
Under consideration for publication in Theory and Practice of Logic Programming 1

Ticker: A System for Incremental ASP-based Stream
Reasoning∗

Harald Beck, Thomas Eiter, and Christian Folie
Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
(e-mail: {beck,eiter}@kr.tuwien.ac.at, christian.folie@outlook.com)

Abstract

In complex reasoning tasks, as expressible by Answer Set Programming (ASP), problems often permit
for multiple solutions. In dynamic environments, where knowledge is continuously changing, the ques-
tion arises how a given model can be incrementally adjusted relative to new and outdated information.
This paper introduces Ticker, a prototypical engine for well-defined logical reasoning over streaming data.
Ticker builds on a practical fragment of the recent rule-based language LARS which extends Answer Set
Programming for streams by providing flexible expiration control and temporal modalities. We discuss
Ticker’s reasoning strategies: First, the repeated one-shot solving mode calls Clingo on an ASP encoding.
We show how this translation can be incrementally updated when new data is streaming in or time passes
by. Based on this, we build on Doyle’s classic justification-based truth maintenance system (TMS) to update
models of non-stratified programs. Finally, we empirically compare the obtained evaluation mechanisms.
This paper is under consideration for acceptance in TPLP.

KEYWORDS: Stream Reasoning, Answer Set Programming, Nonmonotonic Reasoning

1 Introduction

Stream reasoning (Della Valle et al. 2009) as research field emerged from data processing (Babu
and Widom 2001), i.e., the handling of continuous queries in a frequently changing database.
Work in Knowledge Representation & Reasoning, e.g. (Ren and Pan 2011; Gebser et al. 2015),
shifts the focus from high throughput to high expressiveness of declarative queries and programs.
In particular, the logic-based framework LARS (Beck et al. 2015) was defined as an extension
of Answer Set Programming (ASP) with window operators for deliberately dropping data, e.g.,
based on time or counting atoms, and controlling the temporal modality in the resulting windows.

When dealing with complex reasoning tasks in stream settings, one may in general not afford
to recompute models from scratch every time new data comes in or when older portions of data
become outdated. Besides the pragmatic need for efficient computation, there is also a semantic
issue: while aspects of a solution might have to change dynamically and potentially quickly,
typically not everything should be reconstructed from scratch, but adapted to fit the current data.

Recently, many stream processing tools and reasoning features have been proposed, e.g. (Bar-
bieri et al. 2010; Phuoc et al. 2011; Gebser et al. 2014). However, an ASP-based stream reasoning
engine that supports window operators and has an incremental model update mechanism is lack-
ing to date. This may be explained by the fact that nonmonotonic negation, beyond recursion,

∗ This research has been supported by the Austrian Science Fund (FWF) projects P26471 and W1255-N23.

ar
X

iv
:1

70
7.

05
30

4v
2

 [
cs

.L
O

]
 1

8
Ju

l 2
01

7

2 H. Beck, T. Eiter, C. Folie

makes efficient incremental update non-trivial; combined with temporal reasoning modalities
over data windows, this becomes even more challenging.

Contributions. We tackle this issue and make the following contributions.
(1) We present a notion of tick streams to formally represent the sequential steps of a fully

incremental stream reasoning system.
(2) Based on this, we give an intuitive translation of a practical fragment of LARS programs,

plain LARS, to ASP suitable for standard one-shot solving, and in particular, stratified programs.
(3) Next, we develop an ASP encoding that can be incrementally updated when time passes by

or when new input arrives.
(4) We then present Ticker, our prototype reasoning engine that comes with two reasoning

strategies. One utilizes Clingo (Gebser et al. 2014) with a static ASP encoding, the other truth
maintenance techniques (Doyle 1979) to adjust models based on the incremental encoding.
(5) Finally, we experimentally compare the two reasoning modes in application scenarios. The

results demonstrate the performance benefits that arise from incremental evaluation.

In summary, we provide a novel technique for adjusting an ASP-based stream reasoning program
by time and data streaming in. In particular, the update technique of the program is independent
of the model update technique used to process the program change.

2 Stream Reasoning in LARS

We will gradually introduce the central concepts of LARS (Beck et al. 2015) tailored to the
considered fragment. If appropriate, we give only informal descriptions.

Throughout, we distinguish extensional atoms AE for input data and intensional atoms AI for
derived information. By A = AE ∪AI , we denote the set of atoms.

Definition 1 (Stream) A stream S = (T,υ) consists of a timeline T , which is a closed nonempty
interval in N, and an evaluation function υ : N 7→ 2A. The elements t ∈ T are called time points.

Intuitively, a stream S associates with each time point a set of atoms. We call S a data stream, if
it contains only extensional atoms. To cope with the amount of data, one usually considers only
recent atoms. Let S = (T,υ) and S′ = (T ′,υ ′) be two streams such that S′ ⊆ S, i.e., T ′ ⊆ T and
υ ′(t ′)⊆ υ(t ′) for all t ′ ∈ T ′. Then S′ is called a window of S.

Definition 2 (Window function) Any (computable) function w that returns, given a stream S =

(T,υ) and a time point t ∈ N, a window S′ of S, is called a window function.

Widely used are time-based window functions, which select all atoms appearing in last n time
points, and tuple-based window functions, which select a fixed number of latest tuples. To this
end, we define the tuple size |S| of a stream S = (T,υ) as |{(a, t) | t ∈ T,a ∈ υ(t)}|.

Definition 3 (Sliding Time-based and Tuple-based Window) Let S = (T,υ) be a stream, t ∈
T = [t1, tm] and let n ∈ N∪{∞}. Then,

(i) the sliding time-based window function τn (for size n) is τn(S, t) = (T ′,υ |T ′), where T ′ = [t ′, t]
and t ′ = max{t1, t−n};
(ii) the sliding tuple-based window function #n (for size n) is

#n(S, t) =

{
τt−t ′(S, t) if |τt−t ′(S, t)| ≤ n,

S′ else,

Theory and Practice of Logic Programming 3

35

•

36

•

37

•

38

•

39

•

40

•

41

•

35 37 39

{a(x)} {a(y),a(z)} {a(x)}

Fig. 1: Temporal extent of a sliding tuple-based window of size 3 (or 2) at t = 40

where t ′ = max({u ∈ T | |τt−u(S, t)| ≥ n}∪{t1}) and S′ = ([t ′, t],υ ′) has tuple size |S′|= n such
that υ ′(u) = υ(u) for all u ∈ [t ′+1, t] and υ ′(t ′)⊆ υ(t ′).

Note that in general, multiple options exist for defining υ ′ at t ′ in the tuple-based window. How-
ever, we assume a deterministic choice as specified by the implementation of the function. In
particular, we will later consider that atoms are streaming in an order, which leads to a natural,
unique cut-off position based on counting.

Example 1 Fig. 1 window depicts at partial stream S = ([35,41],υ), where υ = {35 7→ {a(x)},
37 7→ {a(y),a(z)},39 7→ {a(x)}}, and a time window of length 3 at time t = 40, which corre-
sponds to a tuple window of size 3 there. Notably, there are two options for a tuple window of
size 2, both of which select timeline [37,40], but only one of the atoms at time 37, respectively. �

We also use window functions with streams as single argument, applied implicitly at the end of
the timeline, i.e., if S = ([t0, t],υ), then τn(S) abbreviates τn(S, t) and #n(S) stands for #n(S, t).

Window operators �w. A window function w can be accessed in rules by window operators.
That is to say, an expression �wα has the effect that α is evaluated on the “snapshot” of the
data stream delivered by its associated window function w. Within the selected snapshot, LARS
allows for controlling the temporal semantics with further modalities.

Temporal modalities. Let S = (T,υ) be a stream, a ∈ A and B⊆ A static background data.
Then, at time point t ∈ T ,

• a holds, if a ∈ υ(t) or a ∈ B;
• 3a holds, if a holds at some time point t ′ ∈ T ;
• 2a holds, if a holds at all time points t ′ ∈ T ; and
• @t ′a holds, where t ′ ∈ N, if t ′ ∈ T and a holds at t ′.

The set A+ of extended atoms e is given by the grammar e ::= a |@ta |�w@ta |�w3a |�w2a ,
where a ∈ A and t is any time point. The expressions @ta are called @-atoms; �w ?a, where
? ∈ {@t ,3,2}, are window atoms. We write �n for �τn , which is not to be confused with �#n.

Example 2 (cont’d) At t = 40, �33a(x) and �3@37a(y) hold, as does �#12a(x) at t = 35,39. �

2.1 Plain LARS Programs

We use a fragment of the formalism in (Beck et al. 2015), called plain LARS programs.

Syntax. A (ground plain LARS) program P is a set of rules of the form

α ← β1, . . . ,β j,notβ j+1, . . . ,notβn , (1)

where the head α is of form a or @ta, a ∈ AI , and in the body β (r)= β1, . . . ,β j,notβ j+1, . . . ,notβn

each βi is an extended atom. We let H(r) = α and B(r) = B+(r)∪B−(r), where B+(r) = {β1,

. . . , β j} and B−(r) = {β j+1, . . . ,βn} are the the positive, resp. negative body atoms of r.

Semantics. For a data stream D = (TD,υD), any stream I = (T,υ)⊇ D that coincides with D on

4 H. Beck, T. Eiter, C. Folie

AE , i.e., a∈υ(t)∩AE iff a∈υD(t), is an interpretation stream for D. A tuple M = 〈I,W,B〉, where
W is a set of window functions and B is the background knowledge, is then an interpretation for
D. Throughout, we assume W = {τk,#n | k,n ∈ N} and B are fixed and also omit them.

Satisfaction by M at t ∈ T is as follows: M, t |= α for α ∈ A+, if α holds in (T,υ) at time t;
M, t |= r for rule r, if M, t |= β (r) implies M, t |= H(r), where M, t |= β (r), if (i) M, t |= βi for all
i ∈ {1, . . . , j} and (ii) M, t 6|= βi for all i ∈ { j+1, . . . ,n}; and M, t |= P for program P, i.e., M is a
model of P (for D) at t, if M, t |= r for all r ∈ P. Moreover, M is minimal, if in addition no model
M′ = 〈S′,W,B〉 6= M of P exists such that S′ = (T,υ ′) and υ ′ ⊆ υ .

Definition 4 (Answer Stream) An interpretation stream I is an answer stream of program P for
the data stream D⊆ I at time t, if M = 〈I,W,B〉 is a minimal model of the reduct PM,t = {r ∈ P |
M, t |= β (r)}. By AS(P,D, t) we denote the set of all such answer streams I.

Example 3 (cont’d) Consider D from Fig. 1 and P = {b(x)← �33a(x)}. Then, for all t ∈
[35,41] the answer stream I at t is unique and adds to D the mapping t 7→ {b(x)}. �

Non-ground programs. The semantics for LARS is formally defined for ground programs but
extends naturally for the non-ground case by considering the respective ground instantiations.

Windows on intensional/extensional atoms. For practical reasons, we consider tuple windows
only on extensional data. Their intended use is counting input data, not inferences; using them
on intensional data is conceptually questionable.

Example 4 Consider the rule r = b← �#13a and the stream S = ([0,1],{0 7→ {a}}), which
is not a model for r, since the rule fires and we thus must have b at time 1. However, in this
interpretation, �#13a does not hold any more, if we also take into account the inference b. Thus,
the interpretation would not be minimal. Moreover, further inferences would not be founded.
Hence, program {r} has no model. �

In contrast to tuple windows, time windows are useful and allowed on arbitrary data, as long as
no cyclic positive dependencies through time-based window atoms �n2a occur.

Example 5 Assume a range of values V = 0, . . . ,30, among which V ≥ 18 are considered ‘high.’
To test whether the predicate alpha always had a high value during the last n time points, we first
abstract by @T high←�n@T alpha(V),V ≥ 18 for and then test yes←�n2high. �

3 Static ASP Encoding

In this section we will first give a translation of LARS programs P to an ASP program P̂. Toward
incremental evaluation of P, we will then show how P̂ can be adjusted to accommodate new input
signals and account for expiring information as specified by window operators.

Definition 5 (Tick) A pair k = (t,c), where t,c ∈ N, is called a tick, with t the (tick) time and c
the (tick) count; (t + 1,c) is called the time increment and (t,c+ 1) the count increment of k.
A sequence K = 〈k1, . . . ,km〉, m ≥ 1, of ticks is a tick pattern, if every tick ki+1 is either a time
increment or a count increment of ki.

Intuitively, a tick pattern captures the incremental development of a stream in terms of time and
tuple count, where at each step exactly one dimension increases by 1. For a set of ticks, at most
one linear ordering yields a tick pattern. Thus, we can view a tick pattern K also as set.

Theory and Practice of Logic Programming 5

Definition 6 (Tick Stream) A tick stream is a pair Ṡ = (K,v) of a tick pattern K and an evalua-
tion function v s.t. v(ki+1)= {a} for some a∈A, if ki+1 is a count increment of ki, else v(ki+1)= /0.

We say that a tick stream Ṡ = (K,v) with K = 〈(t1,c1), . . . ,(tm,cm)〉 is at tick (tm,cm). By default,
we assume (t1,c1) = (0,0) and thus cm is the total number of atoms. We also write v(t,c) instead
of v((t,c)). Naturally, a (tick) substream Ṡ′⊆ Ṡ is a tick stream (K′,v′), where K′ is a subsequence
of K and v′ is the restriction v|K′ of v to K′, i.e., v′(t,c) = v(t,c) if (t,c) ∈ K′, else v′(t,c) = /0.

Example 6 The sequence K = 〈(0,0),(1,0),(2,0),(3,0),(3,1),(3,2),(4,2)〉 is a “canonical”
tick pattern starting at (0,0), where (3,1) and (3,2) are the only count increments. Employing
an evaluation v(3,1) = {a} and v(3,2) = {b}, we get a tick stream Ṡ = (K,v) which is at tick
(4,2). �

Definition 7 (Ordering) Let Ṡ = (K,v) be a tick stream, where K = 〈(t1,c1), . . . ,(tm,cm)〉, and
let S = (T,υ) be a stream such that T = [t1, tm] and υ(t) =

⋃
{v(t,c) | (t,c) ∈ K} for all t ∈ T .

Then, we say Ṡ is an ordering of S, and S underlies Ṡ.

Note that in general, a stream S has multiple orderings, but every tick stream Ṡ has a unique
underlying stream. All orderings of a stream have the same tick pattern.

Example 7 (cont’d) Stream S = ([0,4],υ), where υ = {3 7→ {a,b}}, is the underlying stream
of Ṡ of Ex. 6. A further ordering of S is Ṡ′ = (K,v′), where v′ = {(3,1) 7→ {b},(3,2) 7→ {a}}. �

Sliding windows as in Def. 3 carry over naturally for tick streams. There are two central differ-
ences. First, ticks replace time points as positions in a stream, and thus as second argument of
the window functions. Second, tuple-based windows are now always unique.

Definition 8 (Sliding Windows over Tick Streams) Let Ṡ = (K,v) be a tick stream, where K =

〈(t1,c1), . . . ,(tm,cm)〉 and (t,c) ∈ K. Then the time window function τn, n ≥ 0, is defined by
τn(Ṡ,(t,c)) = (K′,v|K′), where K′ = {(t ′,c′)∈K |max{t1, t−n} ≤ t ′ ≤ t}, and the tuple window
function #n, n≥ 1, by #n(Ṡ,(t,c))=(K′,v|K′), where K′={(t ′,c′)∈K |max{c1,c−n+1}≤c′≤c}.

As for Def. 3, we consider windows over tick streams also implicitly at the end of the timeline.

Lemma 1 If stream S underlies tick stream Ṡ, then τn(S) underlies τn(Ṡ).

Example 8 (cont’d) Given Ṡ and S from Example 7, we have τ1(Ṡ,4) = (〈(3,0),(3,1),(3,2),
(4,2)〉,v) with underlying stream τ1(S,4) = ([3,4],υ). �

Correspondence for tuple windows is more subtle due to the different options to realize them.

Lemma 2 Let stream S underlie tick stream Ṡ and assume the tuple window #n(S) is based on
the order in which atoms appeared in S. Then, #n(S) underlies #n(Ṡ).

Example 9 (cont’d) Stream S has two tuple windows of size 1: Sa = ([3,4],{3 7→ {a}}) and
Sb = ([3,4],{3 7→ {b}}); the latter underlies #1(Ṡ) = (〈(3,2),(4,2)〉,(3,2) 7→ {b}). �

We can represent a stream S = (T,υ) alternatively by T and a set of time-pinned atoms, i.e., the
set {a@(x, t) | a(x) ∈ υ(t), t ∈ T}. Similarly, tick streams can be modelled by tick-pinned atoms
of form a#(x, t,c), where c increases by 1 for every incoming signal.

Example 10 (cont’d) Given extra knowledge about the time t = 4, stream S is fully represented
by {a@(3),b@(3)}, whereas tick stream Ṡ can be encoded by the set {a#(3,1),b#(3,2)}. �

6 H. Beck, T. Eiter, C. Folie

Algorithm 1: Plain LARS Program to ASP LarsToAsp(P, t)
Input: A (potentially non-ground) plain LARS program P, and the evaluation time point t
Output: ASP encoding P̂, i.e., a set of normal logic rules

1 Q := {a(X)← now(Ṅ),a@(X, Ṅ); a@(X, Ṅ)← now(Ṅ),a(X) | a is a predicate in P}
2 R :=

⋃
r∈P larsToAspRules(r)

3 return Q∪R∪{now(t)}

4 defn larsToAspRules(r) = {baseRule(r)}∪
⋃m

i=1 windowRules(ei)

5 defn baseRule(h← e1, . . . ,en,noten+1, . . . ,notem) =
6 atm(h)← atm(e1), . . . ,atm(en),not atm(en+1), . . . ,not atm(em)

7 defn atm(e) = match e
8 case a(X) ⇒ a(X)
9 case @T a(X) ⇒ a@(X,T)

10 case �w@T a(X) ⇒ ωe(X,T) //ωe is a fresh predicate associated with e
11 case �w3a(X) ⇒ ωe(X)
12 case �w2a(X) ⇒ ωe(X)

13 defn windowRules(e) = match e
14 case �n@T a(X) ⇒ {ωe(X,T)← now(Ṅ),a@(X,T),T = Ṅ− i | i = 0, . . . ,n}
15 case �n3a(X) ⇒ {ωe(X)← now(Ṅ),a@(X,T),T = Ṅ− i | i = 0, . . . ,n}
16 case �n2a(X) ⇒ {ωe(X)← a(X),not spoile(X)}∪
17 {spoile(X)← a(X),now(Ṅ),not a@(X,T),T = Ṅ− i | i = 1, . . . ,n}
18 case �#n@T a(X) ⇒ {ωe(X,T)← cnt(Ċ),a#(X,T,D),D = Ċ− j | j = 0, . . . ,n−1}
19 case �#n3a(X) ⇒ {ωe(X)← cnt(Ċ),a#(X,T,D),D = Ċ− j | j = 0, . . . ,n−1}
20 case �#n2a(X) ⇒ {ωe(X)← a(X),not spoile(X)}∪
21 {spoile(X)← a(X),cnt(Ċ), tick(T,D),Ċ−n+1≤ D≤ Ċ, not a@(X,T)}∪
22 {spoile(X)← a(X),cnt(Ċ), tick(T,D),D = Ċ−n+1, a#(X,T,D′), D′ < D}
23 else /0

The notions of data/interpretation stream readily carry over to their tick analogues. Moreover, we
say a tick interpretation stream I is an answer stream of program P (for tick data stream D at t),
if the underlying stream I′ of I is an answer stream of P (for the underlying data stream D′ at t).

LARS to ASP (Algorithm 1). Plain LARS programs extend normal logic programs by allowing
extended atoms in rule bodies, and also @-atoms in rule heads. Thus, if we restrict α and βi in (1)
to atoms, we obtain a normal rule. This observation is used for the translation of LARS to ASP as
shown in Algorithm 1. The encoding has to take care of two central aspects. First, each extended
atoms e is encoded by an (ordinary) atom a that holds iff e holds. Second, entailment in LARS is
defined with respect to some data stream D and background data B at some time t. Stream signals
and background data are encoded as facts, and temporal information by adding a time argument
to atoms. The central ideas of the encoding are illustrated by the following example.

Example 11 Consider the LARS program P comprising the single rule r = b(X)← �23a(X).
Assume we are at time t = 7. We replace the window atom in the body by a fresh atom ω(X),
which must hold if a(X) holds at 7, 6 or 5. Thus, we can encode r in ASP by the following rules:
b(X)← ω(X);ω(X)← a@(X ,7);ω(X)← a@(X ,6);ω(X)← a@(X ,5). Assume an atom a(y)
was streaming in at time 5; modeled as time-pinned fact a@(y,5), we derive ω(y) and thus b(y).
That is, b(y) holds at time 7, since signal a(y) at 5 is still within the window. �

Conceptually, the translation of a LARS program P to an ASP program P̂ is such that if atom a(x)
(where x = x1, . . . ,xn) is in an answer set A of P̂, then a(x) holds now. If the current time point

Theory and Practice of Logic Programming 7

is t, this is encoded in two ways, viz. by a(x) ∈ A and the time-pinned atom a@(x, t) ∈ A. This
auxiliary atom corresponds to the LARS @-atom @ta(x), which then also holds now. In general
for any t ′ ∈N, if @t ′a(x) holds in an answer stream S now, then a@(x, t ′) is in the corresponding
answer set Ŝ, but a(x) is included only for t ′= t. The resulting equivalence is stated by the rules Q
in Alg. 1, Line 1. To single out the current time point, we use an auxiliary predicate now.

The ASP encoding P̂ for P at t is then obtained by Q, {now(t)} and rule encodings R as
computed by larsToAspRules. Given a LARS rule r of form (1), we replace every non-ordinary
extended atom by a new auxiliary atom atm(e) (Lines 8-12). Accordingly, for e of form @T a(X),
we use a@(X,T) (where T and X can be non-ground). For a window atom e, we use a new
predicate ωe for an encoded window atom. If e has the form �w ? a(X), ? ∈ {3,2} , we use a
new atom ωe(X), while for e of form �w@T a(X), we use ωe(X,T) with a time argument.

Window encoding. Predicate ωe has to hold in an answer set Ŝ of P̂ iff e holds in a corresponding
answer stream S of P at t. We use the function windowRules, which returns a set of rules to derive
ωe depending on the window (Lines 14-23). In case e = �n@T a(X) we have to test whether
a@(X,T) holds for some time T within the last n time points. For �n3a(X), we omit T in the
rule head. Dually, if �n2a(X) holds for the same substitution x of X for all previous n time
points, then in particular it holds now. So we derive ωe(x) by the rule in Line 16 if a(x) holds
now and there is no spoiler i.e., a time point among t − 1, . . . , t − n where a(x) does not hold.
This is established by the rule in Line 17. (We assume the window does not exceed the timeline
and thus do not check T − i≥ 0.) Adding a(X) to the body ensures safety of X in a@(X,T).

For �#n@T a(X), we match every atom a(x) with the time it occurs in the window of the
last n tuples. Accordingly, we track the relation between arguments x, the time t of occurrence
in the stream, and the count c. To this end, we assume any input signal a(x) is provided as
{a@(x, t),a#(x, t,c)}. Furthermore, the rules in Line 18 employ a predicate cnt that specifies
the current tick count (as does now for the time tick). Based on this, the window is created
analogously to a time-based window but counting back n−1 tuples instead of n time points. The
case �#n3a(X) is again analogous, but variable T is not included in the head.

For �#n2a(X), Line 20 is as in the time-based analogue (Line 16); a(X) must hold now and
there must not exist a spoiler. First, Line 21 ensures that a(X) holds at every time point T in the
window’s range, determined by reaching back n−1 tick counts to count D. To do so, we add to
the input stream an auxiliary atom of form tick(t,c) for every tick (t,c) of the stream. Second,
Line 22 accounts for the cut-off position within a time point, ensuring a is within the selected
range of counts. Finally, windowRules(e) = /0 if e is an atom or an @-atom, as they do not need
extra rules for their derivation.

Example 12 Consider a stream Ṡ′, which adds to Ṡ from Ex. 6 tick (4,3) with evaluation v(4,3)=
{a}. We evaluate �#22a. The tick-pinned atoms are a#(3,1), b#(3,2) and a#(4,3); the window
selects the last two, i.e., atoms with counts D ≥ 2. It thus covers time points 3 and 4. While
atom a occurs at time 3, it is not included in the window anymore, since its count is 1 < D. �

Stream encoding. Let O = (K,v) be a tick stream at tick (tm,cm). We define its encoding
Ô as {a@(x, t) | a(x) ∈ v(t,c),(t,c) ∈ K} ∪ {a#(x, t,c) | a(x) ∈ v(t,c),(t,c) ∈ K,a(x) ∈ AE} ∪
{cnt(cm)}∪ {tick(t,c) | (t,c) ∈ K}. We may assume that rules access background data B only
by atoms (and not with @-atoms or window atoms). Viewing B as facts in the program, we skip
further discussion. The following implicitly disregards auxiliary atoms in the encoding.

8 H. Beck, T. Eiter, C. Folie

Proposition 1 Let P be a LARS program, D = (K,v) be a tick data stream at tick (t,c) and let
P̂ = LarsToAsp(P, t). Then, S is an answer stream of P for D at t iff Ŝ is an answer set of P̂∪ D̂.

Example 13 We consider program P of Example 11, i.e., the rule r = b(X)← �23a(X). The
translation P̂ = LarsToAsp(P,7) is given by the following rules, where ω = ω�23a(X):

r0 : b(X) ← ω(X)
r1 : ω(X) ← now(Ṅ), a@(X ,T), T = Ṅ−0
r2 : ω(X) ← now(Ṅ), a@(X ,T), T = Ṅ−1
r3 : ω(X) ← now(Ṅ), a@(X ,T), T = Ṅ−2
rn : now(7) ←

q1 : a(X) ← now(Ṅ), a@(X , Ṅ)
q2 : a@(X , Ṅ) ← now(Ṅ), a(X)
q3 : b(X) ← now(Ṅ), b@(X , Ṅ)
q4 : b@(X , Ṅ) ← now(Ṅ), b(X)

The single answer stream of P for D at 7 is I = ([0,7],{5 7→ {a(y)},7 7→ {b(y)}}) which cor-
responds to the set {a@(y,5),b@(y,7),b(y)}. In addition, the answer set Ŝ of P̂∪ D̂ contains
auxiliary variables now(7), cnt(1), a#(y,5,1) and ω(7) (and tick atoms). �

4 Incremental ASP Encoding

In this section, we present an incremental evaluation technique by adjusting an incremental vari-
ant of the given ASP encoding. We illustrate the central ideas in the following example.

Example 14 (cont’d) Consider the following rules Π similar to P̂ of Ex. 13 where predicate now
is removed. Furthermore, we instantiate the tick time variable Ṅ with 7 to obtain so-called pinned
rules. (Later, pinning also includes grounding the tick count variable Ċ with the tick count.)

r′0 : b(X) ← ω(X) q′1 : a(X) ← a@(X ,7)
r′1 : ω(X) ← a@(X ,7) q′2 : a@(X ,7) ← a(X)
r′2 : ω(X) ← a@(X ,6) q′3 : b(X) ← b@(X ,7)
r′3 : ω(X) ← a@(X ,5) q′4 : b@(X ,7) ← b(X)

Based on the stream, encoded by D̂ = {a@(y,5),a#(y,5,1)} (we omit tick atoms), we obtain a
ground program P̂D,(7,1) from Π by replacing X with y; the answer set is D̂∪{ω(y),b(y),b@(y,7)}.

Assume now that time moves on to t ′ = 8, i.e., a stream D′ at tick (8,1). We observe that
rules q′1, . . . ,q

′
4 must be replaced by q′′1 , . . . ,q

′′
4 , which replace time pin 7 by 8. Rule r′0 can be

maintained since it does not contain values from ticks. The time window covers time points
6,7,8. This is reflected by removing r′3 and instead adding ω(X)← a@(X ,8).

That is, based on the time increment from (7,1) to (8,1), rules E− = {q′1, . . . ,q′4,r′3} and their
groundings G− (with X 7→ y) expire, and new rules E+ = {q′′1 , . . . ,q′′4 ,ω(X)← a@(X ,8)} have to
be grounded based on the remaining rules (and the data stream), yielding new ground rules G+.
We thus incrementally obtain a ground program P̂D′,(8,1) = (P̂D,(7,1) \G−)∪G+, which encodes
the program P for evaluation at tick (8,1). �

Before we formalize the illustrated incremental evaluation, we present its ingredients.

Algorithm 2: Incremental rule generation. Alg. 2 shows the procedure IncrementalRules that
obtains incremental rules based on a tick time t, a tick count c, and the signal set Sig = v(t,c),
where Sig = /0, if (t,c) is a time increment of k. The resulting rules of Alg. 2 are annotated with a
tick that indicates how long the ground instances of these rules are applicable before they expire.

Definition 9 (Annotated rule) Let (t,c) be a tick, where t,c ∈ N∪{∞}, and r be a rule. Then,
the pair 〈(t,c),r〉 is called an annotated rule, and (t,c) the annotation of r.

Annotations serve two purposes. First, in Alg. 2, they express a duration how long a generated

Theory and Practice of Logic Programming 9

Algorithm 2: Incremental Rules IncrementalRules(t,c,Sig)
Input: Tick time t, tick count c, signal set Sig with at most one input signal, which is empty iff (t,c) is

a time increment. (The LARS program P is global.)
Output: Pinned incremental rules annotated with duration until expiration

1 F := {〈(∞,∞), tick(t,c)←〉}
2 foreach a(x) ∈ Sig : F := F ∪{〈(∞,∞),a@(x, t)←〉, 〈(∞,∞),a#(x, t,c)←〉}
3 Q := {〈(1,∞),a(X)← a@(X, t)〉, 〈(1,∞),a@(X, t)← a(X)〉 | a is a predicate in P}
4 R := /0
5 foreach r ∈ P
6 r̂ := baseRule(r) // as defined in Alg. 1
7 I :=

⋃
e∈B(r) incrementalWindowRules(e, t,c)

8 R := R∪ I∪{〈(∞,∞), r̂〉}
9 return F ∪Q∪R

10 defn incrementalWindowRules(e, t,c) = match e
11 case �n@T a(X) ⇒ {〈(n+1,∞),ωe(X, t)← a@(X, t)〉}
12 case �n3a(X) ⇒ {〈(n+1,∞),ωe(X)← a@(X, t)〉}
13 case �n2a(X) ⇒ {〈(∞,∞),ωe(X)← a(X),not spoile(X)〉}∪
14 {〈(n,∞),spoile(X)← a(X),not a@(X, t−1)〉} //only if n≥ 1
15 case �#n@T a(X) ⇒ {〈(∞,n),ωe(X, t)← a#(X, t,c)〉}
16 case �#n3a(X) ⇒ {〈(∞,n),ωe(X)← a#(X, t,c)〉}
17 case �#n2a(X) ⇒ {〈(∞,∞),ωe(X)← a(X),not spoile(X)〉}∪
18 {〈(∞,n),spoile(X)← a(X), tick(t,c),coversτ

e(t), not a@(X, t)〉}∪
19 {〈(∞,n),spoile(X)← a#(X, t,c),coversτ

e(t), not covers#
e(c)〉}∪

20 {〈(∞,n),coversτ
e(t)← tick(t,c)〉 ,〈(∞,n),covers#

e(c)← tick(t,c)〉}
21 else /0

rule is applicable. Then, in Alg. 3 below this duration will be added to the current tick to obtain
the expiration tick (annotation) of a rule. If a rule expires at tick (t,c), i.e., if its expiration tick
(t ′,c′) fulfills t ′ ≥ t or c′ ≥ c, then it has to be deleted from the encoding.

Example 15 (cont’d) Each rule q′i, 1≤ i≤ 4, has duration (1,∞). That is, after 1 time point, the
rule will expire, regardless of how many atoms appear at the current time point. Hence, the time
duration is 1, and the count duration is infinite, since these rules cannot expire based on arrival
of atoms. Similarly, rules r′i, 1≤ i≤ 3, have duration (2,∞) due to the time window length 2. �

We will discuss expiration ticks based on these durations below. Algorithm 2 is concerned with
generating the incremental rules and their durations. In the first two lines, auxiliary facts, as
discussed earlier, are added to a fresh set F . These facts expire neither based on time nor count,
hence the duration annotation (∞,∞). As illustrated in Ex. 15, we collect in set Q the incremental
analogue of Q in Alg. 1. These rules expire after 1 time point, hence the annotation (1,∞).

Within the loop we collect for every LARS rule r a base rule r̂ (as in Alg. 1), together with
incremental window rules, computed by incrementalWindowRules (Lines 10-21). We assign an
infinite duration (∞,∞) to the base rule r̂ since it never needs to expire, i.e., it suffices to ensure
that encoded window atoms ωe expire correctly. An optimized version may expire also r̂ due to
the durations of atoms ωe from the incremental windows that derive them.

Incremental window encoding. We already gave the intuition for atoms �n3a(X). The case
of �n@T a(X) is similar. Like in the static translation, we additionally have to use the time
information in the head. Similarly, �#n3a(X) and �#n@T a(X) expire after n new incoming

10 H. Beck, T. Eiter, C. Folie

Algorithm 3: Single tick increment IncrementTick(Π,G, t,c,Sig)

Input: Set of annotated, cumulative incremental rules Π⊇ D̂ collected until previous tick; its
annotated groundings G =

⋃
〈(t ′,c′),r〉∈Π ground(Π,r), tick time t, tick count c and signal set Sig

Result: Updated Π and G

1 I := IncrementalRules(t,c,Sig)
2 E+ := {〈(t + t∆,c+ c∆),r〉 | 〈(t∆,c∆),r〉 ∈ I} //determine expiration for new rules
3 E− := {〈(t ′,c′),r〉 ∈Π | t ′ ≤ t or c′ ≤ c} //expired incremental rules
4 Π′ := (Π\E−)∪E+

5 G+ := {〈(t ′,c′),r′〉 | 〈(t ′,c′),r〉 ∈ E+,r′ ∈ ground(Π′,r)} //new ground rules with expiration
6 G− := {〈(t ′,c′),r〉 ∈ G | t ′ ≤ t or c′ ≤ c} //expired ground rules with expiration annotation
7 G′ := (G\G−)∪G+

8 return 〈Π′,G′〉

atoms, instead of n time points. For �n2a(X), we add a spoiler rule for the previous time point
t−1, which will be considered for the next n time points.

For e =�#n2a(X) we maintain two spoiler rules as in the static case that ensure a(X) occurs
at all time points in the coverage of the window, and the occurrence of a(X) at the leftmost time
point is also covered by the tick count. At tick (t,c), we have a guarantee for the next n atoms that
tick time t will be covered within the window. This is expressed by a rule coversτ

e(t)← tick(t,c)
with duration (∞,n). Likewise, covers#

e(c)← tick(t,c) will select tick count c within duration
(∞,n). Notably, coverage for time increments (t + k,c) may extend the tuple window arbitrarily
long if no atoms appear. As the spoiler rules are based on these cover atoms, their expiration is
optional, i.e., keeping them does not yield incorrect inferences. However, we can also expire them
when they become redundant, i.e., after n atoms. Finally, IncrementalRules returns the F∪Q∪R,
where R contains all base rules and incremental window rules.

Algorithm 3: Incremental evaluation. Alg. 3 gives the high-level procedure IncrementTick
to incrementally adjust a program encoding. We assume the function ground(Π,r) returns all
possible ground instances of a rule r ∈ Π (due to constants in Π). In fact, IncrementTick main-
tains a program Π that contains the encoded data stream D̂ and non-expired incremental rules as
obtained by consecutive calls to IncrementalRules, tick by tick. Moreover, it maintains a ground-
ing G of Π, i.e., the incremental encoding for the previous tick plus expiration annotations.

The procedure starts by generating the new incremental rules I based on Alg. 2 described
above. Next, we add for each rule the current tick (t,c) to its duration (t∆,c∆) (componentwise).
This way, we obtain new incremental rules E+ with expiration tick annotations. Dually, we col-
lect in E− previous incremental rules that expire now, i.e., when the current tick reaches the
expiration tick time t ′ or count c′. The new cumulative program Π results by removing E− from
Π and adding E+. Based on Π′, we obtain in Line 5 the new (annotated) ground rules G+ based
on E+. As in Line 3, we determine in Line 6 the set G− of expired (annotated) ground rules.
After assigning G′ the updated annotated grounding in Line 7, we return the new incremental
evaluation state 〈Π′,G′〉, from which the current incremental program is derived as follows.

Definition 10 (Incremental Program) Let P be a LARS program and D = (K,v) be a tick
stream, where K = 〈(t1,c1), . . . ,(tm,cm)〉. The incremental program P̂D,k of P for D at tick (tk,ck),
1≤ k ≤ m, is defined by P̂D,k = {r | 〈(t ′,c′),r〉 ∈ Gk}, where

〈Πk,Gk〉=

{
IncrementTick(/0, /0, t1,c1, /0) if k = 1,

IncrementTick(Πk−1,Gk−1, tk,ck,v(tk,ck)) else.

Theory and Practice of Logic Programming 11

In the following, body occurrences of form @ta(X) are viewed as shortcuts for �∞@ta(X). The
next proposition states that to faithfully compute an incremental program from scratch, it suffices
to start iterating IncrementalTick from the oldest tick that is covered from any window in the con-
sidered program. In the subsequent results we disregard auxiliary atoms like tick(t,c),coversτ

e(t),
etc. Let ASI(P̂) denote the answer sets of P̂, projected to intensional atoms.

Proposition 2 Let D = (K,v) and D′ = (K′,v′) be two data streams such that (i) D′ ⊆ D, (ii)
K = 〈(t1,c1), . . . ,(tm,cm)〉 and (iii) K′ = 〈(tk,ck), . . . ,(tm,cm)〉, 1 ≤ k ≤ m. Moreover, let P be a
LARS program and nτ (resp. n#) be the maximal window length for all time (resp. tuple) windows;
or ∞ if none exists. If tk ≤ tm−nτ and ck ≤ cm−n# +1, then ASI(P̂D,m) = ASI(P̂D′,m).

The result stems from the fact that in the incremental program P̂D,m no rule can fire based on
outdated information, i.e., atoms that are not covered by any window anymore. In order to obtain
an equivalence between P̂D,m and P̂D′,m on extensional atoms, we would have to drop all atoms of
the stream encoding D̂ during IncrementalTick, as soon as no window can access them anymore.

The following states the correspondence between the static and the incremental encoding.

Proposition 3 Let P be a LARS program and D be a tick data stream at tick m = (t,c). Fur-
thermore, let P̂ = LarsToAsp(P, t) and P̂D,m be the incremental program at tick m. Then S∪
{now(t),cnt(c)} is an answer set of P̂∪ D̂ iff S is an answer set of P̂D,m (modulo aux. atoms).

In conclusion, we obtain from Props. 1 and 3 the desired correctness of the incremental encoding.

Theorem 1 Let P be a LARS program and D = (K,v) be a tick data stream at tick m = (t,c).
Then, S is an answer stream of P for D at t iff Ŝ is an answer set of P̂D,m (modulo aux. atoms).

5 Implementation

We now present Ticker, our stream reasoning engine which is written in Scala (source code
available at https://github.com/hbeck/ticker). It has two high-level processing methods
for a given time point: append is adding input signals, and evaluate returns the model. Two
implementations of this interface are provided, based on two evaluation strategies discussed next.

One-shot solving by using Clingo. The ASP solver Clingo (Gebser et al. 2014) is a practical
choice for stratified programs, where no ambiguity arises which model to compute. At every time
point, resp., at the arrival of a new atom, the static LARS encoding P̂ (of Alg. 1) is streamed to
the solver and results are parsed as soon as Clingo reports a model. In case of multiple models,
we take the first one. Apart from this so-called push-based mode, where a model is prepared
after every append call, we also provide a pull-based mode, where only evaluate triggers model
computation. As argued in Appendix A, Clingo’s reactive features are not applicable.

Incremental evaluation by TMS. In this strategy, the model is maintained continuously us-
ing our own implementation of the truth-maintenance system (TMS) by (Doyle 1979). A TMS
network can be seen as logic program P and data structures that reflect a so-called admissible
model M for P. Given a rule r, the network is updated such that it represents an admissible model
M′ for P∪{r}, thereby reconsidering the truth value of atoms in M only if they may change due
to the network. Ticker analogously allows for rule removals, i.e., obtaining an admissible model
M′ for P\{r}. We exploit the following correspondence of admissible models and answer sets.

Theorem 2 (cf. (Elkan 1990)) (i) A model M is admissible for program P iff it is an answer set
of P. (ii) Deciding whether P has an admissible model is NP-complete.

https://github.com/hbeck/ticker

12 H. Beck, T. Eiter, C. Folie

Notably, this correspondence holds only in the absence of constraints; or more generally, odd
loops (Elkan 1990). In case such programs are used, neither a correct output nor termination
are guaranteed. Elkan points out that also incremental reasoning is NP-complete, i.e., given an
admissible model M for P, deciding for a rule r whether P∪{r} has an admissible model. No
further knowledge about TMS is required for our purpose. A detailed, formal review can be found
in (Beck 2017), supplementing the textual presentation in (Doyle 1979).

When new data is streaming in, we compute the incremental rules G+ as defined in Alg. 2, add
them to the TMS network, and remove expired ones G−; which results in an immediate model
update. The incremental TMS strategy is, due to its maintenance outset, more amenable to keep
the latest model by inertia, which may be desirable in some applications.

Pre-grounding. In Alg. 3, we assume a grounder that instantiates pinned rules from Alg. 2. To
provide according efficient techniques is a topic on its own; we restrict grounding to the pinning
process in Alg. 2. To this end, we add to each rule for every variable X in the scope of a window
atom an additional guard atom that includes X . The guard is either background data or inten-
sional. Based on this, the incremental rules in Alg. 2 can be grounded upfront, apart from the
tick variables Ṅ and Ċ and time variables in @-atoms. We call such programs pre-grounded. A
LARS program P is first translated into an encoding P̂ with several data structures that differen-
tiate Q, base rules R, and window rules W . During the initialization process, pre-groundings are
prepared, where arithmetic expressions are represented by auxiliary atoms. During grounding,
they are removed if they hold, otherwise the entire ground rule is removed.

Example 16 For rule r =@T high← value(V),�n@T alpha(V),V ≥ 18 of Ex. 5, where value(V)

was added as guard, we get a base rule r̂ = high@(T)← value(V),ωe(V,T),Geq(V,18), where
e = �n@T alpha(V). Given facts {value(0), . . . ,value(30)} (from background data or potential
derivations), we obtain the pre-grounding {high@(T)← value(x),ωe(x,T) | x∈ {18, . . . ,30}}. �

We then use pre-groundings in Alg. 2 such that when Alg. 3 receives its result I, all rules are
already ground. Thus, the implementation has no further grounding in Alg. 3 and only concerns
handling durations and expirations, which is realized based on efficient lookups.

6 Evaluation

For an experimental evaluation, we consider two scenarios in the context of content-centric net-
work management, where smart routers need to manage packages dynamically (Beck et al. 2017).

Scenario A: Caching Strategy. Fig. 2 shows a program to dynamically select one of several
strategies (fifo, lfu, lru, random) how to replace content items (video chunks) in a local cache. A
user request parameter α , signaled as atom alpha(V), is monitored and abstracted to a qualitative
level (r1-r3) using tuple-based windows. At this level, time-based windows are used to decide
among fifo, lfu, and lru (r4-r6); the default policy is random (r7-r10).

Setup A1 replaces tuple windows in rules r1–r3 by time windows (as in (Beck et al. 2017)),
setup A2 uses the program as shown. The input signals alpha(V) are generated such that a random
mode high, medium or low is repeatedly chosen and kept for twice the window size.

Scenario B: Content Retrieval. Fig. 3 depicts the second program, which, in contrast to the
former, may have multiple models and includes recursive computation, instead of straightforward
chaining. In a network, items can be cached and requested at every node. If a user recently
requested item I at node N (rule r1), it is either available at N (r2) or has to be retrieved from

Theory and Practice of Logic Programming 13

r1 : @T high ← value(V),�#n@T alpha(V), 18≤V r6 : fifo ← �n2 low
r2 : @T mid ← value(V),�#n@T alpha(V), 12≤V < 18 r7 : done ← lfu
r3 : @T low ← value(V),�#n@T alpha(V), V < 12 r8 : done ← lru
r4 : lfu ← �n2high r9 : done ← fifo
r5 : lru ← �n2mid r10 : random ← not done

Fig. 2: Program for Scenario A, Setup A2. Setup A1 uses �n in r1− r3 instead of �#n.

r1 : need(I,N) ← item(I), node(N),�n3req(I,N)
r2 : avail(I,N) ← item(I), node(N),�n3cache(I,N)
r3 : get(I,N,M) ← source(I,N,M), not nGet(I,N,M)
r4 : nGet(I,N,M) ← node(M), get(I,N,M′), M 6= M′

r5 : nGet(I,N,M) ← source(I,N,M), source(I,N,M′), M 6= M′, qual(M,L), qual(M′,L′), L < L′

r6 : source(I,N,M) ← need(I,N), not avail(I,N), avail(I,M), reach(N,M)
r7 : reach(N,M) ← conn(N,M)
r8 : reach(N,M) ← reach(N,M′), conn(M′,M), M′ 6= M, N 6= M
r9 : conn(N,M) ← edge(N,M), not �n2down(M)
r10 : qual(N,L) ← node(N), lev(L), lev(L′), L′ < L,�n3qLev(N,L), not �n3qLev(N,L′)

Fig. 3: Program for Scenario B

some other node M (r3,r6). A single node is selected (r3) that provides the best quality level (e.g.
connection speed) among all reachable nodes having I (r5). Connecting paths (r7, r8) work unless
the end node of an edge was down during the last n time points (r9). Finally, nodes repeatedly
report their quality level, among which the best recent value is selected (r10). We take the classic
Abilene network (Spring et al. 2004), i.e., the set of edges {(x,y),(y,x) | (x,y) ∈ E}, where
E = {(0,1),(1,2), . . . ,(9,10),(0,10),(1,10),(2,8),(3,7)}. We use three quality levels {0,1,2}
and two items. In setup B1, at every time point, with respective probability p = 0.1, each item is
requested at a random node, one random item is cached at a random node, and one random node
is signalled as down. Further, the quality level of each node changes with p = 3/n, where n is
the window size. Setup B2 requests each item with p = 0.5 at 1-3 random nodes, always signals
1-3 random cache entries, and a quality level for every node with p = 0.25, which is then with
p = 0.9 the previous one. With p = 1/n, a random node will be down for 1.5 ·n time points.

Evaluations. For each scenario and setup, we ran two evaluation modes. The first one fixes the
number tp of time points and increases the window size n stepwise; the second setup vice versa.

In each evaluation mode, we measure (i) the time tinit needed to initialize the engine before
input signals are streamed (in case of the incremental mode, this includes pre-grounding), (ii) the
average time ttick per tick, i.e., a time or count increment, and (iii) the total time ttotal of a single
run, resulting from tinit and ttick for all timepoints and atoms. (Note that a tick increment may
involve both adding and removing rules.) Each evaluation includes runtimes for both reason-
ing strategies, i.e., based on Clingo (Vers. 5.1.0) and based on the incremental approach with
Doyle’s TMS. For a fair comparison with TMS, we use Clingo in a push-based mode, i.e., a
model is computed whenever a signal streams in. To obtain robust results, we first run each in-
stance twice without recording time, and then build the average over the next 5 runs for tinit, ttotal

and ttick, respectively. The first two runs serve as warm-up for the environment, ensuring that
potential optimizations by the Java-Virtual-Machine (JVM) do not distort the measurements. All
evaluations were executed on a laptop with an Intel i7 CPU at 2.7 GHz and 16 GB RAM running
the JVM version 1.8.0 112. They can be run via class LarsEvaluation.

14 H. Beck, T. Eiter, C. Folie

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

20 40 80 120 160 200

To
ta

l t
im

e
[s

ec
]

Window size

Caching strategies with 1000 time points

Incremental A1
Incremental A2

Clingo A1
Clingo A2

Fig. 4: Runtime evaluation for increasing window size: Scenario A (Caching Strategy)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

20 40 80 120 160 200

To
ta

l t
im

e
[s

ec
]

Window size

Content retrieval with 1000 time points

Incremental B1
Incremental B2

Clingo B1
Clingo B2

Fig. 5: Runtime evaluation for increasing window size: Scenario B (Content Retrieval)

Results. We report here on findings regarding the total execution times ttotal, shown in Fig-
ures 4-7. Detailed runtimes for ttotal, tinit and ttick can be found in Tables C 1–C 8 in the Appendix.

Figures 4-5 show the effect on the runtime when the window size is increased. We observe
that for both scenarios the total execution time ttotal is proportionally growing using Clingo,
while for the incremental implementation (TMS) ttotal remains nearly constant. For Clingo, this
is explained by the full recomputation of the model with all previous input data, while TMS
benefits from prior model computations and is thus significantly faster for larger window sizes.
Dually, Figures 6-7 show the runtime evaluation for increasing number of timepoints. For both
scenarios the total run time ttotal of both Clingo and TMS increases linearly, and incremental is
significantly faster than repeated one-shot solving. For both evaluations, using different windows
(A1 vs. A2) has no influence on the execution time, for both Clingo and TMS, and different input
patterns (B1 vs. B2) seem to influence TMS less than Clingo.

In conclusion, the experiments indicate that incremental model update may computationally
pay off in comparison to repeated recomputing from scratch, in particular when using large
windows. Furthermore, maintenance aims at keeping a model by inertia, which however we have
not assessed in the experiments.

Theory and Practice of Logic Programming 15

 0

 5

 10

 15

 20

 25

 30

 35

100 200 300 400 500 600 700 800 900 1000

To
ta

l t
im

e
[s

ec
]

Time points

Caching strategies with window size 60

Incremental A1
Incremental A2

Clingo A1
Clingo A2

Fig. 6: Runtime evaluation for increasing timepoints: Scenario A (Caching Strategy)

 0

 10

 20

 30

 40

 50

 60

 70

100 200 300 400 500 600 700 800 900 1000

To
ta

l t
im

e
[s

ec
]

Time points

Content retrieval with window size 60

Incremental B1
Incremental B2

Clingo B1
Clingo B2

Fig. 7: Runtime evaluation for increasing timepoints: Scenario B (Content Retrieval)

7 Related Work and Conclusion

In (Beck et al. 2015), TMS techniques have been extended and applied for (plain) LARS, in-
stead of reducing LARS to ASP. In contrast, the present approach does not primarily focus on
model update, but incremental program update. Apart from work on Clingo mentioned earlier,
alternatives to one-shot ASP were also considered by Alviano et al. (2014). The ASP approach
of Do et al. (2011) for stream reasoning calls the dlvhex solver; it has no incremental reasoning
and cannot handle heavy data load. ETALIS (Anicic et al. 2012) is a prominent rule formal-
ism for complex event processing to reason about intervals for atomic events with a peculiar
minimal model semantics. ETALIS is monotonic for a growing timeline (as such trivially incre-
mental), and does not feature window mechanisms. StreamLog (Zaniolo 2012) extends Datalog
for single-model stream reasoning, where rules concluding about the past are excluded; neither
windows nor incremental evaluation were considered. The DRed algorithm (Gupta et al. 1993)
for incremental Datalog update deletes all consequences of deleted facts and then adds all red-
erivable ones from the rest. It was adapted to RDF streams by Barbieri et al. (2010), where tuples
are tagged with an expiration time. Ren and Pan (2011) explored TMS techniques for ontology
streams. However, windows and time reference were not considered in their monotonic setting.

16 H. Beck, T. Eiter, C. Folie

Towards incremental grounding, techniques as in (Lefèvre and Nicolas 2009; Palù et al. 2009;
Dao-Tran et al. 2012) might be considered.

Outlook. The algorithms we have presented center around the idea of incrementally adapting a
model based on an incremental adjustment of a program. Our implementation indicates perfor-
mance benefits arising from incremental evaluation. Developing techniques for full grounding
on-the-fly in this context remains to be done. On the semantic side, notions of closeness between
consecutive models and guarantees to obtain them are intriguing issues for future work.

Acknowledgements. We thank Roland Kaminski for providing guidance on the use of Clingo.

References

ALVIANO, M., DODARO, C., AND RICCA, F. 2014. Anytime computation of cautious consequences in
answer set programming. TPLP 14, 4-5, 755–770.

ANICIC, D., RUDOLPH, S., FODOR, P., AND STOJANOVIC., N. 2012. Stream reasoning and complex
event processing in ETALIS. Semantic Web Journal.

BABU, S. AND WIDOM, J. 2001. Continuous queries over data streams. SIGMOD Record 3, 30, 109–120.
BARBIERI, D. F., BRAGA, D., CERI, S., VALLE, E. D., AND GROSSNIKLAUS, M. 2010. Incremental

reasoning on streams and rich background knowledge. In The Semantic Web: Research and Applications,
7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010,
Proceedings, Part I, L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral, and
T. Tudorache, Eds. Lecture Notes in Computer Science, vol. 6088. Springer, 1–15.

BECK, H. 2017. Reviewing Justification-based Truth Maintenance Systems from a Logic Programming
Perspective. Tech. Rep. INFSYS RR-1843-17-02, Institute of Information Systems, TU Vienna. July.

BECK, H., BIERBAUMER, B., DAO-TRAN, M., EITER, T., HELLWAGNER, H., AND SCHEKOTIHIN, K.
2017. Stream Reasoning-Based Control of Caching Strategies in CCN Routers. In Proceedings of the
IEEE International Conference on Communications, May 21-25, 2017, Paris, France.

BECK, H., DAO-TRAN, M., AND EITER, T. 2015. Answer update for rule-based stream reasoning. In
Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-15), July 25-31,
2015, Buenos Aires, Argentina, Q. Yang and M. Wooldridge, Eds. AAAI Press/IJCAI, 2741–2747.

BECK, H., DAO-TRAN, M., EITER, T., AND FINK, M. 2015. LARS: A logic-based framework for an-
alyzing reasoning over streams. In Proceedings 29th Conference on Artificial Intelligence (AAAI ’15),
January 25-30, 2015, Austin, Texas, USA, B. Bonet and S. Koenig, Eds. AAAI Press, 1431–1438.

DAO-TRAN, M., EITER, T., FINK, M., WEIDINGER, G., AND WEINZIERL, A. 2012. Omiga : An open
minded grounding on-the-fly answer set solver. In Logics in Artificial Intelligence - 13th European Con-
ference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings, L. F. del Cerro, A. Herzig,
and J. Mengin, Eds. Lecture Notes in Computer Science, vol. 7519. Springer, 480–483.

DELLA VALLE, E., CERI, S., VAN HARMELEN, F., AND FENSEL, D. 2009. It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Systems 24, 83–89.

DO, T. M., LOKE, S. W., AND LIU, F. 2011. Answer set programming for stream reasoning. In Advances
in Artificial Intelligence - 24th Canadian Conference on Artificial Intelligence, Canadian AI 2011, St.
John’s, Canada, May 25-27, 2011. Proceedings, C. J. Butz and P. Lingras, Eds. Lecture Notes in Com-
puter Science, vol. 6657. Springer, 104–109.

DOYLE, J. 1979. A Truth Maintenance System. Artif. Intell. 12, 3, 231–272.
ELKAN, C. 1990. A rational reconstruction of nonmonotonic truth maintenance systems. Artif. Intell. 43, 2,

219–234.
GEBSER, M., GROTE, T., KAMINSKI, R., OBERMEIER, P., SABUNCU, O., AND SCHAUB, T. 2012.

Stream reasoning with answer set programming: Preliminary report. In Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14, 2012, G. Brewka, T. Eiter, and S. A. McIlraith, Eds. AAAI Press.

Theory and Practice of Logic Programming 17

GEBSER, M., GROTE, T., KAMINSKI, R., AND SCHAUB, T. 2011. Reactive answer set programming.
In Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011,
Vancouver, Canada, May 16-19, 2011. Proceedings, J. P. Delgrande and W. Faber, Eds. Lecture Notes in
Computer Science, vol. 6645. Springer, 54–66.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on Logic Program-
ming (ICLP’14), M. Leuschel and T. Schrijvers, Eds. Vol. arXiv:1405.3694v1. Theory and Practice of
Logic Programming, Online Supplement.

GEBSER, M., KAMINSKI, R., OBERMEIER, P., AND SCHAUB, T. 2015. Ricochet robots reloaded: A case-
study in multi-shot ASP solving. In Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday,
T. Eiter, H. Strass, M. Truszczynski, and S. Woltran, Eds. Lecture Notes in Computer Science, vol. 9060.
Springer, 17–32.

GUPTA, A., MUMICK, I. S., AND SUBRAHMANIAN, V. S. 1993. Maintaining views incrementally. ACM
SIGMOD International Conference on Management of Data, 157–166.

LEFÈVRE, C. AND NICOLAS, P. 2009. The first version of a new ASP solver : Asperix. In Logic Program-
ming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany,
September 14-18, 2009. Proceedings, E. Erdem, F. Lin, and T. Schaub, Eds. Lecture Notes in Computer
Science, vol. 5753. Springer, 522–527.

PALÙ, A. D., DOVIER, A., PONTELLI, E., AND ROSSI, G. 2009. Answer set programming with con-
straints using lazy grounding. In Logic Programming, 25th International Conference, ICLP 2009,
Pasadena, CA, USA, July 14-17, 2009. Proceedings, P. M. Hill and D. S. Warren, Eds. Lecture Notes
in Computer Science, vol. 5649. Springer, 115–129.

PHUOC, D. L., DAO-TRAN, M., PARREIRA, J. X., AND HAUSWIRTH, M. 2011. A native and adaptive
approach for unified processing of linked streams and linked data. In ISWC (1). 370–388.

REN, Y. AND PAN, J. Z. 2011. Optimising ontology stream reasoning with truth maintenance system.
In Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011, C. Macdonald, I. Ounis, and I. Ruthven, Eds. ACM,
831–836.

SPRING, N. T., MAHAJAN, R., WETHERALL, D., AND ANDERSON, T. E. 2004. Measuring ISP topologies
with rocketfuel. IEEE/ACM Trans. Netw. 12, 1, 2–16.

ZANIOLO, C. 2012. Logical foundations of continuous query languages for data streams. In Datalog.
177–189.

18 H. Beck, T. Eiter, C. Folie

Appendix A Notes on the Use of Clingo

Reactive features. We established techniques that allow for incrementally updating a program
P̂k for time or count increment, where Alg. 3 identifies at each tick new rules G+ that have to be
added to the previous translation, and expired ones G− that must be deleted.

In search of existing systems that might allow such incremental program update, we consid-
ered the state-of-the-art ASP solver Clingo (Gebser et al. 2014), which comes with an API for
reactive/multi-shot solving.1 These functionalities are based on (Gebser et al. 2011), have since
evolved (Gebser et al. 2012; Gebser et al. 2014) and successfully applied; e.g. viz. (Gebser et al.
2015). Unfortunately, for our purposes, control features in Clingo are not applicable.

First, the control features in Clingo allow addition of new rules, but not removal of existing
ones. Technically, removing might be simulated by setting a designated switch atom to false.
However, this approach would imply that the program grows over time. Second, we considered
using reactive features as illustrated for Rule r of Ex. 5, using a program part that is parameterized
for stream variables, including that of tick (t,c).

#program tick(t, c, v).

#external now(t).

#external cnt(c).

#external alpha at(v,t).

high at(t) :- w time 2 alpha(v,t), t >= 18.

w time 2 alpha(v,t) :- now(t), alpha at(v,t).

w time 2 alpha(v,t) :- now(t), alpha at(v,t-1).

w time 2 alpha(v,t) :- now(t), alpha at(v,t-2).

However, this encoding is not applicable, since atoms in rule heads cannot be redefined, i.e., they
cannot be grounded more than once.

Model update. For stratified programs (which have a unique model), repeatedly calling Clingo
(by standard one-shot solving) on the encoded program P̂ is a practical solution. However, when
a program has multiple models, we then have no link between the output of successive ticks, i.e.,
the model may arbitrarily change. For instance, consider program

a :- not b, not c. b :- not a, not c. c :- not a, not b.

Using Clingo 5.1.0, the answer set of the program that is returned first is {a}, which remains an
answer set if we add rule a :- not c. However, the first reported answer set now is {c}.

Appendix B Proofs

Proof for Lemma 1

Let S=(T,υ) be a stream that underlies tick stream Ṡ=(K,v), such that K = 〈(t1,c1), . . . ,(tm,cm)〉.
By definition, T = [t1, tm] and υ(t) =

⋃
{v(t,c) | (t,c) ∈ K} for all t ∈ T . We recall that τn(S)

(resp. τn(Ṡ)) abbreviates τn(S, tm) (resp. τn(Ṡ,(tm,cm)). Thus, by definition, τn(Ṡ) = (K′,v|K′),
where K′ = {(t ′,c′) ∈ K | max{t1, t − n} ≤ t ′ ≤ t}, and τn(S) = (T ′,υ |T ′), where T ′ = [t ′, tm]
and t ′ = max{t1, t − n}. We observe that t ′ is the minimal time point selected also in K′, i.e.,
K′ = 〈(tk,ck), . . . ,(tm,cm)〉 implies tk = t ′. It remains to show that (υ |T ′)(t) =

⋃
{(v|K′)(t,c) |

(t,c) ∈ K′} for all t ∈ T ′. This is seen from the fact that neither τn(S) nor τn(Ṡ) drops any data
within T ′. We conclude that τn(S) underlies τn(Ṡ).

1 Clingo 5.1.0. API: https://potassco.org/clingo/python-api/current/clingo.html

https://potassco.org/clingo/python-api/current/clingo.html

Theory and Practice of Logic Programming 19

Proof Sketch for Lemma 2

The argument is similar as for Lemma 1. The central observation is that a tick stream provides
a more fine-grained control over the information available in streams by introducing an order
on tuples in addition to the temporal order. Each time point in a stream is assigned a set of
atoms, whereas each tick in a tick stream is assigned at most one atom. The tuple-based window
function #n always counts atoms backwards (from right end to left) and then selects the timeline
[t1, t] with the latest possible left time point t1 required to capture n atoms. While for tick streams,
the order is unique, but multiple options exist for streams in general. If the tuple window #n(S)
is based on the order in which atoms appeared in S, then it selects the same atoms as #n(Ṡ), and
thus the same timeline. Consequently, #n(S) underlies #n(Ṡ).

Proof Sketch for Proposition 1

The desired correspondence is based on two translations: a LARS program P (at a time t) into
a logic program P̂ = LarsToAsp(P, t) (due to Algorithm 1), and the encoding of a stream S as
set Ŝ of atoms. Given a fixed timeline T , we may view a stream S = (T,υ) as a set of pairs
{(a(x), t) | a(x) ∈ υ(t), t ∈ T}. This is the essence of a stream encoding Ŝ for the tick stream
Ṡ = (K,v); Ŝ includes the analogous time-pinned atoms: {a@(x, t) | a(x) ∈ v(t,c),(t,c) ∈ K}.
With respect to the correspondence, atoms of form a#(x, t,c), cnt(c) and tick(t,c) in Ŝ can be
considered auxiliary, as well as the specific counts used in the tick pattern K to obtain time-
pinned atoms a@(x, t). Counts play a role only for the specific selection of tuple-based windows,
which are assumed to reflect the order of the tick stream. Thus, we may view a stream encoding Ŝ
essentially as a different representation of stream S; additional atoms can be abstracted away as
they have no correspondence in the original LARS stream or program. We thus consider only the
time-pinned atoms in an encoded stream to read off a LARS stream.

Thus, it remains to argue the soundness of the transformation LarsToAsp, which returns a
program of form Q∪R∪{now(t)}, where now(t) is auxiliary. The set Q simply identifies time-
pinned atoms a@(X, Ṅ) with a(X) in case Ṅ is the current time point. This is the information
provided by predicate now for which a unique atom exists. Thus, Q ensures that a time-pinned
atom a@(x, t) is available if a(x, t) is derived, and vice versa; Q thereby only accounts for redun-
dant representations of atoms that currently hold.

Towards R, we get the translation by the function larsToAspRules which returns a set of en-
coded rules for every LARS rule r. First, the baseRule is the corresponding ASP rule, which
introduces a new symbol atm(e) for every extended atom in the rule that is not an ordinary atom.
In order to ensure that the base rule r̂ fires in an interpretation just if the original rule r fires in the
corresponding interpretation of program P, for each body element atm(e) in r̂ the set of rules to
derive atm(e) in lines (14)-(21) is provided; the correspondence between @T a(X) and a@(X,T)
is already given by construction. Thus, each interpretation stream I ⊇ D for P has a correspond-
ing interpretation Î for LarsToAsp(P) in which besides the time-pinned atoms the atoms atm(e)
and spoile(X) occur depending on support from (i.e., firing) of the rules in (14)-(21), such that
they correctly reflect the value of the window atoms e in I.

As each atom in an answer of an ordinary ASP program must derived by a rule, it is not hard
to see that every answer set of P̂ = LarsToAsp(P, t)∪ D̂ is of the form Î, where I ⊇ D is an
interpretation stream for D. We thus need to show the following: I ∈ AS(P,D, t) holds iff Î is an
answer set of P̂. We do this for ground P (the extension to non-ground P is straightforward).

20 H. Beck, T. Eiter, C. Folie

(⇒) For the only-if direction, we show that if I ∈ AS(P,D, t), that is, I is a minimal model for
the reduct PM,t where M = 〈I,W,B〉, then (i) Î is a model of the reduct P̂Î , and (ii) no interpretation
J′ ⊂ Î is a model of P̂Î . As for (i), we can concentrate by construction of Î on the base rules
r̂ = baseRule(r) in P̂Î (all other rules will be satisfied). If Î satisfies B(r̂), then by construction I
satisfies B(r); as I is a model of PM,t , it follows that I satisfies H(r); but then, by construction,
Î satisfies H(r̂). As for (ii), we assume towards a contradiction that some J′ ⊂ Î satisfies P̂Î . We
then consider the stream J ⊇ D that is induced by J′, and any rule r in the reduct PM,t . If J does
not satisfy B(r), then J satisfies r; otherwise, if J satisfies B(r), then as r̂ is in the reduct P̂Î , we
have that Î falsifies each atom atm(e) in B−(r̂), and as J′ ⊂ Î, also J′ falsifies each such atm(e).
Furthermore, as J satisfies each atom e ∈ B+(r), from the rules for atm(e) among (14)-(21) in
the reduct P̂Î we obtain that J′ satisfies each atom atm(e) in B+(r̂). That is, J′ satisfies B(r̂). As
J′ satisfies r̂, we then obtain that J′ satisfies H(r̂). The latter means that J satisfies H(r), and thus
J satisfies r. As r was arbitrary from the reduct PM,t , we obtain that J ⊂ I is a model of PM,t ; this
however contradicts that I is a minimal model of PM,t , and thus (ii) holds.

(⇐) For the if direction, we argue similarly. Consider an answer set Î of P̂. To show that
I ∈ AS(P,D, t), we establish that (i) I is a model of PM,t and (ii) no model J ⊂ I of PM,t exists.
As for (i), since in Î the atoms atm(e) correctly reflect the value of the window atoms e in I, for
each r in PM,t the rule r̂ = baseRule(r) is in P̂Î ; as Î satisfies r̂, we conclude that I satisfies r. As
for (ii), we show that every model J of PM,t must contain I, which then proves the result.

To establish this, we use the fact that Î can be generated by a sequence ρ = r1,r2,r3 . . . ,rk

of rules from P̂Î with distinct heads such that (a) Î = {H(r1), . . .H(rk)} =: Îk and (b) Îi−1 =

{H(r1), . . . ,H(ri−1)} satisfies B+(ri), for every i = 1, . . . ,k.
In that, we use the assertion that no cyclic positive dependencies through time-based window

atoms �n2a occur. Formally, positive dependency is defined as follows: an atom @t1b positively
depends on an atom @t2a in a ground program P at t, if some rule r ∈ P exists with H(r) = @t1b
and such that either (a) @t2a ∈ B+(r), or (b) �n@t2a ∈ B+(r) or (c) �n ?a ∈ B+(r), ? ∈ {2,3},
where in (b) and (c) t2 ∈ [t − n, t] holds. As in LarsToAsp(P, t), all ordinary atoms a are here
viewed as @ta. A cyclic positive dependency through �n2a is then a sequence @t0a0, @t1a1,
. . . , @tk ak, k≥ 1, such that @tiai positively depends on @t(i+1) mod k a(i+1) mod k, for all i= 0, . . . ,k
and a0 = b and a1 = a for case (c) with ?=2.

Given that no positive cyclic dependencies through atoms �n2a occur in P at t, and thus in
PM,t , we can w.l.o.g. assume that whenever ri in ρ has a head ωe for a window atom e =�n2a,
each rule r j in ρ with a head a@(t ′), where t ′ ∈ [t−n, t], precedes ri, i.e., j < i holds.

By induction on i ≥ 1, we can now show that if H(ri) = atm(e), then every model J of PM,t

must satisfy e; consequently, at i = k, J must contain I. From the form of the rules baseRule(r)
and windowRules(e), the correspondence between P̂Î and PM,t , and the fact that the external
data are facts, only the case e = �n2a(X) needs a further argument. Now if ri is the rule
ωe ← a(X),not spoile(X) on line (16), then Î must satisfy a and falsify spoile(X); in turn, ev-
ery a@(t ′,X) must be true in Î, for t ′ ∈ [t− n, t]. From the induction hypothesis, we obtain that
@t ′a(X) is true in every model J of PM,t , t ′ ∈ [t− n, t], and thus e = �n2a(X) is true as well.
This proves the claim and concludes the proof of the if-case, which in turn establishes the claimed
correspondence between AS(P,D, t) and the answer sets of P̂ = LarsToAsp(P, t)∪ D̂.

Remark. The condition on cyclic positive dependencies excludes that rules b←�n2a and a← b
occur jointly in a program. A stricter notion of dependency that allows for co-occurrence is to

Theory and Practice of Logic Programming 21

request in (c) for ?=2 in addition t2 < t; then e.g. any LARS program where the rule heads are
ordinary atoms is allowed, and Proposition 1 remains valid.

Proof Sketch for Proposition 2

Assume a LARS program P and two tick data streams D= (K,v) and D′ = (K′,v′) at tick (tm,cm)

such that D′ ⊆ D and K′ = 〈(tk,ck), . . . ,(tm,cm)〉. Furthermore, assume that (*) all atoms/time
points accessible from any window in P are included in D′. We want to show ASI(P̂D,m) =

ASI(P̂D′,m). The central observation is that rules need to fire in order for intensional atoms to
be included in the answer set, and that no rules can fire based on outdated ticks. Thus, these ticks
can also be dropped.

In more detail, we assume ASI(P̂D,m) 6= ASI(P̂D′,m) towards a contradiction. That is to say, a
difference in evaluation arises based on data in D \D′, i.e., atoms appearing before tick (tk,ck).
Consider any extended atom e of a (LARS) rule r ∈ P, where the body holds only for one of the
two encodings (in the same partial interpretation). Due to the assumption (*), we can exclude a
difference arising from a window atom of form �w ?a, ? ∈ {3,2,@T}.

If e is an atom a, it holds in P̂D,m iff it holds in P̂D′,m since an ordinary atom in the answer
set of the encoding corresponds to an atom holding at the current time point, and both D and D′

include the current time point.
The last option is e = @T a, which may reach back beyond (tk,ck) but is viewed in the incre-

mental encoding as syntactic shortcut for �∞@T a. That is, in this case we have D′ = D and thus
the encodings coincide.

We conclude that assuming ASI(P̂D,m) 6= ASI(P̂D′,m) is contradictory due to these observations.
Spelling out the details fully involves essentially a case distinction on the incremental window
encodings and arguing about the relationship between (tk,ck), the respective expiration annota-
tions, and the fact that rules accessing atoms at ticks before (tk,ck) are have already expired.

Proof Sketch for Proposition 3

We argue based on the commonalities and differences of the static encoding P̂∪ D̂ and the in-
cremental encoding P̂D,m. Instead of body predicates now(Ṅ) and cnt(Ċ), that are instantiated in
P̂∪ D̂ due to the predicates now(t) and cnt(c), P̂D,m directly uses the instantiations of tick vari-
ables. In both encodings, the window atom is associated with a set of rules that needs to model
the temporal quantifier (3,2,@t) in the correct range of ticks as expressed by the LARS window
atom. This window always includes the last tick. While P̂∪ D̂ is based on a complete definition
how far the window extends, P̂D,m updates this definition tick by tick. In particular, the oldest tick
that is not covered by the window anymore corresponds to the expiration annotation in P̂D,m.

The case �n3a(X) is as follows: in the static rule encoding,

ωe(X)← now(Ṅ),a@(X,T) ,

given now(t), time variable T will be grounded with t−n, . . . , t−0. That is, we get a set of rules

(r0) ωe(X) ← now(t),a@(X, t)
...

(rn) ωe(X) ← now(t),a@(X, t−n) ,

where arguments X will be grounded due to data and inferences. We observe that (r0) is the

22 H. Beck, T. Eiter, C. Folie

rule that is inserted to the incremental program P̂D,m at time t (minus predicate now(t), since in
P̂D,m variable T is instantiated directly with t to obtain a@(X, t)), and all rules up to rn remain
from previous calls to IncrementalRules. Rule rn will expire at t + 1, i.e., the exact time when
it will not be included in P̂∪ D̂ anymore. The cases for �n@T a(X),�n2a(X),�#n3a(X) and
�#n@T a(X) are analogous; the remaining case �#n2a(X) has been argued earlier.

Finally, P̂D,m includes a stream encoding, which is also incrementally maintained: at each tick
(t,c) the tick atom tick(t,c) is added, and in case of a count increment, the time-pinned atom
a@(X, t) and the tick-pinned atoms a#(X, t,c) are added to P̂D,m as in D̂. This way, we have a full
correspondence with the static stream encoding D̂.

Thus, at every tick (t,c), P̂∪ D̂ and P̂D,m have the same data and express the same evaluations.
Disregarding auxiliary atoms, we conclude that their answer sets coincide.

Proof Sketch for Theorem 1

Given a LARS program P, a tick data stream D = (K,v) at tick (t,c) by Prop. 1 S is an answer
stream of P for D at t iff Ŝ is an answer set of P̂∪ D̂, where P̂ = LarsToAsp(P, t). By Prop. 3, for
any set X we have that X ∪{now(t),cnt(c)} is an answer set of P̂∪ D̂ iff X is an answer set of
P̂D,m (modulo auxiliary atoms). In particular this holds for X = Ŝ. As {now(t),cnt(c)} ⊆ Ŝ, we
obtain that S is an answer stream of P for D at t iff Ŝ is an answer set of P̂D,m, which is the result.

Appendix C Details of Evaluation Results

(See pages 23–24.)

Theory and Practice of Logic Programming 23

Table C 1: Results for A1. Variable window size n. Results for 1000 timepoints in seconds.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 14.296 0.017 0.014 2.638 0.016 0.002
40 20.526 0.018 0.02 3.006 0.018 0.002
80 34.491 0.025 0.034 2.938 0.018 0.002
120 49.249 0.027 0.049 3.439 0.019 0.003
160 64.661 0.028 0.064 3.554 0.017 0.003
200 79.105 0.036 0.079 3.674 0.018 0.003

Table C 2: Results for A2. Variable window size n. Runtime for 1000 timepoints in seconds.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 15.259 0.02 0.015 2.869 0.016 0.002
40 23.123 0.02 0.023 3.201 0.018 0.003
80 35.962 0.022 0.035 3.365 0.019 0.003
120 49.068 0.026 0.049 3.547 0.02 0.003
160 61.983 0.03 0.061 3.842 0.018 0.003
200 80.899 0.036 0.08 3.7 0.019 0.003

Table C 3: Results for A1. Variable timepoints tp. Runtime for window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 2.78 0.026 0.027 0.368 0.023 0.003
200 5.49 0.022 0.027 0.674 0.02 0.003
300 8.269 0.022 0.027 1.072 0.026 0.003
400 11.379 0.026 0.028 1.307 0.02 0.003
500 14.192 0.024 0.028 1.695 0.017 0.003
600 16.709 0.023 0.027 1.945 0.02 0.003
700 20.049 0.021 0.028 2.217 0.017 0.003
800 22.534 0.021 0.028 2.627 0.018 0.003
900 25.892 0.024 0.028 3.183 0.022 0.003

1000 27.501 0.021 0.027 3.42 0.021 0.003

Table C 4: Results for A2. Variable timepoints tp. Runtime for window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 2.998 0.026 0.029 0.418 0.019 0.003
200 5.727 0.023 0.028 0.89 0.017 0.004
300 9.06 0.026 0.03 1.097 0.021 0.003
400 11.783 0.021 0.029 1.563 0.02 0.003
500 14.26 0.021 0.028 1.81 0.017 0.003
600 17.439 0.02 0.029 2.181 0.021 0.003
700 20.321 0.021 0.028 2.438 0.018 0.003
800 23.3 0.02 0.029 3.371 0.02 0.004
900 26.51 0.021 0.029 3.22 0.018 0.003

1000 30.077 0.024 0.03 3.5 0.019 0.003

24 H. Beck, T. Eiter, C. Folie

Table C 5: Results for B1. Variable window size n. Runtime in seconds for 1000 timepoints.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 26.158 0.018 0.026 15.641 0.292 0.015
40 55.898 0.021 0.055 16.726 0.315 0.016
80 425.853 0.019 0.425 21.135 0.299 0.02
120 - - - 25.909 0.304 0.025
160 - - - 30.659 0.363 0.03
200 - - - 33.541 0.306 0.033

Table C 6: Results for B2. Variable window size n. Runtime for 1000 timepoints in seconds.

Clingo Incremental
n ttotal tinit ttick ttotal tinit ttick

20 24.138 0.018 0.024 34.717 0.292 0.033
40 38.478 0.019 0.038 35.744 0.333 0.034
80 71.827 0.024 0.071 25.767 0.298 0.025
120 104.723 0.023 0.104 33.788 0.29 0.033
160 148.257 0.031 0.148 31.1 0.303 0.03
200 181.991 0.028 0.181 37.612 0.33 0.036

Table C 7: Results for B1. Variable timepoints tp. Window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 8.57 0.026 0.085 1.895 0.32 0.015
200 16.392 0.022 0.081 3.971 0.293 0.018
300 31.568 0.022 0.105 6.82 0.475 0.021
400 40.927 0.025 0.102 8.518 0.332 0.02
500 55.313 0.021 0.11 10.64 0.351 0.02
600 69.548 0.021 0.115 12.816 0.353 0.02
700 - - - 15.773 0.333 0.021
800 - - - 16.756 0.318 0.02
900 - - - 16.96 0.298 0.018
1000 - - - 18.602 0.298 0.018

Table C 8: Results for B2. Variable timepoints tp. Window size n = 60 in seconds.

Clingo Incremental
tp ttotal tinit ttick ttotal tinit ttick

100 4.974 0.029 0.049 1.838 0.299 0.015
200 10.06 0.021 0.05 3.982 0.304 0.018
300 15.023 0.02 0.049 6.126 0.359 0.019
400 20.574 0.019 0.051 9.062 0.29 0.021
500 26.075 0.02 0.052 11.625 0.289 0.022
600 31.68 0.02 0.052 14.974 0.297 0.024
700 36.35 0.02 0.051 18.301 0.29 0.025
800 42.391 0.021 0.052 22.947 0.286 0.028
900 48.254 0.021 0.053 28.979 0.366 0.031
1000 54.35 0.02 0.054 28.993 0.334 0.028

	1 Introduction
	2 Stream Reasoning in LARS
	2.1 Plain LARS Programs

	3 Static ASP Encoding
	4 Incremental ASP Encoding
	5 Implementation
	6 Evaluation
	7 Related Work and Conclusion
	References
	Appendix A Notes on the Use of Clingo
	Appendix B Proofs
	Appendix C Details of Evaluation Results

