
ar
X

iv
:1

70
7.

01
87

0v
1

 [
cs

.L
O

]
 6

 J
ul

 2
01

7

Under consideration for publication in Theory and Practice of Logic Programming 1

Finite model reasoning over existential rules

GIOVANNI AMENDOLA, NICOLA LEONE, MARCO MANNA

Department of Mathematics and Computer Science, University of Calabria, Italy

(e-mail: {amendola,leone,manna}@mat.unical.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Ontology-based query answering (OBQA) asks whether a Boolean conjunctive query is satisfied by all

models of a logical theory consisting of a relational database paired with an ontology. The introduction of

existential rules (i.e., Datalog rules extended with existential quantifiers in rule-heads) as a means to specify

the ontology gave birth to Datalog+/-, a framework that has received increasing attention in the last decade,

with focus also on decidability and finite controllability to support effective reasoning. Five basic decidable

fragments have been singled out: linear, weakly-acyclic, guarded, sticky, and shy. Moreover, for all these

fragments, except shy, the important property of finite controllability has been proved, ensuring that a query

is satisfied by all models of the theory iff it is satisfied by all its finite models. In this paper we complete the

picture by demonstrating that finite controllability of OBQA holds also for shy ontologies, and it therefore

applies to all basic decidable Datalog+/- classes. To make the demonstration, we devise a general technique

to facilitate the process of (dis)proving finite controllability of an arbitrary ontological fragment.

KEYWORDS: Existential rules, Datalog, Finite controllability, Finite model reasoning, Query answering.

1 Introduction

The problem of answering a Boolean query q against a logical theory consisting of an exten-

sional database D paired with an ontology Σ is attracting the increasing attention of scientists

in various fields of Computer Science, ranging from Artificial Intelligence (Baget et al. 2011;

Calvanese et al. 2013; Gottlob et al. 2014) to Database Theory (Bienvenu et al. 2014; Gottlob et al. 2014;

Bourhis et al. 2016) and Logic (Pérez-Urbina et al. 2010; Bárány et al. 2014; Gottlob et al. 2013).

This problem, called ontology-based query answering, for short OBQA (Calı̀ et al. 2009b), is

usually stated as D∪Σ |= q, and it is equivalent to checking whether q is satisfied by all mod-

els of D∪ Σ according to the standard approach of first-order logics, yielding an open world

semantics.

Description Logics (Baader et al. 2003) and Datalog± (Calı̀ et al. 2009a) have been recog-

nized as the two main families of formal knowledge representation languages to specify Σ, while

union of (Boolean) conjunctive queries, U(B)CQs for short, is the most common and studied

formalism to express q. For both these families, OBQA is generally undecidable (Rosati 2007;

Calı̀ et al. 2013). Hence, a number of syntactic decidable fragments of the above ontological

languages have been singled out. However, decidability alone is not the only desideratum. For

example, a good balance between computational complexity and expressive power is, without

any doubt, of high importance too. But there is another property that is turning out to be as in-

teresting as challenging to prove: it goes under the name of finite controllability (Rosati 2006).

An ontological fragment F is finitely controllable if, for each triple 〈D,Σ,q〉 with Σ ∈F , it holds

http://arxiv.org/abs/1707.01870v1

2 G. Amendola, N. Leone, M. Manna

shy weakly-acyclic sticky

dataloglinear

guarded

joinless

inclusion-dependencies

Fig. 1. Taxonomy of the basic Datalog± classes.

that D∪Σ 6|= q implies that there is a finite model M of D∪Σ such that M 6|= q. This is usu-

ally stated as D∪Σ |= q if, and only if, D∪Σ |=fin q (where |=fin stands for entailment under

finite models), as the “only if” direction is always trivially true. And there are contexts, like

in databases (Johnson and Klug 1984; Rosati 2006; Bárány et al. 2014), in which reasoning with

respect to finite models is preferred.

In this paper we focus on the Datalog± family, which has been introduced with the aim of

“closing the gap between the Semantic Web and databases” (Calı̀ et al. 2012) to provide the Web

of Data with scalable formalisms that can benefit from existing database technologies. In fact,

Datalog± generalizes two well-known subfamilies of Description Logics called EL and DL-Lite,

which collect the basic tractable languages for OBQA in the context of the Semantic Web and

databases. In particular, we consider ontologies where Σ is a set of existential rules, each of which

is a first-order formula ρ of the form ∀X∀Y(φ(X,Y)→∃Zp(X,Z)), where the body φ(X,Y) of

ρ is a conjunction of atoms, and the head p(X,Z) of ρ is a single atom.

The main decidable Datalog± fragments rely on the following five syntactic properties: weak-

acyclicity (Fagin et al. 2005), guardedness (Calı̀ et al. 2013), linearity (Calı̀ et al. 2012), sticki-

ness (Calı̀ et al. 2010), and shyness (Leone et al. 2012). And these properties underlie the ba-

sic classes called weakly-acyclic, guarded, linear, sticky, and shy, respectively. Several vari-

ants and combinations of these classes have been defined and studied too (Baget et al. 2010;

Krötzsch and Rudolph 2011; Calı̀ et al. 2012; Civili and Rosati 2012; Gottlob et al. 2013), as well

as semantic properties subsuming the syntactic ones (Baget et al. 2009; Leone et al. 2012).

The five basic classes above are pairwise uncomparable, except for linear which is strictly con-

tained in both guarded and shy, as depicted in Figure 1. Interestingly, bothweakly-acyclic and shy

strictly contain datalog —the well-known class with rules of the form ∀X∀Y(φ(X,Y)→ p(X)),

where existential quantification has been dropped. Moreover, sticky strictly contains joinless

—the class collecting sets of rules where each body contains no repeated variable. The lat-

ter, introduced by Gogacz and Marcinkowski (2013) to prove that sticky is finitely controllable,

plays a central role also in this paper. Finally, both linear and joinless strictly contain inclusion-

dependencies —the well-known class of relational database dependencies collecting sets of rules

with one single body atom and no repeated variable.

Under arbitrary models, OBQA can be reduced to the problem of answering q over a universal

(or canonical) model U that can be homomorphically embedded into every other model (both

finite and infinite) of D∪Σ. Therefore, D∪Σ |= q if, and only if, U |= q. A way to compute a

universal model is to employ the so called chase procedure. Starting from D, the chase “repairs”

violations of rules by repeatedly adding new atoms —introducing fresh values, called nulls,

whenever required by an existential variable— until a fixed-point satisfying all rules is reached.

In the classical setting, the chase is therefore sound and complete. But when finite model reason-

Finite model reasoning over existential rules 3

ing (namely reasoning over finite models only, here denoted by |=fin) is required, then the chase

is generally uncomplete, unless ontologies are finitely controllable. Hence, proving this property

is of utmost importance, especially in those contexts where finite model reasoning is relevant.

Finite controllability of weakly-acyclic comes for free since every ontology here admits a fi-

nite universal model, computed by a variant of the chase procedure which goes under the name

of restricted chase (Fagin et al. 2005). Conversely, the proof of this property for the subsequent

three classes has been a very different matter. Complex, yet intriguing, constructions have been

devised for linear (Rosati 2006; Bárány et al. 2014), guarded (Bárány et al. 2014), and more re-

cently for sticky (Gogacz and Marcinkowski 2013). To complete the picture, we have addressed

the same problem for shy and get the following positive result, which is the main contribution of

the paper.

Theorem 1.1

Under shy ontologies, D∪Σ |= q if, and only if, D∪Σ |=fin q.

For the proof, we design in Section 3 and exploit in Section 4 a general technique (our second

contribution), called canonical rewriting, to facilitate the process of (dis)proving finite control-

lability of an arbitrary ontological fragment of existential rules. By exploiting this technique,

we can immediately (re)confirm that linear is finitely controllable since inclusion-dependencies

is. In addition, we prove (our third contribution) that sticky-join (Calı̀ et al. 2012), generalizing

both sticky and linear, is finitely controllable since sticky is. However, differently from linear

and sticky-join, the canonical rewriting of a shy ontology —although it is simpler and still a shy

ontology— does not immediately fall in any other known class. Therefore, to prove that shy is

finitely controllable, we devise three technical tools on top of the canonical rewriting from which

we are able to exploit the fact that joinless is finitely controllable.

2 Ontology-based query answering

Basics. Let C, N and V denote pairwise disjoint discrete sets of constants, nulls and vari-

ables, respectively. An element t of T = C∪N∪V is called term. An atom α is a labeled tuple

p(t1, . . . , tm), where p is a predicate symbol, m is the arity of both p anf α , and t1, . . . , tm are terms.

An atom is simple if it contains no repeated term. We denote by pred(α) the predicate symbol

p, and by α[i] the i-th term ti of the α . We also consider propositional atoms, which are simple

atoms of arity 0 written without brackets. Given two sets A and B of atoms, a homomorphism

from A to B is a mapping h : T→T such that c∈C implies h(c)= c, and also p(t1, . . . , tm)∈A im-

plies p(h(t1), . . . ,h(tm)) ∈ B. As usual, we denote by h(A) = {p(h(t1), . . . ,h(tm)) : p(t1, . . . , tm) ∈

A} ⊆ B. An instance I is a discrete set of atoms where each term is either a constant or a null.

Syntax. A database D is a finite null-free instance. An (existential) rule ρ is a first-order

formula ∀X∀Y(φ(X,Y) → ∃Zp(X,Z)), where body(ρ) = φ(X,Y) is a conjunction of atoms,

and head(ρ) = p(X,Z) is an atom. Constants may occur in ρ . If Z = /0, then ρ is datalog rule.

An ontology Σ is a set of rules. For each rule ρ of Σ, we denote by V(ρ) the set of variables

appearing in ρ , by EV(ρ) the set of all existential variables of ρ , and by UV(ρ) the set of all

universal variables of ρ . A union of Boolean conjunctive query, UBCQ for short, q is a first-

order expression of the form ∃Y1ψ1(Y1)∨ . . .∨∃Ykψk(Yk), where each ψ j(Y j) is a conjunction

of atoms. Constants may occur also in q. In case k = 1, then q is simply called BCQ.

Semantics. Consider a triple 〈D,Σ,q〉 as above. An instance I satisfies a rule ρ ∈ Σ, denoted by

I |= ρ , if whenever there is a homomorphism h from body(ρ) to I, then there is a homomorphism

4 G. Amendola, N. Leone, M. Manna

h′ ⊇ h|X from {head(ρ)} to I. Moreover, I satisfies Σ, denoted by I |= Σ, if I satisfies each rule

of Σ. The models of D∪Σ, denoted by mods(D,Σ), consist of the set {I : I ⊇ D and I |= Σ}. An

instance I satisfies q, written I |= q, if there is a homomorphism from some ψ j(Y j) to I. Also, q

is true over D∪Σ, written D∪Σ |= q, if each model of D∪Σ satisfies q.

The chase. Consider a logical theory 〈D,Σ〉 as above. A rule ρ of Σ is applicable to an in-

stance I if there is a homomorphism h from body(ρ) to I that maps the existential variables of ρ

to different nulls not occurring in I. If so, 〈ρ ,h〉(I) = I ∪ h(head(ρ)) defines a chase step. The

chase procedure (Deutsch et al. 2008) of D∪Σ is any sequence I0 = D ⊂ I1 ⊂ . . . ⊂ Im ⊂ . . . of

instances obtained by applying exhaustively the rules of Σ in a fair (e.g., breadth-first) fashion in

such a way that, for each i > 0, 〈ρ ,h〉(Ii−1) = Ii defines a chase step for some ρ and h. We call

chase(D,Σ) the (possibly infinite) instance
⋃

i>0 Ii. Importantly, different chase steps introduce

different nulls. This variant of the chase is called oblivious, and defines a family of isomorphic

instances, namely any two such instances are equal modulo renaming of nulls. Hence, without

loss of generality, it is common practice to consider the oblivious chase as deterministic and

its least fixpoint as unique. The restricted version of this procedure imposes a further condi-

tion on each chase step: I 6|= h′(head(ρ)), where h′ = h|UV(ρ). Differently from the oblivious

one, it defines a family of homomorphically equivalent instances, each generically denoted by

rchase(D,Σ). It is well-known that (r)chase(D,Σ) is a universal model of D∪Σ, namely for each

M ∈ mods(D,Σ), there is a homomorphism from chase(D,Σ) to M. Hence, given a UBCQ q, it

holds that (r)chase(D,Σ) |= q if, and only if, D∪Σ |= q (Fagin et al. 2005).

Finite controllability. The finite models of a theory D∪Σ, denoted by fmods(D,Σ), are the

finite instances in {I ∈ mods(D,Σ) : |I| ∈ N}. An ontological fragment F is finitely controllable

if, for each database D, for each ontology Σ of F , and for each UBCQ q, it holds that D∪Σ 6|= q

implies that there exists a finite model M of D∪Σ such that M 6|= q. This is formally stated as

D∪Σ |= q if and only if D∪Σ |=fin q, or equivalently chase(D,Σ) |= q if and only if D∪Σ |=fin q.

2.1 Datalog± fragments

Fix a database D, an ontology Σ, and a chase step involving some pair 〈ρ̄,h〉. To lighten the pre-

sentation, we assume that different rules of Σ share no variable. Also, for every m-ary predicate

p and every i ∈ {1, . . . ,m}, the pair (p, i) is called position and denoted by p[i]. Finally, given a

set A of atoms, a term t occurs in A at position p[i] if there is α ∈ A s.t. pred(α) = p and α[i] = t.

Local conditions. Σ belongs to: (i) datalog whenever ρ ∈Σ implies EV(ρ) = /0; (ii) inclusion-

dependencies whenever ρ ∈ Σ implies that ρ contains only simple atoms and |body(ρ)|= 1; (iii)

linear whenever ρ ∈ Σ implies |body(ρ)|= 1; (iv) guarded whenever ρ ∈ Σ implies that there is

an atom of body(ρ) containing all the variables of UV(ρ); (v) joinless whenever ρ ∈ Σ implies

that head(ρ) is a simple atom and body(ρ) contains no repeated variables.

Weak-acyclicity (Fagin et al. 2005). Informally, Σ ∈ weakly-acyclic guarantees that: if X oc-

curs in body(ρ̄) at position p[i] and h(X) ∈ N, then the number of distinct nulls occurring in

rchase(D,Σ) at position p[i] are finitely many. Formally, the labeled graph G(Σ) associated to Σ

is defined as the pair 〈N,A〉, where (i) N collects all the positions p[1], . . . , p[m] for each m-ary

predicate p occurring in Σ; (ii) (p[i],r[j],plain) ∈ A if there is a rule ρ ∈ Σ and a variable X of

ρ such that: X occurs in the body of ρ at position p[i] and X occurs in the head of ρ at position

r[j]; and (iii) (p[i],r[j],special) ∈ A if there is a rule ρ ∈ Σ, a universal variable X occurring

also in the head of ρ , and an existential variable Z of ρ such that: X occurs in the body of ρ at

Finite model reasoning over existential rules 5

D∪Σ |= q D∪Σ |=fin q

Dc ∪Σc |=fin qcDc ∪Σc |= qc

D∪Σ |= q D∪Σ |=fin q

Dc ∪Σc |=fin qcDc ∪Σc |= qc

to prove this...

Th. 3.2Th. 3.1

...show this is true

to disprove this...

Th. 3.2Th. 3.1

...show this is false

Fig. 2. Application of the canonical rewriting.

position p[i] and Z occurs in the head of ρ at position r[j]. Ontology Σ belongs to weakly-acyclic

if G(Σ) has no cycle going through an arc labeled as special.

Stickiness (Calı̀ et al. 2012). Informally, Σ ∈ sticky guarantees that: if X occurs multiple times

in body(ρ̄), then X occurs in head(ρ̄) and h(X) belongs to every atom of chase(D,Σ) that de-

pends on h(head(ρ̄)). Formally, a variable X of Σ is marked if (i) there is a rule ρ ∈ Σ such that

X occurs in body(ρ) but not in head(ρ); or (ii) there are two rules ρ ,ρ ′ ∈ Σ such that a marked

variable occurs in body(ρ) at some position p[i] and X occurs in head(ρ ′) at position p[i] too.

Ontology Σ belongs to sticky if, for each ρ ∈ Σ, the following condition is satisfied: if X occurs

multiple times in body(ρ), then X is not marked. A more refined condition identifies interesting

cases in which it is safe to allow rules containing some marked variable that occurs multiple

times but in a single body atom only. This refinement gives rise to sticky-join, generalizing both

sticky and linear.

Shyness (Leone et al. 2012). Informally, Σ ∈ shy guarantees that: (1) if X occurs in two dif-

ferent atoms of body(ρ̄), then h(X) ∈ C; and (2) if X and Y occur both in head(ρ̄) and in two

different atoms of body(ρ̄), then h(X) = h(Y) implies h(X) ∈ C. Formally, consider an existen-

tial variable X of Σ. Position p[i] is invaded by X if there is a rule ρ of Σ such that: (i) X occurs

in head(ρ) at position p[i], or (ii) some universal variable Y of ρ is attacked by X —namely Y

occurs in body(ρ) only at positions invaded by X— and it also occurs in head(ρ) at position p[i].

A universal variable is protected if it is attacked by no existential variable. Ontology Σ belongs to

shy if, for each ρ ∈ Σ, the following conditions are both satisfied: (1) if X occurs in two different

atoms of body(ρ), then X is protected; and (2) if X and Y occur both in head(ρ) and in two

different atoms of body(ρ), then X and Y are not attacked by the same variable.

3 Canonical rewriting

In this section we design a general technique to facilitate the process of (dis)proving finite

controllability of an arbitrary ontological fragment of existential rules. More specifically, from

a triple 〈D,Σ,q〉 we build the triple 〈Dc,Σc,qc〉 enjoying the following properties: (1) Dc is

propositional database; (2) Σc are constant-free rules containing only simple atoms; (3) qc is a

constant-free UBCQ with only simple atoms; (4) chase(Dc,Σc) is a constant-free instance con-

taining only simple atoms; and (5) there is a “semantic” correspondence between mods(D,Σ) and

mods(Dc,Σc). By exploiting these properties, one can apply the technique shown in Figure 2.

3.1 Overview

Consider the database D = {person(tim), person(john), fatherOf (tim, john)}, and the ontology

Σ = {person(X) → ∃Y fatherOf (Y,X); fatherOf (X ,Y) → person(X)}. Let p, f , c1 and c2 be

shorthands of person, fatherOf , tim and john, respectively. Hence, chase(D,Σ) is the instance

6 G. Amendola, N. Leone, M. Manna

D∪ { f (n1,c1), f (n2,c2)}∪ {p(ni), f (ni+2,ni)}i>0, where each ni denotes a distinct null of N.

From D we construct the propositional database Dc = {p[c1], p[c2], f[c1,c2]} obtained by encoding

in the predicates the tuples of D. Then, from Σ we construct Σc collecting the following rules:

p[c1] → ∃Y f[1,c1](Y) f[c1,c1] → p[c1] f[c1,1](Y) → p[c1] f[1,1](X) → p[1](X)

p[c2] → ∃Y f[1,c2](Y) f[c1,c2] → p[c1] f[c2,1](Y) → p[c2] f[1,2](X ,Y) → p[1](X)

p[1](X) → ∃Y f[1,2](Y,X) f[c2,c1] → p[c2] f[1,c1](X) → p[1](X)

f[c2,c2] → p[c2] f[1,c2](X) → p[1](X)

The predicates here encode tuples of terms consisting of database constants (c1 and c2) and place-

holders of nulls (1 and 2). Consider the first rule ρ = p(X)→∃Y f (Y,X) applied by the chase over

D∪Σ, and h = {X 7→ c1,Y 7→ n1} be its associated homomorphism. Hence, h(body(ρ)) = p(c1)

and h(head(ρ)) = f (n1,c1). Such an application is mimed by the “sister” rule ρc = p[c1] →

∃Y f[1,c1](Y). By exploiting the same homomorphism we obtain h(body(ρc)) = p[c1] and also

h(head(ρc)) = f[1,c1](n1). Actually, the encoded tuple [c1] in p[c1] says that the original twin

atom p(c1) is unary and its unique term is exactly c1. Moreover, the encoded tuple [1,c1] in

f[1,c1](n1) says that the original twin atom f (n1,c1) is binary, that its first term is a null, and that

its second term is exactly the constant c1. Since from predicate f[1,c1] we only know that the first

term is a null, it must be unary to keep the specific null value. In the above construction, red

rules are those applied by the chase on Dc ∪Σc. For example, rule f[1,c1](X) → p[1](X) mimics

f (X ,Y)→ p(X) when X is mapped to a null and Y to c1; and rule f[1,2](X ,Y)→ p[1](X) mimics

f (X ,Y)→ p(X) when X and Y are mapped to different nulls. Hence, chase(Dc,Σc) is:

Dc ∪{p[1](ni)}i>0 ∪{ f[1,c1](n1), f[1,c2](n2)}∪{ f[1,2](ni+2,ni)}i>0.

As a result, the rewriting separates the interaction between the database constants propagated

body-to-head via universal variables and the nulls introduced to satisfy existential variables. Also,

since the predicates encode the “shapes” of the twin atoms —namely f[1,2](X ,Y) means different

nulls while f[1,1](X) the same null— repeated variables are encoded too. By following the same

approach, we can rewrite also the query. Consider for example the BCQ q = ∃X p(X), f (X ,c1).

Therefore, qc is the UBCQ: (p[c1], f[c1,c1]) ∨ (p[c2], f[c2,c1]) ∨ (∃X p[1](X), f[1,c1](X)).

3.2 Formal construction and properties

Let us fix a triple 〈D,Σ,q〉 through the rest of this section. Consider an atom α = p(t1, . . . , tm)

with terms over C∪V. The canonical atom of α is the atom αc = p[ℓ1,...,ℓm](τ1, . . . , τµ), where:

(a) ℓi = ti if ti ∈ C; (b) ℓi = ℓ j if ti = t j; or (c) ℓi = 1+max({0}∪ {ℓ j ∈ N : j < i}) if ti ∈ V

and t j 6= ti ∀ j < i and τi = V ∈ V, if there exists t j such that ℓ j = i and t j = V . Moreover, given

a set of atoms A, we define Ac = {αc : α ∈ A}, and give a rule ρ , we define ρc as the rule so

that body(ρc) = body(ρ)c and head(ρc) = head(ρ)c. For instance, let α = p(c1,X ,c2,X ,Y,Z,Y)

be an atom. Then, the canonical atom αc of α is given by p[c1,1,c2,1,2,3,2](X ,Y,Z). Note that, by

definition of τi, for i = 1, . . . ,µ , we have that the arity µ ≤ m of the canonical atom is equal to

max({0}∪{ f (t j) ∈N : j ≤ m}).

Definition 3.1 (Safe and Canonical substitutions)

A map ς : const(D∪Σ)∪V → const(D∪Σ)∪V is called canonical substitution if ς(c) = c for

each c ∈ const(D∪Σ). Moreover, we say that a canonical substitution ς is safe w.r.t. a rule ρ ∈ Σ

if ς(UV(ρ))⊆ const(D∪Σ)∪UV(ρ), and ς(V) =V , for each V ∈ EV(ρ).

Finite model reasoning over existential rules 7

Intuitively, a safe substitution maps each existential variable to itself and no universal vari-

able is mapped to an existental one. As usual, given a set of atoms A, we denote by ς(A) =

{p(ς(t1), . . . ,ς(tm)) : p(t1, . . . , tm)}, and given a rule ρ , we denote by ς(ρ) the rule such that

body(ς(ρ)) = ς(body(ρ)) and head(ς(ρ)) = ς(head(ρ)).

Example 3.1

Consider D= {r(c1,c3)} and Σ consisting of the following rules: ρ1 = r(Y1,Z1), p(W1,X1,X1,Y1)

→ ∃T1g(X1,Y1,T1,X1,Z1) and ρ2 = s(X2), t(Y2)→ r(X2,Y2). For instance, ς1 = {c1 7→ c1,c3 7→

c3,Y1 7→X1, Z1 7→ c3,W1 7→Y1, X1 7→X1, T1 7→ T1} and ς ′
1 = {c1 7→ c1,c3 7→ c3,Y1 7→ c1, Z1 7→X1,

W1 7→ c1, X1 7→ Y1, T1 7→ T1} are safe substitutions w.r.t. ρ1. Indeed, const(D∪Σ) = {c1,c3},

UV(ρ1) = {W1,X1,Y1,Z1}, EV(ρ1) = {T1}, the existential variable T1 is mapped to itself, and no

other variable is mapped to an existential one. Moreover, ς1(ρ1) = r(X1,c3), p(Y1,X1,X1,X1)→

∃T1g(X1,X1,T1,X1,c3) and ς ′
1(ρ1) = r(c1,X1), p(c1,Y1,Y1,c1)→∃T1g(Y1,c1,T1,Y1,X1). ⊳

We denote by CS the set of all canonical substitutions and by ß(ρ) ⊆ CS the set of all

safe substitutions w.r.t. ρ . Given a set of atoms A [resp. a rule ρ] and a canonical substitu-

tion [resp. safe substitution] ς , we say that ς(A)c [resp. ς(ρ)c] is the canonical set of atoms

w.r.t A [resp. canonical rule w.r.t. ρ] and ς . Observe that two different canonical substitutions

could produce two isomorphic canonical set of atoms. For instance, let A = {p(X ,Y)}, and con-

sider ς = {X 7→ X , Y 7→ Y} and ς ′ = {X 7→ Y, Y 7→ X}. Then, ς(A)c = {p[1,2](X ,Y)}, and

ς ′(A)c = {p[1,2](Y,X)} are isomorphic set of atoms. Therefore, to avoid redundancies, we denote

by CS∗ [resp. ß∗(ρ)] any arbitrary maximal subset of CS [resp. of ß(ρ)] producing canonical set

of atoms [resp. canonical rules] containing no two isomorphic elements.

We denote by Σc the set of all canonical rules {ς(ρ)c : ρ ∈ Σ and ς ∈ ß∗(ρ)}, and we call it

the canonical rewriting of Σ. Also, given a UBCQ q of the form ∃Y1ψ1(Y1)∨ . . .∨∃Ykψk(Yk),

we denote by qc the disjunction
∨

ς1∈CS
∗ ς1(ψ1(Y1))

c ∨ . . .∨
∨

ςk∈CS
∗ ςk(ψk(Yk))

c. and we call it

the canonical rewriting of q. Finally, we call Dc the canonical rewriting of D.

Proposition 3.1

The triple 〈Dc,Σc,qc〉 can be constructed from 〈D,Σ,q〉 in polynomial time (in data complexity).

Example 3.2

Consider the ontology Σ with the safe substitutions ς1 and ς ′
1 w.r.t. ρ1 of the Example 3.1. There-

fore, we obtain the canonical rules: ς1(ρ1)
c = r[1,c3](X1), p[1,2,2,2](Y1,X1)→∃T1g[1,1,2,1,c3](X1,T1)

and ς ′
1(ρ1)

c = r[c1,1](X1), p[c1,1,1,c1](Y1) → ∃T1g[1,c1,2,1,3](Y1,T1,X1). Moreover, let ς2 and ς ′
2 be

the safe substitutions containing {X2 7→ X2,Y2 7→ X2} and {X2 7→ c1,Y2 7→ c3} w.r.t. ρ2, respec-

tively. Hence, we have ς2(ρ2)
c = s[1](X2), t[1](X2)→ r[1,1](X2) and ς ′

2(ρ2)
c = s[c1], t[c3] → r[c1,c3].

Therefore, ς1(ρ1)
c, ς ′

1(ρ1)
c, ς2(ρ2)

c, and ς ′
2(ρ2)

c are (some of the) rules of Σc. ⊳

We consider a function R from the set of atoms of Dc ∪Σc to the set of atom of D∪Σ. For

each atom α = a[s1,...,sm](σ1, . . . ,σµ), we build an atom R(α) = a(t1, . . . , tm) such that: (a) ti = si

if si ∈ C; (b) ti = σi if si = k and s j 6= k, for each j < i; or (c) ti = σ j if si = s j, for some j < i.

For instance, let α = p[1,c1,2,1,c2,1,2](X ,Y) be an atom of the logical theory Dc ∪Σc. Then,

R(α) = p(X ,c1,Y,X ,c2,X ,Y). We call R the unpacking function. Given a set of atoms A of

Dc ∪Σc, we denote by R(A) = {R(α) : α ∈ A} the corresponding set of atoms of D∪Σ. If I is

an instance, we call R(I) the unpacked instance of I. Given a rule ρc in Σc, we denote by R(ρc)

the rule obtained applying R to each atom in ρc, i.e. R(ρc) : R(body(ρc))→R(head(ρc)), and

we call it the unpacked rule of ρc. Similarly, we denote by R(qc) the query obtained applying R

8 G. Amendola, N. Leone, M. Manna

to the atoms of the UBCQ qc, and we call it the unpacked query of qc. Informally, the unpacking

function acts as the inverse operator to the canonical rewriting. Moreover, it enjoys an interesting

and useful property: the chase of a logical theory coincides with the unpacking of the chase

constructed from of the same theory given in canonical form:

Proposition 3.2

Consider a set Σ of existential rules. For each database D and for each UBCQ q, it holds that

R(chase(Dc,Σc)) = chase(D,Σ) and R(qc)≡ q.

By exploiting the above proposition, we can now prove that a UBCQ q is satisfied by all

models of a theory D∪Σ if, and only if, each model of the canonical rewriting of the theory

Dc ∪Σc satisfies the canonical rewriting of the UBCQ qc.

Theorem 3.1

D∪Σ |= q if, and only if, Dc ∪Σc |= qc.

Note that, if Σ is a constant-free ontology, then, for each model Mc of Dc ∪Σc, R(Mc) is a

model of D ∪Σ. The request for a constant-free ontology is needed. Indeed, for instance, let

Σ = {p(a)→ r(a); r(x) → p(x)}. So that, Σc = {p[a] → r[a]; r[a] → p[a]; r[1](V1)→ p[1](V1)}.

Therefore, Mc = {p[1](a)} is a model of Σc, but R(Mc) = {p(a)} is not a model of Σ, as it does

not satisfy the first rule. However, we can overcome this problem considering the following class

of models. Given a model Mc ∈ mods(Dc,Σc), we say that Nc is a smooth instance of Mc if there

exists a bijective map f : terms(Mc)→ terms(Nc) such that f (n) = n for each null n∈ terms(Mc);

f (c) = nc for each constant c ∈ terms(Mc), where nc is a fresh null; and f (Mc) = Nc. Note that

a smooth instance of a model Mc is also a model of Dc ∪Σc and it is also constant-free.

Proposition 3.3

If Mc ∈ mods(Dc,Σc), then R(Nc) ∈ mods(D,Σ), for each smooth model Nc of Mc.

By exploiting the above proposition, we can now prove that a UBCQ q is satisfied by all finite

models of a theory D∪Σ if, and only if, each finite model of the canonical rewriting of the theory

Dc ∪Σc satisfies the canonical rewriting of the UBCQ qc.

Theorem 3.2

D∪Σ |=fin q if, and only if, Dc ∪Σc |=fin qc.

Proof

Assume that D∪Σ |=fin q. Then, for each finite model M of D∪Σ, there exists a homomorphism

h from at least one disjunct of q, say ψ j(Y j) to M. Now, let Mc be a finite model of Dc ∪Σc. By

Proposition 3.3, there exist a (finite) smooth model Nc ∈ mods(Dc,Σc) of Mc and a bijective map

f from terms(Mc) to terms(Nc) such that f (n) = n for each null n ∈ terms(Mc); f (c) = nc for

each constant c ∈ terms(Mc), where nc is a fresh null; f (Mc) = Nc, and R(Nc) ∈ mods(D,Σ).

Hence, by assumption, there exists a homomorphism h from some ψ j(Y j) to R(Nc). Let A =

h(ψ j(Y j)) ⊆R(Nc). Then, for each atom α ∈ A, we can choose an arbitrary atom β ∈ Nc such

that R(β) = α . Let B such a subset of Nc. Therefore, by construction, there exists a BCQ in

qc isomorphic to B. In particular, there exists a homomorphism h from qc to Nc. In conclusion,

f−1 ◦h is a homomorphism from qc to Mc. Indeed, f−1 ◦h is a map from terms(qc) to terms(Mc)

such that f−1(h(qc))⊆ f−1(Nc) =Mc. Now, assume that Dc∪Σc |=fin qc. Let M be a finite model

of D∪Σ. By definition of canonical rules, can be easily proved that there exists a finite model

Finite model reasoning over existential rules 9

Dc ∪Σc |= qc Dc ∪Σc |=fin qc Dc ∪Σc |=wsf qc

Dc ∪Σc
a |=fin qc Dc ∪Σc

a |=wsf qcDc ∪Σc
a |= qc

Lemma. 4.1 Th. 4.2

Th. 4.2Gogacz and Marcinkowski (2013)

Th. 4.1 Th. 4.3

Fig. 3. Chain of implications for the proof of Lemma 4.1.

Mc ∈ fmods(Dc,Σc) such that R(Mc) = M. Hence, let h be a homomorphism from qc to Mc.

So that, h(ς j(ψ j(Y j))
c) ⊆ Mc, for some disjunct ς j(ψ j(Y j))

c of qc. Therefore, by applying the

unpacked function, we have that R(h(ς j(ψ j(Y j))
c)) = h(R(ς j(ψ j(Y j))

c)) = h(ς j(ψ j(Y j)) ⊆

R(Mc) = M. Hence, h is also a homomorphism from q to M.

3.3 Immediate consequences

By exploiting the properties of the canonical rewriting, one can reprove that linear is finitely

controllable, and prove (for the first time) that also sticky-join enjoys this property. In fact, given

a linear or sticky-join ontology Σ, its canonical rewriting Σc belongs to inclusion-dependencies or

sticky, respectively. In the former case, it suffices to observe that any variable occurring multiple

times in some atom α , by definition, occurs exactly once in its associated canonical atom αc. In

the latter case, additionally, consider a variable X violating the sticky property since it is marked

and it occurs multiple times in the body of some rule ρ . By hypothesis, X may occur in exactly

one atom of body(ρ). However, even if marked, X now occurs exactly once in its canonical atom

and it cannot violate the sticky property any more. The following result follows.

Theorem 3.3

Under sticky-join ontologies, D∪Σ |= q if, and only if, D∪Σ |=fin q.

4 Finite controllability of Shy ontologies

We open this section by observing that, differently from linear and sticky-join, the canonical

rewriting of a shy ontology —although it is still a shy ontology— does not fall in any other known

class. To prove that shy is finitely controllable, we therefore devise three technical tools on top of

the canonical rewriting defined in Section 3. These tools allow us to show that Dc ∪Σc |=fin qc if,

and only if, Dc∪Σc |= qc (Lemma 4.1). To this end, let us fix a triple 〈D,Σ,q〉, and the associated

one 〈Dc,Σc,qc〉 in canonical form. Our tools are as follows:

Active and harmless rules. Whenever Σ is shy, we can partition Σc in two sets, denoted by Σc
a

and Σc
h —collecting active and harmless rules, respectively— enjoying the following properties:

(1) Σc
h are the rules of Σc with at least a variable occurring in more than one body atom; (2)

Σc
a = Σc \Σc

h is a joinless (and still shy) ontology; and (3) chase(Dc,Σc) = chase(Dc,Σc
a).

Well-supported finite models. Inspired by well-supported interpretations of general logic pro-

grams (Fages 1991), we define well-supported finite models of 〈D,Σ〉, denoted by wsfmods(D,Σ),

which enjoy the following properties: (1) for each M ∈ wsfmods(D,Σ), there exists an ordering

(α1, . . . ,αm) of its atoms such that, for each α j of M, either α j belongs to D, or there exist

a rule ρ ∈ Σ and a homomorphism from the atoms of ρ to {α1, . . . ,α j} that maps body(ρ) to

10 G. Amendola, N. Leone, M. Manna

{α1, . . . ,α j−1} and head(ρ) to {α j}; (2) for each M ∈ fmods(D,Σ), there exists a well-supported

finite model M′ ⊆M; and (3) each minimal finite model of D∪Σ is a well-supported finite model.

Propagation ordering. Since mods(Dc,Σc)⊆ mods(Dc,Σc
a), in general it is definitely possible

that a model M of Dc ∪Σc
a is not a model of Dc ∪Σc. In case Σ is shy and M is a well-supported

finite models of Dc ∪Σc
a, by exploiting an arbitrary ordering of M, we show how to rename and

propagate some of the terms of M to construct an instance M′ enjoying the following property:

(1) M′ ∈ wsfmods(Dc,Σc); and (2) there exists a homomorphism from M′ to M.

With these tools in place, we can now apply the technique shown in Figure 3, where we use

the symbol |=wsf to refer the satisfiability of the query under well-supported finite models only.

4.1 Active and harmless rules

As said, and next stated, the canonical rewriting of a shy ontology is again a shy ontology.

Proposition 4.1

If Σ is shy, then Σc is.

The goal of this section is therefore to identify a suitable subset of Σc that falls in some known

finitely-controllable class, and that roughly “behaves” as Σc under both finite and arbitrary mod-

els. The idea is to collect in Σc
h the rules of Σc with at least a variable occurring in more than one

body atom, and to define Σc
a = Σc \Σc

h. In other words, Σc
a is exactly the maximal subset of Σc that

belongs to joinless. Let us now provide some insights regarding this way of partitioning Σc. From

the database D = {p(c)} and the shy ontology Σ = {p(X)→∃Y f (Y,X); f (X ,Y), p(X)→ p(Y)}

we first construct Dc = {p[c]} and Σc as the following set of rules:

f[1,c](X), p[1](X) → p[c] f[c,c], p[c] → p[c] p[c] → ∃Y f[1,c](Y)

f[1,1](X), p[1](X) → p[1](X) f[c,1](Y), p[c] → p[1](Y) p[1](X) → ∃Y f[1,2](Y,X)

f[1,2](X ,Y), p[1](X) → p[1](Y)

Again, red rules are those applied by the chase on Dc ∪Σc. Now we observe that there is no

way to trigger the rules in the first column: although the chase does produce an atom f (t,ni) for

some term t and null ni, it never produces any atom p(ni). This fact is detected by the syntactic

conditions underlying shy (marking X in f (X ,Y), p(X)→ p(Y) as “protected”), which guarantee

that X may be mapped by the chase to constants only. Hence, since by definition Σc
a consists of

the joinless rules in the last two columns, it holds that chase(Dc,Σc) = chase(Dc,Σc
a).

The reason underlying the fact that the chase never applies rules of Σc
h will be exploited in Sec-

tion 4.3 to prove Theorem 4.3 (see Figure 3, right-hand side), namely that Σc
a roughly “behaves”

as Σc under finite (well-supported) models. Conversely, to show Theorem 4.1 (see Figure 3, left-

hand side) it suffices to observe the more general property that Σc
a ⊆ Σc, which immediately

implies mods(Dc,Σc)⊆ mods(Dc,Σc
a). And the next result follows.

Theorem 4.1

If Dc ∪Σc
a |= qc, then Dc ∪Σc |= qc.

4.2 Well-supported finite models

We start by defining the notion of well-supported finite instances, which is inspired by the related

notion of well-supported interpretations for general logic programs (Fages 1991).

Finite model reasoning over existential rules 11

Let D be a database, and Σ be an ontology. A finite instance I is called well-supported w.r.t. the

theory D∪Σ if there is an ordering (α1, . . . ,αm) of its atoms such that, for each j ∈ {1, . . . ,m},

at least one of the following conditions is satisfied: (1) α j is a database atom of D; and (2) there

exist a rule ρ of Σ and a homomorphism h from atoms(ρ) to {α1, . . . ,α j} such that h(head(ρ))=

{α j} and h(body(ρ)) ⊆ {α1, . . . ,α j−1}. In both cases, we will say that α j is a well-supported

atom w.r.t. (α1, . . . ,αm); while in the latter case we will also say that ρ is a well-supporting rule

for α j w.r.t. (α1, . . . ,αm). Such an ordering will be called a well-supported ordering of I.

We denote by wsfmods(D,Σ) ⊆ fmods(D,Σ) the set of all well-supported finite models of

D∪Σ. Moreover, if a UBCQ q is satisfied by each model of wsfmods(D,Σ), we write D∪Σ |=wsf

q. Interestingly, each finite model of D∪Σ contains a well-supported finite model of the theory.

Proposition 4.2

For each M ∈ fmods(D,Σ), there exists M′ ⊆M such that M′ ∈ wsfmods(D,Σ). In particular, each

minimal finite model of D∪Σ is a well-supported finite model.

Although each finite model of an ontological theory contains a well-supported finite model

of the theory, the reverse inclusion does not hold. Consider for example the ontology Σ of Sec-

tion 3.1, and the model M = D∪{ f (c1,c1), f (c2,c1)}. Since (p(c1), p(c2), f (c1,c2), f (c1,c1),

f (c2,c1)) is a well-supported ordering of M, then M is well-supported. However, M \{ f (c2,c1)}

is a model of D∪Σ. Therefore, M is not a minimal one. Using Proposition 4.2, we can now prove

that if a UBCQ q can be satisfied by each well-supported finite model of a theory, then it can be

satisfied by each finite model of the theory.

Theorem 4.2

D∪Σ |=wsf q if, and only if, D∪Σ |=fin q.

Proof

Clearly, by subset inclusion, if each finite model of D∪Σ satisfies the query q, then each well-

supported finite model of D∪Σ satisfies q. Moreover, as each finite minimal model is a well-

supported finite model (Proposition 4.2), then for each finite model M′ of D∪Σ, we can find a

well-supported finite model, that is minimal, M of D∪Σ, such that M ⊆ M′, and, in particular,

there exists a homomorphism h (i.e., the identity homomorphism) such that h(M)⊆ M′.

4.3 Propagation ordering

Let us start with the preliminary notions of existentially well-supported atom and propagated

term. Let I be a well-supported finite instance, and (α1, . . . ,αm) be a well-supported ordering

of I. An atom α of I \D is said existentially well-supported w.r.t. the ordering (α1, . . . ,αm) if,

for each well-supporting rule ρ for α w.r.t. (α1, . . . ,αm), it holds that EV(ρ) 6= /0. Moreover, let

α j[k] = t, for some position k, then t is said propagated from an atom αi in position l, whenever

i < j, αi[l] = t, and there exist a well-supporting rule ρ for α j and a homomorphism h such

that αi ∈ h(body(ρ)). Consider again ontology Σ of Section 3.1, and the well-supported finite

model M considered after Proposition 4.2. For instance, the atom f (c1,c1) is existentially well-

supported. Indeed, the unique way to well-support the atom comes from the first rule of Σ, that

is an existential rule. We are now ready to define the notion of propagation ordering.

12 G. Amendola, N. Leone, M. Manna

Definition 4.1 (Propagation ordering)

Let D be a database, Σ be a joinless ontology, M ∈ wsfmods(D,Σ), and (α1, . . . ,αm) be a well-

supported ordering of M. For each α j ∈ M, we build a new atom 〈α j〉 as follows. Let t = α j [k].

We have: (1) If α j is an existentially well-supported atom and k is an existential position, then

〈α j〉[k] = 〈t, j,k〉, where 〈t, j,k〉 is called a starting point of t; (2) If t is a propagated term from

some atom αi in position l, then 〈α j〉[k] = 〈αi〉[l]; and (3) 〈α j〉[k] = α j [k], otherwise. We call

(〈α1〉, . . . ,〈αm〉) a propagation ordering of the well-supported ordering (α1, . . . ,αm).

Note that the same term could have several starting points. This propagation ordering will be

useful to remember a starting point of that particular term and its propagations in other atoms.

Example 4.1

Consider the following joinless ontology Σ = {s(X1) → ∃Y1 p(X1,Y1); s(X2) → ∃Y2u(Y2,X2);

p(X3,Y3),u(W3,Z3)→ r(Y3,Z3); p(X4,Y4)→ t(Y4)}, and the database D = {s(c1)}. As example,

M = {s(c1), t(c2), t(n1), p(c1,c2), p(c1,n1), r(c2,c1), r(n1,c1), u(c2,c1), u(n1, c1)} is a well-

supported finite model of D∪Σ. Indeed, for instance, (s(c1), p(c1,c2), p(c1,n1), u(c2,c1), t(c2),

u(n1,c1), r(n1,c1), t(n1),r(c2,c1)) is a well-supported ordering of M. The existentially well-

supported atoms are p(c1,c2), p(c1,n1), u(c2,c1) and u(n1,c1). More specifically, p(c1,c2) has

the term c2 in the existential position 2, then 〈p(c1,c2)〉= p(c1,〈c2,2,2〉), as p(c1,c2) is the sec-

ond atom of the well-supported ordering considered; p(c1,n1) has the term n1 in the existential

position 2, then 〈p(c1,n1)〉= p(c1,〈n1,3,2〉); u(c2,c1) has the term c2 in the existential position

1, then 〈u(c2,c1)〉 = u(〈c2,4,1〉,c1); u(n1,c1) has the term n1 in the existential position 1, then

〈u(n1,c1)〉 = u(〈n1,6,1〉,c1). On the other hand, the term c2 is propagated in the atom t(c2) in

the first (and unique) position. It comes from atom p(c1,c2), and we know that the starting point

of c2 is 〈c2,2,2〉. Therefore, 〈t(c2)〉= t(〈c2,2,2〉). Moreover, in a similarly way, we obtain that

〈t(n1)〉= t(〈n1,3,2〉). Finally, the term n1 is propagated in the atom r(n1,c1) in the first position,

and it comes from atom p(c1,n1); whereas the term c1 is propagated in the atom r(n1,c1) in the

second position, and it comes from atom u(n1,c1). Therefore, 〈r(n1,c1)〉= r(〈n1,3,2〉,c1). ⊳

With our technical tools in place, we are now able to prove the following technical result.

Theorem 4.3

For each Σ ∈ shy, if Dc ∪Σc |=wsf qc then Dc ∪Σc
a |=wsf qc.

Proof intuition

Consider an arbitrary model M ∈ wsfmods(Dc,Σc
a). It suffices to prove that there exist M′ ∈

wsfmods(Dc,Σc) and a homomorphism h′ s.t. h′(M′) ⊆ M. Indeed, by hypothesis, there exists a

homomorphism h s.t. h(q)⊆ M′, and so (h′ ◦ h)(q)⊆ M.

The difficulty here is that M could not be a model of Dc∪Σc. Consider the database D= {s(c)}

and the shy ontology Σ= {s(X)→∃Y p(Y); s(X)→∃Yr(Y); p(X),r(X)→ g(X)}. The canonical

rewriting is Dc = {s[c]} and Σc as follows:

s[c] → ∃Y p[1](Y) s[c] → ∃Yr[1](Y) p[c],r[c] → g[c]
s[1](X) → ∃Y p[1](Y) s[1](X) → ∃Yr[1](Y) p[1](X),r[1](X) → g[1](X)

One can verify that M = {s[c], p[1](n1),r[1](n1)} is a (minimal) well-supported finite model of

Dc ∪Σc
a since, by Proposition 4.1, Σc is shy, and since Σc

a is obtained from Σc by discarding the

last harmless rule. However, M is not a model of Dc ∪Σc because the last rule is not satisfied.

Finite model reasoning over existential rules 13

The idea is to show how to construct from M a model M′ ∈ wsfmods(Dc,Σc) that can be

homomorphically mapped to M. Intuitively, we identify the starting points in which existential

variables of Σc
a have been satisfied and rename the introduced terms using a propagation ordering.

In the example above, consider the well-supported ordering (s[c], p[1](n1),r[1](n1)) of M, re-

place n1 in p[1](n1) by 〈n1,2,2〉 (null n1 introduced in the second atom in the second position),

and replace n1 in r[1](n1) by 〈n1,3,2〉 (null n1 introduced in the third atom in the second posi-

tion). Then, since M is well-supported, we propagate (if needed) these new terms according the

supporting ordering. In our case, M′ = {s[c], p[1](〈n1,2,2〉),r[1](〈n1,3,2〉)} is now a finite model

of Dc ∪Σc that can be mapped to M.

4.4 The main result

Lemma 4.1

Under shy ontologies, Dc ∪Σc |= qc if, and only if, Dc ∪Σc |=fin qc.

Proof

Clearly, the “only if” implication is straightforward. Hence, given a shy ontology Σ, we have to

prove that Dc ∪Σc |= qc, whenever Dc ∪Σc |=fin qc, for each database D and UBCQ q. Suppose

that Dc ∪ Σc |=fin qc, i.e., the query qc is satisfied by each finite model of Dc ∪ Σc. Thus, by

Theorem 4.2, holds that Dc∪Σc |=wsf qc, that is, the canonical rewriting of the query q is satisfied

by each well-supported finite model of the logical theory Dc ∪Σc. Then, by Theorem 4.3, holds

that Dc ∪Σc
a |=wsf qc, that is, the canonical rewriting of the query q is satisfied by each well-

supported finite model of the joinless logical theory Dc ∪Σc
a. Moreover, again, by Theorem 4.2,

we obtain that Dc ∪Σc
a |=fin qc, that is qc is satisfied also by every finite model of the previous

theory. Now, as Σc
a is a joinless ontology, by the finite controllability of joinless ontologies proved

by Gogacz and Marcinkowski (2013), holds that Dc∪Σc
a |= qc. Finally, by Theorem 4.1, we have

that Dc ∪Σc |= qc, i.e. the query qc is satisfied by each model (finite or infinite) of Dc ∪Σc.

Summing-up, Theorem 1.1 follows by combining Lemma 4.1 with the properties of the canon-

ical rewriting proved in Section 3.

5 Related work

To complete the related works started with the Introduction, we recall that the notion of finite

controllability was formalized for the first time by Rosati (2006) while he was working on a

question that had been left open two decades before by Johnson and Klug (1984) about contain-

ment of conjunctive queries in case of both arbitrary and finite databases. Basically, using our

terminology, they proved that ontologies mixing both inclusion-dependencies and functional-

dependencies are not finitely controllable, by leaving open the case where ontologies contain

inclusion-dependencies only. Rosati then answered positively this question.

The semantic equivalence of fundamental reasoning tasks under finite and infinite models is

not at all a prerogative of the database community. A sister yet orthogonal property of finite

controllability is of paramount importance also in logic, where it has been investigated much

earlier. It is known as finite model property or finite satisfiability (Ebbinghaus and Flum 1995),

and it asks for a class C of sentences whether every satisfiable sentence of C has a finite model. For

example, both Gödel and Schütte proved that ∀2∃∗ first-order sentences are finitely satisfiable.

14 G. Amendola, N. Leone, M. Manna

Although reasoning under finite models has a long history and it has been actively investi-

gated in various fields of Computer Science, finite controllability remains open for many lan-

guages combining or generalizing the key properties underlying the basic classes depicted in

Figure 1. By way of example, we mention (i) glut-guarded (Krötzsch and Rudolph 2011), ex-

tending guarded and weakly-acyclic; (ii) weakly-sticky-join (Calı̀ et al. 2012), extending sticky-

join, weakly-acyclic and shy; and (iii) tame (Gottlob et al. 2013), extending sticky and guarded.

Between guarded and glut-guarded, it is worth to recall weakly-guarded (Calı̀ et al. 2013),

where each rule body has an atom covering all those variables that only occur in invaded (a.k.a.

affected) positions. Actually, this class is finitely controllable although the proof sketch given

by Bárány et al. (2014) has some hole (there, some model of D∪Σ′ might not satisfy Σ). In fact,

our canonical rewriting yields an ontology that can be partitioned in active and harmless, where

the active part is guarded. Well-supported models and propagation ordering behave as for shy.

An additional clarification concerns the notions of linear and sticky-join considered by Gogacz and Marcinkowski (2017),

since they are not standard (actually stricter). In the former, repeated variables are admitted only

in rule heads, while for the latter the authors state that the difference between sticky and sticky-

join “can only be seen if repeated variables in the heads of the rules are allowed”. (Regarding

sticky, the classical notion is only rephrased: their “immortal” positions correspond to positions

being not marked.) From such a mismatch, however, it follows that finite controllability of sticky-

join was unknown before our work. A curious reader may verify that the proof of their Lemma 4

breaks down when moving to a linear (hence sticky-join) ontology such as Σ = {p(X ,X)→ r(X);

r(X) → ∃Y r(Y)} —inducing no immortal position since all positions p[1], p[2] and r[1] host

marked variables— paired with the singleton database D = {p(c,c)}.

6 Conclusion

By demonstrating that shy is finitely controllable, we complete an important picture around the

basic decidable Datalog± classes. But we take it as a starting point rather than an ending one.

On the one hand, finite controllability immediately implies decidability of OBQA. Actually,

via the soundness and completeness of the chase procedure we know that the problem of deciding

whether a UBCQ is true over a Datalog± theory is recursively enumerable. But the complemen-

tary problem of deciding whether a UBCQ is false over a finitely controllable Datalog± class

C is recursively enumerable too. In fact, each theory D∪Σ, with Σ ∈ C, always admits a fair

lexicographic enumeration of its finite models. Unfortunately, such a naı̈ve procedure would be

inefficient in practice. Making it usable and competitive for real world problems is challenging

and it is part of our ongoing work. Basically, this would lead to a tool able to deal with any

finitely controllable fragment, some of which (e.g., guarded) have no effective implementation.

On the other hand, we believe the techniques developed in this paper could have future ap-

plications. For example, we are working on an extended version of our canonical rewriting that

encodes in the predicates also a limited amount of nulls. This requires more complex techniques,

which however would apply to classes using the key properties underlying weakly-acyclic, such

as glut-guarded and weakly-sticky-join (see Section 5). Hence, by combining these techniques

with the above tool for finitely controllable classes, we aim at the design and implementation of

a reasoner able to deal with ontologies falling in any known decidable Datalog± class.

Finally —even if the unrestricted set of existential rules cannot be finitely controllable since

it is not decidable— it is still open, to the best of our knowledge, whether there exists, or not, a

fragment of existential rules which is decidable but not finitely controllable.

Finite model reasoning over existential rules 15

Acknowledgement

The paper has been partially supported by the Italian Ministry for Economic Development (MISE)

under project “PIUCultura – Paradigmi Innovativi per l’Utilizzo della Cultura” (n. F/020016/01-

02/X27), and under project “Smarter Solutions in the Big Data World (S2BDW)” (n. F/050389/01-

03/X32) funded within the call “HORIZON2020” PON I&C 2014-2020.

References

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-SCHNEIDER, P. F., Eds.

2003. The Description Logic Handbook: Theory, Implementation, and Applications. CUP.

BAGET, J., LECLÈRE, M., AND MUGNIER, M. 2010. Walking the decidability line for rules with existential

variables. In Proc. of KR’10.

BAGET, J., LECLÈRE, M., MUGNIER, M., AND SALVAT, E. 2009. Extending decidable cases for rules

with existential variables. In Proc. of IJCAI’09. 677–682.

BAGET, J., LECLÈRE, M., MUGNIER, M., AND SALVAT, E. 2011. On rules with existential variables:

Walking the decidability line. AIJ 175, 9-10, 1620–1654.

BÁRÁNY, V., GOTTLOB, G., AND OTTO, M. 2014. Querying the guarded fragment. Logical Methods in

Computer Science 10, 2.

BIENVENU, M., TEN CATE, B., LUTZ, C., AND WOLTER, F. 2014. Ontology-based data access: A study

through disjunctive datalog, csp, and MMSNP. ACM TODS 39, 4, 33:1–33:44.

BOURHIS, P., MANNA, M., MORAK, M., AND PIERIS, A. 2016. Guarded-based disjunctive tuple-

generating dependencies. ACM TODS 41, 4, 27:1–27:45.

CALÌ, A., GOTTLOB, G., AND KIFER, M. 2013. Taming the infinite chase: Query answering under ex-

pressive relational constraints. J. Artif. Intell. Res. (JAIR) 48, 115–174.

CALÌ, A., GOTTLOB, G., AND LUKASIEWICZ, T. 2009a. Datalog±: a unified approach to ontologies and

integrity constraints. In Proc. of ICDT’09. 14–30.

CALÌ, A., GOTTLOB, G., AND LUKASIEWICZ, T. 2009b. Tractable query answering over ontologies with

datalog+/-. In Proc. of DL’09.

CALÌ, A., GOTTLOB, G., AND LUKASIEWICZ, T. 2012. A general datalog-based framework for tractable

query answering over ontologies. J. Web Sem. 14, 57–83.

CALÌ, A., GOTTLOB, G., AND PIERIS, A. 2010. Advanced processing for ontological queries. PVLDB 3, 1,

554–565.

CALÌ, A., GOTTLOB, G., AND PIERIS, A. 2012. Towards more expressive ontology languages: The query

answering problem. AIJ 193, 87–128.

CALVANESE, D., DE GIACOMO, G., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2013. Data com-

plexity of query answering in description logics. AIJ 195, 335–360.

CIVILI, C. AND ROSATI, R. 2012. A broad class of first-order rewritable tuple-generating dependencies.

In Proc. of Datalog 2.0. 68–80.

DEUTSCH, A., NASH, A., AND REMMEL, J. B. 2008. The chase revisited. In Proc. of PODS’08. 149–158.

EBBINGHAUS, H.-D. AND FLUM, J. 1995. Satisfiability in the Finite. Springer Berlin Heidelberg, 95–103.

FAGES, F. 1991. A new fixpoint semantics for general logic programs compared with the well-founded and

the stable model semantics. New Generation Comput. 9, 3/4, 425–444.

FAGIN, R., KOLAITIS, P. G., MILLER, R. J., AND POPA, L. 2005. Data exchange: semantics and query

answering. TCS 336, 1, 89–124.

GOGACZ, T. AND MARCINKOWSKI, J. 2013. Converging to the chase - A tool for finite controllability. In

Proc. of LICS’13. 540–549.

GOGACZ, T. AND MARCINKOWSKI, J. 2017. Converging to the chase - A tool for finite controllability.

JCSS 83, 1, 180–206.

16 G. Amendola, N. Leone, M. Manna

GOTTLOB, G., KIKOT, S., KONTCHAKOV, R., PODOLSKII, V. V., SCHWENTICK, T., AND ZA-

KHARYASCHEV, M. 2014. The price of query rewriting in ontology-based data access. AIJ 213, 42–59.

GOTTLOB, G., MANNA, M., AND PIERIS, A. 2013. Combining decidability paradigms for existential

rules. TPLP 13, 4-5, 877–892.

GOTTLOB, G., ORSI, G., AND PIERIS, A. 2014. Query rewriting and optimization for ontological

databases. ACM TODS 39, 3, 25:1–25:46.

GOTTLOB, G., PIERIS, A., AND TENDERA, L. 2013. Querying the guarded fragment with transitivity. In

Proc. of ICALP’13. 287–298.

JOHNSON, D. S. AND KLUG, A. C. 1984. Testing containment of conjunctive queries under functional

and inclusion dependencies. JCSS 28, 1, 167–189.

KRÖTZSCH, M. AND RUDOLPH, S. 2011. Extending decidable existential rules by joining acyclicity and

guardedness. In Proc. of IJCAI’11. 963–968.

LEONE, N., MANNA, M., TERRACINA, G., AND VELTRI, P. 2012. Efficiently computable Datalog∃

programs. In Proc. of KR’12.

PÉREZ-URBINA, H., MOTIK, B., AND HORROCKS, I. 2010. Tractable query answering and rewriting

under description logic constraints. J APPL LOGIC.

ROSATI, R. 2006. On the decidability and finite controllability of query processing in databases with

incomplete information. In Proc. of PODS’06.

ROSATI, R. 2007. The limits of querying ontologies. In Proc. of ICDT’07. 164–178.

Finite model reasoning over existential rules 17

Appendix

Shy existential rules

This section is devoted to recall the formal definition of shy ontologies and their syntactic proper-

ties, as defined in Leone et al. (2012). For notational convenience and without loss of generality,

we assume here that each pair of rules of an ontology share no variable. Let Σ be an ontology,

α be a m-arity atom, i ∈ {1, . . . ,m} be an index, pred(α) = a, and X be an existential variable

occurring in some rule of Σ. We say that position a[i] is invaded by X if there exists a rule ρ ∈ Σ

such that head(ρ) = α and

(i) α[i] = X ; or

(ii) α[i] is a universal variable of ρ and all of its occurrences in body(ρ) appear in positions

invaded by X .

Let φ(X) be a conjunction of atoms, and let X ∈ X. We say that X is attacked by a variable Y in

φ(X) if all the positions where X appears are invaded by Y . On the other hand, we say that X is

protected in φ(X), if it is attacked by no variable.

A rule ρ of an ontology Σ is called shy w.r.t. Σ if the following conditions are both satisfied:

(i) if a variable X occurs in more than one body atom, then X is protected in body(ρ);

(ii) if two distinct variables are not protected in body(ρ) but occur both in head(ρ) and in two

different body atoms, then they are not attacked by the same variable.

Finally, if each ρ ∈ Σ is shy w.r.t. Σ, then call Σ a shy ontology.

Example 6.1

Consider the following rules

ρ1 = s(X1) → ∃Y1 p(X1,Y1);

ρ2 = p(X2,Y2),u(Y2) → r(X2,Y2);

ρ3 = t(X3) → ∃Y3u(Y3).

Let Σ = {ρ1,ρ2,ρ3}. Clearly, ρ1 and ρ3 are shy rules w.r.t. Σ, since they are also linear rules,

namely rules with one single body atom, which cannot violate any of the two shy conditions.

Moreover, rule ρ2 is also shy w.r.t. Σ as the positions p[2] and u[1] are invaded by disjoint sets

of existential variables. Indeed, p[2] is invaded by the existential variable Y1 of the first rule, and

u[1] is invaded by the existential variable Y3 of the third rule. Therefore, Σ is a shy ontology.

Now, consider the further three existential rules

ρ4 = u(X4) → ∃Y4 p(Y4,X4);

ρ5 = u(X5) → ∃Y5 p(X5,Y5);

ρ6 = r(X6,X6) → v(X6).

Let Σ′ be the ontology Σ∪{ρ4}. It is easy to see that ρ1, ρ3 and ρ4 are shy w.r.t. Σ′. However,

ρ2 is not shy w.r.t. Σ′, as property (i) is not satisfied. Indeed, the variable Y2 occurring in two

body atoms in body(ρ2) is not protected, as the position p[2] and u[1] (the only positions in

which Y2 occurs) are invaded by the same existential variable, namely Y3. Therefore, Σ′ is not a

shy ontology.

Let Σ′′ be the ontology Σ∪{ρ5,ρ6}. Again, ρ1, ρ3, ρ5 and ρ6 are trivially shy w.r.t. Σ′′; and

again ρ2 is not shy w.r.t. Σ′′. However, this time, ρ2 is not shy because property (ii) is not sat-

isfied. Indeed, the universal variables X2 and Y2, occurring in two different body atoms and in

18 G. Amendola, N. Leone, M. Manna

head(ρ2), are not protected in body(ρ2), as the position p[1] and u[1] (in which occur X2 and Y2,

respectively) are attacked by the same variable Y3. Therefore, Σ′′ is not a shy ontology. ⊳

Essentially, during every possible chase step, condition (i) guarantees that each variable that

occurs in more than one body atom is always mapped into a constant. Although this is the key

property behind shy, we now explain the role played by condition (ii) and its importance. To this

aim, we exploit again Σ′′, as introduced in the previous example, and we reveal why this second

condition, in a sense, turns into the first one. Indeed, the rule ρ6 bypasses the propagation of the

same null in ρ2 via different variables. However, one can observe that the rules ρ2 and ρ6 imply

the rule ρ ′
6 : p(X6,Y6),u(X6)→ v(X6), which of course does not satisfy condition (i). Actually, it

is not difficult to see that every ontology can be rewritten (independently from D and q) into an en

equivalent one (w.r.t. query answering) where all the rules satisfy condition (i). As an example,

consider the following rule ρ

p(X1,Y1),r(Y1,Z1),u(Z1,Y1) → ∃W1 t(X1,Z1,W1),

and assume that it belongs to some ontology Σ and that it is not shy w.r.t. Σ because it violates

condition (i) only. Let us now construct Σ′ as Σ\ {ρ} plus the following two rules:

p(X1,Y1),r(Y
′
1,Z1),u(Z

′
1,Y

′′
1) → auxρ(X1,Y1,Y

′
1,Z1,Z

′
1,Y

′′
1);

auxρ(X1,Y1,Y1,Z1,Z1,Y1) → ∃W1 t(X1,Z1,W1).

Both the new rules satisfy now condition (i) w.r.t. Σ′. Moreover, it is not difficult to see that,

for every database D and for every UBCQ q, it holds that D∪Σ |= q if and only if D∪Σ′ |= q.

However, since ρ does not satisfy condition (i), this immediately implies that the first new rule

does not satisfy condition (ii).

The syntactic properties of shy make the class quite expressive since it strictly contains both

linear and datalog. Moreover, these properties are easy recognizable and guarantee efficient an-

swering to conjunctive queries, as experimentally shown in Leone et al. (2012). In fact, ontology-

based query answering over shy ontologies preservers the same data and combined complexity

of OBQA over datalog, namely PTIME-complete and EXPTIME-complete, respectively.

Formal Proofs

Proof of Proposition 3.2

We prove that R(chase(Dc,Σc)) = chase(D,Σ) by induction on the chase step. Let I0 = D ⊂ I1 ⊂

. . .⊂ Im ⊂ . . . be a chase procedure of D and Σ; and let Ic
0 = Dc ⊂ Ic

1 ⊂ . . .⊂ Ic
m ⊂ . . . be a chase

procedure of Dc and Σc.

Clearly, the base case follows, since, by definition of the canonical rewriting of D, R(Dc) =D.

Then, assume that R(Ic
m) = Im. We have to prove that R(Ic

m+1) = Im+1. By definition of chase

step, there exist a rule ρ ∈ Σ and a homomorphism h from body(ρ) to Im, such that 〈ρ ,h〉(Im) =

Im+1. That is, Im+1 = Im ∪ {h(head(ρ))}. By construction of a canonical rule, there exists a

safe substitution ς w.r.t. ρ , such that ς(ρ)c is a canonical rule and, by inductive hypothesis,

there exists a homomorphism hc from body(ς(ρ)c) to Ic
m. Consider the following homomorphism

(hc)′ = (h \ h|X)∪hc|X ⊇ hc|X. Therefore, Ic
m+1 = Ic

m ∪{(hc)′(head(〈ρ ,ς〉))}. Moreover,

R(Ic
m+1) =R(Ic

m ∪{(hc)′(head(ς(ρ)c))}) =

=R(Ic
m)∪R({(hc)′(head(ς(ρ)c))}) =

= Im ∪{h′(R(head(ς(ρ)c)))} =

= Im ∪{h′(head(ρ))} = Im+1.

Finite model reasoning over existential rules 19

Finally, let qc be the canonical rewriting of the UBCQ q = ∃Y1ψ1(Y1)∨ . . .∨∃Ykψk(Yk). For

each j ∈ {1, . . . ,k}, consider the safe substitution ς j mapping each variable of ψ j(Y j) in a dif-

ferent null. Therefore, there exists a conjunction of atoms, say ψc
j (Y j) = ς j(ψ j(Y j))

c in qc,

such that R(ψc
j (Y j)) = ψ j(Y j), for each j ∈ {1, . . . ,k}. Hence, q ⊆R(qc). Moreover, it is easy

to see that, each other safe substitution ς ′ w.r.t. some ψ j, produces a conjunction of atoms,

ς ′(ψ j(Y j))
c such that R(ς ′(ψ j(Y j))

c) is contained in R(ς j(ψ j(Y j))
c). Therefore, R(qc) ⊆ q.

Thus, R(qc) = q.

Proof of Theorem 3.1

We know that, for each database D, ontology Σ and UBCQ q, it holds that D∪Σ |= q if and only if

chase(D,Σ) |= q (Fagin et al. 2005). Therefore, also Dc ∪Σc |= qc if and only if chase(Dc,Σc) |=

qc. Moreover, by Proposition 3.2, we have that R(chase(Dc,Σc)) = chase(D,Σ) and R(qc)≡ q.

Hence, remain to prove that R(chase(Dc,Σc)) |=R(qc) if and only if chase(Dc,Σc) |= qc.

We prove the “if” part, given that the “only if” part can be obtained retracing the chain of

the following implications. Suppose that chase(Dc,Σc) |= qc. Therefore, there is a homomor-

phism h from at least one disjunct of qc, say ς j(ψ j(Y j))
c (where ς j is a canonical substitu-

tion), to chase(Dc,Σc), that is h(ς j(ψ j(Y j))
c) ⊆ chase(Dc,Σc). Therefore, R(h(ς j(ψ j(Y j))

c))

⊆ R(chase(Dc,Σc)). Moreover, note that R(h(ς j(ψ j(Y j))
c)) = h(R(ς j(ψ j(Y j))

c)). Hence,

h(R(ς j(ψ j(Y j))
c)) ⊆ R(chase(Dc,Σc)). Thus, h is also a homomorphism from a disjunct of

R(qc) to R(chase(Dc,Σc)), that is R(chase(Dc,Σc)) |=R(qc).

Proof of Proposition 4.1

Let Σ be a shy ontology. Note that, for each rule ρ ∈ Σ, there exists a rule ς(ρ)c ∈ Σc such that

ς(X i) = ni for each variable X i occurring in ρ . It is easy to see that a such ς is a safe substitution.

We denote by Σ̄c the set of all and anly this kind of rules in Σc. Note that, if Σc is a shy ontology,

then Σ̄c ⊆ Σc is also a shy ontology.

By contradiction, suppose that Σ̄c is not a shy ontology.

First, suppose that there exists a rule ς(ρ)c ∈ Σ̄c such that there exists a variable, say X ,

occurring in more than one body atom and X is not protected in body(ς(ρ)c). Therefore, for

each existential variable Y , there exists an atom β ∈ body(ς(ρ)c) and some position pred(β)[i]

in which X occurs, and pred(β)[i] is not invaded by Y . Consider the unpacked rule R(ς(ρ)c) =

ρ ∈ Σ. Therefore, by construction, for each existential variable Y , there exists α ∈ body(ρ) and

some position pred(α)[j] in which X occurs, and pred(α)[j] is not invaded by Y . Hence, X

occurs in more than one body atom of ρ and X is not protected in body(ρ). So that, ρ is not a

shy rule, and, thus, Σ is not a shy ontology.

Then, suppose that there exists a rule ς(ρ)c ∈ Σ̄c such that there are two distinct universal

variables, say X and Y , that are not protected in body(ς(ρ)c); occur in head(ς(ρ)c); occur in

two different body atoms; and they are attacked by the same variable. Therefore, there exists an

existential variable Z such that X and Y occur only in invaded position by Z. Consider again the

unpacked rule R(ς(ρ)c) = ρ ∈ Σ. Then, by the unpacking function, X and Y are not protected in

body(ρ), and they occur in head(ρ), in two different body atoms, and only in invaded position

by Z. Thus, they are attacked by the same variable. Therefore, also in this case, ρ is not a shy

rule. Hence, Σ is not a shy ontology.

20 G. Amendola, N. Leone, M. Manna

Proof of Proposition 4.2

Let M be a finite model of D∪Σ. Clearly, if M is a well-supported finite model of D∪Σ, we

are done. Therefore, suppose that M is not a well-supported finite model of D∪Σ. Let Ω1 =

(α1, . . . ,αm) be an ordering of the atoms of M. Hence, by assumption, there exists α ∈ M that is

not a well-supported atom w.r.t. Ω1. Let α j1 be the first atom in the ordering Ω1 that is not well-

supported. And consider a new ordering Ω2 = (α1, . . . ,α j1−1,α j1+1, . . . ,αm,α j1), where α j1 is

shifted from the position j1 to the position n. As M 6∈ wsfmods(D,Σ), then Ω2 is not a well-

supported ordering of M. Moreover, the first j1−1 atoms are well-supported w.r.t. Ω2. Therefore,

let α j2 be the first atom in the ordering Ω2 that is not well-supported. Again, we consider a new

ordering, say Ω3, where α j2 is shifted from position j2 −1 to the position n. Iteratively, we build

a sequence Ω1,Ω2, . . . ,Ωm, . . . of orderings that are not well-supported. Note that, as the number

of different orderings is finite, there exist at least two orderings in the sequence that are the same.

Therefore, let Ωm1
and Ωm2

be the first two orderings of the sequence, with m2 > m1, such that

Ωm1
= Ωm2

(i.e., Ωm1
and Ωm2

are the same ordering). Consider the subset A ⊆ M containing

the first n− (m2 −m1) elements in Ωm1
, and the set B of the last m2 −m1 atoms in Ωm1

. By

construction, A is a well-supported instance. Moreover, each β ∈ B is not well-supported by A,

as Ωm2
= Ωm1

. That is, there is no rule ρ in Σ and no homomorphism h such that h(body(ρ))⊆ A

and h(head(ρ)) = {β}. Hence, as M is a model, whenever A |= body(ρ), there exists an atom α

in A, such that α |= head(ρ). Therefore, A is a model.

To complete the proof, let M be a finite minimal model of D∪Σ. As just proved, there exists

a well-supported finite model M′ ⊆ M. By minimality of M, the model M′ must be equal to M.

Therefore, M is a well-supported finite model.

Proof of Theorem 4.3

We have to prove that for each M ∈ wsfmods(Dc,Σc
a), there exist M′ ∈ wsfmods(Dc,Σc) and a

homomorphism h′ such that h′(M′)⊆ M. Indeed, by hypothesis, there exists a homomorphism h

such that h(q)⊆ M′, and so (h′ ◦ h)(q)⊆ M.

Let M ∈ wsfmods(Dc,Σc
a), and let (α1, . . . ,αm) be a well-supported ordering of M, and let

(〈α1〉, . . . ,〈αm〉) be a propagation ordering of (α1, . . . ,αm). If there exists a join rule ρ ∈ Σc

satisfied by M with a null or a constant t in the join variables, then we consider the set of join

atoms in the body of ρ w.r.t. the term t, say A ⊆ M. First, we substitute a term t of some α ∈ A

in position l, with the corresponding term 〈t, j,k〉 of 〈α〉, that can be considered as a fresh null.

This new atom is denoted by α ′, so that α ′[l] = 〈t, j,k〉. Then, for each αi ∈ M such that 〈αi〉[l] =

〈t, j,k〉, for some position l, we set α ′
i [l] = 〈t, j,k〉. Otherwise, α ′

i [l] = αi[l]. In this way, we build

an instance M′ = {α ′ : α ∈ M} of Σ, and a homomorphism h′ such that h′(〈t, j,k〉) = t, for each

introduced fresh null 〈t, j,k〉 to substitute t. By construction, it holds that h′(α ′) = α , so that

h′(M′) = M. Note that, by construction, M′ is a well-supported finite instance of Dc ∪Σc.

Therefore, it remains to prove that M′ is a model of Dc ∪Σc. By contradiction, suppose that

M′ is not a model. Hence, there exists a rule ρ ∈ Σc such that M′ |= body(ρ), and M′ 6|= head(ρ).

We distinguish two cases.

(i) First, suppose that ρ is not a join rule. Then, there exists a safe substitution ς̂ , mapping each

variable in the atoms of ρ into a different null, so that ς̂(ρ)c ∈ Σc
a, as it is not a harmless

rule of Shy. By hypothesis, M′ |= body(ρ), so that there exists a homomorphism h′′ such that

h′′(body(ρ)) ⊆ M′. Therefore, h′(h′′(body(ρ))) ⊆ h′(M′) = M, and so M |= body(ρ). Hence,

also M |= body(ς̂(ρ)c). As M is a model of Σc
a, then M |= head(ς̂(ρ)c). Therefore, there ex-

ists a homomorphism h′′′ such that h′′′(head(ς̂(ρ)c)) = α j , for some j ∈ {1, . . . ,m}. Hence,

Finite model reasoning over existential rules 21

α j ∈ M. Therefore, α ′
j ∈ M′. Moreover, α ′

j |= head(ρ), as h′(α ′
j) = α j |= head(ρ). Therefore,

M′ |= head(ρ).

(ii) Now, suppose that ρ is a join rule. Since, by hypothesis, M′ |= body(ρ), then, the join variables

in the body of ρ are instantiated by the same null, as Dc ∪Σc is a constant-free logical theory.

However, by construction of M, it is not possible that the same term comes from an instantiation

of two different existential variables, since we replaced each such instantiation with a fresh null

in at least one joined term.

Therefore, M′ is a well-supported finite model of Dc ∪Σc.

	1 Introduction
	2 Ontology-based query answering
	2.1 Datalog fragments

	3 Canonical rewriting
	3.1 Overview
	3.2 Formal construction and properties
	3.3 Immediate consequences

	4 Finite controllability of Shy ontologies
	4.1 Active and harmless rules
	4.2 Well-supported finite models
	4.3 Propagation ordering
	4.4 The main result

	5 Related work
	6 Conclusion
	References

