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Abstract

In inductive learning of a broad concept, an algorithm should be able to distinguish concept examples from

exceptions and noisy data. An approach through recursively finding patterns in exceptions turns out to

correspond to the problem of learning default theories. Default logic is what humans employ in common-

sense reasoning. Therefore, learned default theories are better understood by humans. In this paper, we

present new algorithms to learn default theories in the form of non-monotonic logic programs. Experiments

reported in this paper show that our algorithms are a significant improvement over traditional approaches

based on inductive logic programming. Under consideration for acceptance in TPLP.

KEYWORDS: Inductive Logic Programming, Non-monotonic Logic Programming, Default reasoning,

Common-sense reasoning, Machine learning

1 Introduction

Predictive models produced by classical machine learning methods are not comprehensible for

humans because they are algebraic solutions to optimization problems such as risk minimization

or data likelihood maximization. These methods do not produce any intuitive description of the

learned model. This makes it hard for users to understand and verify the underlying rules that

govern the model. As a result, these methods do not produce any justification when they are

applied to a new data sample. Also, extending the prior knowledge1 in these methods requires

the entire model to be re-learned. Additionally, no distinction is made between exceptions and

noisy data. Inductive Logic Programming (Muggleton 1991), however, is one technique where

the learned model is in the form of logic programming rules (Horn clauses) that are more com-

prehensible and that allows the background knowledge to be incrementally extended without

requiring the entire model to be relearned. This comprehensibility of symbolic rules makes it

easier for users to understand and verify the resulting model and even edit the learned knowl-

edge.

Given the background knowledge and a set of positive and negative examples, ILP learns the-

ories in the form of Horn logic programs. However, due to the lack of negation-as-failure, Horn

clauses are not sufficiently expressive for representation and reasoning when the background

knowledge is incomplete.

1 In the rest of the paper we will use the term background knowledge to refer to prior knowledge (Muggleton 1991).

http://arxiv.org/abs/1707.02693v1
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Additionally, ILP is not able to handle exception to general rules: it learns rules under the as-

sumption that there are no exceptions to them. This results in exceptions and noise being treated

in the same manner. Often, the exceptions to the rules themselves follow a pattern, and these

exceptions can be learned as well. The resulting theory that is learned is a default theory, and

in most cases this theory describes the underlying model more accurately. It should be noted

that default theories closely model common sense reasoning as well (Baral 2003). Thus, a de-

fault theory, if it can be learned, will be more intuitive and comprehensible for humans. Default

reasoning also allows us to reason in absence of information. A system that can learn default

theories can therefore learn rules that can draw conclusions based on lack of evidence, just like

humans. Other reasons that underscore the importance of inductive learning of default theories

can be found in Sakama (Sakama 2005) who also surveys other attempts in this direction.

As an example, suppose we want to learn the concept of flying ability of birds. We would like

to learn the default rule that birds normally fly, as well as rules that capture exceptions, namely,

penguins and ostriches are birds that do not fly. Current ILP systems will be thrown off by the

exceptions and will not discover any general rule: they will just either enumerate all the birds

that fly or cover the positive examples without caring much about the falsely covered negative

examples. Other algorithms, such as FOIL, will induce rules that are non-constructive and thus

not helpful or intuitive.

In this paper, we present two algorithms for learning default theories (i.e., non-monotonic

logic programs), called FOLD (First Order Learner of Default) and FOLD-R, to handle categor-

ical and numeric features respectively. Unlike traditional ILP systems that learn standard logic

programs (i.e., no negation is allowed), our algorithms learn non-monotonic stratified logic pro-

grams (that allow negation-as-failure). Our algorithms are an extension of the FOIL algorithm

(Quinlan 1990) and support both categorical and numeric features. Also, the FOLD and FOLD-R

learning algorithms can learn recursive rules. Whenever needed, our algorithms introduce new

predicates. The language bias (Mitchell 1980) also contains arithmetic constraints of the form

{A≤ h,A≥ h}. The algorithms have been implemented and tried on variety of datasets from the

UCI repository. They have shown excellent results that are presented here as well.

The default theories that we learn using our algorithm, as well as the background knowledge

used, is assumed to follow the stable model semantics2. Stable model semantics, and its real-

ization in answer set programming(ASP), provides an elegant mechanism for handling negation

in logic programming (Gelfond and Lifschitz 1988). We assume that the reader is familiar with

ASP and stable model semantics (Baral 2003).

This paper makes the following contributions: We propose a novel concrete algorithm to learn

default theories automatically in the absence of complete information. The proposed algorithm,

unlike the existing ones, is able to handle the numeric features without discretizing them first,

and is also capable of handling non-monotonic background knowledge. We provide both quali-

tative and quantitative results from standard UCI datasets to support the claim that our algorithm

discovers more accurate as well as more intuitive rules compared to the conventional ILP sys-

tems.

Rest of the paper is organized as follows: Section 2 formally defines the problem we tackle in

this paper. Section 3 presents some background materials. Section 4 presents the FOLD algorithm

to solve the problem. In section 5 we extend FOLD to handle numeric features. Section 6 presents

2 We assume that the background knowledge has exactly one stable model.
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the experiments and results. Section 7 discusses related research. Section 8 discusses our future

research direction and finally in Section 9 we conclude.

2 The Inductive Learning Problem

The problem that we tackle in this paper is an inductive non-monotonic logic programming

problem which can be formalized as follows:

Given

• a background theory B, in the form of a normal logic program, i.e, clauses of the form

h← l1, ..., lm,not lm+1, ...,not ln. where h and l1, ..., ln are positive literals and not denotes

negation-as-failure (NAF) with stable model semantics;

• two disjoint sets of grounded goal predicates E +,E −, known as positive and negative ex-

amples respectively;

• a hypothesis language of predicates L including function and atom free predicates. It also

contains a set of arithmetic constraints of the form {A ≤ h,A ≥ h} where A is a variable

and h is a real number;

• a covers(H ,E ,B) function, which returns the subset of E which is extensionally implied

by the current hypothesis H given the background knowledge B;

• a score(E +,E −,H ,B) function, which specifies the quality of the hypothesis H with

respect to E +,E −,B;

Find

• a theory T for which covers(T ,E +,B) = E + and covers(T ,E −,B) = /0.

3 Background

Our algorithm to learn default theories is an extension of the FOIL algorithm (Quinlan 1990).

FOIL is a top-down ILP system which follows a sequential covering approach to induce a hy-

pothesis. The FOIL algorithm is summarized in Algorithm 1. This algorithm repeatedly searches

for clauses that score best with respect to a subset of positive and negative examples, a current

hypothesis and a heuristic called information gain (IG).

The inner loop searches for a clause with the highest information gain using a general-to-

specific hill-climbing search. To specialize a given clause c, a refinement operator ρ under θ -

subsumption (Plotkin 1971) is employed. The most general clause is p(X1, ...,Xn)← true, where

the predicate p/n is the predicate being learned and each Xi is a variable. The refinement operator

specializes the current clause h← b1, ...bn. This is realized by adding a new literal l to the clause

yielding h← b1, ...bn, l. The heuristic based search uses information gain. In FOIL, information

gain for a given clause is calculated as follows (Mitchell 1997):

IG(L,R) = t

(

log2
p1

p1 + n1

− log2
p0

p0 + n0

)

(1)

where L is the candidate literal to add to rule R, p0 is the number of positive examples implied

by the rule R, n0 is the number of negative examples implied by the rule R, p1 is the number of

positive examples implied by the rule R+L, n1 is the number of negative examples implied by

the rule R+L, t is the number of positive examples implied by R also covered by R+L. FOIL

handles negated literals in a naive way by adding the literal not L to the set of specialization
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Algorithm 1 Summarizing the FOIL algorithm

Input: goal,B,E +,E −

Output: Initialize H ← /0

1: while not(stopping criterion) do

2: c← (goal :- true.)

3: while not(stopping criterion) do

4: for all c′ ∈ ρ(c) do

5: compute score(E +,E −,H ∪{c′},B)

6: end for

7: let ĉ be the c′ ∈ ρ(c) with the best score

8: c← ĉ

9: end while

10: add ĉ to H

11: E +← E + \ covers(ĉ,E +,B)

12: end while

candidate literals for any existing candidate L. This approach leads to learning predicates that do

not capture the concept accurately as shown in the following example.

Example 3.1

B,E + are background knowledge and positive examples respectively with CWA and the concept

to be learned is fly.

B : bird(X)← penguin(X).

bird(tweety). bird(et).

cat(kitty). penguin(polly).

E + : f ly(tweety). f ly(et).

The FOIL algorithm would learn the following rule:

f ly(X)← not cat(X),not penguin(X).

Although this rule covers all the positives (tweety and et are not penguins and cats) and no

negatives (kitty and polly do not satisfy the clause body), it still does not yield an intuitive rule.

In fact, the correct theory in this example is as follows: “Only birds fly but, among them there are

exceptional ones who do not fly”. It translates to the following Prolog rule:

f ly(X)← bird(X),not penguin(X).

which FOIL fails to discover.

4 FOLD Algorithm

The idea of our FOLD algorithm is to learn a concept as a default theory and possibly multiple

exceptions. In that sense, FOLD tries first to learn the default by specializing a general rule of

the form goal(V1, ...,Vn)← true. with positive literals. As in FOIL, each specialization must rule

out some already covered negative examples without decreasing the number of positive examples

covered significantly. Unlike FOIL, no negative literal is used at this stage. Once the IG becomes

zero, this process stops. At this point, if some negative examples are still covered, they must be
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either noisy data samples or exceptions to the so far learned rule. As (Srinivasan et al. 1996) dis-

cuss, there is no pattern distinguishable in noise, whereas, in exceptions, there may exist a pattern

that can be described using the same language bias. This can be viewed as a subproblem to (re-

cursively) find the rules governing a set of negative examples. To achieve that aim, FOLD swaps

the current positive and negative examples and recursively calls the FOLD algorithm to learn the

exception rule(s). Each time a rule is discovered for exceptions, a new predicate ab(V1, ...,Vn) is

introduced. To avoid name collision, FOLD appends a unique number at the end of the string ab

to guarantee the uniqueness of the invented predicates.

In case of noisy data or in the presence of uncertainty due to the lack of information, it turns

out that there is no pattern to learn. In such cases, FOLD enumerates the positive examples for

two purposes: first, this is essential for the training algorithm to converge, second, it helps to

detect noisy data samples.

Algorithm 2 shows a high level implementation of the FOLD algorithm. In lines 1-8, function

FOLD, serves as the FOIL outer loop. In line 3, FOLD starts with the most general clause (e.g.

f ly(X)← true.). In line 4, this clause is refined by calling the function SPECIALIZE . In lines

5-6, set of positive examples and set of discovered clauses are updated to reflect the newly dis-

covered clause. In lines 9-29, the function SPECIALIZE is shown. It serves as the FOIL inner

loop. In line 12, by calling the function ADD BEST LITERAL the “best” positive literal is cho-

sen and the best IG as well as the corresponding clause is returned. In lines 13-24, depending on

the IG value, either the positive literal is accepted or the EXCEPTION function is called. If, at

the very first iteration, IG becomes zero, then a clause that just enumerates the positive examples

is produced. A flag called just started is used to differentiate the first iteration. In lines 26-27,

the sets of positive and negative examples are updated to reflect the changes of the current clause.

In line 19, the EXCEPTION function is called while swapping the E +,E −.

In line 31, we find the “best” positive literal that covers more positive examples and fewer

negative examples. Again, note the current positive examples are really the negative examples

and in the EXCEPTION function, we try to find the rule(s) governing the exception. In line 33,

FOLD is recursively called to extract this rule(s). In line 34, a new ab predicate is introduced and

in lines 35-36 it is associated with the body of the rule(s) found by the recurring FOLD function

call in line 33. Finally, in line 38, default and exception are attached together to form a single

clause.

The FOLD algorithm, once applied to Example 3.1 yields the following clauses:

f ly(X)← bird(X),not ab0(X).

ab0(X)← penguin(X).

Now, we illustrate how FOLD discovers the above set of clauses given E + = {tweety,et}

and E − = {polly,kitty} and the goal f ly(X). By calling FOLD, in line 2 “while”, the clause

f ly(X)← true. is specialized. In the SPECIALIZE function, in line 12, the literal bird(X) is

picked to add to the current clause, to get the clause ĉ = f ly(X)← bird(X) which happened to

have the greatest IG among {bird, penguin,cat}. Then, in line 26-27 the following updates are

performed: E + = {}, E − = {polly}. A negative example polly, a penguin is still covered. In the

next iteration, SPECIALIZE fails to introduce a positive literal to rule it out since the best IG in

this case is zero. Therefore, the EXCEPTION function is called by swapping the E +, E −. Now,

FOLD is recursively called to learn a rule for E + = {polly}, E − = {}. The recursive call (line

33), returns f ly(X)← penguin(X) as the exception. In line 34 a new predicate ab0 is introduced

and in line 35-37 the clause ab0(X)← penguin(X) is created and added to the set of invented
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Algorithm 2 FOLD Algorithm

Input: goal,B,E +,E −

Output:

D = {c1, ...,cn} ⊲ defaults’ clauses

AB = {ab1, ...,abm} ⊲ exceptions/abnormal clauses

1: function FOLD(E +,E −)

2: while (size(E +)> 0) do

3: c← (goal :- true.)

4: ĉ← SPECIALIZE(c,E +,E −)

5: E +← E + \ covers(ĉ,E +,B)

6: D← D∪{ĉ}

7: end while

8: end function

9: function SPECIALIZE(c,E +,E −)

10: just started← true

11: while (size(E −)> 0) do

12: (cde f , ˆIG)← ADD BEST LITERAL(c,E +,E −)

13: if ˆIG > 0 then

14: ĉ← cde f

15: else

16: if just started then

17: ĉ← enumerate(c,E+)

18: else

19: ĉ← EXCEPTION(c,E −,E +)

20: if ĉ = null then

21: ĉ← enumerate(c,E+)

22: end if

23: end if

24: end if

25: just started← f alse

26: E +← E + \ covers(ĉ,E +,B)

27: E −← E − \ covers(ĉ,E −,B)

28: end while

29: end function

30: function EXCEPTION(cde f ,E
+,E −)

31: ˆIG← ADD BEST LITERAL(c,E +,E −)

32: if ˆIG > 0 then

33: c set← FOLD(E +,E −)

34: c ab← generate next ab predicate()

35: for each c ∈ c set do

36: AB← AB∪{c ab:- bodyo f (c)}

37: end for

38: ĉ← (heado f (cde f ):- bodyo f (c),not(c ab))

39: else

40: ĉ← null

41: end if

42: end function
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abnormalities namely, AB. In line 38, the negated exception (i.e not ab0(X)) and the default

rule’s body (i.e bird(X)) are compiled together to form the clause f ly(X)← bird(X),not ab0(X).

Note, in two different cases enumerate is called. First, at very first iteration of specialization if

IG is zero for all the positive literals. Second, when the Exception routine fails to find a rule gov-

erning the negative examples. Whichever is the case, corresponding samples are considered as

noise. The following example shows a learned logic program in presence of noise. In particular,

it shows how enumerate function in FOLD works: It generates clauses in which the variables of

the goal predicate can be unified with each member of a list of the examples for which no pattern

exists.

Example 4.1

Similar to Example 3.1, plus we have an extra positive example fly(jet) without any further

information:
B : bird(X)← penguin(X).

bird(tweety). bird(et).

cat(kitty). penguin(polly).

E + : f ly(tweety). f ly( jet). f ly(et).

FOLD algorithm on the Example 4.1 yields the following clauses:

f ly(X)← bird(X),not ab0(X).

f ly(X)← member(X , [ jet]).

ab0(X)← penguin(X).
FOLD recognizes jet as a noisy data. member/2 is a built-in predicate in SWI-Prolog to test the

membership of an atom in a list.

Sometimes, there are nested levels of exceptions. The following example shows how FOLD

manages to learn the correct theory in presence of nested exceptions.

Example 4.2

Birds and planes normally fly, except penguins and damaged planes that can’t. There are super

penguins who can, exceptionally, fly.

B : bird(X)← penguin(X).

penguin(X)← superpenguin(X).

bird(a). bird(b). penguin(c). penguin(d).

superpenguin(e). superpenguin( f ). cat(c1).

plane(g). plane(h). plane(k). plane(m).

damaged(k). damaged(m).

E + : f ly(a). f ly(b). f ly(e).

f ly( f ). f ly(g). f ly(h).

FOLD algorithm learns the following theory:

f ly(X)← plane(X),not ab0(X).

f ly(X)← bird(X),not ab1(X).

f ly(X)← superpenguin(X).

ab0(X)← damaged(X).

ab1(X)← penguin(X).

Theorem 1

The FOLD algorithm terminates on any finite set of examples.
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Proof

It suffices to show that the size of E + on every iteration of the FOLD function decreases (at line

5) and since E + is a finite set, it will eventually becomes empty and the while loop terminates.

Equivalently, we can show that every time the SPECIALIZE function is called, it terminates and

a clause ĉ that covers a non-empty subset of E + is returned. Inside the SPECIALIZE function, if

E − is empty, then the function returns its input clause and the theorem trivially holds. Otherwise,

two cases might happen: First, SPECIALIZE produces a clause which enumerates E + and covers

no negative example. In such a case it returns immediately and the theorem trivially holds. Sec-

ond, SPECIALIZE calls the EXCEPTION function which may lead to a chain of recursive calls

on FOLD function. In this case it suffices to show that on a chain of recursive calls on FOLD, the

size of function argument i.e. E + decreases each time a new call to FOLD occurs. That’s indeed

the case because every time a literal is added to the current clause at line 12, it covers fewer neg-

ative examples from E − which in turn becomes the new E + as the EXCEPTION function and

subsequently the FOLD function is recursively called. Therefore, on consecutive calls to FOLD

function, the size of input argument E + is decreased until it eventually terminates.

Theorem 2

The FOLD algorithm always learns a hypothesis that covers no negative example (soundness).

Proof

It follows from the Theorem 1 that every loop in the algorithm (and, subsequently the algorithm)

terminates. In particular, the while loop inside the function SPECIALIZE terminates as soon as

the negated loop condition (i.e., the number of negative examples covered by the rule being dis-

covered equals zero) starts to hold. Since, for every learned rule, no negative example is covered,

it follows that the FOLD algorithm learns a hypothesis which covers no negative example.

Theorem 3

The FOLD algorithm always learns a hypothesis that covers all positive examples (complete-

ness).

Proof

The proof is similar to the soundness proof.

5 Numeric Extension of FOLD

ILP systems have limited application to data sets containing a mix of categorical and numerical

features. A common way to deal with numerical features is to discretize the data to qualitative

values. This approach leads to accuracy loss and requires domain expertise. Instead, we adapt the

approach taken in the well-known C4.5 algorithm (Quinlan 1993). This algorithm is ranked no.

1 in the survey paper “Top 10 algorithms in datamining”, (Wu et al. 2007). For a numeric feature

A, constraints such as {A ≤ h,A > h} have to be considered where the threshold h is found

by sorting the values of A and choosing the split between successive values that maximizes the

information gain. In our FOLD-R algorithm that we propose and describe next, we perform the

same method for a set of operators {<,≤} and pick the operator and threshold which maximizes

the information gain. Also, we need to extend the ILP language bias to support the arithmetic

constraints.

Unlike the categorical features for which we use propositionalization (Kramer et al. 2000),
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for numerical features, we define a predicate that contains an extra variable which always pairs

with a constraint. For example to extend the language bias for a numeric quantity “age” we

could define predicates of the form age(a,b) in the background knowledge, and the candidate to

specialize a clause might be as follows: age(X ,N),N ≤ 5. However, the predicate age/2 never

appears without the corresponding constraint.

Algorithm 3 illustrates the high level changes made to FOLD, in order to obtain the FOLD-R

algorithm. The function test categorical, as before, chooses the best categorical literal to spe-

cialize the current clause. The function test numeric chooses the best numeric literal as well as

the best arithmetic constraint and threshold with the highest IG. In line 5, if neither one leads to

a positive IG, EXCEPTION is tried. If exception also fails, then enumerate is called. Otherwise,

IGs are compared and whichever is greater, the corresponding clause is chosen as the specialized

clause of the current iteration.

Algorithm 3 FOLD-R Algorithm, Specialize function. Other functions are the same as in FOLD

1: function SPECIALIZE(c,E +,E −)

2: while (size(E −)> 0) do

3: (ĉ1, ˆIG1)← test categorical(c,E+,E −)

4: (ĉ2, ˆIG2)← test numeric(c,E +,E −)

5: if ˆIG1 = 0 & ˆIG2 = 0 then

6: ĉ← EXCEPTION(c,E −,E +)

7: if ĉ = null then

8: ĉ← enumerate(c,E+)

9: end if

10: else

11: if ˆIG1 ≥ ˆIG2 then

12: ĉ← ĉ1

13: else

14: ĉ← ĉ2

15: end if

16: end if

17: E +← E + \ covers(ĉ,E +,B)

18: E −← E − \ covers(ĉ,E −,B)

19: end while

20: end function

Example 5.1

Table 1 adapted from (Quinlan 1993) is a dataset with numeric features “temperature” and “hu-

midity”. “Outlook” and “Windy” are categorical features. Our FOLD-R algorithm, for the goal

play(X), and positive examples shown as records with label “Play”, and negative examples

shown as records with label “Don’t Play” outputs the following clauses:

play(X)← overcast(X).

play(X)← temperature(X ,A),A≤ 75,not ab0(X).

ab0(X)← windy(X),rainy(X).

ab0(X)← humidity(X ,A),A≥ 95,sunny(X).
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Table 1. Play Tennis data-set, Numeric version

Outlook Temperature Humidity Wind PlayTennis

sunny 75 70 true Play

sunny 80 90 true Don’t Play

sunny 85 85 false Don’t Play

sunny 72 95 false Don’t Play

sunny 69 70 false Play

overcast 72 90 true Play

overcast 83 78 false Play

overcast 83 65 true Play

overcast 81 75 false Play

rain 71 80 true Don’t Play

rain 65 70 true Don’t Play

rain 75 80 false Play

rain 68 80 false Play

rain 70 96 false Play

FOLD-R results suggest an abnormal day to play is either a rainy and windy day or a sunny day

with humidity above 95%.

6 Experiments and Results

This section presents the results obtained with FOLD-R algorithm on some of the standard UCI

datasets. To conduct the following experiments, we implemented the algorithm in Java. We used

Prolog queries to process the background knowledge (the background knowledge is assumed to

be represented as a standard Prolog program). For performing information gain computations and

CWA generation of negative examples, we made use of the JPL library (Singleton and Dushin 2003)

which interfaces SWI-Prolog version 7.1.23-34 (Wielemaker et al. 2012) with Java. Our inten-

tion here is to investigate the quality of discovered rules both in terms of their accuracy and the

degree to which they are consistent with the common sense understanding from the underlying

concepts. To measure the accuracy, we implemented 10-fold cross-validation on each dataset and

the mean of calculated accuracy is represented while the standard deviation for all the datasets

were 5 percent or lower. At present, we are not greatly interested in the running time and/or space

complexity of the algorithm: this will be subject of future research. All the learning tasks were

performed using a PC with Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz and 8.00 GB RAM.

Execution times ranges from a few seconds to a few minutes. The bottleneck is the function that

sorts the numeric values to pick the best threshold and operator. There are solutions to get around

this such as (Catlett 1991). Table 2 reports the execution time of FOLD-R on our benchmarks.

The algorithm works much faster when no numeric feature is present in the dataset. It should be

noted that calls to JPL add significant overhead to the algorithm’s execution time.

Labor Relations: The data includes a set of contracts which depending on their features (16

features) are classified as good or bad contracts. The following set of clauses for a good contract

are discovered by FOLD-R:
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good cont(X)← wage inc f (X ,A),A > 2,not ab0(X).

good cont(X)← holidays(X ,A),A > 11.

good cont(X)← hplan hal f (X), pension(X).

ab0(X)← no long disability help(X).

ab0(X)← no pension(X).
According to the first rule, a contract with 2 percent wage increase (default) is a good contract

except when the employer does not contribute in a possible long-term disability and a pension

plan. According to the second rule, a contract with holidays above 11 days is also good. And,

finally, if employer contributes in half of the health plan and entire pension plan, the contract is

good.

Mushroom: This dataset includes descriptions of different species of mushrooms and their fea-

tures which are used to classify whether they are poisonous or edible. The following set of clauses

for a poisonous mushroom is discovered by FOLD:

poisonous(X)← ring type none(X).

poisonous(X)← spore print color green(X).

poisonous(X)← gill size narrow(X),not ab2(X).

poisonous(X)← odor f oul(X).

ab0(X)← population clustered(X).

ab0(X)← stalk sur f ace below ring scaly(X).

ab1(X)← stalk shape enlarging(X).

ab2(X)← gill spacing crowded(X),not ab1(X).

ab2(X)← odor none(X),not ab0(X).
Note, the induced theory has nested exceptions. This nesting happens as a result of finding pat-

terns for negative examples, which makes the FOLD algorithm perform more recursive steps

until no covered negative example is left.

Table 2 compares the accuracy of FOLD-R algorithm against that of ALEPH (Srinivasan 2001).

The examples have been picked from well-known standard datasets for some of which ALEPH

exhibits low test accuracy. In most cases, FOLD-R accuracy outperforms ALEPH. The experi-

ments suggest that when absence of a particular feature value plays a crucial role in classification,

our algorithm shows a meaningful higher accuracy. This follows from the fact that the classical

ILP algorithms only make use of existent information as opposed to negation-as-failure in which

a decision is made based on the absence of information. As an example, in the credit-j dataset,

our algorithm generates 4 rules with abnormality predicates. These rules cover positive examples

which without abnormality predicates would have remained uncovered. However, in Bridges and

Ecoli where no abnormality predicate is introduced by our algorithm, both ALEPH and FOLD-R

end-up with almost the same accuracy.

Even in cases where no improvement over accuracy is achieved, our default theory approach

leads to simpler and more intuitive rules. As an example, in case of Mushroom, other ILP sys-

tems, including ALEPH and FOIL, would produce 9 rules with 2 literals each in the body to

cover all the positives, while our FOLD algorithm, produces 3 single-literal rules and 1 rule with

2 literals in which the second literal takes care of the exceptions.

7 Related Work

Sakama in (Sakama 2005) discusses the necessity of having a non-monotonic language bias to

perform induction for default reasoning. It surveys some of the proposals directly adapted from
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dataset size ALEPH accuracy(%) FOLD-R accuracy(%) FOLD-R execution time(s)

Credit-au 690 82 83 67

Credit-j 125 53 81 20

Credit-g 1000 70.9 78 87

Iris 150 85.9 95 1.3

Ecoli 336 91 90 6.1

Bridges 108 89 90 0.8

Labor 57 89 94 0.4

Acute(1) 34 100 100 0.3

Acute(2) 34 100 100 0.3

Mushroom 7724 100 100 11.4

Table 2. FOLD-R evaluation on UCI benchmarks

ILP, like inverse resolution (Muggleton and Buntine 1988) and inverse entailment (Muggleton 1995)

then he explains why these are not applicable to non-monotonic logic programs. Sakama then in-

troduces an algorithm to induce rules from answer sets which generalizes a rule from specific

grounded rules in a bottom-up fashion. His approach in some cases yields premature generaliza-

tions that produces redundant negative literals in the body of the rule and therefore over-fitted to

the training data. The following example illustrates what Sakama’s algorithm would produce:

Example 7.1

B : bird(X)← penguin(X).

bird(tweety). bird(et).

bear(teddy). crippled(et).

cat(kitty). penguin(polly).

E + : f ly(tweety).
and the algorithm outputs the following rule:

f ly(X)← bird(X),not cat(X),not penguin(X),not bear(X),not crippled(X).

in which some of the literals including not cat(X) and not bear(X) are redundant.

Additionally, since ASP systems have to ground the predicates to produce the answer set, intro-

ducing numeric data in background knowledge and also in the language bias is prohibited.

In a different line of research, (Dimopoulos and Kakas 1995), describes an algorithm to learn

exception using the patterns in the negative examples. However, they don’t make any use of NAF

as the core notion of reasoning in the absence of complete information. Instead, their algorithm

learns a hierarchical logic program, including classical negation, in which the order of rules

prioritize their application and, therefore, it is not naturally compatible with standard Prolog.

The idea of swapping positive and negative examples to learn patterns from negative examples

has first been discussed in (Srinivasan et al. 1996) where a bottom-up ILP algorithm is proposed

to specialize a clause after it has already been generalized and still covers negative examples.

Similarly, (Inoue and Kudoh 1997) proposes a bottom-up algorithm in two phases: First, produc-

ing monotonic rules via a standard ILP method, then specializing them by introducing negated

literals to the body of the rule. In contrast, we believe our FOLD algorithm that takes a top-down

approach learns programs that have a better fit, thanks to its support for numeric features and its

better scalability. Lack of both are inherent problems in bottom-up ILP methods.
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ALEPH (Srinivasan 2001) is one of the most widely used ILP systems that uses a bottom-up

generalization search to induce theories that covers the maximum possible positive examples.

However, since the induced theory might be overly generalized, there is an option to refine the

theory by introducing abnormality predicates that rule out negative examples by specializing an

overly generalized rule. This specialization step is manual and unlike our algorithm, no automa-

tion is offered by ALEPH. Also, ALEPH does not support numeric features.

XHAIL (Ray 2009) is another non-monotonic ILP framework which integrates abductive, de-

ductive and inductive forms of reasoning to form sets of ground clauses called kernel set and

then generalize it to learn non-stratified logic programs.

In a different line of research, (Corapi et al. 2012) approaches the non-monotonic ILP problem

by incorporating the power of modern ASP solvers to search for an optimal hypothesis among

the generated so-called skeleton rules and a set of abducibles associated to them. The last two

approaches do not scale up as the language bias grows.

8 Future Work

One advantage of our FOLD-R algorithm over the existing systems is the ability to handle non-

monotonic background knowledge. Conventional ILP systems permit only standard Prolog pro-

grams to represent background knowledge. In contrast, our FOLD-R algorithm, once integrated

with a top down answer set programming system like s(ASP) (Marple and Gupta 2012), will

permit the background knowledge to be represented as an answer set program. The idea of lever-

aging the added expressiveness of non-monotonic logic-based background knowledge has been

discussed in (Seitzer 1997). However, because Seitzer’s method is based on grounding the back-

ground knowledge and then computing its answer sets, it is not scalable. Using a query-driven

system allows our learning algorithm to be scalable. Extending our algorithms to allow non-

monotonic logic-based background knowledge with multiple stable models is part of the future

work.

Our eventual goal is to develop a unified framework for learning default theories: (i) in which

we can learn hypotheses that are general answer set programs (i.e., these learned answer set

programs may not be stratified), and (ii) that work with background knowledge that may be

represented as a non-stratified answer set program. Also, the optimality of the learned hypothesis

due to greedy nature of information gain heuristic is not guaranteed and changing the search

strategy from A* to better algorithms such as iterative deepening search is subject of future

research.

9 Conclusion

In this paper, we introduced a new algorithm called FOLD to learn default theories. Next, we

proposed FOLD-R which is an extension of FOLD to handle numeric features. Both the FOLD

and the FOLD-R learning algorithms learn stratified answer set programs that allow recursion

through positive literals. Our experiments based on using the standard UCI benchmarks suggest

that the default theory, in most cases, describes the underlying model more accurately compared

to conventional ILP systems. Default theories also happen to closely model common-sense rea-

soning. Thus, rules learned from FOLD and FOLD-R are more intuitive and comprehensible by

humans. Unlike classical machine learning approaches which learn based on existing informa-
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tion, FOLD and FOLD-R are able to find patterns of information that is absent and express it via

a default theory, i.e., as a non-monotonic logic program.
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