to C([X1, . . . , Xn, Y]).
We would like to do filtering on the smaller constraint without knowing whether it will be
extended to Y , or further, and without creating a choicepoint. When we can do this, we
have a kind of monotonicity property of C.

Definition 2
We say a constraint C([X1, . . . , Xn]) is contractible if, there is a number m such that for
all n ≥ m we have

C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn])

The least such m is called the contractibility threshold.
For this paper we consider only constraints with a contractibility threshold of 0.

Thus C is contractible iff every solution of C([X1, . . . , Xn, Y]), when restricted to
X1, . . . , Xn wherem ≤ n, is a solution of C([X1, . . . , Xn]). The property is akin to the “op-
timal substructure” property that is a pre-requisite for the use of dynamic programming
in optimization problems (Cormen et al. 2001) which requires that optimal solutions of a
problem also solve subproblems optimally. Here it is only satisfiability, and not optimality,
that is involved.

It follows that any sound form of filtering (such as arc consistency or bounds consistency)
on a contractible constraint C([X1, . . . , Xk]) is safe in the sense that any values deleted
from domains in that process could also be deleted while filtering on C([X1, . . . , Xn]) for
any n ≥ k. Recall that we use ~X and [X1, . . . , Xn] interchangeably.

Proposition 1
Let C be a contractible constraint. Suppose a sound filtering algorithm for C([X1, . . . , Xn])
reduces the domain D for ~X to D′. Then

D(~X) ∧ C([X1, . . . , Xn, Y]) ↔ D′(~X) ∧ C([X1, . . . , Xn, Y])

Furthermore, if this property holds for all domains and all sound filterings then C must
be contractible.

Proof
Let σ be a solution of D(~X) ∧ C([X1, . . . , Xn, Y]). By contractibility of C, σ satisfies
C([X1, . . . , Xn]). By the soundness of the filtering, σ satisfies D′(~X). Hence, σ satisfies
D′(~X) ∧ C([X1, . . . , Xn, Y]). Since σ is an arbitrary solution,

D(~X) ∧ C([X1, . . . , Xn, Y]) → D′(~X) ∧ C([X1, . . . , Xn, Y])

Since D′ results from filtering D, D′(~X) → D(~X) and hence the reverse direction also
holds.

Now, suppose this property holds for all sound filterings D D′ but C is not con-
tractible. Because C is not contractible, there must be a number n and a valuation σ that
satisfies C([X1, . . . , Xn, Y]) but not C([X1, . . . , Xn]). Let D be the domain that defines σ
and D′ be the empty (unsatisfiable) domain. Then the reduction of D to D′ is sound for
C([X1, . . . , Xn]) and so, by the previous supposition

D(~X) ∧ C([X1, . . . , Xn, Y]) → D′(~X) ∧ C([X1, . . . , Xn, Y])

However,D(~X)∧C([X1, . . . , Xn, Y]) is satisfiable by σ, while D′(~X) is unsatisfiable, which
contradicts this statement. This contradiction shows that C must be contractible.

Consequently, for contractible constraints, filtering does not need to be undone if the
list is lengthened. That is, algorithms for filtering a closed contractible constraint are valid
also for the corresponding open constraint.

6

Conversely, any constraint that is not contractible might need to undo the effects of
filtering if the list is lengthened. If σ is a solution of C([X1, . . . , Xn, Y]), but not of
C([X1, . . . , Xn]) then propagation on C([X1, . . . , Xn]) might eliminate σ. For example,
a constraint

∑
iXi = 5 would propagate X1 = 5 if the sequence ~X contains just one

variable, thus eliminating solutions such as X1 = 2, X2 = 3. When the second variable is
added, all propagation that is a consequence of the inference X1 = 5 must be undone.

The second part of this proposition shows that contractibility exactly characterizes
the guarantee that closed filtering is safe for open constraints. That is, it is exactly the
contractible constraints for which it is always sound to interleave closed filtering and
addition of new variables.

Furthermore, the proof of the second part requires very little of the filtering algorithm.
Hence, whether we maintain arc consistency or weaker consistencies like bounds consis-
tency or forward checking, contractibility is necessary to soundly interleave closed filtering
and the addition of new variables.

We say a domainD defines an assignment if ∀X |D(X)| = 1; in that case the assignment
maps each X to the element of D(X). We say filtering performs complete checking if,
whenever D defines an assignment, the result of filtering with a constraint C is D iff the
assignment satisfies C. Complete checking can be considered a minimal requirement for
filtering methods (Schulte and Tack 2009). Any filtering method that satisfies this minimal
requirement requires contractibility to guarantee that closed filtering is sound for an open
constraint.

Corollary 2
Let C be a constraint, and consider a sound filtering method that performs complete
checking. It is always sound to interleave filtering and the addition of new variables iff C
is contractible.

The notion of contractibility is a variation of Barták’s monotonicity (Barták 2003) where
we do not explicitly discuss variable domains. Before proceeding, we make this claim
precise. We formulate Barták’s monotonicity as follows.

Definition 3
Let D be a domain. We say a constraint C is monotonic with respect to D if, for any pair
of disjoint sequences of variables ~X and ~Y

{ ~X | C(~X~Y) ∧D(~X) ∧D(~Y)} ⊆ { ~X | C(~X) ∧D(~X)}

Contractibility differs from monotonicity in that the definition is based entirely on the
constraint, independent of the domains of variables. Hence it is not tied to domain-based
reasoning; it is equally compatible with the more general framework of (Maher 2009a). On
the other hand, monotonicity is more flexible in reasoning about constraints that are only
“partly contractible”. The close relationship between monotonicity and contractibility is
clear.

Proposition 3
If C is contractible then for any domain D, C is monotonic with respect to D. Conversely,
if C is monotonic with respect to every domain D then C is contractible.

Proof
By repeated application of the definition of contractibility, we have that
C([X1, . . . , Xn, ~Y]) → C([X1, . . . , Xn]). It follows immediately that C is monotonic with
respect to any particular D.

In the reverse direction, any valuation for ~X~Y can be represented by a domain D
where each D(Xi) and D(Yi) is a singleton. Then monotonicity with respect to D implies
C(~X~Y) → C(~X) under that valuation. If C is monotonic with respect to every domain D
then C(~X~Y) → C(~X) holds under every valuation. That is, C is contractible.

7

We now turn to ways a constraint can be constructed to ensure it is contractible. As a
trivial case, a constraint C of fixed arity k, when applied to a sequence of variables ~X, is
assumed to be applied only to the initial segment X1, . . . , Xk, or not at all if ~X is shorter
than k. With this definition, C is contractible.

The Slidej meta-constraint (Bessiere et al. 2008) can be used to define several con-
straints on a sequence of variables. We use a variant of Slidej that starts applying the con-

straint at the pth position, rather than the first. Slidep
j (C,

~X) holds iff C(Xij+p, . . . , Xij+p+k−1)

holds for i = 0, 1, . . . , ⌊n−p−k+1
j

⌋, where C has arity k. Slidej is equal to Slide1
j .

Constraints defined directly with Slide
p
j are contractible.

Proposition 4
Any constraint C defined by the Slide

p
j meta-constraint as C(~X) ↔ Slide

p
j (C

′, ~X), for
some fixed arity constraint C′, is contractible.

Proof
Let k be the arity of C′. The relationship between C([X1, . . . , Xn, Y]) and C([X1, . . . , Xn])
divides into cases, using the definition of C. If n− p− k + 2 is non-negative and divisible
by j then

C([X1, . . . , Xn, Y]) ↔ C([X1, . . . , Xn]) ∧ C
′([Xn−k+2, . . . , Xn, Y])

If n− p− k + 2 is negative or not divisible by j then there is no additional application of
C′ and

C([X1, . . . , Xn, Y]) ↔ C([X1, . . . , Xn])

Thus, in both cases, C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn]) and hence C is contractible.

Since the Sequence and SlidingSum constraints can each be defined as Slide1(C
′, ~X),

for appropriate constraint C′, it follows that they are both contractible.
For order-free constraints we can define a meta-constraint analogous to Slide, which

we will call Splash. Like Slide, it takes a fixed arity constraint C′ and a sequence of
variables ~X as arguments. Let C′ have arity k, and ~X have length n, and let Sk(~X) =
{[Xi1 , . . . , Xik] | ij < ij+1 for j = 1, ..., k − 1} be the set of subsequences of ~X of length

k. Then we define Splash(C′, ~X) ↔
∧

~Y ∈Sk(
~X) C

′(~Y). Splash(C′, ~X) applies C′ to every

subsequence of ~X of length k. For example, we can defineAllDifferent(~X) as Splash(6=
, ~X) and InterDistance(~X) as Splash(C′, ~X) where C′(Z1, Z2) ↔ |Z1 −Z2| ≥ p. Thus,
by the following proposition, AllDifferent and InterDistance are contractible.

Proposition 5
Any constraint C defined by the Splash meta-constraint as C(~X) ↔ Splash(C′, ~X), for
some fixed arity constraint C′, is contractible.

Proof
Let k be the arity of C′. It is straightforward to see that

C([X1, . . . , Xn, Y]) ↔ C([X1, . . . , Xn]) ∧
∧

~Z∈Sk−1(
~X)

C′([Z1, . . . , Zk−1, Y])

It follows immediately from the definition that C is contractible.

Once we have some contractible constraints, there are many ways to build other con-
tractible constraints, as the following proposition demonstrates. These are expressed as
logic operators, but they can also be viewed as operators on formal languages: ∧ and ∨
are intersection and union of languages, negation is complement, existential quantifica-
tion projects out a variable, and universal quantification retains words that appear for all
values of the relevant variable.

8

Proposition 6
Let C1(~X) and C2(~X) be contractible constraints on the same sequence of variables. Let
C(X1, . . . , Xk) be a constraint of fixed arity. Then

• C is contractible
• C1 ∧ C2 is contractible
• C1 ∨ C2 is contractible
• ∃Xi C1 is contractible
• ∀Xi C1 is contractible

where Xi is a variable in ~X.

Proof

We can view C as a constraint C′ on the sequence ~X where C′([X1, . . . , Xn]) ↔ true if
n < k and C′([X1, . . . , Xn]) ↔ C(X1, . . . , Xk) if n ≥ k. Note that C(X1, . . . , Xk) → true
and hence C′([X1, . . . , Xk−1, Y]) → C′([X1, . . . , Xk−1]). When n 6= k − 1 we clearly have
C′([X1, . . . , Xn, Y]) ↔ C′([X1, . . . , Xn]).

Suppose Ci([X1, . . . , Xn, Y]) → Ci([X1, . . . , Xn]) for i = 1, 2. Then, by propositional
logic,

∧

i

Ci([X1, . . . , Xn, Y]) →
∧

i

Ci([X1, . . . , Xn])

and ∨

i

Ci([X1, . . . , Xn, Y]) →
∨

i

Ci([X1, . . . , Xn])

Similarly, using standard arguments, for any i we can conclude

∀Xi C1([X1, . . . , Xn, Y]) → ∀Xi C1([X1, . . . , Xn])

and

∃Xi C1([X1, . . . , Xn, Y]) → ∃Xi C1([X1, . . . , Xn])

In general, the negation of a contractible constraint and implication between two con-
tractible constraints are not contractible. See Example 2, later.

The previous results give us an algebra for constructing complex contractible con-
straints, and can be used to demonstrate that some existing constraints are contractible.
For example, Contiguity is implemented in (Maher 2002) essentially as

∃~L, ~R SLIDE2
3(C

′, [L1, X1, R1, L2, . . . , Xn, Rn])

where C′ has arity 7. Similarly, (~X ≤lex
~Y) is encoded in (Bessiere et al. 2008) essentially

as

∃ ~B SLIDE3(C
′, [B1, X1, Y1, B2, . . . , Xn, Yn])

where C′ has arity 4. By the previous propositions, Contiguity and ≤lex are contractible.
Similarly, we can define a weak version of GCC where there are no lower bounds

GCC(~v,~0, ~u, [X1, . . . , Xn]) as
∧

vi∈~v Splash(C
′
i, ~X), where C′

i has arity ui + 1 and states
that not all its arguments are equal to vi. By the previous propositions, this weak form of
GCC is contractible.

However, it is notable that the Regular constraint is not contractible, despite the
implementation in terms of Slide outlined in (Bessiere et al. 2008).

Example 1

Let A be an automaton that accepts the language a + b2. Then Regular(A, [X1]) →
X1 = a but Regular(A, [X1, Y]) → X1 = b. Thus Regular is not contractible.

9

The discrepancy arises because Regular is not constructed from the operations in the
above propositions. Essentially, the implementation defines

Regular(A, [X1, . . . , Xn]) ↔

∃ ~Q Slide2(Transition, [Q0, X1, Q1, . . . , Xn, Qn])
∧ Start(Q0) ∧ Final(Qn)

where the 3-ary constraint Transition expresses the state transitions of A, Start defines
the start state(s) and Final defines the final state(s). It is the constraint on the final
variable Qn that leads to uncontractibility; the remainder is expressible within the algebra.

We now make a simple observation that provides a useful characterization of contractible
constraints. IfA defines a prefix-closed language thenRegular(A, ~X) is contractible. This
claim holds more generally.

Proposition 7
Let C(~X) be a constraint over a sequence of variables. Then C is contractible iff LC is
prefix-closed.

Proof
Suppose C is contractible. If σ is a solution of C([X1, . . . , Xn, Y]) then, by contractibility,
the restriction of σ to X1 . . . Xn is a solution of C([X1, . . . , Xn]). Thus the set of solutions
is prefix-closed.

Suppose S is prefix-closed. For any solution σ of C([X1, . . . , Xn, Y]) we know that the
restriction of σ to X1 . . . Xn is a solution of C([X1, . . . , Xn]). Since this holds for any
solution σ, we have C([X1, . . . , Xn, Y]) → C([X1, . . . , Xn]), that is, C is contractible.

This result applies to constraints based on formal languages, such as Regular and
CFG, but it also applies to constraints that are formulated differently. Thus, for example,
the solutions of Sequence and AllDifferent are prefix-closed. Conversely, we see that
constraining the final variable in a sequence, as in Final(Qn), is not contractible.

This characterization allows us to substantiate the claim, made earlier, that in general
the negation or implication of contractible constraints is not contractible.

Example 2
Suppose we have an alphabet {a, b}. If LC is a∗ then L¬C contains aab, but not its
prefix aa. Hence ¬C is not contractible. Hence, also, C → false is not contractible that
is, implication of contractible constraints is not, in general, contractible. To take another
example, if LC1

is a∗b∗a∗ and LC2
is a∗b∗ then LC1→C2

contains bab (since bab /∈ LC1
),

but not its prefix ba (since ba ∈ LC1
but ba /∈ LC2

). Hence C1 → C2 is not contractible.

We can use the prefix-closed characterization both to determine whether a constraint
is contractible or not, and as the basis for approximations of uncontractible constraints.
We explore these possibilities in the following sections.

5 Classifying Constraints

It is not within the scope of this paper to determine the contractibility of every global
constraint. Nevertheless, we can outline and demonstrate some principles that make it
easy, in most cases, to classify a global constraint as contractible or not.

In general, constraints based on counting with a lower bound (or equality) are not
contractible. We can see this by noting that any non-trivial lower bound on the number
of things in a sequence (or satisfied by a sequence) may be violated by a prefix of the
sequence. This was already touched upon in (Barták 2003), where the Sum constraint∑n

i=1Xi = N was shown to be non-monotonic, but the argument holds for a wide range
of constraints.

10

For example, Peak counts the number of peaks in a sequence, but a prefix of the se-
quence may have fewer peaks. Similarly, Stretch places lower bounds on the span of
stretches, so that 1122 might be a solution, while 112 is not. By a similar argument, con-
straints identifying properties of an extreme element in a sequence, such as HighestPeak,
are not contractible. On the other hand NoPeak is contractible since, to the extent that
there is counting, there is no lower bound – only an upper bound of 0.

We can generalize and formalize these observations. A function f is a non-decreasing
accumulation function if it maps sequences of values to numbers such that, for every
sequence ~X and value Y , f(~XY) ≥ f(~X). We can similarly define the non-increasing
functions. Among non-decreasing accumulation functions are counting the number of el-
ements in a sequence with a fixed property, counting the number of different elements,
identifying the highest peaks, and summing (some) non-negative elements of a sequence.
Note that summing possibly negative elements of a sequence is not non-decreasing. The
first part of the following proposition is an almost direct consequence of the definitions of
contractibility and non-decreasing function.

Proposition 8

Let C be a global constraint.

• Suppose C can be expressed as f(~X) ≤ Z. Then C is contractible iff f is a non-
decreasing accumulation function.

• Suppose C can be expressed as f(~X) ≥ Z. Then C is contractible iff f is a non-
increasing accumulation function.

• Suppose C can be expressed as f(~X) = Z. Then C is contractible iff f is a constant
function.

Proof

If f is a non-decreasing accumulation function, whenever f(~XY) ≤ Z we must have
f(~X) ≤ Z. Thus C(~XY) → C(~X).

If f is a not a non-decreasing accumulation function, there is a sequence of values ~X
and a value Y such that f(~XY) < f(~X). Choose Z such that f(~XY) ≥ Z > f(~X). Then
C(~XY) holds but C(~X) does not. Thus C is not contractible.

The proof of the second and third parts is similar.

Thus the constraints
∑n

i=1Xi = N and
∑n

i=1 |Xi| = N are not contractible. Similarly,∑n

i=1Xi ≥ N is not contractible while
∑n

i=1 |Xi| ≤ N is contractible. This result can be
used to establish that Peak, and HighestPeak are not contractible and that NoPeak

is contractible, but it also applies to many other counting and summing constraints in
(Beldiceanu et al. 2005).

Notice that in constraints like Sequence and SlidingSum the use of a lower bound
in the description of the constraint C′ to which Slide is applied does not prevent con-
tractibility. Each lower bound applies only to a small part of the sequence. However, the
RelaxedSlidingSum constraint, which weakens the SlidingSum constraint by putting
bounds on the number of times the C′ constraint is satisfied, is not contractible, because
counting is an accumulation function that is not non-increasing and the lower bound
applies to the entire sequence.

Some constraints can be recognised as contractible, based only on their informal se-
mantics. For example, Diffn and Disjunctive enforce that objects represented by the
variables are non-overlapping. Clearly, if ~XY forms a non-overlapping set, then so does
~X alone. Thus contractibility follows directly from Definition 2. Similarly, Cumulative4,
BinPacking and Disjoint are contractible.

4 Under the assumption that activities can only consume resources (and not produce resources).

11

For other constraints, their informal semantics lead easily to counterexamples to con-
tractibility. Constraints that involve computing the minimum, maximum, mean/average,
median, mode, standard deviation, etc of the sequence are not contractible. This is easily
recognised since these statistics are not, in general, preserved after eliminating part of the
sample set, and hence are not prefix-closed. Alternatively, we could recognise that these
functions are not non-increasing, nor non-decreasing and apply Proposition 8.

The idea of contractibility is not useful for all global constraints. For example, it ap-
pears irrelevant to cyclic constraints like the cyclic Regular, cyclic Sequence and cyclic
Stretch constraints. In these constraints the sequence of variables is representing a cy-
cle or circular list and there is no natural end at which to add variables. Thus it is not
surprising that these constraints are not contractible.

There is sometimes a fine line between contractible and uncontractible constraints. For
example, while≤lex is contractible, <lex is not. To see the latter, observe that 111 <lex 112,
but the corresponding prefixes are not strictly smaller – they are equal. If the precedence
constraint s ≺ ~X t also required that t appear in ~X , then the constraint would not be
contractible (because rst satisfies this constraint, but rs does not). Finally, notice that
the Sequence constraint is contractible, but it has the form Slide(C′, ~X) where C′ is es-
sentially a fixed-arity Among constraint; however, the (variable-arity) Among constraint
is not contractible.

A quick survey of (Beldiceanu et al. 2005) suggests that most current global constraints
are not contractible, although we have noted several useful constraints that are con-
tractible. In the next section we address how to propagate uncontractible open constraints.

6 Approximating Constraints

When a constraint is not contractible, the closed propagator for that constraint is unsound
as a propagator for the open constraint. However, following a proposal of (Barták 2003),
we can implement an uncontractible open constraint C(~X) by executing a safe contractible
approximation Capp of C until ~X is closed, and then replacing Capp by C for the remainder
of the execution. To employ this approach we need to identify a contractible language
containing the language of C, and a propagator Capp that implements it.

A language L is an approximation of a constraint C if LC ⊆ L. An approximation L is
contractible iff L is prefix-closed. A contractible approximation La to a language L is tight
if for all contractible languages L′, if La ⊇ L′ ⊇ L then L′ = La. By Proposition 7, there
is a unique contractible approximation that is tighter than all others: the prefix-closure of
LC gives the tightest contractible approximation.5

The prefix-closure P (L) of a language L often appears to be simpler than L. For ex-

ample, if L1 is {an
2

| n ∈ N} then P (L1) is a∗. But in general the prefix-closure is no

simpler than the original language. For example, if L2 is {an
2

b | n ∈ N} then P (L2) is
a∗ ∪ L2. In some cases it is easy to represent P (L) when given a representation of L.
In particular, when L is defined by a finite automaton the automaton accepting P (L) is
easily computed.

Proposition 9

Let A be a (possibly nondeterministic) finite state automaton, and let A′ be the finite
state automaton obtained from A by making final all states on a path from the start state
to a final state. Then L(A′) = P (L(A)). A′ can be computed in linear time.

5 Consequently, tight and tightest contractible approximations are synonyms.

12

Proof

Consider any prefix w of a word wu ∈ L(A). wu describes a path in A that ends at a final
state. Hence w describes a path in A that ends at a state on a path to a final state. Hence
w is accepted by A′. Thus L(A′) ⊇ P (L(A)).

Conversely, suppose w is accepted by A′. By the construction of A′, w describes a path
in A that ends at a state Q on a path to a final state of A. Let u be a word corresponding
to a path from Q to a final state. Then wu is accepted by A and hence w is a prefix of a
word in L(A). Thus L(A′) ⊆ P (L(A)).

We can construct A′ as follows. Treat the automaton A as a directed graph with the
states as vertices and where each transition from Q1 to Q2 is represented by an edge
from Q1 to Q2. Perform depth-first search and mark all states reachable from the start
state. Now consider the graph with the edges reversed. Perform depth-first search from
the reachable final states, marking each visited reachable state as a final state. A′ is the
automata A with these additional final states. The cost of the construction is O(V +E),
where V is the number of states and E is the number of transitions. (Note that we could
ignore reachability and define a variation of A′ that may have some unreachable final
states.)

Similarly, we can use the structure of a context-free grammar to construct a grammar
for its prefix-closure.

Proposition 10

Given a context-free grammar G defining a language L, a context-free grammar G′ for
P (L) can be generated in quadratic time, and in linear time if G is in Chomsky normal
form.

Proof

(Sketch) We show only the construction when G is presented in Chomsky normal form,
and leave the generalization to arbitrary grammars and the verification of its correctness
to the reader.

Let G = (N,T,R, S), where N is a set of nonterminal symbols, T is a set of terminal
symbols, R is the set of production rules, and S is the start symbol. In Chomsky normal
form, production rules have the form A → BC or A → a or S → ε where A, B, and
C are nonterminal symbols, a is a terminal symbol, and ε is the empty word. We define
G′ = (N ′, T, R′, S′), where N ′ = N ∪ {S′} ∪ {Ap | A ∈ N} and

R′ = R ∪ {S′ → ε} ∪ {S′ → Sp} ∪ {Ap → a | (A→ a) ∈ R} ∪
{Ap → Bp | (A→ BC) ∈ R} ∪ {Ap → BCp | (A→ BC) ∈ R}

For each nonterminal A ∈ N , Ap generates all non-empty prefixes of words generated by
A, including the words generated by A. It is clear that G′ is larger than G by a factor of
3 or less. For an arbitrarily structured grammar, the size of G′ can grow quadratically.
R′ is not in Chomsky normal form, but it is easily simplified to that form. Nontermi-

nals Ap which are strongly connected by edges corresponding to productions of the form
X → Y can be replaced by a single equivalent nonterminal, to give R′′. Remaining pro-
ductions X → Y can be replaced by a set of productions {X → ψ | (Y → ψ) ∈ R′′}. In
general, repeated replacements are necessary to eliminate all X → Y productions. A naive
representation can increase the size of the grammar, but a more careful representation can
share the right-hand side of productions so that the Chomsky normal form is not larger
than G′.

Thus, the tightest contractible approximation of Regular(A, ~X,N) is implemented
by Regular(A′, ~X,N), and the tightest contractible approximation of CFG(G, ~X,N) is
implemented by CFG(G′, ~X,N).

13

As a corollary to Proposition 9, we can check in linear time whether a language de-
fined by a deterministic finite automaton is prefix-closed: we simply check whether the
construction of A′ in Proposition 9 made any new final states. This improves on a re-
sult of (Brzozowski et al. 2009). Unfortunately, recognising when a language defined by
a nondeterministic finite automaton A is prefix-closed is not so simple; A need not have
the property that all states on a path from start to final state are final. It is shown in
(Brzozowski et al. 2009) that this problem is PSPACE-complete. The problem is undecid-
able for languages defined by context-free grammars (Brzozowski et al. 2009). However,
the decision problem is much less important than the ability to construct (the represen-
tation of) the prefix-closure, so these negative results are not significant.

Regular and CFG are complicated by flexible parameters, but approximations to sim-
pler constraints are often correspondingly simpler to recognise. As discussed in (Barták 2003),
a constraint

∑n

i=1Xi = N where the Xi’s must be non-negative is not monotonic but is
approximated by the constraint

∑n

i=1Xi ≤ N . Using Proposition 8 we can recognise this
as the tightest contractible approximation. Similarly, for a counting constraint such as
Peak(~X,N), which states that there are exactly N peaks in ~X , the tightest contractible
approximation states that N is an upper bound on the number of peaks. In the same way,
NValue(~X,N) is best approximated by treating N only as an upper bound. The tightest
approximation of the GCC is the weak form of GCC discussed in Section 4. In all these
cases, since counting is a non-decreasing accumulation function, the tightest contractible
approximation is to eliminate the lower bounds. In HighestPeak(~X,Z), the height of the
highest peak is a non-decreasing accumulation function and so the tightest approximation
states that Z is an upper bound on the height of the highest peak.

On the other hand, for some constraints where the accumulation function is neither
non-increasing nor non-decreasing there appear to be no non-trivial approximations. For
example, consider a constraint Average(~X,M) stating that M is the mean/average of
the values of ~X . Given a fixed M , any sequence of values can be a prefix of a sequence
with meanM . Hence the tightest contractible approximation of Average is the constraint
that accepts any sequence, that is, the constraint true. For such a constraint there is no
propagation until the constraint is closed.

However, as the previous discussion shows, for many constraints the tightest contractible
approximation is not only non-trivial, it has a clear and simple expression. For these con-
straints a propagator for the approximation Capp is almost ready-made, given a propagator
for the original constraint C. Furthermore, the transition of propagator from Capp to C
when the constraint closes can be smooth and simple because, in the cases above, the prop-
agator for Capp is simply a weakened form of the propagator for C. Some more detailed
analysis of this similarity of propagators for C and Capp, for several constraints C, appears
in (Maher 2009c) and (for a slightly different model of open constraint) (Maher 2009b).

If we have domain consistent closed propagators and a tight contractible approximation,
then we can obtain an open D-consistent propagator from Barták’s proposal. Recall that
under Barták’s proposal (Barták 2003), a closed propagator for Capp is dynamised to
handle extensions of the sequence of variables (possibly through his generic dynamisation).
This propagator is then executed until the sequence of variables is closed, at which point
the propagator is replaced by a closed propagator for C.

Theorem 11
Let Capp be the tightest contractible approximation to C, and suppose we have closed
propagators for Capp and C that maintain domain consistency for ~X. Then Barták’s
proposal maintains open D-consistency for C.

Proof
Since Capp is contractible, domain consistency of Capp for ~X is equivalent to open D-
consistency on C(~X). This follows because Capp is the prefix-closure of C and so every

14

support for domain consistency of Capp(~X) for ~X corresponds to a longer word that is a
support for D-consistency on C(~X), and vice versa every support for open D-consistency
on C(~X) has a corresponding prefix that is a support for domain consistency of Capp(~X)
for ~X. Once ~X is closed, domain consistency for ~X is identical to D-consistency on C(~X).

We can obtain similar results for consistency conditions other than domain consistency.
All that is required is to define the appropriate corresponding open consistency. For ex-
ample, consider bounds consistency. Let min(X) (max(X)) denote the smallest (largest)
value in D(X). The appropriate form of bounds consistency for open constraints is open
B-consistency.

Definition 4
Given a domain D, an occurrence of a constraint C(~X) is open B-consistent if

for every Xi ∈ ~X , and for di = min(Xi) and di = max(Xi), there is a word d1 . . . dm
in LC such that | ~X | ≤ m, and dj ∈ min(Xi)..max(Xi) for j = 1, . . . , | ~X|.

We can now express the corresponding result for bounds consistency. The proof is
essentially the same as that for the previous theorem.

Corollary 12
Let Capp be the tightest contractible approximation to C, and suppose we have closed
propagators for Capp and C that maintain bounds consistency for ~X. Then Barták’s
proposal maintains open B-consistency for C.

Notice that we still require a tightest contractible approximation. Any weakening of
this requirement can lose open B-consistency, as is clear from Corollary 2.

7 Contractibility of Soft Constraints

We consider “soft” global constraints in the style of (Petit et al. 2001). In such constraints
there is a violation measure6, which measures the degree to which an assignment to the
variables violates the associated “hard” constraint, and solutions are assignments that
satisfy an upper bound on the violation measure. Thus such soft constraints have the
form m(~X) ≤ Z, where m is the violation measure. We refer to the hard constraint as
C(~X) and the corresponding soft constraint as Cs(~X,Z).

Assessing the contractability of such constraints is made easier by Proposition 8, which
says that a constraint m(~X) ≤ Z is contractible iff m is non-decreasing. Given this charac-
terization, we will refer to non-decreasing accumulation functions as contractible functions.
To evaluate whether or not soft constraints are contractible we must consider the form of
the violation measure, and whether it forms a contractible function.

Definition 5
A violation measure for a sublanguage L of a language L′ is a function m which maps L′

to the non-negative real numbers, such that if w ∈ L then m(w) = 0. m is proper for L if
for all words w ∈ L′, m(w) = 0 iff w ∈ L. A violation measure for a constraint C(~X) is a
violation measure for LC as a sublanguage of the static type T (~X).

For example, a use of AllDifferent might give the set Z of integers as the static
type of each variable. A violation measure might then be the number of disequalities
Xi 6= Xj , i 6= j violated by a valuation for ~X, or the number of variables equal to another
variable under the valuation, or the minimum absolute value of the sum over i of values

6 Also called violation cost (Petit et al. 2001).

15

ci such that, for each i and j with i 6= j, Xi + ci 6= Xj + cj .
7 It is easy to see that each of

these defines a violation measure. The third is not a proper violation measure because, for
example, the word 11233 can have perturbations ci of 0,−1, 0, 0, 1. Thus m(11233) = 0
but 11233 6∈ LC . (Summing the absolute value of the ci, on the other hand, would lead to
a proper measure.)

Proper violation measures for a language L are a refinement of the characteristic func-
tion of L.8 Most violation measures in the literature are proper for their intended language.
Although any function from words to non-negative reals can be considered a proper vi-
olation measure by appropriate choice of language L, in practice the hard constraint
determines L and the violation measure is then designed to be proper. A non-proper mea-
sure can be considered misleading because a word w that violates the language L can
have a violation measure of 0. We admit non-proper violation measures mainly because
contractible approximations considered in Section 8 can be non-proper. However, we make
some effort in this section to identify proper violation measures.

There are three broad classes of violation measures (Maher 2009d): those based on con-
straint decomposition, edit distance, and graph properties. We address the first two classes
in the following subsections. The richness of the graph property framework (Beldiceanu and Petit 2004)
makes it difficult to obtain broad results on contractibility. A somewhat narrow sufficient
condition for contractability of soft constraints defined by graph property-based viola-
tion measures is presented in (Maher 2009d). For each of the classes we consider, we will
incorporate a weighting that adds greater flexibility and expressiveness to the class.

7.1 Decomposition-based Violation Measures

Many hard constraints can be decomposed into elementary constraints, whether natu-
rally (such as the decomposition of AllDifferent into disequalities) or by a construc-
tion, as in (Bessiere et al. 2009). Violation measures can be constructed by combining
the violations of each elementary constraint. We define a general class of decomposition-
based violation measures that includes as special cases: primal graph based violation costs
(Petit et al. 2001), decomposition-based violation measures of (van Hoeve et al. 2006), the
value-based violation measure for GCC (Petit et al. 2001; van Hoeve et al. 2006), the
measures used for the soft Sequence constraint (Maher et al. 2008) and the soft Cumulative

constraint (Petit and Poder 2009), the weighted measures for AllDifferent and GCC

(Métivier et al. 2007; Métivier et al. 2009), and the class of decomposition-based measures
discussed in (Maher 2009d). We begin with several definitions.

A weighted set is a pair (S,w) where S is a set and w is a function mapping each
element of S to a non-negative real number or ∞. Values not in S have weight 0. If
these are the only values of weight 0 we say (S,w) is proper. A weighted set is a minor
generalization of a multiset. A weighted set (S1, w1) is a sub-weighted set of weighted set
(S2, w2) if, for every element s ∈ S1, w1(s) ≤ w2(s). Union of weighted sets is defined by
(S1, w1) ∪ (S2, w2) = (S1 ∪ S2, w1 + w2) where (w1 + w2)(x) = w1(x) + w2(x). When a
weighted set contains things with variables that are subject to substitution, the application
of a substitution might unify elements of the set. Hence, (S,w)θ denotes (Sθ, w′) where
w′(s) is the sum of w1(s

′) over all s′ ∈ S such that s′θ ≡ s.
We need to carefully formalize the notion of decomposition. The definition takes as a

7 This latter measure expresses the smallest perturbation ~c of the values for the variables needed

to satisfy the AllDifferent constraint. More formally, m(~X) = min~c{|
∑n

i=1 ci| | ∀j j 6= i →
Xi + ci 6= Xj + cj}.

8 Indeed, for any proper violation measure m, the corresponding hard constraint can be recovered

as m(~X) ≤ 0.

16

parameter a class of elementary constraints. Usually the constraints in such a class have
bounded arity.

Definition 6
A decomposition is a function that maps a constraint C with a given type T and a sequence
of variables ~X to a tuple (~X, ~U, T ′, S, w) where ~U is a collection of new variables, T ′ is
an extension of T to ~U , and (S,w) is a proper weighted set of elementary constraints over
~X~U such that C(~X) ↔ ∃~U T ′(~U) ∧

∧
s∈S s.

The weights in this definition are used only to emphasize some constraints in a decom-
position over others; in particular, the infinite weight allows us to specify elementary
constraints that must not be violated. An unweighted decomposition is one where all con-
straints in S have the same, non-zero weight. In that case, we may omit w. We write
decomp(C(~X)) to express the weighted set (S,w), or simply S when the decomposition
is unweighted.

This definition of decomposition is very broad, perhaps too broad, since it allows the set
of elementary constraints and/or their weights to vary radically as the length of ~X changes.
For example, it permits using the decomposition of AllDifferent(~X) into disequalities
when | ~X| is odd, and a decomposition from (Bessiere et al. 2009) (see Example 6) when
| ~X| is even. However, we will see in Example 5 a constraint whose expression requires
some of the flexibility offered by this broad definition.

An error function e maps an elementary constraint and a valuation to a non-negative
real number, representing the amount of error (or violation) of the constraint by the
valuation. We require that e(v, c) = 0 iff c is satisfied by v. We extend e to weighted
sets of constraints by defining e(v, (S,w)) = (S′, w′) where S′ = {e(v, s) | s ∈ S} and
w′(x) =

∑
s|v(s)=xw(s).

A combining function maps a weighted set of numbers to a single number. A combin-
ing function comb is monotonic if, whenever (S1, w1) is a sub-weighted set of (S2, w2),
comb(S1, w1) ≤ comb(S2, w2). The function comb is disjunctive if for all weighted sets of
reals (S,w), comb(S,w) = 0 iff S = {0}. We say comb has unit 0 if, for every (S,w) and
w′, comb((S,w) ∪ ({0}, w′)) = comb(S,w). Counting non-zero values, summation, sum of
squares, and maximization are examples of monotonic, disjunctive combining functions
with unit 0; product and minimization are neither monotonic nor disjunctive nor have
unit 0.

Definition 7
A decomposition-based violation measure m for a constraint C(~X) with type T is based on
a decomposition (~X, ~U, T ′, S, w) of C(~X), an error function e, and a combining function
comb and is defined by, for each valuation v of ~X,

m(v(~X)) = min
v′

comb(e(v′,decomp(C(~X))))

where we minimize over all extensions v′ of v to ~U that satisfy T ′.

This definition was inspired by the formulation of hierarchical constraints in (Borning et al. 1992;
Borning et al. 1989). The violation counting decomposition measures of (Petit et al. 2001;
van Hoeve et al. 2006) can be obtained when the error function e(v, c) returns 0 if v satis-
fies c and 1 otherwise, and the combining function is summation. The value-based measures
of (Petit et al. 2001; van Hoeve et al. 2006; Maher et al. 2008; Petit and Poder 2009) also
use summation as the combining function, but use an error function that returns the
amount by which the constraint c is violated by the valuation v. If we use maximiza-
tion or the sum of squares in place of summation we have new violation measures simi-
lar to the worst-case-better and least-squares-better comparators of (Borning et al. 1992;
Borning et al. 1989). Clearly many violation measures are available for a constraint by
making different choices for the decomposition and the error and combining functions.

17

There is a powerful sufficient condition for a decomposition-based violation measure to
be proper.

Proposition 13
Let m be a decomposition-based violation measure for a constraint C, as defined in Defi-
nition 7 with combining function comb. m is proper for LC if comb is disjunctive.

Proof
Let v be a valuation for ~X. Suppose comb is disjunctive.
m(v(~X)) = 0
iff minv′ comb(e(v′,decomp(C(~X)))) = 0
iff for some v′ extending v, comb(e(v′,decomp(C(~X)))) = 0
iff for some v′ extending v, and some w, e(v′,decomp(C(~X))) = ({0}, w)
iff for some v′ extending v, v′ satisfies every c ∈ decomp(C(~X))
iff v satisfies C(~X)
iff v(~X) ∈ LC .

Thus, for any valuation v, m(v(~X)) = 0 iff v(~X) ∈ LC . Hence, m is proper for LC .

We now turn to the problem of recognizing contractibility. We say that one formula
(~X, ~U, T1, S1, w1) is covered by another formula (~W, ~V , T2, S2, w2) if there is a substitu-
tion θ that maps ~X into ~W and ~U into ~V ∪ ~W ∪ Σ, where Σ is a set of constants, such
that T1(~X) = T2(~Xθ), (S1, w1)θ is a sub-weighted set of (S2, w2) and T2(~Uθ) ⊆ T1(~U).
Covering has some similarity to characterizations of containment of conjunctive relational
database queries (Chandra and Merlin 1977), (constraint) logic programming rule sub-
sumption (Maher 1988; Maher 1993), and sufficient conditions for query containment un-
der bag semantics (Chaudhuri and Vardi 1993; Ioannidis and Ramakrishnan 1995).

Example 3
The decomposition of AllDifferent(~X) into an unweighted set of disequalities is for-
malized as (~X, ∅, T, S, w) where S is the set of disequalities and w gives every disequality
a weight of 1. It is clear that the decomposition of AllDifferent(~X) is covered by that
of AllDifferent(~XY) where the substitution is the identity.

Example 4
Contiguity is implemented in (Maher 2002) essentially by the decomposition

Contiguity(~X) ↔ ∃~L, ~R
n−1∧

i=2

C′(Xi−1, Ri−1, Li, Xi, Ri, Li+1, Xi+1)

for a constraint C′. This decomposition is formalized as (~X, ~L~R, T, S,w) where T gives all
variables a type of {0, 1}, S is the set of C′ constraints, and w gives every constraint a
weight of 1. Alternatively, if contiguity is more important for variables nearer the right end
of the sequence ~X , we might weight each C′ constraint by the largest index of a variable
appearing in it. The decomposition of Contiguity(~XY) covers that of Contiguity(~X)
where the substitution is the identity on ~X , ~L, and ~R.

We can now provide a sufficient condition for a soft constraint with a decomposition-
based violation measure to be contractible.

Proposition 14
Let Cs be a soft constraint with a decomposition-based violation measure defined using a
monotonic combining function. Let (~X, ~U, T1, S1, w1) be the decomposition of C(~X) and
(~XY, ~V , T2, S2, w2) be the decomposition of C(~XY). If (~X, ~U, T1, S1, w1) is covered by
(~XY, ~V , T2, S2, w2) via a substitution that is the identity on ~X then Cs is contractible.

18

Proof

By the covering condition, there is a substitution θ that is the identity on ~X and maps ~U to
~V ∪ ~XY ∪Σ such that (S1, w1)θ is a sub-weighted set of (S2, w2). Consider any assignment
v to ~XY ∪ ~V . Then v ◦ θ is an assignment9 to ~X ∪ ~U . Furthermore, v((S1, w1)θ) is a sub-
weighted set of v(S2, w2) and hence e(v◦θ, (S1, w1)) = e(v, (S1, w1)θ) is a sub-weighted set
of e(v, (S2, w2)). Consequently, since the combining function comb is monotonic, comb(e(v◦
θ, (S1, w1))) ≤ comb(e(v, (S2, w2))). It follows that m(v(~X)) ≤ m(v(~XY)). Thus, since v
is arbitrary, m is non-decreasing and, by Proposition 8, Cs is contractible.

It follows that the constraints in Examples 3 and 4 are contractible. More generally,
if an unweighted decomposition is defined via part of the algebra discussed in Section 4
(that is, using Slide or Splash meta-constraints, constraints on a fixed finite prefix of the
variable sequence, conjunction and existential quantification) and a monotonic combining
function then Proposition 14 is sufficient to establish contractibility. However, covering is
not a necessary condition for contractibility, as the following example demonstrates.

Example 5
Consider the definition of a rising sawtooth relation rs on variables ~X. In such a relation,
the subsequence of values in even numbered positions forms a non-decreasing sequence,
and every value in odd numbered positions is greater than or equal to its immediately
adjacent neighbours. 10 This relation can be decomposed into elementary constraints as
follows. The decomposition is defined recursively, but notably requires two recursive cases,
corresponding to the distinction between odd and even length sequences.

decomp(rs([])) = true
decomp(rs([X1])) = true
decomp(rs([X1, X2])) = X1 ≥ X2

decomp(rs([X1, . . . , X2n, X2n+1])) =
decomp(rs([X1, . . . , X2n])) ∧X2n+1 ≥ X2n

decomp(rs([X1, . . . , X2n, X2n+1, X2n+2])) =
decomp(rs([X1, . . . , X2n])) ∧X2n+1 ≥ X2n+2 ∧X2n+2 ≥ X2n

Consider the soft constraint derived from this decomposition by counting the number
of violations. It is clear that the sufficient condition of Proposition 14 does not apply
because there is no covering. Nevertheless, we can verify that a decomposition-based soft
rs constraint is contractible. Note first that when ~X has even length decomp(rs(~X)) ⊆
decomp(rs(~XY)) and consequently the violation measure is non-decreasing in this case.
When ~X has odd length the relationship is less obvious. However, we know that

(X2n+1 ≥ X2n+2) ∧ (X2n+2 ≥ X2n) → (X2n+1 ≥ X2n)

and its contrapositive

¬(X2n+1 ≥ X2n) → ¬(X2n+1 ≥ X2n+2) ∨ ¬(X2n+2 ≥ X2n)

Hence, any valuation for the variables that gives rise to a violation ofX2n+1 ≥ X2n will also
give rise to a violation of X2n+1 ≥ X2n+2, or X2n+2 ≥ X2n, or both. Thus the violation
measure is non-decreasing in this case also. Since the violation measure is non-decreasing,
the decomposition-based soft rs constraint is contractible.

Similarly, the violation measures derived from summing the amount of violation or
taking the maximum amount of violation of any elementary constraint lead to contractible
soft rs constraints.

9 We define (v ◦ θ)(x) = v(xθ) for any term x.
10 This is an artificial constraint, designed to demonstrate the point. However, the pricing of

goods with volume discounts can have a similar rising sawtooth behaviour.

19

This example demonstrates a major limitation of the sufficient condition in Proposition
14: it addresses only the syntactic structure of the decomposition. However some con-
straints, such as rs, require reasoning about the semantics of the elementary constraints
in order to recognise that the decomposition-based soft constraint is contractible. (For rs
we exploited the knowledge that ≥ forms a total order.)

A second example is given by a decomposition ofAllDifferent given in (Bessiere et al. 2009).

Example 6

Consider the AllDifferent constraint with type T that maps each Xi to 1..d, which we
denote by AllDifferentT . To define the decomposition we need to introduce variables
Ailu of type {0, 1} and constraints as follows.

For 1 ≤ i ≤ n and 1 ≤ l ≤ u ≤ d we have the constraints

Ailu = 1 ↔ Xi ∈ [l, u] (1)

n∑

i=1

Ailu ≤ u− l + 1 (2)

This decomposition is formalized as (~X, ~A, T ′, S, w) where T ′ extends T to the Ailu vari-
ables, S consists of the constraints (1) and (2) and w gives all constraints the same weight.
It is easy to establish that AllDifferentT (~X) ↔ ∃ ~A ∈ T ′(~A) (1) ∧ (2).

When ~X is extended by Y , the decomposition contains extra variables A(n+1)lu, extra
constraints of type (1) involving Y and the new variables, and replaces constraints (2) by

n+1∑

i=1

Ailu ≤ u− l + 1 (3)

Now, for each l and u, (3)∧(0 ≤ A(n+1)lu ≤ 1) → (2). Thus, every valuation that violates
(2) will also violate (3). It follows that the soft constraint based on counting violations
in this decomposition of AllDifferent is contractible. Similarly, soft constraints based
on summing violation amounts or taking the maximum are also contractible, because∑n+1

i=1 Ailu ≥
∑n

i=1Ailu.

On the other hand, the decomposition of AllDifferent(~XY) cannot be a covering of
the decomposition of AllDifferent(~X), because each constraint (2) is not covered by
the corresponding constraint (3). Thus, again, the sufficient condition of Proposition 14
cannot be used.

To redress the weakness of covering in addressing Examples 5 and 6 we need to incor-
porate knowledge of the semantics of the elementary constraints and, more generally, the
error function. We begin with some definitions.

A division of a weighted set (S,w) is a collection of sub-weighted sets (Si, wi) such
that ∪i (Si, wi) = (S,w). When all Si are singleton sets we refer to this as division into
singletons. Given a weighted set (S,w), we write wθ to denote the weight function of
(S,w)θ.

Definition 8

A semantic embedding of (~X, ~U, T1, S, w) in (~XY, ~V , T2, S
′, w′) is a pair 〈φ, θ〉, where φ is

a function and θ is a substitution, such that

• θ is the identity on ~X and maps ~U into ~XY ∪ ~V ∪Σ, where Σ is a set of constants,
such that T2(~Uθ) ⊆ T1(~U);

• φ is an injective function from (S,w)θ to a division of (S′, w′); and
• for every valuation v and every elementary constraint c ∈ Sθ, e(v, ({c}, wθ)) ≤
comb(e(v, φ(c))).

20

In a semantic embedding, the substitution θ shows how variables local to the first
decomposition are represented in the second and the function φ shows how elementary
constraints in the first decomposition are represented in the second. The third condition
requires that these representations respect the semantics expressed by the error function
e.

Covering is essentially a syntactic form of semantic embedding: a semantic embedding
where (S′, w′) is divided into singletons and any constraint cθ in Sθ is mapped to cθ in
S′.

We are now in a position to state a much broader sufficient condition for contractibility
than Proposition 14.

Theorem 15
Let Cs be a soft constraint with a decomposition-based violation measurem defined using a
monotonic combining function comb. Let (~X, ~U, T1, S1, w1) be the decomposition of C(~X)
and (~XY, ~V , T2, S2, w2) be the decomposition of C(~XY). Suppose there is a semantic
embedding of (S1, w1) in (S2, w2). Then Cs is contractible.

Proof
Consider the extension of ~X to ~XY and a valuation v on ~XY ~V . Let 〈φ, θ〉 be the se-
mantic embedding. Then, for every elementary constraint c ∈ S1θ, e(v, ({c}, w1θ)) ≤
comb(e(v, φ(c))). Hence e(v◦θ, (S1, w1)) = e(v, (S1, w1)θ) = comb(

⋃
c∈S1θ

e(v, ({c}, w1θ))) ≤
comb(

⋃
c∈S1θ

e(v, φ(c))) ≤ comb(e(v, (S2, w2))).
Since comb is monotonic, comb(e(v ◦θ, (S1, w1))) ≤ comb(e(v, (S2, w2))). It follows that

minv comb(e(v, (S1, w1))) ≤ minv comb(e(v, (S2, w2))), and hencem(C(~X)) ≤ m(C(~XY)).
Thus Cs is contractible.

For (unweighted) violation counting measures, the third condition of semantic em-
bedding reduces to D |= (T2(~V) ∧ φ(c)) → cθ, where D expresses some properties of
the elementary constraints. Thus, for these measures, we can reason about contractibil-
ity using conventional logic. In Example 5, θ can be the identity substitution, since
no additional variables are used in the decomposition, and φ maps (X2n+1 ≥ X2n) to
(X2n+1 ≥ X2n+2)∧ (X2n+2 ≥ X2n). We know that (X2n+1 ≥ X2n+2)∧ (X2n+2 ≥ X2n) →
(X2n+1 ≥ X2n) so, applying the previous theorem, a violation counting soft constraint of
rs is contractible. In Example 6, using the natural choice of φ and θ (which maps variables
Ailu in decomp(C(~X)) to variables of the same name in decomp(C(~XY)), constraints
(1) to themselves, and constraints (2) to (3)), the validity of (3) ∧ (0 ≤ A(n+1)lu ≤ 1) →
(2), and the previous theorem, we establish that the violation counting soft version of
AllDifferent based on this decomposition is contractible.

There are two possible generalizations of the notion of semantic embedding that might
be used to create a broader sufficient condition for contractibility. The first is to change the
domain of φ from (S,w)θ to an arbitrary division of (S,w)θ. The current definition essen-
tially only applies to the division of (S,w)θ into singletons {c}. This generalization would
allow the embedding to hold for some grouping of constraints in the first decomposition,
even when the individual constraints cannot be embedded in the second. A second possible
generalization is to employ multiple pairs 〈φ, θ〉 with a disjunctive condition. Such a gen-
eralization has been shown necessary to characterize conjunctive query containment/rule
subsumption when queries/rules involve pre-defined relations (i.e. constraints) (Klug 1988;
Maher 1993). These generalizations are left for future research.

7.2 Edit-based Violation Measures

The edit-based violation measures use a notion of edit distance, which is the minimum
number of edit operations required to transform a word into a word of LC . There are many

21

possible edit operations but the common ones are: to substitute one letter for another, to
insert a letter, to delete a letter, and to transpose two adjacent letters.11 This class includes
the variable-based violation measures (Petit et al. 2001; van Hoeve et al. 2006), since such
measures are simply edit distances where substitution is the only edit operation. The
object-based measures of (Beldiceanu and Petit 2004) are edit distances where deletion
is the only edit operation. In (van Hoeve et al. 2006), an edit-based measure involving
substitution, insertion and deletion is used.

To address a wide range of edit-based measures, we generalize the measures. We allow
non-negative weights α, β, γ, δ for the edit operations substitution, insertion, deletion and
transposition, respectively, and let ns, ni, nd, nt be the number of the respective operations
used in an edit. Then we definemL(w) = minedits αns+βni+γnd+δnt to be the minimum,
over all edits that transform w to an element of P (L), of the weighted sum of the edit
operations. We refer to all measures of this form as edit-based. Measures based on a subset
of the four edit operation can be captured by giving effectively infinite weights to the other
operations.

The edit-based violation measures used for closed constraints are not appropriate for
open constraints, because they fail to take into account that the current sequence of
variables may be extended with more variables.

For example, consider an open constraint C where LC = abc+defghi and an occurrence
of the constraint C([X1, X2, X3]). If X1 = d, X2 = e and X3 = f then the unweighted
edit distance of this instance to LC is 3, even though this instance is completely accurate
if the sequence of variables is extended. Similarly, if LC = abc and we have an occurrence
C([X1, X2]) with X1 = a and X2 = b then the unweighted edit distance is 1, even though
there is no violation.

To take account of the possibility that a sequence of variables may be extended, we
employ the edit distance to P (LC), the prefix-closure of LC . In Section 6 the prefix-closure
was used to approximate a constraint so that constraint propagation is sound when the
constraint is open. The use of the prefix closure here is somewhat different from its use in
that section: rather than using P (LC) as an approximation to LC , P (LC) is used here to
formulate what it means to be an (edit-based) open soft constraint.

Definition 9
An open edit-based violation measure for a language L is an edit-based violation measure
mP (L) for P (L). An open edit-based violation measure m for L is proper if m(w) = 0 iff
w ∈ P (L). Since, in this paper, we only consider open edit-based measures they will simply
be referred to as edit-based violation measures, except in the statement of theorems.

As a result of this definition, prefix-equivalent languages have the same possible edit-
based (proper) violation measures. When L is clear from the context, we simply write m
rather than mL.

We can characterize when an open edit-based violation measure is proper. Roughly, m
is improper iff some edits have zero cost and these are able to edit some w ∈ L′\P (L) to
w′ ∈ P (L).

Proposition 16
Let m be an open edit-based violation measure for L where P (L) is a sublanguage of L′,
with weights α, β, γ and δ.
m is proper iff one of the following conditions holds:

• min{α, β, γ, δ} > 0
• α = 0, min{β, γ} > 0 and L′ ∩ SameLength(P (L)) ⊆ P (L)

11 Edit distance based on counting these operations is known as Damerau-Levenshtein distance.
Other well-known edit distances are defined using a subset of these operations.

22

• β = 0, min{α, γ, δ} > 0 and L′ ∩ SubSeq(P (L)) ⊆ P (L)
• γ = 0 and L′ ⊆ P (L)
• δ = 0, min{α, β, γ} > 0 and L′ ∩ Perm(P (L)) ⊆ P (L)
• α = β = 0, γ > 0 and L′ ⊆ Shorter(P (L))
• β = δ = 0, min{α, γ} > 0 and L′ ∩ Subset(P (L)) ⊆ P (L)

where, for any language L,
SameLength(L) is the set of all words of the same length as a word of L,
Shorter(L) is the set of all words the same length or shorter than a word of L,
Perm(L) is the set of all permutations of words of L,
SubSeq(L) is the set of all subsequences of a word of L, and
Subset(L) is set of all words whose letters form a submultiset of the letters of a word of
L.

Proof
Looking at the different constraints on the weights it is easy to see that the conditions are
mutually exclusive and they cover all possible combinations of weights. Thus to prove the
characterization it is sufficient to show, in each case, that m is proper iff the remaining
condition in the case holds.

If min{α, β, γ, δ} > 0 then m(w) = 0 iff no edits are required to transform w to a word
of P (L) iff w ∈ P (L). Thus, in this case, m is proper.

Let α = 0, and min{β, γ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can
be edited by substitutions (and possibly transpositions if δ = 0) to a word of P (L) iff
w is the same length as a word of P (L). From the definition of proper, m is proper iff
P (L) ∩ L′ = SameLength(P (L))∩ L′, that is L′ ∩ SameLength(P (L)) ⊆ P (L).

Let β = 0 and min{α, γ, δ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can be
edited by insertions to a word of P (L) iff w is a subsequence of a word of P (L). Hence m
is proper iff P (L) ∩ L′ = Subseq(P (L)) ∩ L′.

If γ = 0 then for every word w ∈ L′, m(w) = 0 because w can be edited by deletions to
the empty word, which is in P (L). Hencem is proper iff L′ = P (L)∩L′, that is L′ ⊆ P (L).

Let δ = 0 and min{α, β, γ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can be
edited by transpositions to a word of P (L) iff w is a permutation of a word of P (L). Hence
m is proper iff P (L) ∩ L′ = Perm(P (L))∩ L′.

Let α = β = 0 and γ > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can be edited
by insertions and substitutions to a word of P (L) iff w can be obtained by deletions and
substitutions from a word of P (L) iff w is shorter than a word of P (L). Hence m is proper
iff P (L) ∩ L′ = Shorter(P (L)) ∩ L′.

Let β = δ = 0 and min{α, γ} > 0. Then, for any word w ∈ L′, m(w) = 0 iff w can
be edited by insertions and transpositions to a word of P (L) iff w can be obtained by
deletions and transpositions from a word of P (L) iff the letters of w form a submultiset of
the letters of a word of P (L). Hence m is proper iff P (L) ∩ L′ = Subset(P (L)) ∩ L′.

Before presenting the main result on contractibility of edit-based soft constraints we
need to introduce some preliminary results on weighted edit distance.

We say a sequence of edit operations is in normal form if the edit operations are
grouped by type so that all deletions are performed before all transpositions, which are
performed before all substitutions, before all insertions, and no letter is subject to two or
more substitutions. It is not difficult to show that any edit sequence has a corresponding
sequence in normal form that achieves the same result at lower or equal cost.

Lemma 17
Consider a weighted edit-distance and a word ~a. For any edit sequence that maps ~a to ~b,
there is an edit sequence in normal form that also maps ~a to ~b with a shorter or equal
weighted edit distance.

23

It is straightforward to see that, for any edit sequence not involving transposition and
any weighted edit measure, there is an equivalent edit sequence where each letter is edited
at most once. Provided the edit weights satisfy a simple property, this result extends to
edit sequences involving transposition.

Proposition 18
Consider an edit-based violation measure where β + γ ≤ 2δ. Suppose we wish to edit a
word ~a so that it appears in a language L. Then there is an edit of minimal cost where no
letter is subject to more than one edit operation.

Proof
Suppose β+ γ ≤ 2δ and consider any edit sequence that maps ~a to ~b ∈ L. We can assume
(Lemma 17) that edit operations are grouped: deletions, then transpositions, substitutions,
and finally insertions.

Suppose a letter a that participates in a transposition also participates in another edit
operation. Then the second operation is either another transposition or a substitution.

In the former case, consider all transposition operations that are applied to a. The
effect of these edits is to move a from some position i to a position j. This sequence can
be replaced by the deletion of a at position i and the insertion of a at position j. The
revised edit sequence has a lower or equal cost because β + γ ≤ 2δ and we assumed that
at least two transpositions are involved.

In the latter case, aa′ is edited to a′a and later a is changed to b, for some a′ and b. We
can achieve the same effect by substituting a′ for a and b for a instead of the transposition
and substitution. The revised edit sequence has lower or equal cost if α ≤ δ. Alternatively,
we can replace the original edit operations by the deletion of a and the insertion of b
on the right of a′. This revised edit sequence has lower or equal cost if δ ≤ α, because
β + γ ≤ 2δ ≤ α + δ. Thus, independent of whether α ≤ δ or δ ≤ α, a lower cost edit
sequence is obtained with fewer instances of a letter involved in two edit operations.

The remaining possibility is that a substitution operation is applied twice to a letter.
It is clear that the first substitution operation can be omitted.

Repeatedly applying normal form transformations and the edit modifications described
above, all occurrences of a letter being edited twice can be removed.

In particular, this lemma holds when the edit operations are unweighted (that is, when
α = β = γ = δ). The property that each letter is edited at most once is important for
network flow implementations of propagators such as the propagators for soft Regular

in (van Hoeve et al. 2006; Maher 2009d).
Edit-based violation measures are monotonic with respect to both the weights and the

language.

Lemma 19
Letm (m′) be edit-based violation measures with weights α, β, γ, δ (respectively α′, β′, γ′, δ′)
for the same language. If α ≤ α′, β ≤ β′, γ ≤ γ′ and δ ≤ δ′ then, for all words w,
m(w) ≤ m′(w).

Proof
For every word w, consider an edit that achieves the minimum violation m′(w). Let
ns, ni, nd, nt be the number of the respective operations used in the edit. Then m′(w) =
α′ns + β′ni + γ′nd + δ′nt ≥ αns + βni + γnd + δnt ≥ m(w). Hence m(w) ≤ m′(w).

Lemma 20
Let m1 and m2 be edit-based violation measures with the same weights, for languages L1

and L2 respectively. If L1 ⊆ L2 then for all words w, m1(w) ≥ m2(w).

24

Proof

For every word w, any edit to L1 is also an edit to L2. Since an edit-based violation
measure minimizes over all edits, we must have m1(w) ≥ m2(w).

In many cases, edit-based violation measures lead to contractible soft constraints.

Theorem 21

Let Cs be a soft constraint with an open edit-based violation measure, and suppose
min{α, β, γ} ≤ δ.

Then Cs is contractible.

Proof

Consider the sequence of edits that transforms an instance ~aa′ of ~XY into an element ~b
of P (LC) at minimum cost. By Lemma 17 we can assume that all deletions occur before
any transpositions, and all insertions and substitutions occur after all transpositions. We
now identify modifications of this sequence of edits that transform ~a into an element of
P (LC) at lower (or equal) cost than the original sequence.

If a′ is deleted in the original sequence, then the sequence of edits omitting this deletion
transforms ~a to ~b at lower or equal cost. Otherwise, if a′ is not involved in a transposition,
then the subsequence of edits that do not involve a′ transforms ~a into a prefix of ~b (which
is an element of P (LC)). The subsequence has a lower or equal cost, since it involves a
subset of the edits.

The remaining possibility is that a′ is involved in a transposition. Let p be the position
of a′ after all transpositions. The sequence of edits that omits all transpositions involving
a′ and then inserts a′ at position p transforms ~a to ~b. These edits have a lower or equal
cost if β ≤ δ.

Alternatively, let the length of ~aa′ after all deletions be n+ 1 (so that a′ is in position
n+1). Every transposition involving position n+1 in the original sequence can be replaced
by a substitution that replaces the letter at position n by the letter at position n + 1 at
the corresponding stage of the original transformation. This transforms ~a into a prefix of
~b at lower or equal cost if α ≤ δ.

Finally, let ~a1a
′ ~a2 be the result of deletions and transpositions on ~aa′. The length of ~a2

is a lower bound for number of transpositions involving a′ in editing ~a into ~b. The sequence
of edits that deletes all letters of ~a2 and applies all substitutions and insertions that apply
to ~a1 transforms ~a into a prefix of ~b. These edits have a lower or equal cost if γ ≤ δ since
transpositions are replaced by deletions and some edits might now be omitted.

In each case, for all words ~aa′, we find that ~a has a smaller weighted edit distance
to P (LC) than ~aa′. This demonstrates that the violation measure is non-decreasing and
hence, by Proposition 8, Cs is contractible.

Example 7 below shows that this theorem cannot be strengthened without imposing
extra conditions on Cs.

It follows from the theorem that edit-based measures that only involve substitutions,
insertions and deletions provide contractible constraints. Thus the variable-based measures
(Petit et al. 2001; van Hoeve et al. 2006), the object-based measures (Beldiceanu and Petit 2004),
and the edit-based measures of (van Hoeve et al. 2006) induce contractible soft constraints.

For order-free constraints, transposition is not needed in an edit and can be effectively
given infinite weight. Thus, by Theorem 21, we have

Corollary 22

If C is an order-free constraint and the corresponding soft constraint Cs is based on an
open edit-based violation measure m, then Cs is contractible.

We also have the following curious result.

25

Corollary 23

Let Cs be a soft constraint based on an open edit-based violation measure m with weights
α, β, γ, δ for the hard constraint C. If any of α, β, γ, or δ is 0 then Cs is contractible.

Proof

If α, β or γ is 0 then the condition of Theorem 21 is satisfied and consequently Cs is
contractible. If δ is 0 then transpositions can place the letters in a word in any order, at
no cost. Let

C′([X1, . . . , Xn]) ↔
∨

π

C([Xπ(1), . . . , Xπ(n)])

where the disjunction is over all permutations π of 1..n. Then the violation measure m of
C is equal to the violation measure m′ of C′, where m′ uses the same weights as m. C′ is
order-free and, by Corollary 22, is contractible.

From these results we see that soft constraints based on a wide range of edit-based
measures are contractible. However, when transpositions are allowed and have a compar-
atively low cost, an edit-based violation measure can lead to a soft constraint that is not
contractible.

Example 7

Consider a constraint C with LC = (ab)∗ + (ab)∗a, which is a prefix-closed language, and
consider the corresponding soft constraint Cs that uses an edit-based violation measure.
Suppose δ < min{α, β, γ}. The word abba has edit distance δ, by transposing the last two
letters, but its prefix abb has edit distance min{α, β, γ}, since we could either substitute
a for b, insert a before the second b, or delete a b. Thus the weighted edit-based violation
measure is not non-decreasing and hence, by Proposition 8, Cs is not contractible.

This example reinforces a point made earlier: the introduction of P (LC) to the definition
of edit-based violation measure plays a different role than its use for hard constraints; in
this case, its use does not ensure contractibility.

8 Contractible Approximations of Soft Constraints

Although we have identified powerful sufficient conditions for soft constraints to be con-
tractible, we must also be able to support uncontractible soft constraints. As with hard
constraints, when a soft constraint is uncontractible we can use a contractible approxima-
tion as the basis for filtering while the constraint is open.

We reformulate the notion of tight approximation for soft constraints of the form
m(~X) ≤ Z as follows. A violation measure m1 is an approximation of the violation mea-
sure m if, for all words ~a, m1(~a) ≤ m(~a). We order violation measures with the pointwise
extension of the ordering on the reals: m1 ≤ m2 iff ∀~a m1(~a) ≤ m2(~a). A contractible
approximation m1 to a violation measure m is tight if, for all contractible functions m2,
if m1 ≤ m2 ≤ m then m2 = m1. Given two contractible approximations m1 and m2 to a
violation measure m, we say m2 is tighter than m1 if m1 ≤ m2. We write m∗ to denote
the tightest contractible approximation of m.

We can characterize the tightest contractible approximation of a violation measure,
independent of how the violation measure is formulated.

Proposition 24

Let m be a violation measure. The tightest contractible approximation to m is character-
ized by m∗(~a) = inf~bm(~a~b), where the infimum is taken over all finite sequences ~b.

26

Proof

By definition, m∗(~a) ≤ m(~a), so m∗ approximates m. Consider a sequence ~a and a letter

c. m∗(~ac) = inf~bm(~ac~b) ≥ infc~bm(~ac~b) ≥ inf{m(~a), infc~bm(~ac~b)} = m∗(~a). Thus m∗ is
contractible.

Suppose some function k is a strictly tighter contractible approximation thanm∗. Then,
for some ~a, k(~a) > m∗(~a), that is, k(~a) > inf~bm(~a~b). Hence, there is a ~d such that k(~a) >

m(~a~d). But, for any ~c, k(~a~c) ≥ k(~a). Thus we have m(~a~d) > m(~a~d). This contradiction
shows that k cannot exist; m∗ is the tightest contractible approximation to m.

This proposition only provides a mathematical characterization; it does not suggest an
implementation. Indeed, it appears very difficult to implement this tightest contractible
approximation, in general, in contrast to the tightest contractible approximation of hard
constraints. Nevertheless, we can identify some contractible approximations.

8.1 Decomposition-based Violation Measures

One way to obtain a contractible approximation to a decomposition-based soft constraint
is to ignore parts of a decomposition that cause incontractibility. A weakening of a de-
composition of a constraint C(~X) is a function that, for every sequence ~X, maps the
decomposition (~X, ~U, T, S,w) to (~X, ~U, T, S′, w′) where (S′, w′) is a sub-weighted set of
(S,w). For this weakened decomposition we can apply the sufficient condition of Theorem
15.

Proposition 25

Consider a decomposition-based violation measure m for a constraint C(~X) and a weak-
eningW of the decomposition. Suppose m is defined via a monotonic combining function.
If, for every sequence ~X , the weakening of the decomposition of C(~X) can be semantically
embedded in the weakening of the decomposition of C(~XY) then the measure m′ defined
by using the weakened decompositions is a contractible approximation of m.

Proof

m′ is an approximation of m because the combining function is monotonic and the weak-
ened decomposition employs a sub-weighted set of the original decomposition. m′ is con-
tractible by application of Theorem 15.

This result shows an approach to finding a contractible approximation to Cs(~X). How-
ever, there is no guarantee that it will find a good approximation; in the worst case it
might provide only the trivial approximation, where all of C(~X) is ignored. Nevertheless,
it appears to be useful.

The next example presents an uncontractible decomposition-based soft constraint. It
employs a decomposition of the global cardinality constraintGCC given in (Bessiere et al. 2009).

Example 8

Consider the global cardinality constraint GCC(~X,~l, ~u) with type T that maps each Xi

to 1..d, which we denote by GCCT . This constraint expresses that, for each value t in 1..d,
the number of occurrences of t in ~X lies between lt and ut (ut may be infinite). ~l and ~u are
fixed. To define the decomposition of (Bessiere et al. 2009) we need to introduce variables
Ailu of type {0, 1} and Nlu of type non-negative integers, and elementary constraints as
follows. Let n = | ~X |.

For 1 ≤ i ≤ n, 1 ≤ l ≤ u ≤ d and 1 ≤ k < u we have the constraints

Ailu = 1 ↔ Xi ∈ [l, u] (4)

27

Nlu =

n∑

i=1

Ailu (5)

N1u = N1k +N(k+1)u (6)

u∑

j=l

lj ≤ Nlu ≤
u∑

j=l

uj (7)

Formally, the decomposition of GCCT is (~X, ~A, ~N, T ′, S, w) where T ′ is the extension of
T to ~A and ~N , S is the collection of (4), (5), (6), and (7), and w is a constant function.

It is easy to establish that GCCT (~X,~l, ~u) ↔ ∃ ~A ∈ T ′(~A) ∃ ~N ∈ T ′(~N) S.
When ~X is extended by Y , the decomposition contains extra variables A(n+1)lu, extra

constraints of type (4) involving Y and the new variables, and replaces constraints (5) by

Nlu =
n+1∑

i=1

Ailu (8)

Consider an occurrence of the constraint GCCT ([X1, X2], [0, 1, 0, 0], [2, 2, 2, 2]) where
T (Xi) is 1..4. Consider a valuation v where X1 = 1, X2 = 1. For all extensions of v to ~A
and ~N there will be an elementary constraint violated (fundamentally because the lower
bound for occurrences of the domain value 2 has not been satisfied). If ~X is extended by
X3 and v has X3 = 2 then v can be extended to ~A and ~N in the obvious way to satisfy
all elementary constraints. Thus any proper violation measure for GCC based on this
decomposition is not contractible.

Let m be a proper violation measure that is defined with a combining function that is
monotonic and has unit 0. If we weaken the decomposition by ignoring the lower bounds
in (7) then we have a contractible approximation m′ of m. (This is essentially the same
as for the tight contractible approximation of the hard GCC constraint, which is also
obtained by ignoring lower bounds. This point is not so surprising when we recall that the
hard constraint is a special case of the soft constraint.) We can see this using the natural
semantic embedding (which maps all constraints to themselves, except that (5) is mapped
to (8)) and Proposition 25.

We conjecture that the weakening of the soft GCC constraint in this example is its
tightest contractible approximation. However, the many variables and constraints in the
decomposition make it difficult to confirm this conjecture.

8.2 Edit-based Violation Measures

Recall that an edit-based violation measurem is contractible if δ ≥ min{α, β, γ} (Theorem
21). If δ < min{α, β, γ} then m might be uncontractible and we must consider contractible
approximations. We can provide generic contractible approximations for edit-based soft
constraints by modifying the weights to accord with the sufficient conditions of Theorem
21 and Corollary 23.

Proposition 26
Let m be an open edit-based violation measure for a constraint C with weights α, β, γ, δ
where δ < min{α, β, γ}. Then the following violation measures are contractible approxi-
mations of m for C.

1. m1 based on weights δ, β, γ, δ (that is, α := δ)
2. m2 based on weights α, δ, γ, δ (that is, β := δ)

28

3. m3 based on weights α, β, δ, δ (that is, γ := δ)
4. m4 based on weights α, β, γ, 0 (that is, δ := 0)
5. m5 defined by m5(w) = max{m1(w),m2(w),m3(w),m4(w)}

Proof

By Lemma 19, for any w, m1(w) ≤ m(w), m2(w) ≤ m(w), m3(w) ≤ m(w), and m4(w) ≤
m(w). It then follows from the definition of m5 that m5(w) ≤ m(w). Thus m1, m2, m3,
m4 and m5 are approximations of m. By Theorem 21, m1, m2, and m3 are contractible
and, by Corollary 23, m4 is contractible. For any word w and letter a,

m5(wa) = max{m1(wa),m2(wa),m3(wa),m4(wa)}
≥ max{m1(w),m2(w),m3(w),m4(w)}
= m5(w)

using the contractibility of m1, . . . ,m4.
Thus m5 is contractible.

Note that, by Lemma 19, other uses of Corollary 23 yield only measures that are not
as tight as m1, m2, or m3. Clearly m5 is the tightest of these approximations. However,
in general, this approximation is not tight, as the following example shows.

Example 9

Let L = (abc)∗, so that P (L) = L ∪ La ∪ Lab. Let α = β = γ = 4 and δ = 1. Consider
w = bbb(abc)3ca. Two kinds of edits are needed, addressing the initial b’s and the trailing
ca. Then m(w) = 12 from substituting for the first and third b, and deleting the last c.
m(wb) = 10 using the same substitutions and two transpositions on c. Thus m is not
contractible.

Notice that the initial b’s in w are too far from the end of w to be cheaply addressed by
transpositions. For example, the cost of moving the third b to the trailing ca is 6, which is
more expensive than addressing it by substitution. The other b’s are even more expensive
to address by transposition. Thus the minimal cost of addressing the initial b’s is 8. The
minimal cost of addressing the trailing ca arises when a b is appended to the end of w and
c is transposed twice. This has a cost of 2, and it is easy to see that no word appended to
w will allow ca to be addressed by a single transposition. Thus the tightest approximation
to m has m∗(w) = 10.

Now consider the approximations in Proposition 26. If we reduce α to 1 then m1(w) = 4
by applying four substitutions. If we reduce β to 1 then m2(w) = 8 by inserting a and c
around each initial b and inserting ab before the last c. If we reduce γ to 1 then m3(w) = 4
by deleting the three b’s and the last c. If we reduce δ to 0 then m4(w) = 4 by applying
transpositions to reorder w to (abc)4bb and then substituting a for b. Thus m5(w) = 8.

This shows that m5 is not the tightest contractible approximation to m, since m5(w) 6=
m∗(w).

The question now arises: how to express m∗ in edit-based terms so that a closed prop-
agator for m(~X) ≤ Z might be adapted to implement m∗(~X) ≤ Z, as was done for hard
constraints in Section 6. Disappointingly, this turns out to be impossible, in general.

We first establish a straightforward lemma that gives a simple way of identifying the
value of m∗(w) in some cases.

Lemma 27

Let m∗ be the tightest contractible approximation to an edit-based violation measure m.
Let w be a word. If, for all words u, m(wu) ≥ m(w) then m∗(w) = m(w).

29

Proof

If, for all words u, m(wu) ≥ m(w) then infum(wu) ≥ m(w). Thus m∗(w) ≥ m(w). Since
m∗ approximates m, m∗(w) ≤ m(w). Hence, m∗(w) = m(w).

Now we show that, in general, the tightest contractible approximation m∗ to an edit-
based violation measure m cannot be expressed as a proper edit-based violation measure.

Theorem 28

There is an open edit-based violation measure m for a language L such that its tightest
contractible approximation cannot be expressed as a proper edit-based violation measure
on any language.

Proof

Consider the alphabet Σ = {a, b, c, d}. As in Example 9, let L = (abc)∗ (so P (L) =
L∪La∪Lab), consider P (L) as a sublanguage of Σ∗, and let m be the edit-based violation
measure for L where α = β = γ = 4 and δ = 1. As shown in Example 9, m is not
contractible. Note that m is proper. Let m∗ be the tightest contractible approximation
to m. Suppose m∗ can be expressed as a proper edit-based violation measure m′ on some
language L′.

Suppose there is some word w such that w ∈ L′\P (L). Thenm′(w) = 0. Hencem∗(w) =
0 and, from Proposition 24, there is a word u such that m(wu) = 0. Since m is proper,
wu ∈ P (L) and hence w ∈ P (L). This contradiction shows that no such w exists and
hence L′ ⊆ P (L).

For every w ∈ L, m(w) = 0. Hence m∗(w) = 0 and m′(w) = 0. Hence w ∈ L′, since m′

is proper. Hence L ⊆ L′.
There are weights α′, β′, γ′, and δ′ used to define m′. We now consider different words

w of Σ∗ and derive conditions on the weights of m′. We use the fact that every edit of w to
P (L) must have cost greater than or equal to m∗(w). Because L′ ⊆ P (L), the conditions
we derive about editing a word to P (L) also apply to L′.
w = d.

m(w) = 4 by deleting d and no word wu has a smaller violation measure because d must
be deleted or substituted. Thus, by Lemma 27, m∗(w) = 4. w might be edited to L (and
hence also L′) by deleting d or substituting a for d. This gives rise to the conditions γ′ ≥ 4
and α′ ≥ 4 since, for example, if γ′ = 3 then m′(w) = 3 6= m∗(w).
w = bc(abc)3.

m(w) = 4, by inserting a at the beginning of w. No word wu has a lower cost because the
initial bc is too far from the end of w to use transposition from u at a lower cost. Thus
m∗(w) = 4. From this we obtain the condition β′ ≥ 4, among others.
w = ba.

m(w) = 1 by transposition and we find that m∗(w) = 1. Because we know that α′ ≥ 4,
β′ ≥ 4 and γ′ ≥ 4, we must have δ′ = 1.

[We can now establish that L′ ⊆ (a+b+c)∗. For any word w involving d,m(w) ≥ 4, since
the d must be deleted or substituted. That includes wu, for any u, and hence m∗(w) ≥ 4
for any word containing d. Consequently, also m′(w) ≥ 4 and, since m′ is proper, L′ does
not contain a word involving d.]
w = adc.

m(w) = 4 = m∗(w). Given that δ′ = 1 and the small size of w, no word is edit distance
4 from w using transposition alone. But α′ ≥ 4, β′ ≥ 4 and γ′ ≥ 4, so the minimum
cost edit from w to L′ does not involve transposition and the edit consists of a single
operation. Since L′ does not contain words involving d, the only candidates are deletion
or substitution of d. The deletion results in ac which is not in L′ since it is not in P (L).
Hence the only edit that can achieve this cost is a substitution of b for d, and α′ = 4.
w = d(abc)3.

30

As with w = d, m∗(w) = m(w) = 4. Given that α′ ≥ 4, only deletion of d can achieve this
cost. Hence γ′ = 4.
w = bc(abc)3, again.

Given that α′ ≥ 4 and γ′ ≥ 4, the only edit that can achieve m∗(w) = 4 is an insertion.
Hence β′ = 4.

Thus the weights for m′ are exactly the same as the weights for m. For every word w,
m′(w) ≥ m(w), by Lemma 20. From the definition of m∗, m(w) ≥ m∗(w). But m′ = m∗,
by assumption, and hence m∗ = m. But this is a contradiction, because by definition
m∗ is contractible, while m is not. Thus the assumption that m∗ can be expressed as an
edit-based violation measure is false.

The language and violation measure demonstrating this claim are those from Example
9. Given that the language is so simple, we can expect that many uncontractible edit-
based violation measures cannot be tightly approximated by a contractible edit-based
violation measure. This contrasts markedly with our work on hard constraints in Section
6, where tight contractible approximations of several uncontractible hard constraints were
formulated in terms of the original hard constraint.

It suggests some difficulties in implementing tight contractible approximations. It seems
that the edit-based implementation of the closed constraint is not a suitable basis for
implementing the tight approximation. At least we need a different framework if we are to
have a comprehensive method to derive open D-consistent propagators for incontractible
soft constraints.

It is demonstrated in (He et al. 2013) that using an approximation of the violation
measure of a closed edit-based soft constraint can lead to incorrect answers to constraint
problems. However, using a non-tight contractible approximation in an open constraint is
less serious, assuming the correct violation measure is used for the closed constraint: the
search may perform less-then-optimal pruning, leading to a greater search space than for
a tight contractible approximation, but not to incorrect answers. Thus, Theorem 28 does
not represent a failure of correctness, only a degree of inefficiency if a non-tight edit-based
contractible approximation is used.

9 Discussion

We have discussed open constraints where variables are added to the right-hand end of
the sequence. This directly affects the characterization of contractibility and the definition
of open D-consistency. If, instead, variables are added to the left-hand end then the ap-
propriate characterization of contractibility is suffix-closure. If additions may be made at
either end then contractibility requires both closures, which corresponds to closure under
taking subwords.12 Constraints like Sequence and Contiguity are subword-closed. Of
course, all order-free constraints are subword-closed. On the other hand, the lexicographic
ordering constraint ≤lex and the precedence constraint s ≺ ~X t are prefix-closed but not
suffix-closed, that is, they are contractible if variables are added on the right, but not if
variables are added on the left.

If additional variables may be inserted anywhere within the sequence then contractibil-
ity corresponds to closure under taking subsequences.13 Apart from the order-free con-
straints, it is not clear whether there is any useful constraint that is closed under taking
subsequences.

In (Maher 2009b) a dual notion to contractibility, called extensibility, is investigated.

12 A word w is a subword of a1 . . . an if w is empty or has the form aiai+1 . . . aj for some
1 ≤ i ≤ j ≤ n.

13 A word w is a subsequence of a1 . . . an if w is empty or has the form ai1 . . . aik for some k ≤ n
where 1 ≤ i1 < i2 < · · · < ik ≤ n.

31

In contrast to contractibility, in general there is no closure operation corresponding to
extensibility and consequently no tightest extensible approximation.

We have seen some differences between contractibility for hard and soft constraints. For
hard constraints contractibility depends on the relation whereas for soft constraints it de-
pends on the violation measure. For example, the soft Regular constraint is contractible
under the edit-based measure of (van Hoeve et al. 2006) but not under decomposition-
based measures. We have also seen that many tight contractible approximations of hard
constraints are similar to, though weaker than, the hard constraint. On the other hand,
for many soft constraints it appears that the tight contractible approximations cannot be
expressed in the same way as the soft constraint. This suggests that it may be difficult
to formulate full open D-consistent propagators, for example, for uncontractible open soft
constraints.

There are several similarities between violation measures and other treatments of soft
constraints. For example, the Valued CSP (Schiex et al. 1995) and the Semi-Ring CSP
(Bistarelli et al. 1997) frameworks define a soft constraint essentially as a function from
valuations to an ordered set (the set may be partially ordered in the case of SCSPs) that
might be considered a violation measure. Both frameworks use a combining function to
extend this definition to a collection of constraints, and so they are, in many ways, like
decomposition-based violation measures. However both frameworks consider only closed
constraints and focus on finite relations defined extensionally.

Weighted violation measures are used in (Métivier et al. 2007; Métivier et al. 2009). As
noted earlier, the decomposition measures presented here generalize the weighted decom-
position measures for Σ-AllDifferent and Σ-GCC (Métivier et al. 2007; Métivier et al. 2009).
However, the edit-based violation measures presented here do not generalize the weighted
edit distance for Σ-AllDifferent and Σ-Regular of (Métivier et al. 2007; Métivier et al. 2009).
These measure use only substitution edits but they assign weights to each variable.

Violation measures play a similar role to query measures (Maher and Stuckey 1989) that
were used to specify preferences on query solutions in a CLP system. In this context, con-
tractible violation measures are similar to pruning measures in (Maher and Stuckey 1989)
in that both are non-decreasing functions, although over different domains, and both per-
mit the safe pruning of search trees.

Contractible global soft constraints are amenable to a nested representation (Bessiere et al. 2014)
in a distributed constraint optimization setting, which has significant performance gains
over other representations (Bessiere et al. 2014).

Finally, we note that the semantics of soft constraints are examples of quantitative lan-
guages, in the terminology of (Chatterjee et al. 2010). From this point of view, an approxi-
mation of a violation measure is a quantitative language inclusion. However, (Chatterjee et al. 2010)
focuses on languages of infinite words defined via automata, so the results of (Chatterjee et al. 2010)
do not seem to have application to the subject of this paper. In (Colcombet 2009) a no-
tion of cost function on languages of finite words is used but this is only used to define
equivalence classes and is not related to this paper.

10 Conclusions

We have introduced the notion of contractibiliity of global constraints, which ensures that
constraint propagation for closed constraints is safe for open constraints, and characterized
it in language-theoretic terms. The concept of contractibility is remarkably robust. It is
based only on the relation, or language, defining the constraint. Thus it is independent of
the form of propagator used (monolithic or decomposed) and the consistency condition (if
any) that characterizes the propagation.

Contractibility appears to be central to the re-use of closed constraint propagators for
open propagation. When a constraint is contractible we only need to modify a closed

32

propagator to support the addition of variables. When a constraint is incontractible we
also need a contractible approximation of the propagator, for use while the constraint is
open, in addition to the closed propagator. We showed that the use of a tight contractible
approximation and domain consistent closed propagators achieves open D-consistency
of the resulting open propagator. Furthermore, for many hard constraints (Regular,
CFG, GCC, and many others) we showed that the tightest contractible approximation
has a similar form to the original constraint, and hence can be propagated by the same
techniques. This suggests that a close integration of the two propagation phases will be
easy for these constraints.

To address soft constraints, we formulated two general classes of soft constraints that
include most previous proposals of soft constraints. For the two classes – based on decom-
position and edit-distance, respectively – we identified properties and developed mathe-
matical tools for reasoning about them, which we used to demonstrate the contractibility
of a wide range of soft constraints. We identified pragmatic contractible approximations of
soft constraints in these classes. However, we also established that the tightest contractible
approximation of an edit-based soft constraint is not expressible, in general, as an edit-
based constraint. This suggests difficulties in designing open D-consistency propagators in
the general case but fortunately many edit-based soft constraints are contractible.

These results provide a good basis for adapting existing algorithms and implementations
of global constraint propagators to open constraints.

Acknowledgements

Thanks to the referees of this paper and previous conference papers, whose thorough
reviews and detailed comments improved this paper. The work in this paper was mostly
conducted while the author was employed by NICTA.

References

Barták, R. 1999. Dynamic constraint models for planning and scheduling problems. In
New Trends in Contraints. 237–255.

Barták, R. 2003. Dynamic global constraints in backtracking based environments. Annals
OR 118, 1-4, 101–119.

Beldiceanu, N. and Carlsson, M. 2001. Revisiting the cardinality operator and intro-
ducing the cardinality-path constraint family. In Logic Programming, 17th International
Conference, ICLP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings.
59–73.

Beldiceanu, N., Carlsson, M., and Rampon, J.-X. 2005. Global con-
straint catalog. Tech. Rep. T2005:08, SICS. Current version available at
http://sofdem.github.io/gccat/.

Beldiceanu, N. and Contejean, E. 1994. Introducing global constraints in CHIP.
Mathematical Computer Modelling 20, 12, 97–123.

Beldiceanu, N. and Petit, T. 2004. Cost evaluation of soft global constraints. In
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, First International Conference, CPAIOR 2004, Nice, France,
April 20-22, 2004, Proceedings. 80–95.

Bessière, C. 1991. Arc-consistency in dynamic constraint satisfaction problems. In
Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA,
USA, July 14-19, 1991, Volume 1. 221–226.

Bessiere, C., Brito, I., Gutierrez, P., and Meseguer, P. 2014. Global constraints
in distributed constraint satisfaction and optimization. Comput. J. 57, 6, 906–923.

33

Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., and Walsh, T. 2008. SLIDE:
A useful special case of the CARDPATH constraint. In ECAI 2008 - 18th European
Conference on Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings.
475–479.

Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C., and Walsh, T. 2009.
Decompositions of all different, global cardinality and related constraints. In IJCAI
2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009. 419–424.

Bistarelli, S., Montanari, U., and Rossi, F. 1997. Semiring-based constraint satis-
faction and optimization. J. ACM 44, 2, 201–236.

Borning, A., Freeman-Benson, B. N., and Wilson, M. 1992. Constraint hierarchies.
Lisp and Symbolic Computation 5, 3, 223–270.

Borning, A., Maher, M. J., Martindale, A., and Wilson, M. 1989. Constraint
hierarchies and logic programming. In Logic Programming, Proceedings of the Sixth
International Conference, Lisbon, Portugal, June 19-23, 1989. 149–164.

Brzozowski, J. A., Shallit, J., and Xu, Z. 2009. Decision problems for convex lan-
guages. In Language and Automata Theory and Applications, Third International Con-
ference, LATA 2009, Tarragona, Spain, April 2-8, 2009. Proceedings. 247–258.

Chandra, A. K. and Merlin, P. M. 1977. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the 9th Annual ACM Symposium on
Theory of Computing, May 4-6, 1977, Boulder, Colorado, USA. 77–90.

Chatterjee, K., Doyen, L., and Henzinger, T. A. 2010. Quantitative languages.
ACM Trans. Comput. Log. 11, 4.

Chaudhuri, S. and Vardi, M. Y. 1993. Optimization of Real conjunctive queries. In
Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 25-28, 1993, Washington, DC, USA. 59–70.

Colcombet, T. 2009. The theory of stabilisation monoids and regular cost functions. In
Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part II. 139–150.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2001. Introduction to
Algorithms, Second Edition. The MIT Press and McGraw-Hill Book Company.

Debruyne, R., Ferrand, G., Jussien, N., Lesaint, W., Ouis, S., and Tessier, A.

2003. Correctness of constraint retraction algorithms. In Proceedings of the Sixteenth
International Florida Artificial Intelligence Research Society Conference, May 12-14,
2003, St. Augustine, Florida, USA. 172–176.

Dechter, R. 2003. Constraint processing. Elsevier Morgan Kaufmann.

Dechter, R. and Dechter, A. 1988. Belief maintenance in dynamic constraint networks.
In Proceedings of the 7th National Conference on Artificial Intelligence. St. Paul, MN,
August 21-26, 1988. 37–42.

Faltings, B. and Macho-Gonzalez, S. 2002. Open constraint satisfaction. In Principles
and Practice of Constraint Programming - CP 2002, 8th International Conference, CP
2002, Ithaca, NY, USA, September 9-13, 2002, Proceedings. 356–370.

Faltings, B. and Macho-Gonzalez, S. 2005. Open constraint programming. Artif.
Intell. 161, 1-2, 181–208.

Frisch, A. M., Hnich, B., Kiziltan, Z., Miguel, I., and Walsh, T. 2002. Global con-
straints for lexicographic orderings. In Principles and Practice of Constraint Program-
ming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September
9-13, 2002, Proceedings. 93–108.

Gavanelli, M., Lamma, E., Mello, P., and Milano, M. 2005. Dealing with incomplete

34

knowledge on clp(FD) variable domains. ACM Trans. Program. Lang. Syst. 27, 2, 236–
263.

Georget, Y., Codognet, P., and Rossi, F. 1999. Constraint retraction in CLP(FD):
formal framework and performance results. Constraints 4, 1, 5–42.

Gervet, C. 1997. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints 1, 3, 191–244.

He, J., Flener, P., and Pearson, J. 2013. Underestimating the cost of a soft con-
straint is dangerous: revisiting the edit-distance based soft regular constraint. J. Heuris-
tics 19, 5, 729–756.

Hentenryck, P. V. and Provost, T. L. 1991. Incremental search in constraint logic
programming. New Generation Comput. 9, 3/4, 257–276.

Hopcroft, J. and Ullman, J. 1979. Introduction to Automata Theory Languages and
Computation. Addison-Wesley.

Ioannidis, Y. E. and Ramakrishnan, R. 1995. Containment of conjunctive queries:
Beyond relations as sets. ACM Trans. Database Syst. 20, 3, 288–324.

Jaffar, J. and Maher, M. J. 1994. Constraint logic programming: A survey. J. Log.
Program. 19/20, 503–581.

Klug, A. C. 1988. On conjunctive queries containing inequalities. Journal of ACM 35, 1,
146–160.

Lallouet, A., Law, Y. C., Lee, J. H., and Siu, C. F. K. 2011. Constraint programming
on infinite data streams. In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011.
597–604.

Law, Y. C. and Lee, J. H. 2004. Global constraints for integer and set value precedence.
In Principles and Practice of Constraint Programming - CP 2004, 10th International
Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings.
362–376.

Maher, M. J. 1988. Equivalences of logic programs. In Foundations of Deductive
Databases and Logic Programming. Morgan Kaufmann, 627–658.

Maher, M. J. 1993. A logic programming view of CLP. In Logic Programming, Proceed-
ings of the Tenth International Conference on Logic Programming, Budapest, Hungary,
June 21-25, 1993. 737–753.

Maher, M. J. 2002. Analysis of a global contiguity constraint. In Proc. Workshop on
Rule-Based Constraint Reasoning and Programming.

Maher, M. J. 2009a. Local consistency for extended CSPs. Theor. Comput. Sci. 410, 46,
4769–4783.

Maher, M. J. 2009b. Open constraints in a boundable world. In Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
6th International Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27-31, 2009,
Proceedings. 163–177.

Maher, M. J. 2009c. Open contractible global constraints. In IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009. 578–583.

Maher, M. J. 2009d. SOGgy constraints: Soft open global constraints. In Principles
and Practice of Constraint Programming - CP 2009, 15th International Conference, CP
2009, Lisbon, Portugal, September 20-24, 2009, Proceedings. 584–591.

Maher, M. J. 2010. Contractibility and contractible approximations of soft global con-
straints. In Technical Communications of the 26th International Conference on Logic
Programming, ICLP 2010, July 16-19, 2010, Edinburgh, Scotland, UK. 114–123.

35

Maher, M. J., Narodytska, N., Quimper, C., and Walsh, T. 2008. Flow-based
propagators for the SEQUENCE and related global constraints. In Principles and
Practice of Constraint Programming, 14th International Conference, CP 2008, Sydney,
Australia, September 14-18, 2008. Proceedings. 159–174.

Maher, M. J. and Stuckey, P. J. 1989. Expanding query power in constraint logic
programming languages. In Logic Programming, Proceedings of the North American
Conference 1989, Cleveland, Ohio, USA, October 16-20, 1989. 2 Volumes. 20–36.

Métivier, J., Boizumault, P., and Loudni, S. 2007. All different: Softening alldiffer-
ent in weighted csps. In 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2007), October 29-31, 2007, Patras, Greece, Volume 1. 223–230.

Métivier, J., Boizumault, P., and Loudni, S. 2009. Softening gcc and regular with
preferences. In Proceedings of the 2009 ACM Symposium on Applied Computing (SAC),
Honolulu, Hawaii, USA, March 9-12, 2009. 1392–1396.

Mittal, S. and Falkenhainer, B. 1990. Dynamic constraint satisfaction problems.
In Proceedings of the 8th National Conference on Artificial Intelligence. Boston, Mas-
sachusetts, July 29 - August 3, 1990, 2 Volumes. 25–32.

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack,

G. 2007. Minizinc: Towards a standard CP modelling language. In Principles and
Practice of Constraint Programming - CP 2007, 13th International Conference, CP
2007, Providence, RI, USA, September 23-27, 2007, Proceedings. 529–543.

Pachet, F. and Roy, P. 1999. Automatic generation of music programs. In Princi-
ples and Practice of Constraint Programming - CP’99, 5th International Conference,
Alexandria, Virginia, USA, October 11-14, 1999, Proceedings. 331–345.

Pesant, G. 2004. A regular language membership constraint for finite sequences of vari-
ables. In Principles and Practice of Constraint Programming - CP 2004, 10th Interna-
tional Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Pro-
ceedings. 482–495.

Petit, T. and Poder, E. 2009. The soft cumulative constraint. CoRR abs/0907.0939.

Petit, T., Régin, J., and Bessière, C. 2001. Specific filtering algorithms for over-
constrained problems. In Principles and Practice of Constraint Programming - CP 2001,
7th International Conference, CP 2001, Paphos, Cyprus, November 26 - December 1,
2001, Proceedings. 451–463.

Quimper, C. and Walsh, T. 2006. Global grammar constraints. In Principles and
Practice of Constraint Programming - CP 2006, 12th International Conference, CP
2006, Nantes, France, September 25-29, 2006, Proceedings. 751–755.

Régin, J. 1994. A filtering algorithm for constraints of difference in csps. In Proceedings
of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 -
August 4, 1994, Volume 1. 362–367.

Régin, J. 1996. Generalized arc consistency for global cardinality constraint. In Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence and Eighth Inno-
vative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, August 4-8, 1996, Volume 1. 209–215.

Rossi, F., van Beek, P., and Walsh, T., Eds. 2006. Handbook of Constraint Program-
ming. Foundations of Artificial Intelligence, vol. 2. Elsevier.

Schiex, T., Fargier, H., and Verfaillie, G. 1995. Valued constraint satisfaction prob-
lems: Hard and easy problems. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-
25 1995, 2 Volumes. 631–639.

Schulte, C. and Tack, G. 2009. Weakly monotonic propagators. In Principles and

36

Practice of Constraint Programming - CP 2009, 15th International Conference, CP
2009, Lisbon, Portugal, September 20-24, 2009, Proceedings. 723–730.

Sellmann, M. 2006. The theory of grammar constraints. In Principles and Practice of
Constraint Programming - CP 2006, 12th International Conference, CP 2006, Nantes,
France, September 25-29, 2006, Proceedings. 530–544.

van Hoeve, W. J., Pesant, G., and Rousseau, L. 2006. On global warming: Flow-based
soft global constraints. J. Heuristics 12, 4-5, 347–373.

van Hoeve, W. J. and Régin, J. 2006. Open constraints in a closed world. In Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Third International Conference, CPAIOR 2006, Cork, Ireland, May 31 - June
2, 2006, Proceedings. 244–257.

Verfaillie, G. and Jussien, N. 2005. Constraint solving in uncertain and dynamic
environments: A survey. Constraints 10, 3, 253–281.

37

	1 Introduction
	2 Background
	3 Open Constraints
	4 Contractibility
	5 Classifying Constraints
	6 Approximating Constraints
	7 Contractibility of Soft Constraints
	7.1 Decomposition-based Violation Measures
	7.2 Edit-based Violation Measures

	8 Contractible Approximations of Soft Constraints
	8.1 Decomposition-based Violation Measures
	8.2 Edit-based Violation Measures

	9 Discussion
	10 Conclusions
	References

