
ar
X

iv
:1

70
7.

01
42

3v
1

 [
cs

.A
I]

 5
 J

ul
 2

01
7

Under consideration for publication in Theory and Practice of Logic Programming 1

Model enumeration in propositional circumscription

via unsatisfiable core analysis

MARIO ALVIANO

Department of Mathematics and Computer Science, University of Calabria, Italy

(e-mail: alviano@mat.unical.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Many practical problems are characterized by a preference relation over admissible solutions, where pre-

ferred solutions are minimal in some sense. For example, a preferred diagnosis usually comprises a minimal

set of reasons that is sufficient to cause the observed anomaly. Alternatively, a minimal correction subset

comprises a minimal set of reasons whose deletion is sufficient to eliminate the observed anomaly. Circum-

scription formalizes such preference relations by associating propositional theories with minimal models.

The resulting enumeration problem is addressed here by means of a new algorithm taking advantage of

unsatisfiable core analysis. Empirical evidence of the efficiency of the algorithm is given by comparing the

performance of the resulting solver, CIRCUMSCRIPTINO, with HCLASP, CAMUS MCS, LBX and MCSLS on

the enumeration of minimal models for problems originating from practical applications.

KEYWORDS: circumscription; minimal model enumeration; minimal correction subsets; minimal interven-

tion strategies; unsatisfiable core analysis.

1 Introduction

Circumscription (McCarthy 1980) is a nonmonotonic logic formalizing common sense reason-

ing by means of a second order semantics. Intuitively, circumscription allows to express that

some things are as expected unless otherwise specified, a property that cannot be expressed in

monotonic languages such as first order logic. More specifically, the idea of circumscription is to

minimize the extension of some predicates. In the special case of propositional theories, which

are the focus of the present paper, the simplest form of circumscription essentially selects subset

minimal models. In the form introduced by Lifschitz (1986), instead, some atoms are used to

group interpretations, and other atoms are subject to minimization.

Many practical problems are characterized by a preference relation over admissible solutions.

For example, when analyzing a faulty system, several diagnoses are usually possible, and the

debugging process can be improved by focusing on those diagnoses comprising a minimal set of

reasons that is sufficient to cause the observed anomaly (Pereira et al. 1993; Jannach et al. 2016).

In this case the preference relation is given by the subset containment relation. The same pref-

erence relation can be used to recover the faulty system: a correction subset is a set of reasons

whose deletion is sufficient to eliminate the observed anomaly, and intuitively the debugging

process has to focus on minimal correction subsets (Junker 2004; Marques-Silva et al. 2013). It

turns out that such practical problems have a natural representation in the framework of circum-

scription.

http://arxiv.org/abs/1707.01423v1

2 M. Alviano

The notion of a minimal correction subset received particular attention from the scientific

community in recent years, in particular in the context of propositional logic (Marques-Silva and

Previti 2014; Mencı́a et al. 2015; Mencı́a et al. 2016). In this case, a minimal correction subset of

an unsatisfiable propositional theory T is a subset S of T such that T \S is satisfiable, while T \S′

is still unsatisfiable for all S′ ⊂ S. A natural representation of this problem in circumscription is

obtained by replacing each formula φ ∈ T with φ ∨ xφ , where xφ is a fresh variable subject to

minimization. Models of the obtained circumscribed theory represent minimal correction subsets

of T : in fact, the minimal correction subset associated with a model I is {φ ∈ T | xφ ∈ I}.

It is therefore not a surprise that the enumeration of models satisfying some minimality con-

dition has been already addressed in the literature (Kaminski et al. 2013; Liffiton and Sakallah

2008; Faber et al. 2016). In particular, Kaminski et al. focused on the computation of minimal

intervention strategies in logical signaling networks representing biological scenarios; among

the several techniques they presented, the most efficient takes advantage of the domain heuris-

tics supported by the solver HCLASP. Liffiton and Sakallah instead focused on the enumeration

of minimal correction subsets in order to subsequently compute minimal unsatisfiable subsets

(or minimal unsatisfiable cores); the first computational task is accomplished by the solver CA-

MUS MCS by enumerating models of size n that do not contain previously reported models, for

increasing values of n. Finally, Faber et al. presented a general purpose algorithm to achieve

minimal model enumeration by iteratively enumerating cardinality minimal models of the in-

put theory that do not contain previously reported models; enumeration of cardinality minimal

models is usually achieved by computing a first model of minimal cardinality, and then by enu-

merating all models of that size.

Cardinality minimal models of propositional theories are solutions of the computational prob-

lem known as MaxSAT. For problems originating from practical applications, the most efficient

MaxSAT algorithms are based on unsatisfiable core analysis (Morgado et al. 2013); among them

are OLL (Andres et al. 2012) and ONE (Alviano et al. 2015). In particular, ONE can be seen as a

simplification of OLL, and essentially modifies the processed theory by enforcing the satisfaction

of all but one formulas in the analyzed unsatisfiable core. A natural question is therefore whether

these algorithms can be directly adapted to achieve minimal model enumeration. In particular,

such an algorithm would not rely on any global condition on the size of the computed models,

which is an advantage because global constraints of this kind may exponentially deteriorate the

performance of a solver (Bacchus and Narodytska 2014).

This paper provides a positive answer to the above question: an algorithm for the enumeration

of models of a circumscribed theory is presented; the algorithm takes advantage of the unsatis-

fiable core analysis provided by ONE, and enumerates models sorted by size. This is a property

shared with the approaches proposed by Liffiton and Sakallah, and Faber et al.. However, differ-

ently from them, and like the strategy adopted by Kaminski et al., the new algorithm smoothly

runs on an incremental solver, meaning that new formulas are introduced during its execution,

but none of them need to be subsequently removed.

A prototype solver implementing the proposed algorithm is also presented. It is called CIR-

CUMSCRIPTINO, and relies on the incremental SAT solver GLUCOSE (Audemard and Simon

2009) for computing models and unsatisfiable cores of the processed propositional theory. The

prototype is evaluated empirically on four testcases representing the logical signaling networks

analyzed by Kaminski et al.: in order to enumerate minimal intervention strategies with CIR-

CUMSCRIPTINO, the instances processed by HCLASP are translated into classical propositional

theories by means of the convenient tool LP2SAT (Janhunen and Niemelä 2011). Three of the

Theory and Practice of Logic Programming 3

tested instances are solved by HCLASP and CIRCUMSCRIPTINO in a few seconds. Many other

testcases are obtained from the SAT Solver Competitions (Järvisalo et al. 2012). In particular,

the prototype is evaluated on the enumeration of minimal correction subsets for unsatisfiable in-

stances of the MUS Special track. On these instances, the performance of CIRCUMSCRIPTINO

is superior than those of the specialized solvers CAMUS MCS (Liffiton and Sakallah 2008), LBX

(Mencı́a et al. 2015) and MCSLS (Marques-Silva et al. 2013), as well as of HCLASP (Gebser et al.

2013).

2 Background

Let A be a fixed, countable set of atoms including ⊥. A literal is an atom possibly preceded

by the connective ¬. For a literal ℓ, let ℓ denote its complementary literal, that is, p = ¬p and

¬p = p for all p ∈ A ; for a set L of literals, let L be {ℓ | ℓ ∈ L}. Moreover, for a set L of literals

and a set A of atoms, the restriction of L to symbols in A is L|A := L∩ (A∪A).

Formulas are defined as usual by combining atoms and the connectives¬, ∧, ∨, →. In addition,

a formula can be a cardinality constraint of the following form:

ℓ1 + · · ·+ ℓn ≥ k (1)

where ℓ1, . . . , ℓn are literals, n ≥ 1 and k ≥ 0. A theory is a set T of formulas including ¬⊥; the

set of atoms occurring in T is denoted by atoms(T).

Example 1

The following theories will be used as running examples:

T1 := {¬⊥, a∨ x0, ¬a∨b∨ x1, ¬a∨¬b∨ x2};

T2 := T1 ∪{r → x0 ∧ x1 ∧ x2};

T3 := T1 ∪{¬x0 +¬x1 +¬x2 + y1 + y2 ≥ 2, y2 → y1}.

In particular, T3 will be used in Section 3 as an example of unsatisfiable core analysis. �

An assignment is a set A of literals such that A∩A = /0. An interpretation for a theory T is

an assignment I such that (I ∪ I)∩A = atoms(T). Relation |= is defined as usual: for p ∈ A ,

I |= p if p ∈ I; for φ and ψ formulas, I |= ¬φ if I 6|= φ , I |= φ ∧ψ if I |= φ and I |= ψ , I |= φ ∨ψ

if I |= φ or I |= ψ , and I |= φ → ψ if I |= ψ whenever I |= φ ; for φ of the form (1), I |= φ if

|I ∩{ℓ1, . . . , ℓn}| ≥ k; for a theory T , I |= T if I |= φ for all φ ∈ T . I is a model of a theory T if

I |= T . Let models(T) denote the set of models of T . (Models will be also represented by the set

of their atoms, as their negative literals are implicit.)

Example 2 (Continuing Example 1)

T1 has 16 models, including the following: {x0}, {x0,b}, {x1,a}, {x2,a,b}, {x0,x1}, {x0,x1, a},

and {x0,x1,b}. These are also models of T2 (where r is false); T2 additionally admits, for any

X ⊆ {a,b}, {x0,x1,x2,r}∪X . Regarding T3, variables y1,y2 can be used to constrain the number

of false atoms among {x0,x1,x2}. For example, models extending the assignment {¬y1,¬y2}

must assign false to at least two atoms in {x0,x1,x2}; these models are precisely {x0}, {x0,b},

{x1,a}, and {x2,a,b}. Finally, note that T1, T2 and T3 have no models extending the assignment

{¬x0,¬x1,¬x2}. �

Circumscription applies to a theory T and sets P,Z of atoms; atoms in P are subject to min-

imization, while atoms in Z are irrelevant. Formally, relation ≤PZ is defined as follows: for I,J

4 M. Alviano

Algorithm 1: Model enumeration for CIRC(T,P,Z)

1 O := P; V := atoms(T)\ {⊥}; R :=V \ (P∪Z);

2 repeat

3 (sat, I,−,C) := solve(T,O); // try to falsify all objective literals

4 if sat then // minimal model found

5 enumerate(T,V, I|P∪R∪ (O\P)); // fix P,R, and disable new constraints

6 T := T ∪{
∧

I|R →
∨

P∩ I}; // add blocking clause

7 else if C 6= /0 then // unsatisfiable core analysis

8 Let C be {¬x0, . . . ,¬xn} (n ≥ 0), and y1, . . . ,yn be fresh variables;

9 O := (O\ {x0, . . . ,xn})∪{y1, . . . ,yn};

10 T := T ∪{¬x0 + · · ·+¬xn + y1 + · · ·+ yn ≥ n}∪{yi → yi−1 | i ∈ [2..n]};

11 until not sat and C = /0; // empty unsatisfiable core implies no more models

interpretations of T , I ≤PZ J if both I|A \(P∪Z) = J|A \(P∪Z) and I ∩P ⊆ J ∩P. I ∈ models(T) is

a preferred model of T with respect to ≤PZ if there is no J ∈ models(T) such that I 6≤PZ J and

J ≤PZ I. Let CIRC(T,P,Z) denote the set of preferred models of T with respect to ≤PZ .

Example 3 (Continuing Example 2)

Let P be {x0,x1,x2}, and Z ⊆ {a,b}. CIRC(T1,P,Z) and CIRC(T2,P,Z∪{r}) are {{x0}, {x0,b},

{x1,a}, {x2,a,b}}, while CIRC(T2,P,Z) additionally includes {x0,x1,x2,r} ∪ X , for all X ⊆

{a,b}. Indeed, if r is not irrelevant, then I 6≤PZ {x0,x1,x2,r} ∪ X for all I ∈ {{x0}, {x0,b},

{x1,a}, {x2,a,b}}, and all X ⊆ {a,b}. Regarding T3, note that CIRC(T1,{y1,y2},Z) is again

{{x0}, {x0,b}, {x1,a}, {x2,a,b}}, for any Z ⊆ {a,b}. �

3 Model enumeration

The computational problem addressed in this paper is the enumeration of models of a circum-

scribed theory, that is, the enumeration of CIRC(T,P,Z). The proposed algorithm takes advan-

tage of modern solvers for checking satisfiability of propositional theories. This is achieved by

means of function solve, whose input is a theory T and a set A of literals called assumptions.

The function searches for a model I of T such that A ⊆ I. If such an I exists, tuple (true, I,B,−)

is returned, where B ⊆ I is the set of branching literals used to compute I. Otherwise, a tuple

(false,−,−,C) is returned, where C ⊆ A is such that T ∪{ℓ | ℓ ∈C} has no models; in this case,

C is called unsatisfiable core.

Example 4 (Continuing Example 3)

The result of solve(T1,{¬x0,¬x1,¬x2}) is (false,−,−,{¬x0,¬x1,¬x2}), that is, set {¬x0,¬x1,

¬x2} is an unsatisfiable core. On the other hand, solve(T3,{¬y1,¬y2}) returns (true, I,B,−),

where I ∈ {{x0}, {x0,b}, {x1,a}, {x2,a,b}} (and B ⊆ I). �

Algorithm 1 implements model enumeration for CIRC(T,P,Z). The following sets are used

by the algorithm: O for the objective literals, that is, those to minimize, initially P; V for the

visible atoms, that is, those in the input theory T ; R for the (other) relevant atoms, that is, those

not in P∪Z. The algorithm iteratively searches for a model of T falsifying all objective literals.

If a nonempty unsatisfiable core C is returned, it is processed according to the ONE algorithm

(lines 8–10): objective literals in the unsatisfiable core are replaced by |C| − 1 new objective

Theory and Practice of Logic Programming 5

Procedure enumerate(T , V , A)

1 push(A,¬⊥); F := /0; // initialize assumptions and flipped literals

2 while top(A) 6=⊥ do // there are still assumptions to be flipped

3 (sat, I,B,C) := solve(T,A); // search I ∈ models(T) such that A ⊆ I

4 if sat then // found I using branching literals B

5 print I∩V ; // report model

6 for ℓ ∈ B\A do push(A, ℓ); // extend A with new branching literals

7 else // found unsatisfiable core C ⊆ A

8 while top(A) 6= ¬⊥ and top(A) /∈C do F := F \ {pop(A)}; // backjump

9 while top(A) ∈ F do F := F \ {pop(A)}; // remove flipped assumptions

10 push(A,pop(A)); F := F ∪{top(A)}; // flip top assumption

literals (not already occurring in T), and the theory T is extended with new formulas enforcing

the truth of at least |C|− i literals in C whenever the i-th new objective literal is false. On the other

hand, if a model is found, say I, it is guaranteed to be minimal with respect to P. In this case,

the interpretation of atoms in P and R is fixed, and all formulas introduced in line 10 are satisfied

by assuming the truth of all objective literals introduced in line 9. All models extending these

assumptions are then enumerated, for example by means of the polyspace algorithm introduced

by Gebser et al. (2007), here given in terms of assumptions (Alviano and Dodaro 2016a). After

that, a blocking clause is added to T , so to discard all interpretations J such that I ≤PZ J (including

I itself): intuitively, any model J such that J|R = I|R is forced to falsify at least one atom of P

that is interpreted as true by I. The algorithm terminates as soon as an empty unsatisfiable core

is returned by function solve, meaning that all models in CIRC(T,P,Z) have been computed.

Example 5 (Continuing Example 4)

Let T be T1, P be {x0,x1,x2}, and Z be empty. Algorithm 1 starts by setting O and R respectively

to {x0,x1,x2} and {a,b}. The first call to function solve returns (false,−,−,{¬x0,¬x1,¬x2}),

and therefore the unsatisfiable core {¬x0,¬x1,¬x2} is analyzed (lines 7–10): set O becomes

{y1,y2}, where y1 and y2 are fresh variables, and T is extended with ¬x0 +¬x1 +¬x2 + y1 +

y2 ≥ 2, and y2 → y1. Note that T is now T3. The second call to function solve then returns

(true,{y1,y2} ∪ I,−,−), where I ∈ {{x0}, {x0,b}, {x1,a}, {x2,a,b}}. Say that I is {x0}; the

enumeration procedure is called with assumptions {x0,¬x1,¬x2,¬a,¬b,y1,y2} (recall that neg-

ative literals are implicit in I, hence I|P∪R is {x0,¬x1,¬x2,¬a,¬b}). In this case, model I is

computed again (in linear time with modern solvers), and the enumeration procedure terminates.

Theory T is extended with the blocking clause ¬a∧¬b→¬x0, and a new model is computed, say

{x0,b}. Again, since all atoms are relevant, the enumeration procedure terminates reporting only

{x0,b} itself. Theory T is extended with the blocking clause ¬a∧b →¬x0, and a new model is

computed, say {x1,a}. Theory T is extended with the blocking clause a∧¬b →¬x1, and model

{x2,a,b} is computed. Finally, the blocking clause a∧ b → ¬x2 is added, and the empty unsat-

isfiable core is returned by function solve. Hence, all models of CIRC(T1,{x0,x1,x2}, /0) were

reported, and the algorithm terminates.

For Z being {a,b}, R is empty and the algorithm behaves differently starting from the call to

the enumeration procedure. Indeed, for I = {x0}, the assumptions are {x0,¬x1,¬x2,y1,y2}, and

the procedure reports two models, namely {x0} and {x0,b}. Moreover, the blocking clause added

6 M. Alviano

to T is ¬x0, so that the next model returned by function solve must be either {x1,a} or {x2,a,b}.

The associated blocking clauses are ¬x1 and ¬x2, and after adding them the empty unsatisfiable

core is returned by function solve, so that the algorithm can terminate.

For T being T2, and Z being {a,b}, R is {r} and the algorithm behaves differently starting

from the second call to function solve. Indeed, in this case the returned model may also be

{x0,x1,x2,r}∪X , for X ⊆ {a,b}. Say that I is {x0,x1,x2,r}; the enumeration procedure is called

with assumptions {x0,x1,x2,r,y1,y2}, and models {x0,x1,x2,r}∪X , for X ⊆ {a,b}, are reported.

After that, the blocking clause r → ¬x0 ∨¬x1 ∨¬x2 is added to T , so that a model I ∈ {{x0},

{x0,b}, {x1,a}, {x2,a,b}} can be returned by function solve. From this point, the algorithm

continues as for CIRC(T1,{x0,x1,x2},{a,b}), with the only difference that the added blocking

clauses are ¬r →¬x0, ¬r →¬x1, and ¬r →¬x2. �

3.1 Correctness

The following main theorem is proved in this section.

Theorem 1

Let T be a theory, and P,Z be sets of atoms. Algorithm 1 enumerates all models in CIRC(T,P,Z),

and the number of iterations of the repeat-until loop is bounded by |models(T)|+ |P|.

The above theorem is proved by showing that the algorithm is correct at each iteration: when

lines 4–6 are executed, models of the processed theory are either reported or satisfy the added

blocking clause; when lines 7–10 are executed, all models are preserved.

First of all, recall that a model is possibly represented as the set of its atoms (i.e., negative

literals are ignored). Hence, for sets S,S′ of models, we will write S = S′ if {I ∩A | I ∈ S} =

{I∩A | I ∈ S′}, even if S and S′ are models of theories with different atoms. The following lemma

states that procedure enumerate(T,V,A) computes all models of T extending the assignment A.

Lemma 1

Let T be a theory, V be a set of atoms, and A be a set of literals. Procedure enumerate(T,V,A)

computes {I∩V | I ∈ models(T ∪{ℓ | ℓ ∈ A})}.

Proof

The procedure given in this paper extends the one presented by Alviano and Dodaro (2016a)

with the possibility of providing in input a set A of assumptions. In order to extend the correct-

ness of the enumeration procedure presented by Alviano and Dodaro, we have only to note that

assumptions in A are protected by literal ¬⊥ (pushed on line 1 of the procedure), so that they are

never flipped or removed by the procedure. All models of T extending the provided assumptions

are therefore reported, only printing true atoms among those in V .

Among the assumptions passed to procedure enumerate are the variables introduced by ONE.

They are assumed true so to restore the original theory.

Lemma 2

Let T be a theory, and T ′ be T ∪{¬x0+ · · ·+¬xn+y1+ · · ·+yn ≥ n}∪{yi → yi−1 | i ∈ [2..n]}, for

n ≥ 0. If yi /∈ atoms(T) for i ∈ [1..n], models(T) = {I|atoms(T) | I ∈ models(T ′∪{yi | i ∈ [1..n]})}.

Theory and Practice of Logic Programming 7

Proof

If I is a model of T , then I ∪{yi | i ∈ [1..n]} is a model of T ′ ∪{yi | i ∈ [1..n]}. Moreover, any

model J of T ′∪{yi | i ∈ [1..n]} satisfies J |= T (because T ⊆ T ′).

Hence, when procedure enumerate is invoked on line 5 of Algorithm 1, since the initial as-

sumptions comprise O\P, and because of Lemma 2, all models of T extending the assignment

I|P∪R are computed. These models are then discarded by the blocking clause added in line 6, as

formalized by the following claim.

Lemma 3

Let I be a model in CIRC(T,P,Z), R be atoms(T)\ (P∪Z ∪{⊥}), and φ be
∧

I|R →
∨

P∩ I. It

holds that CIRC(T,P,Z) = CIRC(T ∪{φ},P,Z)∪models(T ∪{ℓ | ℓ ∈ I|P∪R}).

Proof

(⊆) Consider J ∈ CIRC(T,P,Z). We distinguish two cases:

1. J |= φ . Hence, J ∈ models(T ∪{φ}). Let J′ ∈ models(T ∪{φ}) be such that J′ ≤PZ J. Since

J ∈ CIRC(T,P,Z) by assumption, J ≤PZ J′ holds, and therefore J ∈ CIRC(T ∪{φ},P,Z).

2. J 6|= φ . Hence, J |=
∧

I|R and J 6|=
∨

P∩ I. Note that I|R = I|atoms(T)\(P∪Z∪{⊥})= I|A \(P∪Z), and

therefore J |=
∧

I|R implies I|A \(P∪Z) = J|A \(P∪Z). Moreover, J 6|=
∨

P∩ I implies I∩P⊆ J∩

P. From I|A \(P∪Z) = J|A \(P∪Z) and I ∩P ⊆ J ∩P, we have I ≤PZ J. Since J ∈ CIRC(T,P,Z)

by assumption, J ≤PZ I holds. Hence, J|P∪R = I|P∪R, which implies J ∈ models(T ∪{ℓ | ℓ ∈

I|P∪R}).

(⊇) We distinguish two cases:

1. J ∈ CIRC(T ∪{φ},P,Z). We have J ∈ models(T). Let J′ ∈ models(T) be such that J′ ≤PZ

J. We shall show that J′ ∈ models(T ∪ {φ}), which implies J ≤PZ J′ and therefore J ∈

CIRC(T,P,Z). J′ ≤PZ J implies J′|A \(P∪Z) = J|A \(P∪Z) and J′ ∩P ⊆ J ∩ P. From J |= φ ,

either J 6|=
∧

I|R, or J |=
∨

P∩ I. Hence, J′ 6|=
∧

I|R, or J′ |=
∨

P∩ I, that is, J′ |= φ and then

J′ ∈ models(T ∪{φ}).

2. J ∈ models(T ∪ {ℓ | ℓ ∈ I|P∪R}). Since J |=
∧

I|P∪R, the symmetric difference of I and J

is a subset of Z, which implies J ≤PZ I (as well as I ≤PZ J). Since I ∈ CIRC(T,P,Z) by

assumption, we can conclude that J ∈ CIRC(T,P,Z).

This conclude the proof of the lemma.

The following lemma states that the application of ONE transforms the original problem into

an equivalent problem.

Lemma 4

Let T be a theory, and P,Z be sets of atoms. If {x0, . . . ,xn} ⊆ P (n ≥ 0) is such that models(T ∪

{¬xi | i ∈ [0..n]}) = /0, then CIRC(T,P,Z) = CIRC(T ′,P′,Z′), where T ′ = T ∪ {¬x0 + · · ·+

¬xn + y1 + · · ·+ yn ≥ n}∪ {yi → yi−1 | i ∈ [2..n]}, P′ = (P \ {x0, . . . ,xn})∪ {y1, . . . ,yn}, Z′ =

Z∪{x0, . . . ,xn}, and y1, . . . ,yn are fresh variables.

8 M. Alviano

Proof

Let ext(I) be I∪{yi | i ∈ [1..n], |I∩{x0, . . . ,xn}|> i}, and red(I) be I|atoms(T).

(⊆) Let I ∈ CIRC(T,P,Z). By construction, ext(I) |= T ′. Let J be such that J |= T ′ and J ≤P′Z′

ext(I). In order to have ext(I) ∈ CIRC(T ′,P′,Z′), we shall show that ext(I) ≤P′Z′
J. We have

red(J) ≤PZ I, and combining with I ∈ CIRC(T,P,Z) we conclude I ≤PZ red(J). The previous

finally implies ext(I)≤P′Z′
J, and we are done.

(⊇) Let I ∈ CIRC(T ′,P′,Z′). By construction, red(I) |= T . Let J be such that J |= T and J ≤PZ

red(I). In order to have red(I) ∈ CIRC(T,P,Z), we shall show that red(I) ≤PZ J. We have

ext(J) ≤P′Z′
I, and combining with I ∈ CIRC(T ′,P′,Z′) we conclude I ≤P′Z′

ext(J). The pre-

vious finally implies red(I)≤PZ J, and we are done.

Finally, termination of the algorithm is guaranteed because Algorithm 1 executes lines 7–10

unless there is I ∈ CIRC(T,P,Z) such that |P∩ I|= |P|− |O|; otherwise, lines 4–6 are executed,

and at least one model is discarded by the added blocking clause. This argument also provides

the desired bound on the iterations of the repeat-until loop.

Proof of Theorem 1

Let R be atoms(T)\ (P∪Z∪{⊥}), as in Algorithm 1. Let Ti,Oi (i ≥ 0) be the values of variables

T,O at iteration i of Algorithm 1. Let Zi be Z ∪ (Oi \ P). We use induction on i to show the

following proposition:

If J ∈ CIRC(T,P,Z) and J |= Ti then J ∈ CIRC(Ti,Oi,Zi). (2)

The base case is trivial as T0 = T , O0 = P and Z0 = Z. Assume the proposition for i ≥ 0 in order

to show that it holds for i+ 1. Let J ∈ CIRC(T,P,Z) be such that J |= Ti+1. Note that J |= Ti as

well, and therefore J ∈ CIRC(Ti,Oi,Zi) because of the induction hypothesis. We now distinguish

two cases depending on the outcome of function solve(Ti,Oi):

1. Ti+1 is Ti ∪ {
∧

I|R →
∨

P∩ I}, for some model I. Hence, I ∈ CIRC(Ti,Oi,Zi) because I ∩

Oi = /0. Moreover, Oi+1 = Oi and Zi+1 = Zi, so that we can apply Lemma 3 to conclude

J ∈ CIRC(Ti+1,Oi+1,Zi+1)∪models(Ti∪{ℓ | ℓ∈ I|P∪R}). But J /∈ models(Ti∪{ℓ | ℓ∈ I|P∪R})

because J |= Ti+1 by assumption. Hence, J ∈ CIRC(Ti+1,Oi+1,Zi+1).
2. Ti+1 is Ti ∪ {¬x0 + · · ·+¬xn + y1 + · · ·+ yn ≥ n}∪ {y j → y j−1 | j ∈ [2..n]}, for some un-

satisfiable core {¬x0, . . . ,¬xn}. Hence, Oi+1 := (Oi \ {x0, . . . ,xn})∪ {y1, . . . ,yn}, and we

can apply Lemma 4 to conclude CIRC(Ti,Oi,Zi) = CIRC(Ti+1,Oi+1,Zi+1). Therefore, J ∈

CIRC(Ti+1,Oi+1,Zi+1).

This completes the proof of (2).

We can also note that the number of iterations of Algorithm 1 is bounded by |models(T)|+ |P|

because for all i ≥ 0 either |models(Ti+1)|< |models(Ti)| (case 1 above) or |Oi+1|< |Oi| (case 2

above). This guarantees termination of the algorithm.

To complete the proof of the theorem, we have only to note that for all J ∈ CIRC(T,P,Z)

such that J 6|= Ti+1 \Ti, J ∈ models(Ti ∪ {ℓ | ℓ ∈ I|P∪R}), and therefore J is printed because of

Lemmas 1–2.

4 Implementation and experiments

Algorithm 1 is implemented on top of the SAT solver GLUCOSE-4.0 (Audemard and Simon

2009), which is extended to natively support cardinality constraints as a special case of the imple-

Theory and Practice of Logic Programming 9

mentation of weight constraints described by Gebser et al. (2009). The resulting prototype solver

is called CIRCUMSCRIPTINO (http://alviano.com/software/circumscriptino/). Rele-

vant command line parameters are -n and --circ-wit, respectively for limiting the number of

models and witnesses to be computed, where a witness of a set A of assumptions is intended as

a model I such that A ⊆ I. Intuitively, --circ-wit is used to limit the number of models com-

puted by procedure enumerate. In the special case of --circ-wit=1, line 5 of Algorithm 1 is

not executed, and model I is directly reported to the user. This is particularly useful for problems

where the interpretation of atoms in Z is not particularly important. Moreover, the analysis of

unsatisfiable cores is preceded by a progression based shrinking (Alviano and Dodaro 2016b).

The performance of the implemented prototype is compared with CAMUS MCS-1.0.5 (Lif-

fiton and Sakallah 2008), LBX (Mencı́a et al. 2015), MCSLS (with algorithms ELS and CLD;

Marques-Silva et al. 2013) and HCLASP-1.1.5 (Gebser et al. 2013). CAMUS MCS, LBX and MC-

SLS are solvers for the enumeration of minimal correction subsets (more details are provided in

Section 5). HCLASP is a branch of CLASP (Gebser et al. 2012) introducing domain heuristics; it

can enumerate minimal models if atoms of the form heuristic(p,false,1) are introduced

for each atom p subject to minimization, and if invoked with the command line parameters

--heuristic=domain --enum-mode=record.

The experiments comprise two problems, namely the enumeration of minimal intervention

strategies and the enumeration of minimal correction subsets. For the first problem, instances

representing biological signaling networks are considered (Kaminski et al. 2013); these instances

are translated into the input format of CIRCUMSCRIPTINO thanks to the tool chain LP2NORMAL-

2.27+LP2ATOMIC-1.17+LP2SAT-1.24 (Janhunen and Niemelä 2011). Regarding the second

problem, instances from the SAT Solver Competitions (MUS Special Track) are tested (Järvisalo

et al. 2012). The experiments were run on an Intel Xeon 2.4 GHz with 16 GB of memory, and

time and memory were limited to 10 minutes and 15 GB, respectively.

Experimental results on the enumeration of minimal intervention strategies are reported in

Table 1. Only 4 instances are available, one of which cannot be solved by the tested solvers;

the other 3 instances, instead, are solved in less than 10 seconds. For all instances, memory

consumption is very low, and HCLASP appears to be 4–5 times faster than CIRCUMSCRIPTINO.

(CAMUS MCS, LBX and MCSLS are not tested on these instances because their translation is not

immediate, and also not the focus of this paper.)

Concerning the enumeration of minimal correction subsets, 395 instances are tested. A cactus

plot of the execution time of the tested solvers is reported in Figure 1. The cactus plot also shows

the performance of the virtual best solver, which is almost aligned with CIRCUMSCRIPTINO:

only a few seconds and no solved instances are gained when CIRCUMSCRIPTINO is replaced

with the best performant solver in each tested instance. The good result of CIRCUMSCRIPTINO

Table 1. Enumeration of minimal intervention strategies: execution time in seconds (T.O. for

timeout), memory consumption in MB, and number of reported models.

CIRCUMSCRIPTINO HCLASP

Instance time mem models time mem models

EGFR 0.00 0 21 0.00 0 21

EGFR MULTIPLE 0.44 36 83 0.10 15 83

TCR 8.33 16 13 016 2.16 9 13 016

TBH6B T.O. 95 153 405 T.O. 115 758 887

10 M. Alviano

0 15 30 45 60 75
0

120

240

360

480

600

Number of solved instances

R
u
n
n
in

g
ti

m
e

(s
ec

o
n
d
s)

HCLASP

CAMUS MCS

LBX

MCSLS-ELS

MCSLS-CLD

CIRCUMSCRIPTINO

VIRTUAL BEST SOLVER

Fig. 1. Enumeration of minimal correction subsets: solved instances within a time budget.

0.01 0.1 1 10 100 1000 10000100000
0.01

0.1

1

10

100

1000

10000

100000

CAMUS MCS

C
IR

C
U

M
S

C
R

IP
T

IN
O

dataset 1

dataset 2

0.01 0.1 1 10 100 1000 10000100000

HCLASP

0.01 0.1 1 10 100 1000 10000100000

LBX

0.01 0.1 1 10 100 1000 10000100000
0.01

0.1

1

10

100

1000

10000

100000

MCSLS-CLD

C
IR

C
U

M
S

C
R

IP
T

IN
O

0.01 0.1 1 10 100 1000 10000100000

MCSLS-ELS

CIRCUMSCRIPTINO vs other solvers

solver win draw lose

d
at

as
et

1

CAMUS MCS 43 4 16

HCLASP 58 4 1

LBX 58 3 2

MCSLS-CLD 49 5 9

MCSLS-ELS 49 5 9

d
at

as
et

2

CAMUS MCS 248 53 31

HCLASP 175 26 131

LBX 209 10 113

MCSLS-CLD 194 20 118

MCSLS-ELS 218 17 97

Fig. 2. Enumeration of minimal correction subsets: instance-by-instance comparison in terms of velocity

(velocity 0 normalized to 0.01). Instances in the first dataset are those solved by at least one solver, while

instances in the second dataset are those for which all solvers ran out of time or memory.

Theory and Practice of Logic Programming 11

is also confirmed by Table 2, reporting aggregated results for instances for which at least one

solver enumerated all models (dataset 1), and for the remaining instances (dataset 2). In par-

ticular, results for dataset 1 confirm that CIRCUMSCRIPTINO solves more instances and has the

lowest average running time. Concerning dataset 2, since all solvers ran out of time or memory,

a comparison is obtained in terms of velocity, defined as number of reported models per second

of computation (Liffiton and Sakallah 2008). This metric shows that HCLASP produces models

with a velocity close to that of CIRCUMSCRIPTINO, while other solvers are 2-6 times slower.

(The same metric is also applied to dataset 1, where however the average is influenced by in-

stances solved in less than 1 second.) An instance-by-instance comparison in terms of velocity

is shown in the plots in Figure 2. Axes are in logarithmic scale, so velocity 0 is normalized to

0.01. It can be observed that in all cases the majority of points is above the diagonal, meaning

that the velocity of CIRCUMSCRIPTINO is higher than the velocity of other solvers in the ma-

jority of instances. Finally, concerning memory usage, only two memory outs were recorded for

CAMUS MCS and HCLASP on the same instance.

5 Related work

Circumscription formalizes a preference relation over models of logic theories. Such a prefer-

ence relation is essentially subset minimality. Within this respect, this work is related to many

articles in the literature introducing algorithms for computing minimal models. Among them is

the OPTSAT algorithm (Giunchiglia and Maratea 2006), which is very similar to the algorithm

used by HCLASP (Kaminski et al. 2013) in our experiment. Indeed, OPTSAT essentially modifies

the standard heuristic of a SAT solver by selecting the atoms subject to minimization as first

branching literals, so to force the search procedure to return a minimal model. The difference

with the approach implemented by HCLASP is that OPTSAT fixes an order for the atoms subject

to minimization, while the heuristic of HCLASP can select any of these atoms; indeed, the only

constraint that the heuristic of HCLASP has to satisfy is that all atoms subject to minimization

have to be assigned before branching on any other atom.

The main similarity between OPTSAT, HCLASP and CIRCUMSCRIPTINO is that the search starts

by trying to falsifying all atoms subject to minimization. However, as soon as no model falsifying

all these atoms exists, the algorithms behave differently: OPTSAT and HCLASP backtrack and flip

Table 2. Enumeration of minimal correction subsets: solved instances, average execution time in

seconds on solved instances, average memory consumption in MB, number of reported models,

and average velocity. Instances in the first dataset are those solved by at least one solver, while

instances in the second dataset are those for which all solvers ran out of time or memory.

Dataset 1 (63 instances) Dataset 2 (332 instances)

Solver sol time mem models vel mem models vel

CIRCUMSCRIPTINO 63 59.3 166 534 293 1 875 598 15 548 418 77

CAMUS MCS 56 78.6 411 366 909 1 778 1 442 2 508 394 12

HCLASP 42 99.5 356 351 785 666 1 174 13 988 100 69

LBX 56 98.0 146 477 758 749 636 6 604 809 33

MCSLS-CLD 58 75.7 125 489 240 895 612 7 538 687 37

MCSLS-ELS 60 91.0 125 474 296 892 594 4 595 938 23

12 M. Alviano

some of the objective literals, while CIRCUMSCRIPTINO alters the problem itself so that models

falsifying all but one of the original atoms subject to minimization can be searched.

The modification strategy described above is actually the one implemented by many MaxSAT

algorithms based on unsatisfiable core analysis (Morgado et al. 2013). In Algorithm 1, the unsat-

isfiable core analysis is performed according to ONE (Alviano et al. 2015). This design choice is

motivated by the fact that the fresh variables y1, . . . ,yn can be later assumed true in order to triv-

ially satisfy the cardinality constraint and the implications introduced by the unsatisfiable core

analysis, a feature not required for computing a single solution for a given MaxSAT instance.

Eventually, the algorithm can be adapted to use different unsatisfiable core analysis techniques,

in particular PMRES (Narodytska and Bacchus 2014) and K (Alviano et al. 2015).

The algorithm implemented by CAMUS MCS (Liffiton and Sakallah 2008) is specifically con-

ceived to address minimal correction subset enumeration, which is also considered in our exper-

imental analysis. CAMUS MCS adds to the input theory a cardinality constraint in order to com-

pute models of bounded size; such a bound is iteratively increased until all minimal correction

sets are computed. It turns out that CAMUS MCS cannot run smoothly on an incremental solver,

and in fact some of the learned clauses have to be eliminated when the bound of the cardinality

constraint is changed. Such a drawback also affects the more general algorithm introduced by

Faber et al. (2016): an external solver is used to enumerate cardinality minimal solutions of the

input problem, and blocking clauses are then added to the theory so that the external solver can

be invoked again for enumerating cardinality minimal solutions of the new theory; the process is

repeated until the theory becomes unsatisfiable.

Concerning LBX (Mencı́a et al. 2015), and the algorithms ELS and CLD implemented by MC-

SLS (Marques-Silva et al. 2013), all of them follow an iterative approach, where models are

improved by performing several calls to a SAT solver. Specifically, these algorithms start with

any assignment, which is used to partition clauses into satisfied S and unsatisfied U . After that,

these algorithms iteratively search for a new model satisfying all clauses in S and at least one

clause in U . When no further improvement is possible, the last computed model is an MCS of

the input theory, which is reported to the user and blocked by means of a blocking clause. The

three algorithms differ in how they enforce an improvement in the current model: ELS checks

the satisfiability of the theory S∪{c}, for some c ∈U ; CLD checks the satisfiability of the theory

S∪{d}, where d is the disjunction of all literals occurring in U ; LBX checks the satisfiability

of the theory S ∪ {ℓ}, where ℓ is some literal occurring in U . The three algorithms addition-

ally take advantage of a few enhancements, such as disjoint core analysis and backbone literals

computation.

Another difference between the mentioned algorithms and the one implemented by CIRCUM-

SCRIPTINO is represented by the blocking clauses added to the input theory. In fact, since CIR-

CUMSCRIPTINO addresses model enumeration for circumscribed theories with grouping atoms

(Lifschitz 1986), the assignment of non-grouping atoms (those in set R) has to be taken into

account in the construction of the blocking clause associated with a computed model.

Lee and Lin (2006) studied theoretical properties of the computational problem associated

with circumscription. In particular, they showed that models of circumscribed theories can be

computed by adding loop formulas to the input theory, where the notion of loop formula is

adapted from answer set programming (Lin and Zhao 2004; Lee and Lifschitz 2003). Within

this respect, the algorithm implemented by CIRCUMSCRIPTINO requires less additions to the

incremental SAT solver.

Finally, subset minimality is among the preferences natively supported in the language of AS-

Theory and Practice of Logic Programming 13

PRIN (Brewka et al. 2015a; Brewka et al. 2015b; Romero et al. 2016), a versatile framework built

on top of CLINGO (Gebser et al. 2017). The algorithm implemented by ASPRIN is also iterative,

meaning that better and better models are computed until an inconsistency arises. Differently

from other iterative algorithms, however, the improvement on the current model is enforced by

means of a preference program, which is possibly specified by the user in case of custom pref-

erences. ASPRIN was not tested in the experiment because its performance is clearly bounded

by the underlying ASP solver, and therefore by the heuristic algorithm of HCLASP in the setting

considered in this paper.

6 Conclusion

Many practical problems require a preference relation over admissible solutions. When such a

preference amounts to minimize a set of properties, the problem can be naturally represented

in circumscription. Prominent examples of these problems have been considered in our experi-

ments, namely the enumeration of minimal intervention strategies and the enumeration of min-

imal correction subsets. The proposed algorithm takes advantage of unsatisfiable core analysis,

and showed to be very efficient in many cases. As a final remark, we stress here that the algo-

rithm presented in this paper can be nicely combined with the tool LP2SAT in order to enumerate

models of circumscribed answer set programming theories (under the restriction that answer set

existence can be checked in NP).

References

ALVIANO, M. AND DODARO, C. 2016a. Answer set enumeration via assumption literals. In G. ADORNI,

S. CAGNONI, M. GORI, AND M. MARATEA (Eds.), AI*IA 2016: Advances in Artificial Intelligence -

XVth International Conference of the Italian Association for Artificial Intelligence, Genova, Italy, Novem-

ber 29 - December 1, 2016, Proceedings, Volume 10037 of Lecture Notes in Computer Science, pp.

149–163. Springer.

ALVIANO, M. AND DODARO, C. 2016b. Anytime answer set optimization via unsatisfiable core shrinking.

TPLP 16, 5-6, 533–551.

ALVIANO, M., DODARO, C., AND RICCA, F. 2015. A maxsat algorithm using cardinality constraints of

bounded size. In Q. YANG AND M. WOOLDRIDGE (Eds.), Proceedings of the Twenty-Fourth Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,

pp. 2677–2683. AAAI Press.

ANDRES, B., KAUFMANN, B., MATHEIS, O., AND SCHAUB, T. 2012. Unsatisfiability-based optimization

in clasp. In A. DOVIER AND V. S. COSTA (Eds.), Technical Communications of the 28th International

Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, Volume 17

of LIPIcs, pp. 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

AUDEMARD, G. AND SIMON, L. 2009. Predicting learnt clauses quality in modern SAT solvers. In

C. BOUTILIER (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial

Intelligence, Pasadena, California, USA, July 11-17, 2009, pp. 399–404.

BACCHUS, F. AND NARODYTSKA, N. 2014. Cores in core based maxsat algorithms: An analysis. In

C. SINZ AND U. EGLY (Eds.), Theory and Applications of Satisfiability Testing - SAT 2014 - 17th In-

ternational Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July

14-17, 2014. Proceedings, Volume 8561 of Lecture Notes in Computer Science, pp. 7–15. Springer.

BREWKA, G., DELGRANDE, J. P., ROMERO, J., AND SCHAUB, T. 2015a. asprin: Customizing answer set

preferences without a headache. In B. BONET AND S. KOENIG (Eds.), Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pp. 1467–1474.

AAAI Press.

14 M. Alviano

BREWKA, G., DELGRANDE, J. P., ROMERO, J., AND SCHAUB, T. 2015b. Implementing preferences with

asprin. In F. CALIMERI, G. IANNI, AND M. TRUSZCZYNSKI (Eds.), Logic Programming and Nonmono-

tonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30,

2015. Proceedings, Volume 9345 of Lecture Notes in Computer Science, pp. 158–172. Springer.

FABER, W., VALLATI, M., CERUTTI, F., AND GIACOMIN, M. 2016. Solving set optimization problems

by cardinality optimization with an application to argumentation. In G. A. KAMINKA, M. FOX, P. BOU-

QUET, E. HÜLLERMEIER, V. DIGNUM, F. DIGNUM, AND F. VAN HARMELEN (Eds.), ECAI 2016 - 22nd

European Conference on Artificial Intelligence, 29 August-2 September 2016, The Hague, The Nether-

lands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016), Volume 285 of Frontiers

in Artificial Intelligence and Applications, pp. 966–973. IOS Press.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2009. On the implementation of weight

constraint rules in conflict-driven ASP solvers. In P. M. HILL AND D. S. WARREN (Eds.), Logic Pro-

gramming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceed-

ings, Volume 5649 of Lecture Notes in Computer Science, pp. 250–264. Springer.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2017. Multi-shot ASP solving with

clingo. CoRR abs/1705.09811.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set enu-

meration. In C. BARAL, G. BREWKA, AND J. S. SCHLIPF (Eds.), Logic Programming and Nonmono-

tonic Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Pro-

ceedings, Volume 4483 of Lecture Notes in Computer Science, pp. 136–148. Springer.

GEBSER, M., KAUFMANN, B., ROMERO, J., OTERO, R., SCHAUB, T., AND WANKO, P. 2013. Domain-

specific heuristics in answer set programming. In M. DESJARDINS AND M. L. LITTMAN (Eds.), Pro-

ceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue,

Washington, USA. AAAI Press.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Conflict-driven answer set solving: From theory

to practice. Artif. Intell. 187, 52–89.

GIUNCHIGLIA, E. AND MARATEA, M. 2006. optsat: A tool for solving SAT related optimization problems.

In M. FISHER, W. VAN DER HOEK, B. KONEV, AND A. LISITSA (Eds.), Logics in Artificial Intelligence,

10th European Conference, JELIA 2006, Liverpool, UK, September 13-15, 2006, Proceedings, Volume

4160 of Lecture Notes in Computer Science, pp. 485–489. Springer.

JANHUNEN, T. AND NIEMELÄ, I. 2011. Compact translations of non-disjunctive answer set programs

to propositional clauses. In M. BALDUCCINI AND T. C. SON (Eds.), Logic Programming, Knowledge

Representation, and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion

of His 65th Birthday, Volume 6565 of Lecture Notes in Computer Science, pp. 111–130. Springer.

JANNACH, D., SCHMITZ, T., AND SHCHEKOTYKHIN, K. M. 2016. Parallel model-based diagnosis on

multi-core computers. J. Artif. Intell. Res. (JAIR) 55, 835–887.

JÄRVISALO, M., BERRE, D. L., ROUSSEL, O., AND SIMON, L. 2012. The international SAT solver

competitions. AI Magazine 33, 1.

JUNKER, U. 2004. QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems.

In D. L. MCGUINNESS AND G. FERGUSON (Eds.), Proceedings of the Nineteenth National Conference

on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence, July

25-29, 2004, San Jose, California, USA, pp. 167–172. AAAI Press / The MIT Press.

KAMINSKI, R., SCHAUB, T., SIEGEL, A., AND VIDELA, S. 2013. Minimal intervention strategies in

logical signaling networks with ASP. TPLP 13, 4-5, 675–690.

LEE, J. AND LIFSCHITZ, V. 2003. Loop formulas for disjunctive logic programs. In C. PALAMIDESSI

(Ed.), Logic Programming, 19th International Conference, ICLP 2003, Mumbai, India, December 9-13,

2003, Proceedings, Volume 2916 of Lecture Notes in Computer Science, pp. 451–465. Springer.

LEE, J. AND LIN, F. 2006. Loop formulas for circumscription. Artif. Intell. 170, 2, 160–185.

LIFFITON, M. H. AND SAKALLAH, K. A. 2008. Algorithms for computing minimal unsatisfiable subsets

of constraints. J. Autom. Reasoning 40, 1, 1–33.

LIFSCHITZ, V. 1986. On the satisfiability of circumscription. Artif. Intell. 28, 1, 17–27.

Theory and Practice of Logic Programming 15

LIN, F. AND ZHAO, Y. 2004. ASSAT: computing answer sets of a logic program by SAT solvers. Artif.

Intell. 157, 1-2, 115–137.

MARQUES-SILVA, J., HERAS, F., JANOTA, M., PREVITI, A., AND BELOV, A. 2013. On computing

minimal correction subsets. In F. ROSSI (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint

Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pp. 615–622. IJCAI/AAAI.

MARQUES-SILVA, J. AND PREVITI, A. 2014. On computing preferred muses and mcses. In C. SINZ

AND U. EGLY (Eds.), Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International

Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.

Proceedings, Volume 8561 of Lecture Notes in Computer Science, pp. 58–74. Springer.

MCCARTHY, J. 1980. Circumscription - A form of non-monotonic reasoning. Artif. Intell. 13, 1-2, 27–39.

MENCÍA, C., IGNATIEV, A., PREVITI, A., AND MARQUES-SILVA, J. 2016. MCS extraction with sublinear

oracle queries. In N. CREIGNOU AND D. L. BERRE (Eds.), Theory and Applications of Satisfiability

Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings,

Volume 9710 of Lecture Notes in Computer Science, pp. 342–360. Springer.

MENCÍA, C., PREVITI, A., AND MARQUES-SILVA, J. 2015. Literal-based MCS extraction. In Q. YANG

AND M. WOOLDRIDGE (Eds.), Proceedings of the Twenty-Fourth International Joint Conference on

Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1973–1979. AAAI

Press.

MORGADO, A., HERAS, F., LIFFITON, M. H., PLANES, J., AND MARQUES-SILVA, J. 2013. Iterative and

core-guided maxsat solving: A survey and assessment. Constraints 18, 4, 478–534.

NARODYTSKA, N. AND BACCHUS, F. 2014. Maximum satisfiability using core-guided maxsat resolu-

tion. In C. E. BRODLEY AND P. STONE (Eds.), Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pp. 2717–2723. AAAI Press.

PEREIRA, L. M., DAMÁSIO, C. V., AND ALFERES, J. J. 1993. Debugging by diagnosing assumptions.

In P. FRITSZON (Ed.), Automated and Algorithmic Debugging, First International Workshop, AADE-

BUG’93, Linköping, Sweden, May 3-5, 1993, Proceedings, Volume 749 of Lecture Notes in Computer

Science, pp. 58–74. Springer.

ROMERO, J., SCHAUB, T., AND WANKO, P. 2016. Computing diverse optimal stable models. In

M. CARRO, A. KING, N. SAEEDLOEI, AND M. D. VOS (Eds.), Technical Communications of the 32nd

International Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City,

USA, Volume 52 of OASICS, pp. 3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

