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Abstract

This paper explores the use of Answer Set Programming (ASP) in solving Distributed Constraint
Optimization Problems (DCOPs). The paper provides the following novel contributions: (1) It shows
how one can formulate DCOPs as logic programs; (2) It introduces ASP-DPOP, the first DCOP
algorithm that is based on logic programming; (3) It experimentally shows that ASP-DPOP can be
up to two orders of magnitude faster than DPOP (its imperative programming counterpart) as well
as solve some problems that DPOP fails to solve, due to memory limitations; and (4) It demonstrates
the applicability of ASP in a wide array of multi-agent problems currently modeled as DCOPs.1
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1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are optimization problems where
agents need to coordinate the assignment of values to their “local” variables to maximize
the overall sum of resulting constraint utilities (Modi et al. 2005; Petcu and Faltings 2005a;
Mailler and Lesser 2004; Yeoh and Yokoo 2012). The process is subject to limitations on
the communication capabilities of the agents; in particular, each agent can only exchange
information with neighboring agents within a given topology. DCOPs are well-suited for
modeling multi-agent coordination and resource allocation problems, where the primary
interactions are between local subsets of agents. Researchers have used DCOPs to model
various problems, such as the distributed scheduling of meetings (Maheswaran et al. 2004;
Zivan et al. 2014), distributed allocation of targets to sensors in a network (Farinelli et al.
2008), distributed allocation of resources in disaster evacuation scenarios (Lass et al. 2008),
the distributed management of power distribution networks (Kumar et al. 2009; Jain et al.
2012), the distributed generation of coalition structures (Ueda et al. 2010) and the dis-
tributed coordination of logistics operations (Léauté and Faltings 2011).

1 This article extends our previous conference paper (Le et al. 2015) in the following manner: (1) It provides a
more thorough description of the ASP-DPOP algorithm; (2) It elaborates on the algorithm’s theoretical prop-
erties with complete proofs; and (3) It includes additional experimental results.
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The field has matured considerably over the past decade, since the seminal ADOPT
paper (Modi et al. 2005), as researchers continue to develop more sophisticated solving al-
gorithms. The majority of the DCOP resolution algorithms can be classified in one of three
classes: (1) Search-based algorithms, like ADOPT (Modi et al. 2005) and its variants (Yeoh
et al. 2009; Yeoh et al. 2010; Gutierrez et al. 2011; Gutierrez et al. 2013), AFB (Gershman
et al. 2009), and MGM (Maheswaran et al. 2004), where the agents enumerate combina-
tions of value assignments in a decentralized manner; (2) Inference-based algorithms, like
DPOP (Petcu and Faltings 2005a) and its variants (Petcu and Faltings 2005b; Petcu and
Faltings 2007; Petcu et al. 2007; Petcu et al. 2008), max-sum (Farinelli et al. 2008), and
Action GDL (Vinyals et al. 2011), where the agents use dynamic programming techniques
to propagate aggregated information to other agents; and (3) Sampling-based algorithms,
like DUCT (Ottens et al. 2012) and D-Gibbs (Nguyen et al. 2013; Fioretto et al. 2014),
where the agents sample the search space in a decentralized manner.

The existing algorithms have been designed and developed almost exclusively using
imperative programming techniques, where the algorithms define a control flow, that is,
a sequence of commands to be executed. In addition, the local solver employed by each
agent is an “ad-hoc” implementation. In this paper, we are interested in investigating the
benefits of using declarative programming techniques to solve DCOPs, along with the use
of a general constraint solver, used as a black box, as each agent’s local constraint solver.
Specifically, we propose an integration of Distributed Pseudo-tree Optimization Proce-
dure (DPOP) (Petcu and Faltings 2005a), a popular DCOP algorithm, with Answer Set
Programming (ASP) (Niemelä 1999; Marek and Truszczyński 1999) as the local constraint
solver of each agent.

This paper provides the first step in bridging the areas of DCOPs and ASP; in the pro-
cess, we offer novel contributions to both the DCOP field as well as the ASP field. For the
DCOP community, we demonstrate that the use of ASP as a local constraint solver provides
a number of benefits, including the ability to capitalize on (i) the highly expressive ASP
language to more concisely define input instances (e.g., by representing constraint utilities
as implicit functions instead of explicitly enumerating their extensions) and (ii) the highly
optimized ASP solvers to exploit problem structure (e.g., propagating hard constraints to
ensure consistency). For the ASP community, the paper makes the equally important contri-
bution of increasing the applicability of ASP to model and solve a wide array of multi-agent
coordination and resource allocation problems, currently modeled as DCOPs. Furthermore,
it also demonstrates that general, off-the-shelf ASP solvers, which are continuously honed
and improved, can be coupled with distributed message passing protocols to outperform
specialized imperative solvers.

The paper is organized as follows. In Section 2, we review the basic definitions of
DCOPs, the DPOP algorithm, and ASP. In Section 3, we describe in detail the structure of
the novel ASP-based DCOP solver, called ASP-DPOP, and its implementation. Section 4
provides an analysis of the properties of ASP-DPOP, including proofs of soundness and
completeness of ASP-DPOP. Section 5 provides some experimental results, while Sec-
tion 6 reviews related work. Finally, Section 7 provides conclusions and indications for
future work.
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2 Background

In this section, we present an overview of DCOPs, we describe DPOP, a complete dis-
tributed algorithm to solve DCOPs, and provide some fundamental definitions of ASP.

2.1 Distributed Constraint Optimization Problems

A Distributed Constraint Optimization Problem (DCOP) (Modi et al. 2005; Petcu and
Faltings 2005a; Mailler and Lesser 2004; Yeoh and Yokoo 2012) can be described as a
tupleM = 〈X ,D,F ,A, α〉 where:

• X = {x1, . . . , xn} is a finite set of (decision) variables;
• D = {D1, . . . , Dn} is a set of finite domains, whereDi is the domain of the variable
xi ∈ X , for 1 ≤ i ≤ n;

• F = {f1, . . . , fm} is a finite set of constraints, where fj is a kj-ary function
fj : Dj1 ×Dj2 × . . .×Djkj

7→ R ∪ {−∞} that specifies the utility of each com-
bination of values of variables in its scope; the scope is denoted by scp(fj) =

{xj1 , . . . , xjkj
};2

• A = {a1, . . . , ap} is a finite set of agents; and
• α : X 7→ A maps each variable to an agent.

We say that a variable x is owned by an agent a if α(x) = a. We denote with αi the set of
all variables that are owned by an agent ai, i.e., αi = {x ∈ X |α(x) = ai}. Each constraint
in F can be either hard, indicating that some value combinations result in a utility of −∞
and must be avoided, or soft, indicating that all value combinations result in a finite utility
and need not be avoided. A value assignment is a (partial or complete) function x that
maps variables of X to values in D such that, if x(xi) is defined, then x(xi) ∈ Di for
i = 1, . . . , n. For the sake of simplicity, and with a slight abuse of notation, we will often
denote x(xi) simply with xi. Given a constraint fj and a complete value assignment x for
all decision variables, we denote with xfj the projection of x to the variables in scp(fj);
we refer to this as a partial value assignment for fj . For a DCOP M, we denote with
C(M) the set of all complete value assignments forM.

A solution of a DCOP is a complete value assignment x for all variables such that

x = argmax
x∈C(M)

m∑
j=1

fj(xfj ) (1)

A DCOP can be described by its constraint graph—i.e., a graph whose nodes correspond
to agents in A and whose edges connect pairs of agents who own variables in the scope of
the same constraint.

Definition 1 (Constraint Graph)
A constraint graph of a DCOP M = 〈X ,D,F ,A, α〉 is an undirected graph GM =

(V,E) where V = A and

E = {{a, a′} | {a, a′} ⊆ A,∃f ∈ F and {xi, xj} ⊆ X , such that

{xi, xj} ⊆ scp(f), and α(xi) = a, α(xj) = a′}. (2)

2 For the sake of simplicity, we assume a given ordering of variables.
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Given the constraint graph GM and given a node a ∈ A, we denote with N(a) the
neighbors of a, i.e.,

N(a) = {a′ ∈ A | {a, a′} ∈ E}. (3)

Definition 2 (Pseudo-tree)
A pseudo-tree of a DCOP is a subgraph of GM that has the same nodes as GM such that
(i) the included edges (called tree edges) form a rooted tree, and (ii) two nodes that are
connected to each other in GM appear in the same branch of the tree.

The edges of GM that are not included in a pseudo-tree are called back edges. Notice that
tree edges connect a node with its parent and its children, while back edges connect a node
with its pseudo-parents and pseudo-children—i.e., nodes closer to the root are parents or
pseudo-parents, while those closer to the leaves are children or pseudo-children. A pseudo-
tree of a DCOP can be constructed using distributed DFS algorithms (Hamadi et al. 1998)
applied to the constraint graph of the DCOP.

In this paper, we say that two variables are constrained to each other if they are in the
scope of the same constraint. Given a pseudo-tree, the separator of a node ai is, intuitively,
the set of variables that (i) are owned by the ancestors of ai, and (ii) are constrained with
some variables that are either owned by ai or the descendants of ai. Formally, in a pseudo-
tree, the separator of a node ai, denoted by sepi, is:

sepi = {xi′ ∈ X | α(xi′) = ai′ where ai′ is an ancestor of ai; and

∃xi′′ ∈ X , f ∈ F , such that ai′′ is either ai or a descendant of ai,

α(xi′′) = ai′′ , and {xi′ , xi′′} ⊆ scp(f)} (4)

We denote with Pi, PPi, Ci, and PCi the parent, the set of pseudo-parents, the set of
children, and the set of pseudo-children of a node ai, respectively. For simplicity, if A is
a set of agents in A, we also denote with αA the set of variables in X that are owned by
agents in A.

a1

a2

a3
(a) Constraint Graph

a1

a2

a3
(b) Pseudo-tree

for i < j
xi xj Utilities
0 0 5
0 1 8
1 0 20
1 1 3

(c) Utilities of Constraints xi cons xj
with i < j

Fig. 1. Example DCOP
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Example 1
Figure 1(a) shows the constraint graph of a DCOPM = 〈X ,D,F ,A, α〉 where:

• X = {x1, x2, x3};
• D = {D1, D2, D3} where Di = {0, 1} (1 ≤ i ≤ 3) is the domain of the variable
xi ∈ X ;

• F = {x1 cons x2, x1 cons x3, x2 cons x3} where, for each 1 ≤ i < j ≤ 3,

— for the constraint xi cons xj we have that scp(xi cons xj) = {xi, xj};
— the utilities specified by the constraint xi cons xj are given in Figure 1(c).

• A = {a1, a2, a3}; and
• α maps each variable xi to agent ai.

Figure 1(b) shows one possible pseudo-tree, where the dotted line is a back edge. In this
pseudo-tree, P3 = a2, PP3 = {a1}, C1 = {a2}, PC1 = {a3}, and sep3 = {x1, x2}.

In a pseudo-tree T of a DCOP 〈X ,D,F ,A, α〉, given ai ∈ A let RTai be the set of
constraints in F such that:

RTai = {f ∈ F | scp(f) ⊆ αi ∪ αPi
∪ αPPi

∧ scp(f) ∩ αi 6= ∅} (5)

In the following, without causing any confusion, we often omit the superscript in RTai
(i.e., Rai ) if there is only one pseudo-tree mentioned in the context.

Example 2
Considering again the DCOP in Example 1 and its pseudo-tree in Figure 1(b), we have
Ra3 = {x1 cons x3, x2 cons x3}.

2.2 The Distributed Pseudo-tree Optimization Procedure

The Distributed Pseudo-tree Optimization Procedure (DPOP) (Petcu and Faltings 2005a)
is a complete algorithm to solve DCOPs with the following three phases:3 Pseudo-tree
generation, UTIL propagation and VALUE propagation.

2.2.1 Phase 1: Pseudo-tree Generation Phase

DPOP does not require the use of any specific algorithm to construct the pseudo-tree. How-
ever, in many implementations of DPOP, including those within the DCOPolis (Sultanik
et al. 2007) and FRODO (Léauté et al. 2009) repositories, greedy approaches such as the
Distributed DFS algorithm (Hamadi et al. 1998) are used.

The Distributed DFS algorithm operates as follows. First of all, the algorithm assigns
a score to each agent, according to a heuristic function. It then selects an agent with the
largest score as the root of the pseudo-tree. Once the root is selected, the algorithm initiates
a DFS-traversal of the constraint graph, greedily adding the neighboring agent with the

3 Here we detail an extended version of DPOP described in (Petcu and Faltings 2005a) which removes the
assumption that each agent owns exactly one variable.
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largest score as the child of the current agent. This process is repeated until all agents in
the constraint graph are added to the pseudo-tree.

The agents’ scores can be chosen arbitrarily. A commonly used heuristic is the max-
degree heuristic h(ai):

h(ai) = |N(ai)| (6)

which sets an agent’s score to its number of neighbors. In situations where multiple agents
have the same maximal score, the algorithm breaks ties according to a different heuristic,
such as the variable-ID heuristic, which assigns to each agent a score that is equal to its
unique ID. In our experiments, we use the max-degree heuristic and break ties with the
variable-ID heuristic in the construction of the pseudo-tree.

2.2.2 Phase 2: UTIL Propagation Phase

The UTIL propagation phase is a bottom-up process, which starts from the leaves of the
pseudo-tree and propagates upward, following only the tree edges of the pseudo-tree. In
this process, the agents send UTIL messages to their parents.

Definition 3 (UTIL Messages (Petcu 2009))
UTIL

aj
ai , the UTIL message sent by agent ai to agent aj , is a multi-dimensional matrix,

with one dimension for each variable in sepi. With a slight abuse of notation, we denote
with scp(UTILajai ) the set of variables in the message.

Instead of using a multi-dimensional matrix, one can also flatten the multi-dimensional
matrix into a table where each row of the table is for one combination of value assignment
of variables in sepi and the respective utility for that combination. For simplicity, in this
paper, we will represent UTIL messages under their tabular form. We can observe that it
is always true that αj ∩ scp(UTIL

aj
ai ) 6= ∅. The semantics of such a UTIL message is

similar to a constraint whose scope is the set of all variables in the context of the message
(its dimensions). The size of such a UTIL message is the product of the domain sizes of
variables in the context of the message.

Intuitively, a UTIL message summarizes the optimal sum of utilities in its subtree for
each value combination of variables in its separator. An agent ai computes its UTIL mes-
sage by (i) summing the utilities in the UTIL messages received from its child agents and
the utilities of constraints whose scopes are exclusively composed of the variables of ai
and the variables in its separator (i.e., Rai ), and then (ii) projecting out the variables of ai,
by optimizing over them. Algorithm 1 provides a formal description of Phase 2.

Algorithm 1 uses the JOIN operator (i.e., ⊕) and the PROJECTION operator (i.e., ⊥).

Definition 4 (JOIN ⊕ Operator)
U = UTILaiak ⊕ UTILaial is the join of two UTIL matrices (constraints). U is also a
matrix (constraint) with scp(U) = scp(UTILaiak) ∪ scp(UTILaial ) as dimensions. For
each possible combination x of values of variables in scp(U), the corresponding value
of U(x) is the sum of the corresponding cells in the two source matrices, i.e., U(x) =

UTILaiak(xUTILai
ak

) + UTILaial (xUTILai
al

) where xUTILai
ak

and xUTILai
al

are partial value
assignments from x for all variables in scp(UTILaiak) and scp(UTILaial ), respectively.
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Algorithm 1: DPOP Phase 2 (UTIL Propagation Phase)

1 Each agent ai does:
2 JOINPi

ai = null
3 forall ac ∈ Ci do
4 wait for UTILaiac message to arrive from ac
5 JOINPi

ai = JOINPi
ai ⊕ UTIL

ai
ac // join UTIL messages from children as they arrive

6 end
7 JOINPi

ai = JOINPi
ai ⊕

(
⊕f∈Rai

f
)
// also join all constraints with parent/pseudo-parents

8 UTILPi
ai = JOINPi

ai ⊥αi // use projection to eliminate its owned variables
9 Send UTILPi

ai message to its parent agent Pi

Since UTIL messages can be seen as constraints, the ⊕ operator can be used to join UTIL
messages and constraints.

Example 3
Given 2 constraints x1 cons x3 and x2 cons x3 in Example 1, let JOINa2

a3 =

x1 cons x3 ⊕ x2 cons x3. It is possible to see that scp(JOINa2
a3 ) = {x1, x2, x3}. The

utility corresponding to x1 = x2 = x3 = 0 is JOINa2
a3 (x1 = 0, x2 = 0, x3 = 0) =

5 + 5 = 10. Moreover, JOINa2
a3 (x1 = 0, x2 = 0, x3 = 1) = 8 + 8 = 16.

For the ⊥ operator, knowing that αi ⊆ scp(JOINPi
ai ), JOINPi

ai ⊥αi
is the projection

through optimization of the JOINPi
ai matrix along axes representing variables in αi.

Definition 5 (PROJECTION ⊥ Operator)
Let αi be a set of variables where αi ⊆ scp(JOINPi

ai ), and let Xi be the set of all pos-
sible value combinations of variables in αi. A matrix U = JOINPi

ai ⊥αi is defined as: (i)
scp(U) = scp(JOINPi

ai ) \ αi, and (ii) for each possible value combination x of variables
in scp(U), U(x) = maxx′∈Xi JOIN

Pi
ai (x, x′).

Example 4
Considering again JOINa2

a3 in Example 3, let U = JOINa2
a3 ⊥{x3}. We have scp(U) =

{x1, x2}, and U(x1 = 0, x2 = 0) = max
(
JOINa2

a3 (x1 = 0, x2 = 0, x3 =

0), JOINa2
a3 (x1 = 0, x2 = 0, x3 = 1)

)
= max(10, 16) = 16.

As an example for the computations in Phase 2 (UTIL propagation phase), we consider
again the DCOP in Example 1.

Example 5
In the DCOP in Example 1, the agent a3 computes its UTIL message, UTILa2a3 (see Ta-
ble 1(a)), and sends it to its parent agent a2. The agent a2 then computes its UTIL message,
UTILa1a2 (see Table 1(b)), and sends it to its parent agent a1. Finally, the agent a1 computes
the optimal utility of the entire problem, which is 45.
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x1 x2 Utilities
0 0 max( 5 + 5 , 8 + 8 ) = 16
0 1 max( 5 + 20 , 8 + 3 ) = 25
1 0 max( 20 + 5 , 3 + 8 ) = 25
1 1 max( 20 + 20 , 3 + 3 ) = 40

(a)

x1 Utilities
0 max( 5 + 16 , 8 + 25 ) = 33
1 max( 20 + 25 , 3 + 40 ) = 45

(b)

Table 1. UTIL Phase Computations in DPOP

2.2.3 Phase 3: VALUE Propagation Phase

Phase 2 finishes when the UTIL message reaches the root of the tree. At that point, each
agent, starting from the root of the pseudo-tree, determines the optimal value for its vari-
ables based on (i) the computation from Phase 2, and (ii) (for non-root agent only) the
VALUE message that is received from its parent. Then, it sends these optimal values to
its child agents through VALUE messages. Algorithm 2 provides a formal description of
Phase 3.

A VALUE message that travels from the parent Pi to the agent ai, VALUEai
Pi

, contains
the optimal value assignment for variables owned by either the parent agent or the pseudo-
parent agents of the agent ai.

Algorithm 2: DPOP Phase 3 (VALUE Propagation Phase)

1 Each agent ai do:
2 wait for VALUEai

Pi
(sep∗i ) message from its parent agent Pi // sep∗i is the optimal value

assignment for all variables in sepi
3 α∗i ← argmaxαi∈Xi

JOINPi
ai (sep

∗
i , αi) // Xi is the set of all possible value combinations of

variables in αi
4 forall ac ∈ Ci do
5 let sep∗∗i be the partial optimal value assignment for variables in sepc from sep∗i
6 send VALUE(sep∗∗i , α

∗
i ) as VALUEac

ai message to its child agent ac
7 end

Example 6
In the DCOP in Example 1, the agent a1 determines that the value with the largest utility for
its variable x1 is 1, with a utility of 45, and then sends this information down to its child
agent a2 in a VALUE message, i.e., VALUEa2

a1(x1 = 1). Upon receiving that VALUE
message, the agent a2 determines that the value for its variable x2 with the largest utility of
the subtree rooted at the agent a2, assuming that x1 = 1, is 0, with a utility of 45. The agent
a2 then sends this information down to its child agent a3, i.e., VALUEa3

a2(x1 = 1, x2 = 0).
Finally, upon receiving such VALUE message, the agent a3 determines that the value for
its variable x3 with the largest utility of the subtree rooted at the agent a3, assuming that
x1 = 1 and x2 = 0, is 0, with a utility of 25.

2.3 Answer Set Programming

Let us provide some general background on Answer Set Programming (ASP) (see, for
example, (Baral 2003; Gelfond and Kahl 2014) for more details).
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An answer set program Π is a set of rules of the form

c← a1, . . . , aj , not aj+1, . . . , not am (7)

where 0 ≤ j ≤ m, for 1 ≤ i ≤ m each ai or c is a literal of a first order language L, and
not represents negation-as-failure (naf). For a literal a, not a is called a naf-literal. For a
rule of the form (7), the left and right hand sides of the rule are called the head and the
body of the rule, respectively. Both the head and the body can be empty. When the head is
empty, the rule is called a constraint. When the body is empty, the rule is called a fact. A
literal (resp. rule) is a ground literal (resp. ground rule) if it does not contain any variable.
A rule with variables is simply used as a shorthand for the set of its ground instances from
the language L. Similarly, a non-ground program (i.e., a program containing some non-
ground rules) is a shorthand for all ground instances of its rules. Throughout this paper, we
follow the traditional notation in writing ASP rules, where names that start with an upper
case letter represent variables. For a ground instance r of a rule of the form (7), head(r)

denotes the set {c}, while pos(r) and neg(r) denote {a1, . . . , aj} and {aj+1, . . . , am},
respectively.

LetX be a set of ground literals.X is consistent if there is no atom a such that {a,¬a} ⊆
X . The body of a ground rule r of the form (7) is satisfied by X if neg(r) ∩ X = ∅ and
pos(r) ⊆ X . A ground rule of the form (7) with nonempty head is satisfied by X if either
its body is not satisfied byX or head(r)∩X 6= ∅. A constraint is satisfied byX if its body
is not satisfied by X .

For a consistent set of ground literals S and a ground program Π, the reduct of Π w.r.t.
S, denoted by ΠS , is the program obtained from Π by deleting (i) each rule that has a naf-
literal not a in its body where a ∈ S, and (ii) all naf-literals in the bodies of the remaining
rules.
S is an answer set (or a stable model) of a ground program Π (Gelfond and Lifschitz

1990) if it satisfies the following conditions: (i) If Π does not contain any naf-literal (i.e.,
j = m in every rule of Π) then S is a minimal consistent set of literals that satisfies all
the rules in Π; and (ii) If Π contains some naf-literals (j < m in some rules of Π) then
S is an answer set of ΠS . Note that ΠS does not contain naf-literals, and thus its answer
set is defined in case (i). A program Π is said to be consistent if it has some answer sets.
Otherwise, it is inconsistent.

The ASP language includes also language-level extensions to facilitate the encoding of
aggregates (min, max, sum, etc.).

Example 7
Let us consider an ASP program Π that consists of two facts and one rule:

int(5) ← (8)

int(10) ← (9)

max(U) ← U = #max{V : int(V )} (10)

The third rule uses an aggregate to determine the maximum in the set {V : int(V )}. Π

has one answer set: {int(5), int(10),max(10)}. Thus, Π is consistent.

Moreover, to increase the expressiveness of logic programming and simplify its use in
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applications, the syntax of ASP has been extended with choice rules. Choice rules are of
the form:

l {a1, . . . , am}u← am+1, . . . , an, not an+1, . . . , not ak (11)

where l {a1, . . . , am}u is called a choice atom, l and u are integers, l ≤ u, 0 ≤ m ≤
n ≤ k, and each ai is a literal for 1 ≤ i ≤ k. This rule allows us to derive any subset of
{a1, . . . , am}whose cardinality is between the lower bound l and upper bound uwhenever
the body is satisfied. l or u can be omitted. If l is omitted, l = 0, and if u is omitted,
u = +∞. Standard syntax for choice rules has been proposed and adopted in most state-
of-the-art ASP solvers, such as CLASP (Gebser et al. 2007) and DLV (Citrigno et al. 1997).

Problem

Answer Set 
Program Grounder Solver Answer Sets

Solutions

Modeling Interpreting

Fig. 2. Solving a Problem Using ASP

Figure 2 visualizes how to solve a problem using ASP. In more detail, the problem is
encoded as an answer set program whose answer sets correspond to solutions. The answer
set program, which may contains variables, is then grounded using an ASP grounder, e.g.,
GRINGO (Gebser et al. 2011). The grounding process employs smart techniques to reduce
the size of the resulting ground program, e.g., removing literals from rules that are known
to be true, removing rules that will not contribute to the computation of answer sets.

Example 8
Let us consider an ASP program Π that consists of two facts and one rule:

int(1) ← (12)

int(−1) ← (13)

isPositive(X) ← int(X), X > 0 (14)

Using a naive grounder that simply replaces consistently the variable X with the two con-
stants 1 and −1, the ground program of Π consists of the two facts (12) and (13) and the
two following ground rules:

isPositive(1) ← int(1), 1 > 0 (15)

isPositive(−1) ← int(−1),−1 > 0 (16)

It is easy to see that the ground rule (16) is unnecessary (i.e., its body cannot be satisfied
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by any set of literals due to the literal −1 > 0) and should be removed. In contrast, the
ground program of Π obtained by GRINGO has only three facts: (12), (13), and

isPositive(1) ← (17)

We observe that the unnecessary rule (16) is omitted since its body cannot be satisfied (i.e.,
−1 > 0), and the fact (17) is obtained from the rule (15) by removing all literals in its body
because the grounder can determine as been always satisfied.

All the answer sets of the program produced by the ASP grounder are then computed by an
ASP solver, e.g., CLASP (Gebser et al. 2007). The solutions to the original problem can be
determined by properly interpreting the different answer sets computed, where each answer
sets corresponds to one of the possible solutions to the original problem. For readers who
are interested in how to solve an answer set program, the foundations and algorithms un-
derlying the grounding and solving technology used in GRINGO and CLASP are described
in detail in (Gebser et al. 2012; Kaufmann et al. 2016).

3 ASP-DPOP

ASP-DPOP is a framework that uses logic programming to capture the structure of DCOPs,
and to emulate the computation and communication operations of DPOP. In particular,
each agent in a DCOP is represented by a separate ASP program—effectively enabling the
infusion of a knowledge representation framework in the DCOP paradigm.

The overall communication infrastructure required by the distributed computation of
DPOP is expressed using a subset of the SICStus Prolog language (Carlsson, M. et al.
2015), extended with multi-threading and the Linda blackboard facilities. In ASP-DPOP,
we use CLASP (Gebser et al. 2007), with its companion grounder GRINGO, as our ASP
solver, being the current state-of-the-art for ASP. In this section, we will describe the struc-
ture of ASP-DPOP and its implementation.

Specification 
Module (SM)

Controller 
Module (CM)

SM
CM

SM
CM

SM
CM

other agents

LINDA
Blackboard

UTIL

VALUE

Agent

Fig. 3. The structure of an ASP-DPOP agent

3.1 The architecture of ASP-DPOP

ASP-DPOP is an agent architecture that reflects the structure of DCOPs, where several
agents reflect the computation and communication operations of DPOP. The internal struc-
ture of each ASP-DPOP agent, shown in Figure 3, is composed of two modules. The first
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module is the Specification Module (SM), that encloses an ASP program which captures a
corresponding agent as specified in the DCOP—i.e., the agent’s name, the agent’s neigh-
bors, the description of the variables owned by the agent, the description of the variables
owned by the agent’s neighbors, and the description of the constraints whose scope include
any of the variables owned by the agent.

The second module is the Controller Module (CM), encoded as a Prolog program. The
CM instructs the agent to perform the communication operations of DPOP, such as coop-
erating with other agents to generate a pseudo-tree, waiting for UTIL messages from child
agents, sending the UTIL message to the parent agent (if present), waiting for the VALUE
message from the parent agent (if present), and sending the VALUE messages to the child
agents.

In ASP-DPOP, each DCOP is represented by a set of ASP-DPOP agents; each agent
is modeled by its knowledge bases, located at its SM and CM, and it interacts with other
agents in accordance to the rules of its CM.

3.2 ASP-DPOP Implementation: Specification Module (SM)

Let us describe how to capture the structure of a DCOP in the Specification Module of an
ASP-DPOP agent using ASP. Let us consider a generic DCOPM = 〈X ,D,F ,A, α〉. We
representM using a set of ASP-DPOP agents whose SMs are ASP programs {Πai | ai ∈
A}. We will show how to generate Πai for each agent ai. In the following, we say a and a′

in A are neighbors if there exists x and x′ in X such that α(x) = a, α(x′) = a′, and there
is a f ∈ F such that {x, x′} ⊆ scp(f). Given a constraint f ∈ F , we say that f is owned
by the agent ai if the scope of f contains some variables owned by the agent ai.4

For each variable xi ∈ X we define a collection L(xi) of ASP rules that includes:

• A fact of the form

variable(xi)← (18)

for identifying the name of the variable;
• For each d ∈ Di ∈ D, a fact of the form

value(xi, d)← (19)

for identifying the possible values of xi. Alternatively, if the domainDi is an integer
interval [lower bound . . . upper bound] we can use the additional facts of the form

begin(xi, lower bound)← (20)

end(xi, upper bound)← (21)

to facilitate the description of the domain Di. In such case, the value predicates
similar to ones in (19) are achieved by the rule

value(X,B..E) ← variable(X), begin(X,B), end(X,E) (22)

4 The concept of ownership of a constraint is introduced to facilitate the representation of ASP-DPOP imple-
mentation. Intuitively, an agent should know about a constraint if the agent owns some variables that are in the
scope of such constraint. Under this perspective, a constraint may be owned by several agents.
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Intuitively,B andE in (22) are variables that should be grounded with lower bound
and upper bound from (20) - (21), respectively.

For each constraint fj ∈ F , where scp(fj) = {xj1 , . . . , xjkj
}, we define a collection

L(fj) of rules that includes:

• A fact of the form

constraint(fj)← (23)

for identifying the name of the constraint;
• For each variable x ∈ scp(fj), a fact of the form

scope(fj , x)← (24)

for identifying the scope of the constraint; and
• For each partial value assignment xfj for all variables in scp(fj), where
vj1 , . . . , vjkj

are the value assignments of the variables xj1 , . . . , xjkj
, respectively,

such that fj(xfj ) = u 6= −∞, a fact of the form

fj(u, vj1 , . . . , vjkj
)← (25)

For each partial value assignment xfj for all variables in scp(fj), where
vj1 , . . . , vjkj

are the value assignments of the variables xj1 , . . . , xjkj
, respectively,

such that fj(xfj ) = −∞, a fact of the form5

fj(#inf , vj1 , . . . , vjkj
)← (26)

Alternatively, it is also possible to envision cases where the utility of a constraint is im-
plicitly modeled by logic programming rules, as shown in the following example. It is
important to mention that, considering a constraint fj ∈ F :

(1) The order of variables (e.g., xj1 , . . . , xjkj
) in scp(fj), whose corresponding value

assignments (e.g., vj1 , . . . , vjkj
) that appear in facts of the forms (25) and (26), needs

to be consistent in all facts of the forms (25) and (26) that relate to the constraint fj ;
and

(2) The order of the facts of the form (24) that are added to L(fj) to identify the
scope of the constraint fj needs to be consistent with the order of variables (e.g.,
xj1 , . . . , xjkj

) mentioned in (1).

These requirements (i.e., (1) and (2)) are critical, because they allow Controller Modules to
understand which variables belong to what values that appear in the facts of the forms (25)
and (26), when Controller Modules read L(fj). This is done because, in SICStus Prolog,
the search rule is “search forward from the beginning of the program.” Therefore, the order
of the predicates (i.e., facts) that are added to SICStus Prolog matters.

5 #inf is a special constant representing the smallest possible value in ASP language.
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Example 9
Let us consider a constraint f whose scope is {x, x′}, and f specifies that the utility of
value assignments x = v, x′ = v′ is v + v′. The facts of the form (25) for the constraint f
can be modeled by the following rule

f(V + V ′, V, V ′)← value(x, V ), value(x′, V ′) (27)

For each agent ai we define an ASP program Πai that includes:

• A fact of the form

agent(ai)← (28)

for identifying the name of the agent;
• For each variable x ∈ X that is owned by the agent ai, a fact of the form

owner(ai, x)← (29)

• For each agent aj who is a neighbor of the agent ai, a fact of the form

neighbor(aj)← (30)

• For each variable x′ ∈ X that is owned by an agent aj who is a neighbor of the agent
ai, a fact of the form

owner(aj , x
′)← (31)

• For each constraint fj ∈ F owned by the agent ai, the set of rules

L(fj) (32)

• For each variable x ∈ X that is in the scope of some constraints owned by the agent
ai, the set of rules

L(x) (33)

3.3 ASP-DPOP Implementation: Encoding UTIL and VALUE Messages

The ASP-DPOP framework emulates the computation and communication operations of
DPOP, where each ASP-DPOP agent produces UTIL and VALUE messages, and forwards
them to its parent and child agents, as DPOP does. In ASP-DPOP, UTIL and VALUE
messages are encoded as ASP facts, as discussed in this subsection.

3.3.1 UTIL Messages

In DPOP, each UTIL message sent from a child agent ai to its parent agent Pi is a matrix.
In encoding a UTIL message in ASP-DPOP, we represent each cell of the matrix of the
UTIL message, whose associated utility is not −∞, as an ASP atom of the form:

table max ai(u, vi1 , . . . , viki
) (34)

which indicates that the optimal aggregate utility of the value assignments xi1 =

vi1 , . . . , xiki
= viki

is u 6= −∞, where sepi = {xi1 , . . . , xiki
}. In other words, the parent
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agent Pi knows that UTILPi
ai (xi1 = vi1 , . . . , xiki

= viki
) = u 6= −∞ if it receives the

fact table max ai(u, vi1 , . . . , viki
). It is important to know that the encoding of a UTIL

message omits the cells whose associated utilities are −∞.
In addition to facts of the form (34), ai also informs Pi about variables in its separator.

Thus, the encoding of the UTIL message sent from the agent ai to the agent Pi includes
also atoms of the form:

table info(ai, ai1 , xi1 , lbi1 , ubi1) (35)

· · ·
table info(ai, aiki

, xiki
, lbiki

ubiki
) (36)

Each fact table info(ai, ait , xit , lbit , ubit) informs Pi that xit is a variable in the separator
of ai whose domain is specified by lbit (lower bound) and ubit (upper bound) and whose
owner is ait .6 It is also critical to note that the order of the atoms of the forms (35) - (36)
matters, since such order will allow the respective Controller Module understand which
variable belongs to the values stated in facts of the form (34) after reading such encoded
UTIL messages.

Example 10
Consider again the DCOP in Example 1. The UTIL message, sent from the agent a3 to the
agent a2, in Table 1(a) is encoded as the set of the ASP atoms:

table max a3(16, 0, 0) (37)

table max a3(25, 0, 1) (38)

table max a3(25, 1, 0) (39)

table max a3(40, 1, 1) (40)

table info(a3, a1, x1, 0, 1) (41)

table info(a3, a2, x2, 0, 1) (42)

Example 11
Similarly, considering again the DCOP in Example 1, the UTIL message sent from the
agent a2 to the agent a1 in Table 1(b) is encoded as the set of ASP facts:

table max a2(33, 0) (43)

table max a2(45, 1) (44)

table info(a2, a1, x1, 0, 1) (45)

3.3.2 VALUE Messages

In DPOP, each VALUE message sent from a parent agent Pi to its child agents ai contains
the optimal value assignment for variables owned by either the parent agent or the pseudo-
parent agents of the agent ai. Thus, in encoding a VALUE message, we use atoms of the

6 For simplicity, we assume that the domains Di are integer intervals.
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table_max_a3(16, 0, 0)
table_max_a3(25, 0, 1)
table_max_a3(25, 1, 0)
table_max_a3(40, 1, 1)
table_info(a3, a1, x1, 0, 1)
table_info(a3, a2, x2, 0, 1)

Πa2

solution(a1, x1, 1)
table_max_a2(33, 0)
table_max_a2(45, 1)
table_info(a2, a1, x1, 0, 1)

From agent a3

table_row_a2(U, X1) ←  
     x1_cons_x2(V0, X1, X2),
     V0 ! = #inf,
     table_max_a3(V1, X1, X2),
     U = V0 + V1
table_max_a2(U, X1) ← 
     value(x1, X1),
     table_row_a2(_,X1),
     U = #max { V : table_row_a2(V, X1) }
table_info(a2, a1, x1, 0, 1)

To agent a1

 { row(U, X2) }  ← 
      solution(a1, x1, X1),
      table_max_a2(U, X1),
      x1_cons_x2(U0, X1, X2),
      table_max_a3(U1, X1, X2),
      U == U0 + U1
← not 1 {row(U, X2) } 1
solution(a2, x2, X2) ← row(U, X2) 

⊕

From agent a1

solution(a2,x2,0)
solution(a1,x1,1)

To agent a3

Ia2

Ma3

I’a2

M’a2

Ma2 M’a1

⊕

Fig. 4. Phase 2 and Phase 3 of Agent a2 in ASP-DPOP on DCOP in Example 1

form:

solution(a, x, v) (46)

where v is the value assignment of the variable x owned by the agent a for an optimal
solution.

Example 12

Consider again the DCOP in Example 1. The VALUE message sent from the agent a1 to
the agent a2 is encoded as the ASP atom:

solution(a1, x1, 1) (47)

Similarly, the VALUE message sent from the agent a2 to the agent a3 is encoded as the set
of the ASP atoms:

solution(a1, x1, 1) (48)

solution(a2, x2, 0) (49)

3.4 ASP-DPOP Implementation: Controller Module (CM)

The controller module in each ASP-DPOP agent ai, denoted by Cai , consists of a set
of Prolog rules for communication (sending, receiving, and interpreting messages) and a
set of rules for generating an ASP program that is used for the computations of a UTIL
message and a VALUE message. In this subsection, we would like to discuss some code
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fragments to show how Cai is structured.7 To begin with, we will show how Cai uses the
Linda blackboard library of Prolog to exchange the messages.

There are three types of messages exchanged through the Linda blackboard; they are
tree, util, and value messages that are used in Phase 1, Phase 2, and Phase 3, respec-
tively, of DPOP. For sending (resp. waiting for) a message, we use the built-in predicate
out/1 (resp. in/1) provided by the Linda library of Prolog. Every message is formatted as
message(From, To, Type,Data) where the arguments denote the agent who sends this
message, the agent who should receive this message, the type of the message, and the data
enclosed in the message, respectively. The implementation of the communication and the
three phases of DPOP are described next.

3.4.1 Sending Messages

The following Prolog rule generates a message of type t ∈ {tree, util, value}, with con-
tent d (Content), to be sent from an agent ai (From) to an agent ak (To):

% sending message
send_message(From,To,Type,Content) :-

out(message(From,To,Type,Content)).

3.4.2 Waiting for Messages

The following Prolog rule instructs agent ak (a k) to wait for a message:

% waiting for a message
wait_message(From,a_k,Type,Data):- in(message(From,a_k,Type,Data)).

where From, Type, and Data will be unified with the name of the agent who sent this
message, the type of the message, and the data enclosed in the message, respectively.

3.4.3 Creating the Pseudo-Tree: Phase 1

In this phase, ASP-DPOP agents cooperate with each other to construct a pseudo-tree. For
simplicity, we will show here the clauses in Cai for generating a pseudo-tree by initiat-
ing a DFS-traversal. We assume that the agent ai is not the root of the pseudo-tree. The
agent ai waits for a tree message from an agent Parent. The content (Data) enclosed in
such a tree message is the set of visited agents—i.e., the agents who have already started
performing the DFS. Upon receiving a treemessage, ai will execute the following clauses:

% pseudo-tree generation
generate_tree(Parent, Data):-

assign_parent(Parent),
assign_pseudo_parent(Data),
append(Data, [a_i], NewData),
depth_first_search(Parent, NewData).

7 The code listed in this section is a simplified version of the actual code for Cai , showing a condensed version
of the clause bodies; however, it still gives a flavor of the implementation of Cai and should be sufficiently
explanatory for the purpose of the controller module.
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% performing depth first search
depth_first_search(Parent, Data):-

find_next(Data, Next_Agent),
(Next_Agent == none ->

send_message(a_i, Parent, tree, Data)
;
assign_child(Next_Agent),
send_message(a_i, Next_Agent, tree, Data),
wait_message(Next_Agent, a_i, tree, NewData),
depth_first_search(Parent, NewData)

).

Intuitively, upon receiving a tree message from the agent Parent enclosed with data
Data, the agent ai will execute the clause generate tree(Parent, Data). Specif-
ically:

• It executes the clause assign parent/1, where it adds to its Πai a fact of the
form parent(Parent);

• It executes the clause assign pseudo parent/1 which adds to its Πai facts of
the form pseudo parent(X), where X is a neighboring agent of ai that appears in
Data such that X 6= Parent;

• It adds itself (i.e., a i) to the list of visited agents;
• It starts performing a DFS, by executing the rule depth first search/2.

In order to perform a DFS, the agent ai will execute the rule find next/2 to select
a neighboring agent that will be visited next; this selection is based on some heuristics
(i.e., the unvisited neighbor agent with the greatest number of neighbors). If such an agent
Next Agent exists (i.e., Next Agent 6= none), then ai will:

• Execute the rule assign child/1, used to add to its Πai a fact of the form
children(Next Agent);
• Send a tree message to the agent Next Agent;
• Wait for the reply message from the agent Next Agent, which will provide the

updated list NewData of visited agents;
• Recursively execute the rule depth first search/2.

Otherwise, if there is no agent Next Agent (i.e., Next Agent is equal to none), then the
agent ai will reply a tree message to its agent Parent. This implies that the agent ai has
finished performing DFS at its branch.

When the agent ai is chosen to be the root of the pseudo-tree, it executes the rule
generate tree(master, [ ]) immediately without waiting for the tree message from
other agents. We note that an agent whose parent agent is master will be the root of the
pseudo-tree. It is also worth to notice that, at the end of this phase, the information about
the parent, pseudo-parents, and child agents of each agent ai are added to Πai via facts of
the forms parent/1, pseudo parent/1, and children/1, respectively.

Lemma 1
In ASP-DPOP, Phase 1 requires a linear number of messages in n where n is the number
of agents.
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Proof
We first prove that Phase 1 terminates. In fact, each agent ai in executing
depth first search/2 will perform the rule find next/2 to select a neighbor-
ing agent, i.e., Next Agent, that is not in the set of visited agents to send a tree message
to. Next Agent can be seen as an unvisited neighboring agent of the agent ai.

The agent ai then waits to receive the tree message from Next Agent enclosing an up-
dated set of visited agents, and again send a tree message to another unvisited neighboring
agent if it exists. We notice that the updated set of visited agents will be expanded with at
least one agent that is Next Agent since Next Agent will add itself to the set of visited
agents beyond receiving the tree message from the agent ai.

Therefore, every agent ai will send at most |N(ai)| tree messages to its child
agents, where N(ai) is the set of the neighboring agents of the agent ai. If there
is no unvisited neighboring agent left, the agent ai will send a tree message to
its parent agent together with the most updated set of visited agents, and termi-
nates executing depth first search/2. Thus, it terminates performing the clause
generate tree(Parent, Data). As a consequence, we can conclude that Phase 1
terminates.

Furthermore, considering a pseudo-tree that is generated at the end of Phase 1. We can
realize that the set of visited agents which are passing among agents is expanded with a
non-root agent if and only if there is a tree message sent from a parent agent to its child
agent downward the pseudo-tree. It is worth to remind that the agent who is selected to be
the root of the pseudo-tree adds itself to the set of visited agents at the beginning. Thus,
there are n − 1 tree messages that are sent downward the pseudo-tree. Moreover, every
agent except the root agent will send exactly one tree message to its parent agent upward
the pseudo-tree. Therefore, there are n− 1 tree messages that are sent upward the pseudo-
tree. Accordingly, in total there are 2 × (n − 1) tree messages produced in Phase 1. This
proves Lemma 1.

3.4.4 Computing the UTIL Message: Phase 2

In the following, for simplicity, given an agent ai, we assume that ap = Pi. We will use ap
and Pi interchangeably. In this phase, each ASP-DPOP agent generates an ASP program
for computing the UTIL message that will be sent to its parent. In more detail, each agent
ai executes the following clause:

% Phase 2: UTIL Propagation Phase
perform_Phase_2(ReceivedUTILMessages):-

compute_separator(ReceivedUTILMessages, Separator),
assert(separatorlist(Separator)),
compute_related_constraints(ConstraintList),
assert(constraintlist(ConstraintList)),
generate_UTIL_ASP(Separator, ConstraintList),
solve_answer_set1(ReceivedUTILMessages, Answer),
store(Answer),
send_message(a_i, a_p, util, Answer).

In particular, each agent ai with a set of child agents Ci:
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• Waits to receive all of the UTIL messages from its children and combines them into
a set of ASP facts. Let Mak be the encoding of the UTIL message UTILaiak . We
define a list ReceivedUTILMessages as follows.

ReceivedUTILMessages =
⋃
a∈Ci

Ma. (50)

When ai is a leaf (Ci = ∅), we set ReceivedUTILMessages = [ ].
• Computes its separator sepi by executing compute separator/2. This is real-

ized using (i) the information about its parent and pseudo-parent agents added in
Πai during Phase 1, and (ii) the information about ancestors of the agent ai that are
directly connected with descendants of the agent ai, via facts of the form table info,
contained in the UTIL messages received from its child agents;

• Computes the set Rai (ConstraintList) of the related constraints (i.e., executing
compute related constraints/1) that is defined as (5).

• Generates the information for its UTIL message (i.e., executing
generate UTIL ASP/2). Specifically, generate UTIL ASP/2 first cre-
ates a logic program, denoted by Iai , from the separator list, the constraint list,
and the information from Mak where ak ∈ Ci. It then computes the answer set of
Πai ∪ Iai ∪ (

⋃
a∈Ci

Ma) which contains the encoded UTIL message of the agent
ai. Assume that

— sepi = {xs1 , . . . , xsk} (i.e., Separator = [xs1 , . . . , xsk ] is the separator list
of ai);

— Rai = {fr1 , . . . , frk′} and scp(frj ) = {xrj1 , . . . , xrjw } for 1 ≤ j ≤ k′ (i.e.,
ConstraintList = [fr1 , . . . , frk′ ]);

— Ci = {ac1 , . . . , acl} and each UTILaiact has xct1 , . . . , xctz as its dimensions
for 1 ≤ t ≤ l; and

— ap is the parent agent of the agent ai.

generate UTIL ASP/2 creates Iai with the following rules:

table row ai(U,Xs1 , . . . , Xsk )←
fr1(Vr1 , Xr11 , . . . , Xr1w ),

· · ·
frk′ (Vrk′ , Xrk′1

, . . . , Xrk′w
),

Vr1 != #inf, · · · , Vrk′ != #inf,
table max ac1(Uc1 , Xc11 , . . . , Xc1z ),
· · ·
table max acl(Ucl , Xcl1 , . . . , Xclz ),
U = Vr1 + · · ·+ Vrk′ + Uc1 + · · ·+ Ucl .

(51)

table max ai(U,Xs1 , . . . , Xsk )←
value(xs1 , Xs1),
· · ·
value(xsk , Xsk ),
table row ai( , Xs1 , . . . , Xsk ),
U = #max{V : table row ai(V,Xs1 , . . . , Xsk )}.

(52)
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table info(ai, as1 , xs1 , lbs1 , ubs1).
· · ·
table info(ai, ask , xsk , lbsk , ubsk ).

(53)

generate UTIL ASP/2 uses the information in UTILaiact and Πai to generate the
facts (53). In addition, each variable in the rules (51)-(53) corresponds to a variable
name (e.g., Xs1 corresponds to xs1 in the separator list; Xc11

corresponds to xc11 in
dimensions of UTILaiac1 ; etc.). Therefore, due to the definition of the separator of ai
and sepi = {xs1 , . . . , xsk}, Xs1 , . . . , Xsk are guaranteed to occur on the right hand
side of (51). In other words, Iai is a safe program.
Intuitively, the rule of the form (51) creates the joint table for ai—that is similar to
the result of flattening

(
⊕act∈Ci UTIL

ai
act

)
⊕
(
⊕f∈Rai

f
)

into a table— given
UTILaiact and Rai . In addition, (52) computes the optimal utilities for each value
combination of variables in the separator list.
• Computes an answer set A of the program Πai ∪ Iai ∪

⋃
a∈Ci

Ma by executing
solve answer set1/2, and extracts from A the information for the UTIL mes-
sage (i.e., Answer) that will be sent from the agent ai to the agent ap.

• Asserts the information in Answer for later use in Phase 3 (i.e., executes
store(Answer)).

• Sends encoded UTILapai to the parent agent ap (i.e., executes send message/4).

Example 13
As an example, we refer to the DCOP in Example 1. Specifically, we illustrate Ia2 gener-
ated by the agent a2. ReceivedUTILMessages for the agent a2 is the set of ASP facts
given in Example 10, Separator = [x1], and ConstraintList = [x1 cons x2]. The
program Ia2 includes the following rules:

table row a2(U,X1) ← x1 cons x2(V0, X1, X2),

V0 != #inf ,

table max a3(V1, X1, X2),

U = V0 + V1.

table max a2(U,X1) ← value(x1, X1),

table row a2( , X1)

U = #max{V : table row a2(V,X1)}.
table info(a2, a1, x1, 0, 1) ←

The relationship between the ASP-based computation and Algorithm 1 is established in
the following lemma.

Lemma 2
Let us consider a DCOPM, an agent ai ∈ A, and a pseudo-tree T . Let ai be an agent with
Ci = {ac1 , . . . , acl} and Mact

be the encoded UTILaiact for 1 ≤ t ≤ l. Furthermore, let
us assume that ap is the parent of ai, sepi = {xs1 , . . . xsk}, and Rai = {fr1 , . . . , fr′k} and
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scp(frj ) = {xrj1 , . . . , xrjw } for 1 ≤ j ≤ k′. Then, the program Πai ∪ Iai ∪ (
⋃
a∈Ci

Ma)

has a unique answer set A and

• table row ai(u, vs1 , . . . , vsk) ∈ A iff there exists a value combinationX for vari-
ables in scp(JOINPi

ai ) such that JOINPi
ai (X) = u where {xs1 = vs1 , . . . , xsk =

vsk} ⊆ X and u 6= −∞; and
• table max ai(u, vs1 , . . . , vsk) ∈ A iff UTILPi

ai (xs1 = vs1 , . . . , xsk = vsk) = u

and u 6= −∞.

Proof
Since Iai is safe and Πai ∪ Iai ∪ (

⋃
a∈Ci

Ma) is a positive program, it has a unique answer
set.

By the definition of answer set, table row ai(u, vs1 , . . . , vsk) ∈ A iff that there exists
a rule r of the form (51) such that table row ai(u, vs1 , . . . , vsk) is the head of r. It
means that there exists a value assignment Y for the variables occurring in r such that the
following conditions hold:

• {xs1 = vs1 , . . . , xsk = vsk} ⊆ Y ;
• for each 1 ≤ j ≤ k′, there exists vrj 6= #inf such that frj (vrj1 , . . . , vrjw ) = vrj and
{xrj1 = vrj1 , . . . , xrjw = vrjw } ⊆ Y ; and

• for each 1 ≤ t ≤ l, there exists uct such that table max act(uct , vct1 , . . . , vctz ) ∈ A

and {xct1 = vct1 , . . . , xctz = vctz } ⊆ Y . By the construction of the algorithm,
table max act(uct , vct1 , . . . , vctz ) ∈ A implies that UTILaiact (xct1 = vct1 , . . . , xctz =

vctz ) = uct and uct 6= −∞.

The conclusion of the first item follows directly from the definitions of the UTIL message
and the ⊕ operator (Definitions 3-4) and the above conditions.

The second item of the lemma follows from the first item, the condition
Vr1 != #inf , · · · , Vrk′ != #inf in the rule (51), and Definition 5.

Lemma 2 implies that Phase 2 of ASP-DPOP computes the same UTIL messages as
DPOP, except that UTIL messages in ASP-DPOP omit the value assignments whose asso-
ciated utilities are −∞.

3.4.5 Computing the VALUE Message: Phase 3

Each ASP-DPOP agent computes the optimal value for its variables and sends an encoded
VALUE message to its children. The process is described by the following Prolog rule:

% Phase 3: VALUE Propagation Phase
perform_Phase_3(ReceivedVALUEMessage):-

separatorlist(Separator),
constraintlist(ConstraintList),
generate_VALUE_ASP(Separator,ConstraintList),
solve_answer_set2(ReceivedVALUEMessage, Answer),
send_message_to_children(a_i, value, Answer).

In particular, the agent ai:
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• Waits to receive the encoded VALUE message, denoted by M ′Pi
, from its parent

agent Pi. If the agent ai does not have a parent, i.e., it is the root of the tree, we set
ReceivedVALUEMessage = [ ];
• Retrieves sepi (i.e., Separator) computed in Phase 2;
• Retrieves Rai (i.e., ConstraintList) computed in Phase 2;
• Executes the rule generate VALUE ASP/2 to create an ASP program, denoted by
I ′ai , from the separator list, the constraint list, and the information from Mak where
ak ∈ Ci from Phase 2. Assume that

— sepi = {xs1 , . . . , xsk} (i.e., Separator = [xs1 , . . . , xsk ] is the separator list
of ai);

— Rai = {fr1 , . . . , frk′} and scp(frj ) = {xrj1 , . . . , xrjw } for 1 ≤ j ≤ k′ (i.e.,
ConstraintList = [fr1 , . . . , frk′ ]);

— Ci = {ac1 , . . . , acl} and each UTILaiact has xct1 , . . . , xctz as its dimensions
for 1 ≤ t ≤ l; and

— The set of variables owned by the agent ai is αi = {xi1 , . . . , xiq}.

generate VALUE ASP/2 creates the logic program I ′ai with following rules:

{row(U,Xi1 , . . . , Xiq )} ← solution(α(xs1), xs1 , Xs1),
· · ·
solution(α(xsk ), xsk , Xsk ),
table max ai(U,Xs1 , . . . Xsk ),
fr1(Vr1 , Xr11 , . . . , Xr1w ),

· · ·
frk′ (Vrk′ , Xrk′1

, . . . , Xrk′w
),

table max ac1(Uc1 , Xc11 , . . . , Xc1z ),
· · ·
table max acl(Ucl , Xcl1 , . . . , Xclz ),
U == Vr1 + · · ·+ Vrk′ + Uc1 + · · ·+ Ucl .

(54)

← not 1{row(U,Xi1 , . . . , Xiq )}1. (55)

solution(ai, xi1 , Xi1) ← row(U,Xi1 , . . . , Xiq ).
· · ·

solution(ai, xiq , Xiq ) ← row(U,Xi1 , . . . , Xiq ).
(56)

Intuitively, the rule of the form (54) and the constraint of the form (55) select an
optimal row based on: (i) The computation as done in Phase 2 (i.e., using the facts
of the form table max ai that are stored in Phase 2), and (ii) (for non-root agent
only) the VALUE message that is received from its parent (i.e., facts of the form
solution/3). The selected optimal row will define the optimal value of the vari-
ables using rules of the form (56). Similar argument for the safety of Iai allows us
to conclude that I ′ai is also a safe program.
• Executes solve answer set2/2, that executes the ASP solver to compute an

answer set of the program Πai ∪ I ′ai ∪M
′
Pi
∪ (
⋃
a∈Ci

Ma). From that answer set,
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it collects all facts of the form solution(a, x, v) and returns them as Answer—i.e.,
the encoding of the VALUE message from the agent ai to its child agents;

• Executes send message to children/3 where it sends value message with
Answer as its data to each child agent (i.e., executing the respected clauses
send message/4 multiple times).

Example 14
As an example, we refer to the DCOP in Example 1 to illustrate I ′a2 generated by the agent
a2.ReceivedUTILMessages for the agent a2 is the set of ASP facts given in Example 10,
Separator = [x1], ConstraintList = [x1 cons x2], and α2 = {x2}. The program I ′a2
includes following rules:

{row(U,X2)} ← solution(a1, x1, X1),

table max a2(U,X1),

x1 cons x2(U0, X1, X2),

table max a3(U1, X1, X2)

U == U0 + U1.

← not 1{row(U,X2)}1.
solution(a2, x2, X2) ← row(U,X2).

Lemma 3
Let us consider a DCOPM, and an agent ai ∈ A in a pseudo-tree T . Let ai be an agent
with Ci = {ac1 , . . . , acl} and Mact

be the encoding of UTILaiact for 1 ≤ t ≤ l. Further-
more, assume that Pi is the parent agent of the agent ai, sepi = {xs1 , . . . xsk}, Rai =

{fr1 , . . . , fr′k} where scp(frj ) = {xrj1 , . . . , xrjw } for 1 ≤ j ≤ k′, αi = {xi1 , . . . , xiq},
and M ′Pi

encodes VALUEai
Pi

. Let Q = Πai ∪ I ′ai ∪M
′
Pi
∪ (
⋃
a∈Ci

Ma)). Then,

• For each answer set A of Q, the assignment xij = vij where
solution(ai, xij , vij ) ∈ A for 1 ≤ j ≤ q belongs to a solution of M;
and

• if xi1 = vi1 , . . . , xiq = viq is a value assignment for variables in αi that belongs to
a solution ofM, which contains V ALUEaiPi

, then Q has an answer set A containing
{solution(ai, xij , vij ) | 1 ≤ j ≤ q} ∪M ′i .

Proof
Based on the construction of I ′ai , it is possible to see that there exists at least one rule of
the form (54) in Q. Observe that if the agent ai is the root of the pseudo-tree T . Then,
M ′Pi

= ∅ and the rule (54) does not contain the atom of the form solution(a, x, v).
Since the program is safe and positive, we have that Q is consistent.

Because of the rule (55), each answer set A of Q contains exactly one atom of the form
row(u, vi1 , . . . , viq ). Also, from the rule (54), we have that if row(u, vi1 , . . . , viq ) ∈ A

then there exists some table max ai(u, vs1 , . . . , vsk) ∈ A which indicates that u is the
optimal utility corresponding to the assignment xsi = vsi for 1 ≤ i ≤ k (Lemma 2). From
the correctness of DPOP, this means that row(u, vi1 , . . . , viq ) encodes an optimal value
assignment for variables owned by the agent ai. This proves the first item.



Solving Distributed Constraint Optimization Problems Using Logic Programming 25

Assume that xi1 = vi1 , . . . , xiq = viq is a value assignment for variables in αi that
belongs to a solution of M, which contains V ALUEaiPi

. Then, by the completeness of
DPOP and Lemma 2, this implies that there exists some table max ai(u, vs1 , . . . , vsk)

such that V ALUEaiPi
contains xsi = vsi for 1 ≤ i ≤ k. As such, there must exist the values

for frj (.) and table max act(.) such that there is a rule of the form (54) whose head is
row(u, vi1 , . . . , viq ). This means thatQ has an answer set containing row(u, vi1 , . . . , viq ),
which proves the second item of the lemma.

3.4.6 ASP-DPOP

In this section, we will show the clause for ASP-DPOP agents to perform Phase 1, Phase
2, and Phase 3 consecutively. For simplicity, we omit the fragment of code of ASP-DPOP
agents that allow them to cooperate with each other to select one agent as the root of the
pseudo-tree—since it depends on the scores that are assigned to agents, according to a
heuristic function.

Let us remind that, if an agent ak is the root of the pseudo-tree, a fact of the form
parent(master, a k) will be added to Πak . After an agent is selected as the root of the
pseudo-tree, each agent will execute the clause start. Considering an agent ai, the clause
start of the agent ai is described as follows:

% Perform Phase 1, Phase 2, and Phase 3
start:-

(parent(master, a_i) ->
generate_tree(master, [])
;
wait_message(Parent, a_i, tree, Data),
generate_tree(Parent, Data)

),
(children(_) ->

get_UTILMessages_from_all_children(ReceivedUTILMessages),
perform_Phase_2(ReceivedUTILMessages)
;
perform_Phase_2([])

),
(parent(master, a_i) ->

perform_Phase_3([])
;
wait_message(Parent, a_i, value, ReceivedVALUEMessage),
perform_Phase_3(ReceivedVALUEMessage)

).

In particular, each agent ai:

• Checks whether ai is the root of the pseudo-tree; this is realized by checking whether
the fact of the form parent(master, a i) is in Πai :

— If the agent ai is the root of the pseudo-tree, it will execute
generate tree(master, [ ]) that is defined in Section 3.4.3; otherwise,

— If the agent ai is not the root of the pseudo-tree, it will execute
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wait message(Parent, a i, tree,Data). Upon receiving the tree mes-
sage from the agent Parent who is later assigned as its parent agent, the
agent ai will execute generate tree(Parent,Data) that is defined in
Section 3.4.3.

• Checks whether the agent ai is (resp. is not) a leaf of the pseudo-tree (i.e., this is
realized by checking whether the fact of the form children/1 is not (resp. is) in
Πai , respectively):

— If the agent ai is not a leaf of the pseudo-tree, it executes
get UTILMessages from all children(ReceivedUTILMessages).
Intuitively, the clause get UTILMessages from all children/1 it-
eratively executes wait message(From, a i, util,Data) until the agent ai
receives all utilmessages from all of its child agents. The contents (i.e.,Data)
of all util messages are combined into ReceivedUTILMessages. Then
the agent ai executes perform Phase 2(ReceivedUTILMessages)
that is defined in Section 3.4.4; otherwise,

— If the agent ai is a leaf of the pseudo-tree, it executes
perform Phase 2([]) that is defined in Section 3.4.4.

• Checks whether the agent ai is the root of the pseudo-tree or not:

— If the agent ai is the root of the pseudo-tree, it executes
perform Phase 3([]) that is defined in Section 3.4.5; otherwise,

— If the agent ai is not the root of the pseudo-tree, it executes
wait message(Parent, a i, value,ReceivedVALUEMessage) to wait for
value message from its parent agent. Then the agent ai executes
perform Phase 3(ReceivedVALUEMessage) that is defined in Sec-
tion 3.4.5.

4 Theoretical Analysis

In this section, we present some theoretical properties of ASP-DPOP including its sound-
ness, completeness, and complexity.

4.1 Soundness and Completeness

The soundness and completeness of ASP-DPOP follow from Lemmas (2)–(3) and the
soundness and completeness of DPOP.

Proposition 1
ASP-DPOP is sound and complete in solving DCOPs.

Proof
Let us summarize how ASP-DPOP solves a DCOPM:

• In Phase 1, each ASP-DPOP agent runs distributed DFS to generate a pseudo-
tree. At the end of this phase, the information about the parent, pseudo-parents, and
child agents of each agent ai are added to Πai via facts of the forms parent/1,
pseudo parent/1 and children/1, respectively;
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• In Phase 2, each ASP-DPOP agent ai: (i) waits to receive the encoding of UTIL
messages from all of its child agents (for non-leaf agents only), and (ii) generates
the ASP program Iai to compute its encoded UTIL message as an answer set of
Πai ∪ Iai ∪ReceivedUTILMessages;
• In Phase 3, each ASP-DPOP agent ai: (i) waits to receive the encoded VALUE mes-
sage from its parent agent (for non-root agent only), and (ii) generates the ASP program
I ′ai to compute its encoded VALUE message as an answer set of Πai ∪ I ′ai ∪M

′
Pi
∪

ReceivedUTILMessages;

The soundness and completeness of ASP-DPOP follows from the soundness and complete-
ness of DPOP and the following observations:

• Phase 1 of ASP-DPOP generates a possible pseudo-tree ofM.
• Assuming that ASP-DPOP and DPOP use the same pseudo-tree T then:

− Phase 2 of ASP-DPOP computes the same UTIL messages as DPOP except that
they omit the value assignments whose associated utilities are−∞ (Lemma 2). How-
ever, for DPOP, ignoring those value assignments in UTIL message will not affect
DCOP solution since such value assignments are not included in any solution (i.e.,
otherwise the total utility is −∞).
− Phase 3 of ASP-DPOP computes all possible solutions (VALUE messages) as

DPOP (Lemma 3).

4.2 Complexity

Given d = max1≤i≤n |Di| and w∗ = max1≤i≤n |sepi| where n is the number of agents,8

we have the following properties:

Property 1
The number of messages required by ASP-DPOP is bounded by O(n).

Proof
In ASP-DPOP, one can observe that: (1) Phase 1 requires a linear number of messages in n
(Lemma 1); (2) Phase 2 requires (n− 1) UTIL messages; and (3) Phase 3 requires (n− 1)

VALUE messages. Thus, the number of messages required by ASP-DPOP is bounded by
O(n).

Property 2
The size of messages required by ASP-DPOP is bounded by O(dw

∗
).

8 w∗ is also known as the induced width of a pseudo-tree (Dechter 2003).
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Proof
In ASP-DPOP,
• Phase 1 produces messages whose size is linear in n. This is because the tree mes-

sage is of the form send message(a i,Next Agent, tree,Data) where the content
(Data) that dominates the size of the tree message is the set of visited agents whose
size is linear in n;
• Phase 2 produces encoded UTIL messages; each message consists of: (i) a fact of the

form table max ai for each cell in the corresponding UTIL message in DPOP where
its associated optimal utility is not −∞, and (ii) |sepi| facts of the form table info.
Therefore, the size of encoded UTIL messages is bounded by O(dw

∗
) as the bounded

size of UTIL messages in DPOP (Petcu and Faltings 2005a); and
• Phase 3 produces encoded VALUE messages; each message consists of a fact of

the form solution/3 for each value assignment of a variable in the corresponding
VALUE message in DPOP. Therefore, Phase 3 produces encoded VALUE messages
whose sizes are bounded by O(|X |) = O(n) as we assume each agent owns exactly
one variable.

Thus, the size of messages required by ASP-DPOP is bounded by O(dw
∗
)

Property 3
The memory requirements in ASP-DPOP are exponential and bounded by O(dw

∗
).

Proof
In ASP-DPOP:
• In Phase 1, the memory requirements are bounded by O(n) because it needs to keep
track of the set of visited agents and the set of its neighboring agents;
• In Phase 2, the memory requirements are bounded by O(dw

∗
) since, in computing the

answer set of P = Πai ∪ Iai ∪ ReceivedUTILMessages, the ASP solver needs to
ground all the rules of the forms (51) and (52), and these dominate the number of other
facts or ground instances of other rules in P ;
• In Phase 3, the memory requirements are bounded by O(dw

∗
) since, in computing the

answer set of P ′ = Πai ∪ I ′ai ∪ M
′
Pi
∪ ReceivedUTILMessages, the ASP solver

needs to ground all rules of the form (54), where the number of facts of the form
table max ai is bounded by O(dw

∗
) (see Property 2). Moreover, the number of such

ground instances dominates the number of other facts and ground instances of other
rules in P ′.

Thus, the memory requirement in ASP-DPOP is exponential and bounded byO(dw
∗
).

5 Experimental Results

The goal of this section is to provide an experimental evaluation of ASP-DPOP. In par-
ticular, we compare ASP-DPOP against the original DPOP as well as other three im-
plementations of complete DCOP solvers: Asynchronous Forward-Bounding (AFB), Hard
Constraint-DPOP (H-DPOP), and Open-DPOP (ODPOP). AFB (Gershman et al. 2009) is
a complete search-based algorithm to solve DCOPs. H-DPOP (Kumar et al. 2008) is a com-
plete DCOP solver that, in addition, propagates hard constraints to prune the search space.
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ODPOP (Petcu and Faltings 2006) is an optimization algorithm for DCOPs, which com-
bines some advantages of both search-based algorithms and dynamic-programming-based
algorithms. For completeness of the paper, in this section, we will first provide some back-
ground about these three solvers, discuss about FRODO platform (Léauté et al. 2009)—a
publicly-available implementation of DPOP, AFB, and ODPOP—and then provide some
experimental results.

5.1 Background on AFB

The asynchronous forward-bounding algorithm (AFB) (Gershman et al. 2009), to the best
of our knowledge, is the most recent complete search-based algorithm to solve DCOPs.
AFB makes use of a Branch and Bound scheme to identify a complete value assignment
that minimizes the aggregate utility of all constraints. To do so, agents expand a partial
value assignment as long as the lower bound on its aggregate utility does not exceed the
global bound, which is the aggregate utility of the best complete value assignment found
so far.

In AFB, the state of the search process is represented by a data structure called Current
Partial Assignment (CPA). The CPA starts empty at some initializing agent, which records
the value assignment of its own variable and sends the CPA to the next agent. The aggregate
utility of a CPA is the accumulated utility of constraints involving the value assignment it
contains. Each agent, upon receiving a CPA, adds a value assignment of its own variable
such that the CPA’s aggregate utility will not exceed the global upper bound. If it cannot
find such an assignment, it backtracks by sending the CPA to the last assigning agent,
requesting that agent to revise its value assignment.

Agents in AFB process and communicate CPAs asynchronously. An agent that succeeds
to expand the value assignment of the received CPA sends forward copies of the updated
CPA, requesting all unassigned agents to compute lower bound estimates of the aggregate
utility of the current CPA. The assigning agent will receive these estimates asynchronously
over time, and use them to update the lower bound of the CPA. Using these bounds, the
assigning agent can detect if any expansion of this partial value assignment in the current
CPA will cause it to exceed the global upper bound, and in such cases it will backtrack.
Additionally, a time stamp mechanism for forward checking is used by agents to determine
the most updated CPA and to discard obsolete CPAs.

5.2 Background on H-DPOP

In H-DPOP (Kumar et al. 2008), the authors consider how to leverage the hard constraints
that may exist in the problem in a dynamic programming framework, so that only feasible
partial assignments are computed, transmitted, and stored (Kumar et al. 2008). To this end,
they encode combinations of assignments using Constrained Decision Diagrams (CDDs).
Basically, CDDs eliminate all inconsistent assignments and only include utilities corre-
sponding to value combinations that are consistent. The resulting algorithm, H-DPOP, a
hybrid algorithm that is based on DPOP, uses CDDs to rule out infeasible assignments,
and thus compactly represents UTIL messages.

A CDD G = 〈Γ, G〉 encodes the consistent assignments for a set of constraints Γ in a
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rooted direct acyclic graph G = (V,E) by means of constraint propagation. A node in G
is called a CDD node. The terminal nodes are either true or false implying consistent or
inconsistent assignment, respectively. By default, a CDD represents consistent assignments
omitting the false terminal.

The H-DPOP algorithm leverages the pruning power of hard constraints by using CDDs
to effectively reduce the message size. As in DPOP, H-DPOP has three phases: the pseudo-
tree construction, the bottom-up UTIL propagation, and top-down VALUE propagation.
The pseudo-tree construction and VALUE propagation phases are identical to ones of
DPOP. In the UTIL propagation phase, the UTIL message, instead of being a multidi-
mensional matrix, is a CDDMessage.

Definition 6
A CDDMessage M j

i sent by an agent ai to agent aj is a tuple 〈~u,G〉 where ~u is a vector
of utilities, and G is a CDD defined over variables in sepi. The set of constraints for G is
Γ = {fj | scp(fj) ⊆ sepi}.

In the UTIL propagation phase, H-DPOP defines different JOIN and PROJECTION oper-
ations. Observe that, based on Definition 6, an H-DPOP agent ai can access a constraint
whose scope is a subset of its separator, but that is not owned by ai itself. For example,
considering the DCOP in Example 1, in H-DPOP, the UTIL message sent from the agent
a3 to the agent a2 will have information about the constraint x1 cons x2 that is not owned
by the agent a3 since scp(x1 cons x2) = {x1, x2} ⊆ sep3. This might be undesirable in
situations where distribution of the computation is tied to privacy of information.

5.3 Background on ODPOP

ODPOP (Petcu and Faltings 2006) is an optimization algorithm for DCOP, which com-
bines some advantages of both search-based algorithms and dynamic-programming-based
algorithms. ODPOP always uses linear size messages, which is similar to search, and typ-
ically generates as few messages as DPOP. It does not always incur the worst complex-
ity which is the same with the complexity of DPOP, and on average it saves a signifi-
cant amount of computation and information exchange. This is achieved because agents
in ODPOP use a best-first order for value exploration and an optimality criterion that al-
lows them to prove optimality without exploring all value assignments for variables in their
separator. ODPOP also has 3 phases as DPOP:

Phase 1 (DFS traversal) is the same with Phase 1 in DPOP to construct a pseudo-tree.

Phase 2 (ASK/GOOD) is an iterative, bottom-up utility propagation process where each
agent repeatedly sends ASK messages to its child agents, asking for valuations (GOODs),
until it is able to compute the suggested optimal value assignment (GOOD) for variables in
its separator. It then sends that GOOD, together with the respective utility that is obtained
in the subtree rooted at this agent, as a GOOD message to its parent agent. This phase
finishes when the root received enough GOODs to determine the optimal value assignment
for its variables.

In more detail, in Phase 2, any child agent delivers to its parent agent a sequence of
GOOD messages, each of which explores a different value assignment for variables in its
separator, together with the corresponding utility. In addition, ODPOP uses a method to
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propagate GOODs so that every agent always reports its GOODs in oder of non-increasing
utility, provided that all of their child agents also follow this order. We can see that, DPOP
agents receives all GOODs that are grouped in single messages (i.e., UTIL messages). In
contrast, ODPOP agents send GOODs on demand (i.e., when it receives an ASK message)
individually and asynchronously as long as GOODs have non-increasing utilities.

As a consequence, each ODPOP agent ai can determine when it has received enough
GOODs from its child agents in order to be able to determine a GOOD to send to its
parent agent Pi. At that time, ai will not send ASK message any more since any additional
received GOODs will not affect the GOOD that was determined. If ai later receives more
ASK message from Pi for having next GOOD, ai will continue to request more GOODs
from its child agents until it can determine the next GOOD to report to Pi.

Since GOODs are always reported in order of non-increasing utility, the first GOOD
that is generated at the root agent is the optimal value assignment for its variable. As a
consequence, the root agent will be able to generate this solution without having to consider
all value assignments for its variables.

Phase 3 (VALUE propagation) is similar to Phase 3 in DPOP. The root agent initiates the
top-down VALUE propagation by sending a VALUE message to its child agents, inform-
ing them about its optimal value assignment for its variables. Subsequently, each agent ai′ ,
upon receiving a VALUE message, will determine its optimal value assignment for its vari-
ables based on the computation (in Phase 2) of the first GOOD message generated whose
associated value assignment is consistent with the one in the received VALUE message.

5.4 Discussion on FRODO Platform

In our experiment, we will compare the performance of ASP-DPOP against DPOP, AFB,
and ODPOP; in particular, we use the implementation of the latter three systems that is
publicly available in the FRODO platform (Léauté et al. 2009). It is important to observe
that, at the implementation level, all DCOP solvers that are implemented within FRODO
follow the simplifying assumption that each agent owns exactly one variable. This assump-
tion is common practice in the DCOP literature (Modi et al. 2005; Petcu and Faltings
2005a; Gershman et al. 2009; Ottens et al. 2012). However, agents in DCOP problems
used in our experiments own multiple variables. We will discuss in this subsection the pre-
processing technique (i.e., decomposition, also known as virtual agents) that FRODO uses
to transform a general DCOP with multiple variables per agent into a new DCOP with one
variable per agent.

FRODO creates a virtual agent for each variable in a DCOP. A distinct variable is as-
signed to each virtual agent, so that this formulation satisfies the simplifying assumption.
We say that a virtual agent a′i belongs to a real agent ai in DCOP if the virtual agent a′i
owns a variable that is owned by the real agent ai. In FRODO, the solving algorithm is
executed on each virtual agent, while intra-agent messages (i.e., messages are passed be-
tween virtual agents that belong to the same real agent) are only simulated and discounted
in the calculation of computation cost (e.g., number of messages and messages’ size).

Let M be a DCOP with multiple variables per agent, and M ′ be a new DCOP with
one variable per agent that is constructed from M . Let us assume that we apply DPOP
to solve both M and M ′, using the same heuristics to construct the pseudo-trees. We can
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observe that each node in the pseudo-tree used to solve M ′ represents a virtual agent,
while each node in a pseudo-tree of ASP-DPOP represents a real agent. It is possible
to see that, the number of inter-agent messages (i.e., messages that are passed between
virtual agents that belong to different real agents) produced in solving M ′ may be greater
than the number of UTIL messages produced in solving M , depending on their respective
pseudo-trees. Therefore, to minimize the total number of inter-agent messages, FRODO
constructs pseudo-trees where virtual agents that belong to the same real agent stay as
close as possible to each other.

It is important to summarize that, to handle a general DCOP with multiple variables per
agent, FRODO first transforms it into a new DCOP with one variable per agent (introducing
virtual agents), and then executes the resolution algorithms on each agent of the new DCOP.
To the best of our knowledge, there is not any formal discussion about the relationship
between pseudo-trees whose nodes represent real agents and pseudo-trees whose nodes
represent virtual agents. However, it is believed that given a pseudo-tree T ′ whose nodes
represent virtual agents, there always exists a pseudo-tree T whose nodes represent real
agents such that T is compatible with T ′. Intuitively, by compatible we mean that it is
possible to construct T from T ′ as follows:

• If the root of T ′ is a node representing the virtual agent a′i that belongs to a real agent
ai, the root of T is the node representing ai; and

• If there is at least one tree edge (resp. back edge) connecting two nodes that represent
virtual agents a′i1 and a′i2 in T ′, there is a tree edge (resp. back edge) connecting the
two nodes that represent real agents ai1 and ai2 in T such that a′i1 and a′i2 belong to
ai1 and ai2 respectively.

It is worth to notice that, in our experiments, we ensure that all algorithms use the same
heuristics to construct their pseudo-trees. We also observe that all pseudo-trees that are
constructed using ASP-DPOP are compatible with the corresponding pseudo-trees that are
constructed using FRODO.

5.5 Experimental Results

We implement two versions of the ASP-DPOP algorithm—one that uses ground programs,
which we call “ASP-DPOP (facts),” and one that uses non-ground programs, which we call
“ASP-DPOP (rules).” In addition, as the observation made about H-DPOP in Section 5.2,
we also implemented a variant of H-DPOP, called PH-DPOP, which stands for Privacy-
based H-DPOP, that restricts the amount of information that each agent can access to the
amount common in most DCOP algorithms, including DPOP and ASP-DPOP. Specifically,
agents in PH-DPOP can only access their own constraints and, unlike H-DPOP, cannot
access their neighboring agents’ constraints.

In our experiments, we compare both versions of ASP-DPOP against DPOP (Petcu and
Faltings 2005a), H-DPOP (Kumar et al. 2008), PH-DPOP, AFB (Gershman et al. 2009),
and ODPOP (Petcu and Faltings 2006). We use a publicly-available implementation of
DPOP, AFB, and ODPOP (Léauté et al. 2009) and an implementation of H-DPOP pro-
vided by the authors. We ensure that all algorithms use the same heuristics to construct
their pseudo-trees for fair comparison. We measure the runtime of the algorithms using the
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simulated runtime metric (Sultanik et al. 2007). All experiments are performed on a Quad-
core 3.4GHz machine with 16GB of memory. If an algorithm fails to solve a problem, it is
due to memory limitations; other types of failures are specifically stated. We conduct our
experiments on random graphs (Erdös and Rényi 1959), where we systematically mod-
ify the domain-independent parameters, and on comprehensive optimization problems in
power networks (Gupta et al. 2013).

|X | DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP
Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time

5 100% 36 100% 28 100% 31 100% 20 100% 31 100% 779
10 100% 204 100% 73 100% 381 100% 35 100% 164 100% 1,080
15 86% 39,701 100% 148 98% 67,161 100% 53 100% 3,927 100% 1,450
20 0% - 100% 188 0% - 100% 73 74%a 242,807 100% 1,777
25 0% - 100% 295 0% - 100% 119 0% - 100% 1,608

p1
DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time
0.4 100% 1,856 100% 119 100% 2,117 100% 46 100% 1,819 100% 1,984
0.5 100% 13,519 100% 120 100% 19,321 100% 50 100% 2,680 100% 1,409
0.6 94% 42,010 100% 144 100% 54,214 100% 51 100% 3,378 100% 1,308
0.7 56% 66,311 100% 165 88% 131,535 100% 54 100% 8,063 100% 1,096
0.8 20% 137,025 100% 164 62% 247,335 100% 60 100% 36,748 100% 1,073

|Di|
DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time
4 100% 782 100% 87 100% 1,512 100% 46 100% 285 100% 1,037
6 90% 28,363 100% 142 98% 42,275 100% 50 100% 4,173 100% 1,283
8 14% 37,357 100% 194 52% 262,590 100% 60 98% 71,512 100% 8,769

10 0% - 100% 320 8% 354,340 100% 70 78%b 227,641 100% 29,598
12 0% - 100% 486 0% - 100% 82 30%c 343,756 100% 60,190

p2
DPOP H-DPOP PH-DPOP AFB ODPOP ASP-DPOP

Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time
0.3 90% 38,114 100% 464 76% 189,431 100% 103 84%d 221,515 18% 120,114
0.4 86% 48,632 100% 265 84% 107,986 100% 71 94%e 109,961 86% 50,268
0.5 94% 38,043 100% 161 96% 71,181 100% 57 100% 14,790 92% 4,722
0.6 90% 31,513 100% 144 98% 68,307 100% 52 100% 13,519 100% 1,410
0.7 90% 39,352 100% 128 100% 49,377 100% 48 100% 1,730 100% 1,059
0.8 92% 40,526 100% 112 100% 62,651 100% 57 100% 1,137 100% 1,026

a ODPOP cannot solve 13 instances (out of 50 instances) in this experiment in which there are 12 instances
unsolved due to timeout and 1 instance unsolved due to memory limitation.

b ODPOP cannot solve 11 instances (out of 50 instances) in this experiment in which there are 10 instances
unsolved due to timeout and 1 instance unsolved due to memory limitation.

c ODPOP cannot solve 35 instances (out of 50 instances) in this experiment in which there are 29 instances
unsolved due to timeout and 6 instance unsolved due to memory limitation.

d ODPOP cannot solve 8 instances (out of 50 instances) in this experiment due to timeout.
e ODPOP cannot solve 3 instances (out of 50 instances) in this experiment due to timeout.

Table 2. Experimental Results on Random Graphs

Random Graphs: We create an n-node network, whose constraint density p1 produces
bn · (n − 1) · p1c edges in total (Erdös and Rényi 1959). In our experiments, we vary the
number of variables |X |, the domain size |Di|, the constraint density p1, and the constraint
tightness p2. For each experiment, we vary only one parameter and fix the rest to their
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“default” values: |A| = 5, |X | = 15, |Di| = 6, p1 = 0.6, p2 = 0.6. The timeout is set to
5× 106 ms. Table 2 shows the percentage of instances solved (out of 50 instances) and the
average simulated runtime (in ms) for the solved instances. We do not show the results for
ASP-DPOP (rules), as the utilities in the utility table are randomly generated, leading to
no differences w.r.t. ASP-DPOP (facts). We make the following observations:

• ASP-DPOP is able to solve more problems than DPOP and is faster than DPOP when
the problem becomes more complex (i.e., increasing |X |, |Di|, p1, or p2). The reason
is that ASP-DPOP is able to prune a significant portion of the search space thanks
to hard constraints. ASP-DPOP does not need to explicitly represent the rows in the
UTIL table that are infeasible, unlike DPOP. The size of the search space pruned
increases as the complexity of the instance grows, resulting in a larger difference
between the runtime of DPOP and ASP-DPOP.

• H-DPOP is able to solve more problems and solve them faster than DPOP, PH-
DPOP, and ASP-DPOP. The reason is that agents in H-DPOP utilize more informa-
tion about the neighbors’ constraints to prune values. In contrast, agents in ASP-
DPOP and PH-DPOP only utilize information about their own constraints to prune
values and agents in DPOP do not prune any values.

• ASP-DPOP is able to solve more problems and solve them faster than PH-DPOP.
The reason is that agents in PH-DPOP, like agents in H-DPOP, use constraint deci-
sion diagram (CDD) to represent their utility tables, and it is expensive to maintain
and perform join and project operations on this data structure. In contrast, agents
in ASP-DPOP are able to capitalize on highly efficient ASP solvers to maintain
and perform operations on efficient data structures thanks to their highly optimized
grounding techniques and use of portfolios of heuristics.

• AFB is able to solve more problems and solve them faster than every other algorithm.
We attribute this observation mainly to the relatively small number of variables in
this experiment—i.e., the maximum number of variables in this experiment is 25
(see the first table in Table 2).

• ASP-DPOP is able to solve more problems and solve them faster than ODPOP when
the problem becomes more complex (i.e., increasing |X |, |Di|, p1, or p2). The reason
is that ODPOP does not prune the search space based on hard constraints, unlike
ASP-DPOP. On one hand, ODPOP intuitively sends each row of UTIL messages per
time on demand and uses optimality criteria to prove optimality without exploring
all value assignments for the respective variables. However, these techniques are not
as efficient as pruning the search space in ASP-DPOP when the problem becomes
more complex. Thus, ODPOP reaches a timeout in most of its unsolvable problems.
It is also worth to observe that there are some problems that ODPOP cannot solve
due to memory limitations. We attribute this to the fact that ODPOP maintains in its
search space infeasible value assignments that result in a utility equal to −∞, and
thus the search space of ODPOP is not as optimized as that of ASP-DPOP.

Additional Experiment Results on Random Graphs: We claimed earlier that AFB is
able to solve more problems and solve them faster than every other algorithm, mainly due
to the relative small number of variables in the experiments reported in Table 2. To directly
confirm such claim, we extended our experiments on random graphs, by increasing the
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|X | AFB ASP-DPOP
Solved Time Solved Time

150 100% 31,156 100% 37,862
200 100% 117,913 100% 115,966
250 0%a - 100% 298,361

a AFB cannot solve any instance (out of 50 instances) in this experiment due to timeout.

Table 3. Additional Experimental Results on Random Graphs

number of variables (i.e., |X | ≥ 150) and keeping the other parameters to their “default”
values (i.e., |A| = 5, |Di| = 6, p1 = 0.6, p2 = 0.6).9 The timeout is also set to 5 × 106

ms. Table 3 shows the percentage of instances solved (out of 50 instances) and the average
simulated runtime (in ms) for the solved instances. The runtime results for DPOP, H-DPOP,
PH-DPOP, and ODPOP are not included in Table 3 because they run out of memory in
solving all of the problems in this domain.10 We observe that ASP-DPOP is able to solve
more problems than AFB (i.e., when |X | = 250) and solve them faster than AFB when
|X | ≥ 200. We attribute this observation mainly to the large number of variables in this
experiment. We also notice that AFB can scale up to solve problems of up to |X | = 200

(such scalability will not be seen in the experiment on power network problems described
below). The main reason is that the problems in our experiment on random graphs are
“purely hard” with the default values p1 = 0.6 and p2 = 0.6. This means that the size
of the set of complete feasible value assignments, which are complete value assignments
that do not result in a utility of +∞, is small (about less than 5 in all of the problems
in this domain). AFB backtracks much earlier before it can achieves a complete feasible
value assignment. As a result, AFB can solve problems with number of variables up to 200
before it exceeds the time out threshold.

Power Network Problems: A customer-driven microgrid (CDMG), one possible instan-
tiation of the smart grid problem, has recently been shown to subsume several classical
power system sub-problems (e.g., load shedding, demand response, restoration) (Jain et al.
2012). In this domain, each agent represents a node with consumption, generation, and
transmission preferences, and a global cost function. Constraints include the power balance
and no power loss principles, the generation and consumption limits, and the capacity of
the power line between nodes. The objective is to minimize a global cost function. CDMG
optimization problems are well-suited to be modeled with DCOPs due to their distributed
nature. Moreover, as some of the constraints in CDMGs (e.g., the power balance principle)
can be described in functional form, they can be exploited by ASP-DPOP (rules). For this
reason, both “ASP-DPOP (facts)” and “ASP-DPOP (rules)” are used in this domain.

We use three network topologies defined using the IEEE standards (IEEE Distribution
Test Feeders 2014) and vary the domain size of the generation, load, and transmission
variables of each agent from 5 to 31. The timeout is set to 106 ms. Figure 5 summarizes
the runtime results. As the utilities are generated following predefined rules (Gupta et al.

9 We thank one of the reviewers for his/her suggestion to have this additional experiment on random graphs.
10 It is worth to note that H-DPOP runs out of memory while constructing its CDDs in solving all of the problems

in this domain.
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Fig. 5. Runtime Results on Power Network Problems

|Di|
13 Bus Topology 34 Bus Topology

5 7 9 11 5 7 9 11
H-DPOP 6,742 30,604 97,284 248,270 1,437 4,685 11,617 24,303

DPOP 3,125 16,807 59,049 161,051 625 2,401 6,561 14,641
ODPOP 6 6 6 6 5 5 5 5

ASP-DPOP 10 14 18 22 10 14 18 22

|Di|
37 Bus Topology

5 7 9 11
H-DPOP 6,742 30,604 97,284 248,270

DPOP 3,125 16,807 59,049 161,051
ODPOP 6 6 6 6

ASP-DPOP 10 14 18 22

(a) Largest UTIL Message Size

|Di|
13 Bus Topology 34 Bus Topology

5 7 9 11 5 7 9 11
H-DPOP 19,936 79,322 236,186 579,790 20,810 57,554 130,050 256,330

DPOP 9,325 43,687 143,433 375,859 9,185 29,575 73,341 153,923
ODPOP 391 1,430 6,281 11,979 2,197 4,122 12,124 12,870

ASP-DPOP 120 168 216 264 330 462 594 726

|Di|
37 Bus Topology

5 7 9 11
H-DPOP 38,689 133,847 363,413 836,167

DPOP 17,665 71,953 215,793 531,025
ODPOP 1,896 5,572 18,981 28,285

ASP-DPOP 360 504 648 792

(b) Total UTIL Message Size

Table 4. Message Size Results on Power Network Problems
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2013), we also show the results for ASP-DPOP (rules). Furthermore, we omit results for
PH-DPOP because they have identical runtime—the amount of information used to prune
the search space is identical for both algorithms in this domain. We also measure the size
of UTIL messages, where we use the number of values in the message as units, and the
intra-agent UTIL messages (i.e., messages are passed between virtual agents that belong
to the same real agent) are accounted for fair comparison. Table 4 tabulates the results.
We did not measure the size of VALUE messages since they are significantly smaller than
UTIL messages. It is also worth to report that the number of UTIL messages that FRODO
produces (discounting all intra-agent UTIL messages) is equal to the number of UTIL
messages that ASP-DPOP produced in all power network problems in our experiments.

The results in Figure 5 are consistent with those shown earlier (except for AFB)—ASP-
DPOP is slower than DPOP and ODPOP when the domain size is small, but it is able to
solve more problems than DPOP and ODPOP. We observe that, in Figure 5(b), DPOP is
consistently faster than ASP-DPOP and is able to solve the same number of problems as
ASP-DPOP. It is because the highest constraint arity in 34 bus topology is 5 while it is 6
in 13 and 37 bus topologies. Unlike in random graphs, H-DPOP is slower than the other
algorithms in these problems. The reason is that the constraint arity in these problems is
larger and the expensive operations on CDDs grow exponentially with the arity. We also
observe that ASP-DPOP (rules) is faster than ASP-DPOP (facts). The reason is that the
former is able to exploit the interdependencies between constraints to prune the search
space. Additionally, ASP-DPOP (rules) can solve more problems than ASP-DPOP (facts).
The reason is that the former requires less memory since it prunes a larger search space
and, thus, ground fewer facts.

The runtime results for AFB are not included in Figure 5, since AFB exceeds the timeout
in solving all of the problems in this domain; this contrasts to the results shown earlier for
random graphs. The main reason is that the number of variables in the power network prob-
lems is large (i.e., |X | are 50, 134, and 146 in 13, 34, and 37 bus topologies, respectively
in Figure 5).

Finally, both versions of ASP-DPOP require smaller messages than both H-DPOP and
DPOP. The reason for the former is that the CDD data structure of H-DPOP is significantly
more complex than that of ASP-DPOP. The reason for the latter is that ASP-DPOP prunes
portions of the search space while DPOP did not. In addition, since ASP-DPOP does not
transform DCOP problems with multiple variables per agent to corresponding ones with
one variable per agent, ASP-DPOP is able to exploit significantly more the interdependen-
cies between constraints to prune the search space. Moreover, we can see that the largest
UTIL message sizes in ODPOP are smaller than those of ASP-DPOP, but the total UTIL
message sizes in ODPOP are larger than those of ASP-DPOP. The reason is that ODPOP
sends only linear size message, but it needs to send many messages on demand.

5.6 Discussions on ASP-DPOP

ASP-DPOP has been shown to be competitive with other algorithms in solving DCOPs in
our experimental results. The benefits of using ASP-DPOP are accomplished by having
ASP as its foundation. We will illustrate here the two main advantages of making use of
ASP within ASP-DPOP:
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1. The use of the highly expressive ASP language to encode constraints in DCOPs; and
2. The ability to harness the highly optimized ASP grounder and solver to prune the

search space based on hard constraints.
In the rest of this section, we further discuss these advantages and relate them to the ob-

servations drawn from the experiments. These considerations are followed by a discussion
of how ASP-DPOP alleviates the simplifying assumption of having a single variable per
agent. Finally, at the end of this section, we analyze the privacy loss of ASP-DPOP.

The first advantage of using ASP within ASP-DPOP comes from the ability to use a very
expressive logic language to encode the constraints in a DCOP. ASP-DPOP can represent
constraint utilities as an implicit function instead of explicitly enumerating them. Thus,
ASP-DPOP is particularly suitable to encode DCOPs whose constraint utilities are large
and evaluated via implicit functions of the variables in their scopes (e.g., power network
problems, smart grid problems). This can be seen clearly via Example 15.

Example 15
Let us consider a constraint f representing the power loss principle in a power network
problem, where scp(f) = {x1→2, x2→1} in which the domains of the variables x1→2 and
x2→1 are D1→2 = [0, 2] and D2→1 = [−2, 0], respectively. Intuitively, the variable xi→j ,
where i, j ∈ {1, 2}, i 6= j, indicates the amount of power that node i transfers to (receives
from) node j if xi→j ≥ 0 (resp. xi→j < 0). For example, x1→2 = 1 means that the node 1

transfers 1 unit of power to the node 2, and x2→1 = −1 specifies that the node 2 receives 1

unit of power from the node 1. By the power loss principle, if there is no loss, the amount
of power transferred from one node is equal to the amount of power received in the other
node (i.e., xi→j +xj→i = 0). However, if there is loss (i.e., xi→j +xj→i 6= 0), we assume
that the cost (utility) of the power transmission is evaluated to be two times greater than the
power unit loss. Formally, the utility of the constraint f is given implicitly as a function:

f(x1→2, x2→1) = 2× |x1→2 + x2→1|. (57)

x1→2 x2→1 Utilities
2 -2 0
2 -1 2
2 0 4
1 -2 2
1 -1 0
1 0 2
0 -2 4
0 -1 2
0 0 0

(a) Explicit Representation as
a Utility Table

value(x1→2, 0..2)← (58)

value(x2→1,−2..0)← (59)

f(2 ∗ |V1 + V2|, V1, V2) ← value(x1→2, V1),

value(x2→1, V2). (60)

(b) Implicit Representation as an Answer Set Program

Fig. 6. Different Encodings of Constraint f in Example 15

Figure 6(a) enumerates all the utilities of the constraint f explicitly in a utility table, and
Figure 6(b) presents an answer set program that models implicitly those utilities. We can
see that while the utility table has 9 rows (i.e., the domain sizes of x1→2 and x2→1 are 3),
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the answer set program consists of only 2 facts and 1 rule. If the domain sizes of x1→2 and
x2→1 are 1000 (e.g.,D1→2 = [0, 999] andD1→2 = [−999, 0]), the utility table would have
10002 rows whereas the answer set program modeling implicitly such the same utilities
still has 2 facts and 1 rule that are similar to ones in Figure 6(b)—i.e., it only updates the
2 facts (58) and (59) as follows:

value(x1→2, 0 .. 999) ← (61)

value(x2→1,−999 .. 0) ← (62)

As a consequence, using ASP within ASP-DPOP to encode DCOPs makes programs much
more concise and compact. The encoding is declarative and can be easily extended and
modified. Moreover, such encoding does not depend on the implementation of the al-
gorithms (e.g., DPOP or H-DPOP), making programs more flexible and understandable.
Specifically, if we change the algorithm to solve a DCOP, the Controller Module needs to
be changed following the new algorithm, yet the Specification Module remains the same.
In contrast, using imperative programming techniques, the “ad-hoc” implementation that is
employed within each local solver might require different encodings of DCOPs for differ-
ent used algorithms and different propagators for different types of constraints. For exam-
ple, H-DPOP implementation needs a different data structure from DPOP implementation
to deal with hard constraints.

The second advantage of using ASP as the foundation of ASP-DPOP is to harness the
highly optimized ASP grounders and solvers to prune the search space, especially in the
handling of hard constraints. As an example, consider the power network problem whose
objective is to minimize a global cost function.11 A DCOP that encodes such type of power
network problems can be formulated in terms of cost-as-utility minimization rather than
reward-as-utility maximization. Thus, in this formulation the value assignments resulting
in an infinite utility (i.e., +∞) should not be included in any DCOP solution; such value
assignments are redundant and should be pruned. Example 16 shows how effectively an
ASP grounder can prune the search space.

Example 16
Consider a simple power network problem, where the aggregated cost needs to be mini-
mized. The problem has two nodes (nodes 1 and 2). Let us assume that agent a1 and agent
a2, which are the node 1 and the node 2, own the variables x1→2 and x2→1, respectively.
These are described in Example 15. The problem has one constraint f representing the
power loss principle, analogously to what described in Example 15. The only difference is
that we do not allow losses in power transfers (i.e., if there is a loss, the corresponding cost
is +∞). Thus, the utility (cost) of the constraint f now is evaluated as:

f(x1→2, x2→1) =

{
2× x1→2 if x1→2 + x2→1 = 0

+∞ otherwise
(63)

Figure 7 presents the ASP program12 to compute the UTIL message sent from the agent

11 The previous formalization of ASP-DPOP focuses on maximizing the cost function; the switch to minimization
problems requires trivial changes to the design of ASP-DPOP.

12 #sup is a special constant representing the largest possible value in the ASP language.
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2 to the agent 1, assuming that the agent 1 is the root of the respective pseudo-tree (i.e.,
the separator set of the agent 2 is sep2 = {x1→2}). It is important to observe that, since
the objective is to minimize a global cost function, the ASP in Figure 7 is produced dif-
ferently from the one that is generated by generate UTIL ASP/2 described in 3.4.4.
Specifically, the differences are:

• The predicates of the form table min ai are used instead of ones of the form
table max ai;
• U = #min{...} rather than U = #max{...} in (52) (i.e., computing the minimal

utilities for each value combination of variables in the separator list); and
• The conditions Vr1 != #sup, · · · , Vrk′ != #sup are used instead

of Vr1 != #inf, · · · , Vrk′ != #inf in (51) (i.e., atoms of the form
table row ai(u, vs1 , . . . , vsk) where u = #sup (i.e., the respective utilities
are +∞) are not produced).

As a consequence, the encoded UTIL messages consist of facts of the forms
table min ai (instead of table max ai) and table info.

f(4, 2,−2) ← (64)

f(2, 1,−1) ← (65)

f(0, 0, 0) ← (66)

f(#sup, 0,−2) ← (67)

f(#sup, 1,−2) ← (68)

f(#sup, 0,−1) ← (69)

f(#sup, 2,−1) ← (70)

f(#sup, 1, 0) ← (71)

f(#sup, 2, 0) ← (72)

value(x1→2, 0 .. 2) ← (73)

value(x2→1,−2 .. 0) ← (74)

table row a2(U,X1→2) ← f(V0, X1→2, X2→1),

V0 != #sup,

U = V0. (75)

table min a2(U,X1→2) ← value(x1→2, X1→2), (76)

table row a2( , X1→2),

U = #min{V : table row a2(V,X1→2)}.

Fig. 7. ASP to Compute UTIL Message in Example 16

The 9 facts (64)-(72) enumerate all utilities of the constraint f in which the 6 facts (67)-
(72) are redundant since their corresponding utilities are +∞. With DPOP, the total
size of the search space for computing its UTIL message is 9, which corresponds to
the 9 facts (64)-(72), since DPOP does not do pruning. However, with ASP-DPOP, the
corresponding total size of the search space is 3 since GRINGO, due to the condition
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V0 != #sup, grounds the rule (75) into only 3 facts:

table row a2(4, 2) ← (77)

table row a2(2, 1) ← (78)

table row a2(0, 0) ← (79)

and an ASP solver will use these facts to generate the predicates table min a2 based
on the rule (76). The different between the sizes of the search spaces of ASP-DPOP and
DPOP are greater as the domain sizes of variables increase. For example, if the domain
sizes of x1→2 and x2→1 are 1000, the total search space of DPOP is 10002 while the total
search space of ASP-DPOP is just 1000.

As a consequence, and as clear from our experiments, ASP-DPOP is able to prune a sig-
nificant portion of the search space, thanks to hard constraints, whereas DPOP does not.
Moreover, as seen in Example 16, the size of the search space pruned increases as the com-
plexity of the instance grows (i.e., increasing |X |, |Di|, p1, or p2). Thus, ASP-DPOP is able
to solve more problems than DPOP and is faster than DPOP when the problem becomes
more complex.

The pruning power of the ASP grounders and solvers enables also the generation of
smaller UTIL messages in ASP-DPOP than those generated by DPOP. Let us consider a
UTIL message M sent from an agent ai to an agent aj . A value assignment of variables
in sepi is admissible if its corresponding optimal sum of utilities in the subtree rooted at
ai is different than −∞.13 In DPOP, M consists of a utility, which is optimal, for each
value assignment of variables in sepi (including both admissible and inadmissible value
assignments). However, M in ASP-DPOP consists of a utility, which is optimal and dif-
ferent from −∞, for only each admissible value assignment of variables in sepi. This is
because such inadmissible value assignments will not be included in any DCOP solution
(i.e., otherwise the global cost is −∞).

We will not discuss in-depth technically what algorithms and computations are imple-
mented within modern ASP grounders to optimize the grounding process, since they are
beyond the scope of this paper. Readers who are interested in such algorithms and com-
putations can find further information in (Gebser et al. 2012; Kaufmann et al. 2016). It
is important to notice that such computations (e.g., for removing unnecessary rules and
for omitting rules whose bodies cannot be satisfied) consume memory, take time, and are
not trivial. Therefore, for DCOP problems with low constraint tightness, the runtime and
memory that are used for those computations will dominate the runtime and memory that
are saved from pruning the search space (e.g., see the row p2 = 0.3 in Table 2). This also
explains why ASP-DPOP is slower than DPOP when the problem becomes less complex
(i.e., decreasing |X |, |Di|, p1, or p2). Specifically, from the trend while decreasing p2 in
Table 2, ASP-DPOP will not be able to compete with DPOP for cases where p2 ≤ 0.3.

The fact that ASP-DPOP solves DCOP problems with multiple variables per agent di-
rectly, without transforming them to problems with one variable per agent, deserves some
discussions. It is easy to see that ASP-DPOP agents need to consider more variables and

13 Or +∞ for minimization problems.
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thus more constraints. As a result, there are more interdependencies between constraints
for ASP-DPOP to exploit. If the constraint tightness is high, the size of the search space
pruned increases significantly. This can be seen in our power network experiment. On the
other hand, dealing with more variables and more constraints also increases the search
space. Therefore, if the constraint tightness does not provide sufficient pruning, the por-
tion of the search space pruned does not properly balance the increase in the size of the
search space; this may lead ASP-DPOP to require more memory than DPOP in solving
such problems. This situation can be seen in experimental results on random graphs (i.e.,
decreasing p2). Solving DCOPs with multiple variables per agent without transforming
them to problems with a single variable per agent was also investigated in (Fioretto et al.
2016).

Maintaining privacy is a fundamental motivation for the use of DCOP. A detailed analy-
sis of privacy loss in DCOP for some existing DCOP algorithms, including DPOP, can be
found in (Greenstadt et al. 2006). For ASP-DPOP, it is not difficult to realize that DPOP
and ASP-DPOP have the same privacy loss. The reason is that the content of UTIL mes-
sages (resp. VALUE messages) in DPOP—that are given under the tabular form (which are
similar to those given under multi-dimensional matrix form)—is identical to the content of
the UTIL messages (resp. VALUE messages) in ASP-DPOP—that are given in facts form.
In fact, anything that is inferred from the fact form (in UTIL and VALUE messages of
ASP-DPOP) can be inferred from the tabular form (in the respective messages of DPOP),
and vice versa anything is inferred from tabular form can be inferred from fact form as
well.

6 Related Work

The use of declarative programs, specifically logic programs, for reasoning in multi-agent
domains is not new. Starting with some seminal papers (Kowalski and Sadri 1999), vari-
ous authors have explored the use of several different flavors of logic programming, such
as normal logic programs and abductive logic programs, to address cooperation between
agents (Kakas et al. 2004; Sadri and Toni 2003; Gelfond and Watson 2007; De Vos et al.
2005). Some proposals have also explored the combination between constraint program-
ming, logic programming, and formalization of multi-agent domains (Dovier et al. 2013;
Vlahavas 2002; Dovier et al. 2010a; Dovier et al. 2010b). Logic programming has been
used in modeling multi-agent scenarios involving agents knowledge about other’s knowl-
edge (Baral et al. 2010), computing models in the logics of knowledge (Pontelli et al.
2010), multi-agent planning (Son et al. 2009) and formalizing negotiation (Sakama et al.
2011). ASP-DPOP is similar to the last two applications in that (i) it can be viewed as
a collection of agent programs; (ii) it computes solutions using an ASP solver; and (iii) it
uses message passing for agent communication. A key difference is that ASP-DPOP solves
multi-agent problems formulated as constraint-based models, while the other applications
solve problems formulated as decision-theoretic and game-theoretic models.

Researchers have also developed a framework that integrates declarative techniques with
off-the-shelf constraint solvers to partition large constraint optimization problems into
smaller subproblems and solve them in parallel (Liu et al. 2012). In contrast, DCOPs are
problems that are naturally distributed and cannot be arbitrarily partitioned.
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ASP-DPOP is able to exploit problem structure by propagating hard constraints and us-
ing them to prune the search space efficiently. This reduces the memory requirement of the
algorithm and improves the scalability of the system. Existing DCOP algorithms that also
propagate hard and soft constraints to prune the search space include H-DPOP that propa-
gates exclusively hard constraints (Kumar et al. 2008), BrC-DPOP that propagates branch
consistency (Fioretto et al. 2014), and variants of BnB-ADOPT (Yeoh et al. 2010; Gutierrez
and Meseguer 2012b; Gutierrez et al. 2011) that maintains soft-arc consistency (Bessiere
et al. 2012; Gutierrez and Meseguer 2012a; Gutierrez et al. 2013). A key difference is that
these algorithms require algorithm developers to explicitly implement the ability to reason
about the hard and soft constraints and propagate them efficiently. In contrast, ASP-DPOP
capitalizes on general purpose ASP solvers to do so.

7 Conclusions and Future Work

In this paper, we explored the benefits of using logic programming techniques as a plat-
form to provide complete solutions of DCOPs. Our proposed logic programming-based
algorithm, ASP-DPOP, is able to solve more problems and solve them faster than DPOP,
its imperative programming counterpart. Aside from the ease of modeling, each agent in
ASP-DPOP also capitalizes on highly efficient ASP solvers to automatically exploit prob-
lem structure (e.g., prune the search space using hard constraints). Experimental results
show that ASP-DPOP is faster and can scale to larger problems than a version of H-DPOP
(i.e., PH-DPOP) that maintains the level of privacy similar to that of ASP-DPOP. These re-
sults highlight the strengths of a declarative programming paradigm, where explicit model-
specific pruning rules are not necessary. In conclusion, we believe that this work contributes
to the DCOP community, where we show that the declarative programming paradigm is a
promising new direction of research for DCOP researchers, as well as the ASP commu-
nity, where we demonstrate the applicability of ASP to solve a wide array of multi-agent
problems that can be modeled as DCOPs.

In future work, we will explore two directions to deepen the use of logic programming
in solving DCOPs:

• Logic programming under different semantics: We will consider the advantages
of other logic programming paradigms in solving DCOPs. One possibility is to
use Constraint Logic Programming (CLP) (Jaffar and Maher 1994) instead of
ASP. Since CLP is a merger of two declarative paradigms—constraint solving and
logic programming—it seems well-suited to solve DCOPs. A preliminary investi-
gation (Le et al. 2014) has shown that this technique can dramatically decrease run
time.

• Different representation of messages: We observe that the messages used in DPOP,
and even ASP-DPOP, are represented explicitly—i.e., they are multi-dimensional
matrices in DPOP and facts in ASP-DPOP. One of the reasons for this is that each
agent performs the inference process for its subtree, enumerates explicitly all the re-
sults, and sends them to other agents. We are interested in investigating algorithms
where agents coordinate with others via messages that are logic programs (e.g., ASP
or CLP clauses). Specifically, in such an algorithm, each agent does the inference
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partially, for some specific interesting value assignment, and without enumerating
all results. The rest of the computation will be encoded as logic programs and passed
to other agents. Some agent who performs the complete inference process will prop-
agate the search space based on the rules in the received messages as logic programs.
We believe this will reduce the search space and the run time.
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