
Under consideration for publication in Theory and Practice of Logic Programming 1

Predicate Pairing for Program Verification

EMANUELE DE ANGELIS, FABIO FIORAVANTI

DEC, University ‘G. d’Annunzio’, Pescara, Italy
(e-mail: {emanuele.deangelis,fabio.fioravanti}@unich.it)

ALBERTO PETTOROSSI

DICII, Università di Roma Tor Vergata, Roma, Italy

(e-mail: pettorossi@info.uniroma2.it)

MAURIZIO PROIETTI

CNR-IASI, Roma, Italy

(e-mail: maurizio.proietti@iasi.cnr.it)

Note: This article has been published in Theory and Practice of Logic Program-

ming, 18(2), 126–166, c©Cambridge University Press.

Abstract

It is well-known that the verification of partial correctness properties of imperative pro-
grams can be reduced to the satisfiability problem for constrained Horn clauses (CHCs).
However, state-of-the-art solvers for constrained Horn clauses (or CHC solvers) based on
predicate abstraction are sometimes unable to verify satisfiability because they look for
models that are definable in a given class A of constraints, called A-definable models. We
introduce a transformation technique, called Predicate Pairing, which is able, in many in-
teresting cases, to transform a set of clauses into an equisatisfiable set whose satisfiability
can be proved by finding an A-definable model, and hence can be effectively verified by a
state-of-the-art CHC solver.

In particular, we prove that, under very general conditions on A, the unfold/fold trans-
formation rules preserve the existence of an A-definable model, that is, if the original
clauses have an A-definable model, then the transformed clauses have an A-definable
model. The converse does not hold in general, and we provide suitable conditions under
which the transformed clauses have an A-definable model if and only if the original ones
have an A-definable model. Then, we present a strategy, called Predicate Pairing, which
guides the application of the transformation rules with the objective of deriving a set of
clauses whose satisfiability problem can be solved by looking for A-definable models. The
Predicate Pairing strategy introduces a new predicate defined by the conjunction of two
predicates occurring in the original set of clauses, together with a conjunction of con-
straints. We will show through some examples that an A-definable model may exist for
the new predicate even if it does not exist for its defining atomic conjuncts. We will also
present some case studies showing that Predicate Pairing plays a crucial role in the verifi-
cation of relational properties of programs, that is, properties relating two programs (such
as program equivalence) or two executions of the same program (such as non-interference).
Finally, we perform an experimental evaluation of the proposed techniques to assess the
effectiveness of Predicate Pairing in increasing the power of CHC solving.

KEYWORDS: Program Verification, Constrained Horn Clauses, Constraint Logic Pro-
gramming, Program Transformation, Relational Properties of Programs

ar
X

iv
:1

70
8.

01
47

3v
2

 [
cs

.L
O

]
 2

7
Ju

n
20

18

2 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

1 Introduction

Constrained Horn clauses (CHCs, for short) have been advocated by many re-

searchers as a suitable logical formalism for the specification and the automated

verification of properties of imperative programs (Albert et al. 2007; Bjørner et al.

2015; De Angelis et al. 2014a; Jaffar et al. 2009; Kafle et al. 2016; Méndez-Lojo

et al. 2008; Peralta et al. 1998; Podelski and Rybalchenko 2007; Rümmer et al.

2013). In particular, the problem of showing partial correctness properties defined

by Hoare triples (Hoare 1969) has a natural translation into the problem of proving

the satisfiability of a suitable set of constrained Horn clauses.

Consider, for instance, the C-like program sum upto in Figure 1, which computes

the sum of the first m non-negative integer numbers:

int m, sum;
int f(int x) {

int r = 0;
while (x > 0) {

r = r + x; x--; }
return r;
}

void sum_upto() {
sum = f(m);
}

Figure 1. Program sum upto computing sum =
∑m

x=1 x .

Suppose we want to prove the following Hoare triple: {m≥0} sum upto {sum≥m}.
This triple is valid if the following set of clauses, called verification conditions, is

satisfiable:

1. false← M >Sum, M ≥0, R =0, su(M,R,Sum)

2. su(X,R,Sum)← X ≤0, Sum =R

3. su(X,R,Sum)← X >0, R1=R+X , X 1=X−1, su(X 1,R1,Sum)

These clauses can be obtained in an automatic way from an interpreter of the

C-like imperative language we consider and the given Hoare triple by using a tech-

nique described in the literature (Albert et al. 2007; De Angelis et al. 2014a; De

Angelis et al. 2017; Méndez-Lojo et al. 2008; Peralta et al. 1998). The predicate

su(M,R,Sum), which holds iff Sum = R+
∑M

x=1 x , encodes the operational seman-

tics of the program sum upto. Clause 1 encodes the Hoare triple, stating that if

su(M,R,Sum) holds with M ≥ 0 (that is, the precondition m≥ 0 holds) and R = 0

(that is, r is initialized to 0), then Sum≥M (that is, at the end of the execution, the

value of the variable sum is not smaller than the value of the variable m). Clauses 2

and 3 encode the while-loop of the function f.

Constrained Horn clauses are syntactically the same as constraint logic pro-

grams (Jaffar and Maher 1994). However, the term ‘constrained Horn clauses’ is

mostly used in the field of program verification and, unlike ‘constraint logic pro-

grams’, it is not associated with any operational meaning. Moreover, most of the

research on constrained Horn clauses is devoted to finding a model, expressible in

the constraint theory, that proves the satisfiability of the clauses, whereas the op-

erational semantics of constraint logic programs is based on a refutation procedure

Predicate Pairing for Program Verification 3

that looks for a proof of the unsatisfiability of the clauses. In this respect, the tech-

niques used for finding models of constrained Horn clauses are closer to the ones

proposed for the static analysis of constraint logic programs based on abstract in-

terpretation (Cousot and Cousot 1977; Benoy and King 1997), where the objective

is to find an over-approximation of the least model of the program.

The proof of satisfiability of sets of constrained Horn clauses is supported by CHC

solvers that have been developed in recent years for various constraint theories, such

as (linear or nonlinear) integer arithmetic, real (or rational) arithmetic, booleans,

integer arrays, lists, heaps, and other data structures (De Angelis et al. 2014b;

Grebenshchikov et al. 2012; Gurfinkel et al. 2015; Hoder et al. 2011; Hojjat et al.

2012; Kafle et al. 2016; McMillan and Rybalchenko 2013). However, in general,

since the satisfiability of constrained Horn clauses is an undecidable problem, CHC

solvers may not be able to return conclusive answers.

In order to improve the effectiveness of CHC solvers, several techniques proposed

by recent papers perform satisfiability preserving transformations on sets of clauses

that, in some cases, derive clauses whose satisfiability is easier to prove (De Angelis

et al. 2014a; De Angelis et al. 2015a; De Angelis et al. 2015b; De Angelis et al.

2016; Kafle and Gallagher 2015; Kafle and Gallagher 2017). These transformations

are adaptations to the task of improving the effectiveness of satisfiability checking

of earlier techniques which were developed for improving the efficiency of execution

of (constraint) logic programs, such as query answer transformation, specialization

(or partial deduction), and unfold/fold transformations (Debray and Ramakrishnan

1994; Etalle and Gabbrielli 1996; Leuschel and Bruynooghe 2002; Tamaki and Sato

1984; Pettorossi and Proietti 1994).

In this paper we further enhance the approach to CHC satisfiability checking

based on unfold/fold transformations. Our two main contributions are the following:

(1) we prove in a precise mathematical sense that the application of the unfold/fold

transformation rules cannot worsen the effectiveness of CHC solvers, and actually

these rules are able to strictly enlarge the set of satisfiability problems that can

be solved by a given class of CHC solvers; and (2) we provide a specific strategy,

called Predicate Pairing, for applying the transformation rules with the objective

of improving the ability of CHC solvers to prove satisfiability.

The basic idea behind the first contribution is as follows. Similarly to what is

introduced in a paper by Bjørner et al. (Bjørner et al. 2015), we consider the

notion of the A-definable model, which is a model definable in a class A of first

order formulas. Typically, CHC solvers (and, in particular, the solvers based on

predicate abstraction) look for models in specific classes, such as linear (integer

or real) arithmetic formulas, or quantifier-free array formulas. While satisfiability

is undecidable and not semidecidable, the existence of an A-definable model is

semidecidable, as long as the validity problem for the formulas in A is decidable,

and hence solvers that find an A-definable model whenever it exists, can indeed be

constructed. We prove that, under very general conditions on A, the unfold/fold

rules preserve the existence of an A-definable model, that is, if the original clauses

have an A-definable model, then also the transformed clauses have an A-definable

model. The converse does not hold: there are cases where the original clauses have

4 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

no A-definable model, while the transformed clauses have an A-definable model. In

this sense the application of the unfold/fold rules may improve the effectiveness of

a CHC solver that works by searching for A-definable models, because the solver

may be able to find an A-definable model after the transformation in cases where

there was no such a model before the transformation.

We also provide less general conditions under which the transformed clauses have

an A-definable model if and only if the original ones have an A-definable model.

These conditions prevent the introduction of new predicates that have recursive

definitions in terms of the old predicates occurring in the original clauses. Thus,

the source of the improvement of the effectiveness of the CHC solver due to the

unfold/fold transformations is the introduction of one or more new predicates and

the derivation of new (mutually) recursive definitions for these predicates.

The second contribution of our paper is related to the fact that, due to the al-

ready mentioned undecidability limitations, there is no universal algorithm that,

starting from a set of clauses, applies the unfold/fold rules and derives a set of

clauses such that, if it is satisfiable, then it has an A-definable model, for some

theory A whose validity problem is decidable. Therefore, it should not be unex-

pected that the Predicate Pairing strategy we propose for guiding the use of the

unfold/fold transformation rules is based on heuristics. We show that this strategy

is capable, in many significant cases, of transforming sets of clauses into new, equi-

satisfiable sets of clauses, whose satisfiability problem can be solved by constructing

A-definable models, while the original sets have no A-definable models. Predicate

Pairing introduces a new predicate defined by the conjunction of two predicates

together with a conjunction of constraints. We will explain through examples why

an A-definable model may exist for a conjunction of predicates, even if it does not

exist for the atomic conjuncts in isolation. (Obviously, by a repeated application

of Predicate Pairing, we may introduce new predicates corresponding to the con-

junction of more than two old predicates.) Thus, Predicate Pairing can be viewed

as an extension to constrained Horn clauses of techniques for transforming logic

programs, such as the tupling unfold/fold strategy (Pettorossi and Proietti 1994)

and conjunctive partial deduction (De Schreye et al. 1999).

We will show that constraint-based reasoning is essential for guiding the intro-

duction of the suitable pairs of predicates during the transformation process. More-

over, we will show that Predicate Pairing works well for solving many satisfiability

problems that arise from the field of imperative program verification. In particu-

lar, Predicate Pairing is a crucial technique for verifying relational program proper-

ties (Barthe et al. 2011), that is, properties relating two programs (such as program

equivalence) or two executions of the same program (such as non-interference).

The paper is structured as follows. In Section 2 we recall the basic notions con-

cerning constrained Horn clauses and we define the notion of an A-definable model.

In Section 3 we prove our results concerning the preservation of A-definable models

when using the unfold/fold transformation rules. In Section 4 we present the Predi-

cate Pairing strategy and in Section 5 we show some examples of its application for

verifying relational program properties. In Section 6 we report the results obtained

by our implementation of that strategy by using the VeriMAP transformation sys-

Predicate Pairing for Program Verification 5

tem (De Angelis et al. 2014b). Finally, in Section 7 we discuss related work in the

fields of program transformation and verification.

2 Constrained Horn Clauses

In this section we recall the basic definitions concerning constrained Horn clauses

and their satisfiability, and we introduce the notion of an A-definable model.

Let L be a first order language with equality and Predu ⊆ L be a set of predicate

symbols, called the user-defined predicate symbols. Let C be a set of formulas of

L Predu , called the set of constraints. We assume that: (i) true, false, and equalities

between terms belong to C, and (ii) C is closed under conjunction.

An atom is an atomic formula of the form p(X1, . . . ,Xm), where p is a predicate

symbol in Predu and X1, . . . ,Xm are distinct variables. Let Atom be the set of

all atoms. A definite constrained clause is an implication of the form c ∧G → H

whose premise (or body) is the conjunction of a constraint c and a (possibly empty)

conjunction G of n (≥ 0) atoms A1 ∧ . . . ∧ An , and whose conclusion (or head)

H is an atom. A constrained goal (or simply, a goal) is an implication of the form

c∧G → false, where c is a constraint and G is a conjunction of atoms. A constrained

Horn clause (CHC) (or simply, a clause) is either a definite constrained clause or

a constrained goal. A set of constrained Horn clauses is said to be a CHC set.

A constrained Horn clause Cl (or a set P of clauses) is said to be ‘over C ’ in case

we want to stress that the constraints occurring in clause Cl (or in the set P of

clauses) are taken from the set C of constraints. A clause c ∧G → H is said to be

linear if G consists of at most one atom, and nonlinear otherwise.

We will often use the logic programming syntax and we write H ← c,A1, . . . ,An ,

instead of c ∧A1 ∧ . . .∧An → H . We will also feel free to write non-variable terms

as arguments of atoms. Thus, the clause p(. . . , t , . . .) ← c,G should be viewed as

a shorthand for p(. . . ,X , . . .) ← X = t , c,G , where X is a variable not occurring

elsewhere in the clause, and likewise, H ← c,G1, p(. . . , t , . . .),G2 should be viewed

as a shorthand for H ← X = t , c,G1, p(. . . ,X , . . .),G2.

Given a formula ϕ∈L, we denote by ∃(ϕ) its existential closure and by ∀(ϕ) its

universal closure. By vars(ϕ) and Fvars(ϕ) we denote the set of variables and the

set of the free variables, respectively, occurring in ϕ.

For the notions of an interpretation and a model of a first order formula we

will use the standard notions and notations (Mendelson 1997). We fix a canonical

interpretation D of the symbols in L Predu . A D-interpretation is an interpretation

of L that for all symbols occurring in L Predu , agrees with D. If U is the universe

of D, then a D-interpretation I can be identified with the set of atoms:

{p(a1, . . . , am) | (a1, . . . , am) ∈ U m and pI(a1, . . . , am) holds in I}
where pI denotes the m-ary relation which is the interpretation of p in I. Given any

set F of formulas, a D-interpretation M is a D-model of F , written M |= F , if, for

all formulas ϕ∈F , M |= ϕ holds. F is D-satisfiable if it has a D-model. We will feel

free to say satisfiable, instead of D-satisfiable, when the interpretation D is clear

from the context. We write D |= F if, for every D-interpretation M, M |= F holds.

6 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

A set P of definite constrained clauses is D-satisfiable and has a least (with respect

to set inclusion) D-model, denoted lm(P) (Jaffar and Maher 1994). Thus, if P is

any set of constrained Horn clauses and Q is the subset of the constrained goals

in P , then P is D-satisfiable if and only if lm(P Q) |= Q .

Many CHC solvers based on predicate abstraction (Bjørner et al. 2015) try to

check the D-satisfiability of a set of constrained Horn clauses by looking for the

existence of D-models that are definable by formulas belonging to a given set A,

which is a subset of the set C of constraints. This restriction when looking for models

may significantly ease the satisfiability test, as shown by the following example.

Example 1

Let us assume that C is the set of linear integer arithmetic (LIA) constraints,

that is, equalities (=) and inequalities (>) between linear polynomials with integer

coefficients and integer-valued variables, closed with respect to conjunction and

disjunction. We also use the symbols ≥, ≤, <, and 6= with the usual definitions in

terms of = and >. Let Z denote the usual interpretation of integer arithmetic.

Now, let us consider clauses 1–3 listed in the Introduction. The satisfiability of

these clauses can be proved by looking for models that are definable by constraints ϕ

in the subset of LIA, which we call 2VAR, defined by the following grammar:

ϕ ::= true | false | X >0 | X =0 | X >Y | X =Y | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

where X and Y are variables. Thus, 2VAR is the set of linear integer constraints

constructed from arithmetic comparisons between at most two variables, and it is

a subset of the Octagons domain often considered in the field of abstract interpre-

tation (Miné 2006). A 2VAR-definable model of clauses 1–3 is given by interpreting

the predicate su(M,R,Sum) as the set of triples satisfying the following constraint

in 2VAR:

(Sum≥M ∧ Sum≥R) ∨ R<0,

In order to show that the above interpretation indeed defines a Z-model, we re-

place the instances of su(M ,R,Sum) by the corresponding instances of the formula

(Sum≥M ∧ Sum ≥ R) ∨ R < 0 in clauses 1–3, and we check that the resulting

implications hold in Z. �

This Example 1 motivates the introduction of the notion of an A-definable model,

which is a generalization of the one presented in the literature (Bjørner et al. 2015),

where A coincides with C.

Definition 1

Let A⊆C be a set of formulas of L Predu such that: (i) true, false, and equalities

between terms belong to A, and (ii) A is closed under conjunction. Let D be the

canonical interpretation of the symbols in L Predu . We denote by A∃∨ the set of

formulas {∃X1. . . ∃Xm(ϕ1 ∨ . . . ∨ ϕn) | m ≥ 0,n > 0, and for i = 1, . . . ,n, ϕi ∈
A}. A symbolic interpretation is a function Σ : Atom ∪ {false} −→A∃∨ such that

Σ(false) = false and, for every A∈Atom, (i) Fvars(Σ(A)) ⊆ Fvars(A), and (ii) for

every renaming substitution ρ for A (Lloyd 1987), Σ(Aρ) = Σ(A)ρ. We extend Σ

to conjunctions of atoms by stating that Σ(A1 ∧ . . . ∧ An) = Σ(A1) ∧ . . . ∧ Σ(An).

Given a set P of constrained Horn clauses over C, a symbolic interpretation Σ is an

Predicate Pairing for Program Verification 7

A-definable model of P , written Σ |= P , if for every clause H←c,A1,. . . ,An in P ,

D |= ∀(c ∧ Σ(A1∧ . . . ∧An)→ Σ(H)) holds.

Note that the symbolic interpretation Σ of an atom is independent of the vari-

able names occurring in that atom, and hence, for each predicate symbol p, the

formula Σ(p(X1, . . . ,Xm)) is unique up to variable renaming. Note also that the

definition of a symbolic interpretation is essentially equivalent to that given by

Kafle and Gallagher, who define an interpretation as a set of constrained facts of

the form p(X1, . . . ,Xm) ← c, where c is a constraint in A (Kafle and Gallagher

2017). Indeed, the set of constraints in the bodies of the constrained facts with the

same head predicate can be represented as a disjunction of those constraints, and

the variables occurring in the body of a constrained fact and not in its head are

implicitly existentially quantified.

Clearly, if P has an A-definable model, then P is D-satisfiable. In general the

converse does not hold, as shown by the following example.

Example 2

Let us continue Example 1, where the sets of constraints C and A are LIA and

2VAR, respectively. Let us consider the program in Figure 2, which computes the

square of a non-negative integer n by summing up n times the value of n.

int n, sqr;

int g(int y, int k) {

int s = 0;

while (y > 0) {

s = s + k; y--; }

return s;

}

void square() {

sqr = g(n,n);

}

Figure 2. Program square computing sqr = n2.

Clauses 4–6 below express the following property, which relates program sum upto

and program square: if the value of m is equal to the value of n before the execution

of the programs sum upto and square and they both terminate, then at the end

of their execution the value of sqr is not smaller than the value of sum. Note that,

since the programs sum upto and square have disjoint sets of variables, the order

of their execution is immaterial.

4. false← Sum>Sqr, M ≥0, M =N , N =Y , R0=0, S0=0,

su(M,R0,Sum), sq(N,Y,S0,Sqr)

5. sq(K,Y,S0,S)← Y ≤0, S =S0

6. sq(K,Y,S0,S)← Y >0, Y 1=Y −1, S1=S0+K , sq(K,Y 1,S1,S)

For Y ≥ 0, the atom sq(K,Y,S0,S) holds iff S = S0 + (K×Y). Properties like

the one between programs sum upto and square are called relational properties

(Barthe et al. 2011). Similarly to the verification conditions for partial correctness

properties, the clauses for relational properties, also called verification conditions,

8 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

can be automatically generated from the formal specification of those properties and

the operational semantics of the programming language (De Angelis et al. 2016).

For brevity, we do not give here the details of that generation process, which is

inessential for understanding the techniques presented in this paper.

Clauses 2–6 are constrained Horn clauses over LIA and they are Z-satisfiable.

Indeed, in the least Z-model of clauses 2, 3, 5, 6, for all integers M ,Sum, and

Sqr, with M ≥0, if su(M , 0,Sum) and sq(M ,M , 0,Sqr) hold, then Sum≤Sqr holds.

However, clauses 2–6 do not admit a 2VAR-definable model. Indeed, no constraint of

the form Sum≤X , for any variable X , is a consequence of su(M , 0,Sum), and hence

we cannot infer Sum≤Sqr, independently of the constraints that are consequences

of sq(M ,M , 0,Sqr). Actually, it is not difficult to see that a similar limitation holds

even if we look for a LIA-definable model, rather that a 2VAR-definable model.

Indeed, in order to infer the constraint Sum ≤ Sqr one should discover quadratic

relations, such as Sum=M×(M−1)/2 and Sqr=M×M , starting from su(M, 0,Sum)

and sq(M,M, 0,Sqr), respectively, and these relations cannot be expressed by linear

arithmetic constraints. �

3 Transformation Rules and Preservation of A-definable Models

Let C be a set of constraints and A ⊆ C. A transformation sequence over C is a

sequence of CHC sets P0,P1, . . . ,Pn over C, where, for i = 0, . . . ,n−1, Pi+1 is

derived from Pi by applying one of the following rules R1–R4.

Let Defsi denote the set of all the clauses, called definitions, introduced by

rule R1 during the construction of the transformation sequence P0,P1, . . . ,Pi . Thus,

Defs0 =∅.

(R1) Definition. We introduce a clause D : newp(X1, . . . ,Xk)← c,G , where: (i) newp

is a predicate symbol in Predu not occurring in the sequence P0,P1, . . . ,Pi , (ii) c∈A,

(iii) G is a non-empty conjunction of atoms whose predicate symbols occur in P0,

and (iv) X1, . . . ,Xk are distinct variables occurring free in (c,G). Then, we derive

the new set Pi+1 = Pi ∪ {D} and Defsi+1 = Defsi ∪ {D}.

(R2) Unfolding. Let C : H ← c,G1, p(X1, . . . ,Xk),G2 be a clause in Pi . Let

{p(X1, . . . ,Xk)← cj ,Bj | j =1, . . . ,m}
be the (possibly empty) set of clauses in Pi whose head predicate is p. With-

out loss of generality, we assume that, for j = 1, . . . ,m, vars(cj ,Bj) ∩ vars(C) ⊆
{X1, . . . ,Xk}. By unfolding the atom p(X1, . . . ,Xk) in C using Pi we derive the

new set Pi+1 = (Pi {C}) ∪ {H ← c, cj ,G1,Bj ,G2 | j = 1, . . . ,m}.

(R3) Folding. Let C : H ← c,G1,Q ,G2 be a clause in Pi , where Q is a non-empty

conjunction of atoms, and let D : K ← d ,B be (a variant of) a clause in Defsi with

vars(C) ∩ vars(D) = ∅. Suppose that there exist a substitution ϑ and a constraint

e such that: (i) Q =Bϑ, (ii) D |= ∀(c ↔ (e ∧dϑ)), and (iii) for every variable

X ∈ vars(d ,B) vars(K), the following conditions hold: (iii.1) Xϑ is a variable not

occurring in {H , c,G1,G2}, and (iii.2) Xϑ does not occur in the term Y ϑ, for

any variable Y occurring in (d ,B) and different from X . By folding C using the

Predicate Pairing for Program Verification 9

definition D , we derive clause E : H ← e,G1,Kϑ,G2. In this case we also say that

E is derived by folding Q in C . We derive the new set Pi+1 = (Pi {C}) ∪ {E}.

(R4) Constraint Replacement. Let us consider a subset of Pi of the form

{(H ← c1,G), . . . , (H ← ck ,G)}. Suppose that, for some constraints d1, . . . , dm ,

D |= ∀ (∃Y1 . . . ∃Yr (c1 ∨ . . . ∨ ck)↔ ∃Z1 . . . ∃Zs (d1 ∨ . . . ∨ dm))

where {Y1, . . . ,Yr}=Fvars(c1∨. . .∨ck) vars({H ,G}) and {Z1, . . . ,Zs}=Fvars(d1∨
. . .∨dm) vars({H ,G}). Then, we derive the new set Pi+1 = (Pi {(H ← c1,G), . . . ,

(H ← ck ,G)}) ∪ {(H ← d1,G), . . . , (H ← dm ,G)}.

Note that rule R4 enables the deletion of a clause with an inconsistent constraint

in its body. Indeed, if c1 is unsatisfiable, then D |= ∀ (c1 ↔ d1∨ . . .∨dm) with m =0.

The following result (Etalle and Gabbrielli 1996) shows that the transformation

rules R1–R4 derive sets of clauses that are equivalent with respect to the least

D-model.

Theorem 1 (Equivalence with respect to the Least D-Model)

Let P0,P1, . . . ,Pn be a transformation sequence where, for i = 0, . . . ,n, Pi is a set

of definite clauses. Let us assume that every definition in Defsn is unfolded during

the construction of this sequence (that is, for every definition D ∈ Defsn , there

exists i , with 0≤ i≤n−1, such that Pi+1 is derived from Pi by unfolding D). Then,

for every predicate p and (a1, . . . , am) ∈ U m ,

p(a1, . . . , am)∈ lm(P0 ∪Defsn) if and only if p(a1, . . . , am)∈ lm(Pn).

From Theorem 1 it follows that, as we now show, the transformation rules R1–R4

derive sets of clauses that are equivalent with respect to D-satisfiability.

Theorem 2 (Equivalence with respect to D-Satisfiability)

Let P0,P1, . . . ,Pn be a transformation sequence such that every definition in Defsn
is unfolded during the construction of this sequence. Then, P0 is D-satisfiable if and

only if Pn is D-satisfiable.

Proof

First we observe that P0 is D-satisfiable iff P0∪Defsn is D-satisfiable. Indeed: (i) if M

is a D-model of P0, then the D-interpretation M ∪ {newp(a1, . . . , ak) | newp is a

head predicate in Defsn and (a1, . . . , ak) ∈ U k} is a D-model of P0 ∪ Defsn , and

(ii) if M is a D-model of P0 ∪ Defsn , then by the definition of D-model, M is a

D-model of P0.

Now let us consider a new sequence P ′
0,P

′
1, . . . ,P

′
n obtained from the transfor-

mation sequence P0,P1, . . . ,Pn by replacing each occurrence of false in the head

of a clause by a new predicate symbol f . The sequence P ′
0,P

′
1, . . . ,P

′
n satisfies the

hypothesis of Theorem 1, and hence f ∈ lm(P ′
0 ∪Defsn) iff f ∈ lm(P ′

n).

We have that: P0 ∪Defsn is D-satisfiable iff P ′
0 ∪Defsn ∪ {¬f } is D-satisfiable iff

f 6∈ lm(P ′
0 ∪Defsn) iff {by Theorem 1} f 6∈ lm(P ′

n) iff P ′
n ∪ {¬f } is D-satisfiable iff

Pn is D-satisfiable.

10 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Theorem 2 is not sufficient to ensure that a transformation sequence preserves

the existence of an A-definable model. Indeed, as shown by Example 2 in Section 2,

for some set A of constraints, D-satisfiability does not imply the existence of an

A-definable model.

Now, in order to study the preservation of A-models during the construction of a

transformation sequence over C, for A⊆C, we introduce the notions of A-soundness

and A-completeness.

Definition 2 (A-Soundness, A-Completeness)

Let P0,P1, . . . ,Pn be a transformation sequence. (i) If P0 has an A-definable model

implies that Pn has an A-definable model, we say that the sequence is A-sound.

(ii) If Pn has an A-definable model implies that P0 has an A-definable model, we

say that the sequence is A-complete.

In order to prove the A-soundness of a transformation sequence (see Theorem 4

below) we need the following definition and theorem.

Definition 3

Let S be a CHC set. A symbolic interpretation Σ is said to be tight on S if

for all clauses A ← c,G in S, D |= ∀(Σ(A) ↔ ∃X1 . . . ∃Xk (c ∧ Σ(G))), where

{X1, . . . ,Xk} = Fvars(c ∧ Σ(G)) Fvars(Σ(A)).

For instance, given the singleton set of clauses S = {p(X)← q(X)}, the symbolic

interpretation Σ1 that maps both p(X) and q(X) to X =0 is tight on S, while the

symbolic interpretation Σ2 that maps p(X) to true and q(X) to X =0 is not tight

on S. Both Σ1 and Σ2 are models.

Theorem 3

Let P0,P1, . . . ,Pn be a transformation sequence. For i = 0, . . . ,n − 1, if Pi has an

A-definable model that is tight on Defsi , then Pi+1 has an A-definable model that

is tight on Defsi+1.

Proof See Appendix. �

The hypothesis that Pi has an A-definable model that is tight on Defsi is needed

to guarantee that the folding rule replaces a conjunction consisting of constraints

and atoms by a single atom which is equivalent in the given model.

From Theorem 3 and the fact that, if P0 has an A-definable model, then P0 has

an A-definable model that is tight on Defs0, which is the empty set, we get the

following result.

Theorem 4 (A-Soundness)

Every transformation sequence is A-sound.

Now we prove that, if some suitable hypotheses hold, a transformation sequence

is also A-complete. First, we need the following two definitions.

Definition 4

An application of the unfolding rule R2 to a clause C : H ← c,G1, p(X1, . . . ,Xk),G2

in Pi is said to be a self-unfolding if the predicate of H is p.

Predicate Pairing for Program Verification 11

Definition 5

Let P0,P1, . . . ,Pn be a transformation sequence. An application of the folding rule

R3 to a clause C in Pi using a definition D in Defsi is said to be a reversible folding

if D belongs to Pi and is different from C .

Theorem 5 (A-Completeness)

Let P0,P1, . . . ,Pn be a transformation sequence over a set C of constraints. Let

A be equal to C. Suppose that: (i) no application of the unfolding rule is a self-

unfolding, and (ii) every application of the folding rule is a reversible folding. Then,

P0,P1, . . . ,Pn is A-complete.

Proof See Appendix. �

In Section 4 we will present the Predicate Pairing transformation strategy and

we will show that it generates transformation sequences that are A-sound, but not

necessarily A-complete (see Theorem 6).

Normally, A-soundness is a desirable property of a transformation sequence

P0,P1, . . . , Pn . Indeed, suppose we have a CHC solver, call it SOLVE, that finds

an A-definable model of a set of clauses whenever it exists. As already mentioned,

such an ideal solver exists, as long as the validity problem for the formulas in A
is decidable. Then, A-soundness guarantees that if the satisfiability of P0 can be

proved by using SOLVE, then also the satisfiability of Pn can be proved by us-

ing SOLVE. In other terms, the effectiveness of the solver is not worsened by the

transformation.

In contrast, A-completeness might not always be a desirable property. Indeed,

in many cases we may want to transform clauses for which SOLVE cannot find an

A-definable model, because such a model does not exist, and derive equisatisfiable

clauses with an A-definable model which can be constructed by using SOLVE.

In practice, the existing solvers do not guarantee that they find an A-definable

model of a set of clauses whenever it exists. Thus, the theoretical properties of A-

soundness and A-completeness might not hold in some cases. We will show through

the experiments reported in Section 6, that these unfortunate cases are rare.

We conclude this section by showing that there are D-safisfiable CHC sets that

have no A-definable models, and yet can be transformed, by applying rules R1–R4,

into CHC sets that have A-definable models.

Example 3

Let us continue Example 2, where D is Z, C is LIA, and A is 2VAR. Let P0 be the

set consisting of clauses 2–6.

Starting from P0 we construct a transformation sequence P0,P1,P2,P3,P4, as

we now indicate. First, by applying the definition rule, we introduce the following

new predicate:

7. su sq(M ,R0,Sum,N ,S0,Sqr)← M =Y , su(M ,R0,Sum), sq(N ,Y ,S0,Sqr)

We derive the clause set P1 = P0 ∪ {7} and Defs1 = {7}. Now, by unfolding the

atoms su and sq of clause 7, and then performing some more unfoldings of the

derived atoms, we get:

12 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

8. su sq(M ,R0,Sum,N ,S0,Sqr)← M =Y , M ≤0, Sum =R0, Sqr =S0

9. su sq(M ,R0,Sum,N ,S0,Sqr)← M =Y , M ≤0, Sum =R0, Y >0,

Y 1=Y −1, S1=S0+N , sq(N ,Y 1,S1,Sqr)

10. su sq(M ,R0,Sum,N ,S0,Sqr)← M =Y , M >0, M 1=M−1, R1=R0+M ,

Y ≤0, Sqr =S0, su(M 1,R1,Sum)

11. su sq(M ,R0,Sum,N ,S0,Sqr)← M =Y , M >0, M 1=M−1, R1=R0+M ,

Y >0, Y 1=Y−1, S1=S0+N , su(M 1,R1,Sum), sq(N ,Y 1,S1,Sqr)

We get P2 = P0 ∪ {8, 9, 10, 11} and Defs2 = {7}. (Here and in the rest of the

example, for reasons of conciseness, we feel free to avoid to list some intermediate

CHC sets in the transformation sequence.) By the constraint replacement rule R4

we can remove clauses 9 and 10, whose bodies have unsatisfiable constraints, and

replace clauses 8 and 11 by:

12. su sq(M ,R0,Sum,N ,S0,Sqr)← M ≤0, Sum =R0, Sqr =S0

13. su sq(M ,R0,Sum,N ,S0,Sqr)← M >0, M 1=M−1, R1=R0+M ,

S1=S0+N , M 1=Y 1, su(M 1,R1,Sum), sq(N ,Y 1,S1,Sqr)

We get P3 = P0 ∪ {12, 13} and Defs3 = {7}. Then, by the folding rule R3, we fold

clause 4 (in P0) using clause 7 and we derive the following clause:

14. false ← Sum>Sqr ,M ≥0,M =N ,R0=0,S0=0, su sq(M ,R0,Sum,N ,S0,Sqr)

Finally, we fold clause 13 using clause 7 and we derive the following clause:

15. su sq(M ,R0,Sum,N ,S0,Sqr)←M >0, M 1=M−1, R1=R0+M ,

S1=S0+N , su sq(M 1,R1,Sum,N ,S1,Sqr)

We get the final set of clauses P4 = (P0 {4})∪{12, 14, 15}. Now, it is easy to check

that the symbolic interpretation that maps the atom su sq(M ,R0,Sum,N ,S0,Sqr)

to the 2VAR constraint Sum ≤Sqr ∨ R0>S0 ∨M >N , and the su and sq atoms

to true, is a 2VAR-definable model of P4. This check can be done by replacing the

atoms in P4 by the corresponding symbolic interpretations, and then verifying the

validity of the formulas obtained in that way by using an SMT solver for linear

arithmetic, such as the popular Z3 solver (de Moura and Bjørner 2008).

Let us now make some remarks on the derivation above.

(1) The applications of the transformation rules satisfy the hypothesis of Theo-

rem 2 and hence P0 is Z-satisfiable if and only if P4 is Z-satisfiable (indeed, they

are both Z-satisfiable).

(2) The fact that P4 has a 2VAR-definable model, while P0 has no such model,

is due to the fact that the applications of the folding rule R3 are not reversible

foldings, and hence the transformation sequence P0, . . . ,P4 does not satisfy the

hypothesis of Theorem 5. Indeed, clause 7 occurs in Defs3, but not in P3. More in

general, the derivation of a CHC set with an A-definable model from a CHC set

without an A-definable model is due to the introduction of new predicates and also

to the derivation (via non-reversible foldings) of clauses that constitute recursive

definitions of these new predicates.

(3) Finally, note that at every step during the transformation from P0 to P4

we have handled linear constraints only. However, the introduction of the new

predicate su sq(M ,R0,Sum,N ,S0,Sqr), defined in terms of the conjunction of

Predicate Pairing for Program Verification 13

su(M ,R0,Sum) and sq(N ,Y ,S0,Sqr), allows us to discover linear relations be-

tween Sum and Sqr without having to deal with nonlinear constraints. �

4 Predicate Pairing

In Section 3 we have seen that by the applying unfold/fold rules, in some cases

one may transform a given D-satisfiable set of clauses which does not admit an

A-definable model, into an equisatisfiable set of clauses which admits anA-definable

model. Then, the D-satisfiability of the set of clauses can be proved by a CHC

solver that constructs an A-definable model. Example 3 of Section 3 suggests that

the crucial step in that transformation is a predicate pairing step, that is, the

introduction of a new predicate, say t , whose defining clause has in its body the

conjunction of two atoms, one with predicate, say q , and the other with predicate,

say r , whose definitions are provided by the original set of clauses. Indeed, the

predicate pairing allows us to derive suitable relations between arguments of the

conjunction of q and r , which cannot be expressed by using constraints on the

arguments of q and r separately.

In general, in order to do the transformation and perform some required folding

steps, it may be necessary to introduce, by predicate pairing, more than one defi-

nition. The introduction of these new definitions is a major issue in the case where

the predicates to be paired should be chosen from the various predicates occurring

in the conjunction of several atoms in the body of a clause. In particular this issue

arises when predicates are defined by nonlinear clauses, and hence their repeated

unfolding may generate unbounded conjunctions of atoms.

In this section we will present a strategy, called Predicate Pairing, for making the

choice of the predicates to be paired. This strategy, which is realized by Algorithm 1,

takes as input a set of clauses and derives a new, equisatisfiable set of clauses,

which by Theorem 4 is guaranteed to admit an A-definable model, whenever the

original clauses had one. Actually, as we will show, in many interesting cases the

Predicate Pairing strategy constructs new sets of clauses for which a CHC solver is

able to construct one such model, while the same solver is unable to do so for the

original set of clauses. We present the Predicate Pairing strategy with the help of

an example. Suppose that we are given the following specification of (a variant of)

the Ackermann function:

S1. ackermann(m,n) = n+1 if m≤0

S2. ackermann(m,n) = ackermann(m−1, 1) if m>0∧n =0

S3. ackermann(m,n) = ackermann(m−1, ackermann(m,n−1)) if m>0∧n>0

and the following two programs each of which implements that specification:

int ackermann1(int m, int n) {

if (m =< 0) { return n+1; }

else if (m > 0 && n = 0) { ackermann1(m-1,1); }

else if (m > 0 && n > 0) { ackermann1(m-1,ackermann1(m,n-1)); }

}

14 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Algorithm 1: The Predicate Pairing strategy.

Input: (i) a clause Cinit of the form: false ← cinit , q(X), r(Y), and

(ii) two disjoint sets Q and R of clauses such that: q occurs in Q , r occurs in R,

and Q and R have no predicates in common.

Output: a set TransfCls of clauses such that there is no occurrence of an atom

with predicate in Q and an atom with predicate in R in the same clause body.

Notation:

For all constraints d , for all atoms A and B ,

let Eq(d ,A,B) be {X=Y | X∈vars(A), Y∈vars(B), D |= ∀(d→(X=Y))}.

InCls := {Cinit}; Defs := ∅; TransfCls := Q ∪ R;

while in InCls there is a clause C of the form: L← c,AQ ,BR , where:

(i) AQ occurs in Q , and (ii) BR occurs in R do

• Unfolding: Unfold once the atom AQ and once the atom BR in clause C

using Q ∪R, thereby deriving the set UnfoldedCls of clauses ;

• Definition & Folding: FoldedCls := UnfoldedCls ;

while in FoldedCls there is clause E of the form: H←d ,A,B ,G , where:

(i) A and B are atoms whose predicates occur in Q and R, respectively, and

(ii) G is a conjunction of atoms, such that:

for all atoms M and N in (A,B ,G), whose predicates occur in Q and R,

respectively, we have that |Eq(d ,A,B) | ≥ |Eq(d ,M ,N) | do

if in Defs there is a clause D ′ of the form: H ′ ←d ′,A′,B ′ such that,

for some substitution ϑ, we can fold (A,B) in clause E using D ′,

then FoldedCls := (FoldedCls {E}) ∪ {H←d ,H ′ϑ,G};
else

let D be the clause newp(Z)←e,A,B , where:
(i) newp is a predicate symbol not occurring elsewhere,

(ii) Z = vars(A) ∪ vars(B), and

(iii) e is the conjunction of the equalities in Eq(d ,A,B);

FoldedCls := (FoldedCls {E}) ∪ {H←d ,newp(Z),G};
Defs := Defs ∪ {D}; InCls := InCls ∪ {D};

InCls := InCls {C}; TransfCls := TransfCls ∪ FoldedCls;

int ackermann2(int m, int n) {

while (m > 0) {

if (n == 0) { m = m-1; n = 1; }

else { n = ackermann2(m,n-1); m = m-1; }

}

return n+1;

}

We want to prove the equivalence of these two implementations, in the sense that,

Predicate Pairing for Program Verification 15

for all non-negative integers m≥0 and n≥0, ackermann1(m,n) returns the same

integer returned by ackermann2(m,n).

Given the programs ackermann1(m,n) and ackermann2(m,n), we first generate

the following two sets Q and R of clauses that encode the operational semantics of

the programs. These sets of clauses can be derived by specializing the interpreter

of the imperative language with respect to the programs (De Angelis et al. 2017).

16 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Q : 1. ackermann1(M 1,N 1,A1)← ack1(M 1,N 1,A1)

2. ack1(M 1,N 1,A1)← M 1≤0,A1=N 1+1

3. ack1(M 1,N 1,A1)← M 1>0,N 1=0,X 1=M 1−1,Y 1=1, ack1(X 1,Y 1,A1)

4. ack1(M 1,N 1,A1)← M 1>0,N 1>0,X 1=M 1−1,Y 1=N 1−1,

ack1(M 1,Y 1,Z 1), ack1(X 1,Z 1,A1)

R : 5. ackermann2(M 2,N 2,A2)← A3+1 = A2, ack2(M 2,N 2,A3)

6. ack2(M 2,N 2,A2)← M 2≤0,A2=N 2

7. ack2(M 2,N 2,A2)← M 2>0,N 2=0,M 2=X 2+1,Y 2=1, ack2(X 2,Y 2,A2)

8. ack2(M 2,N 2,A2)← M 2>0,N 2 6=0,X 2=M 2−1,Y 2=N 2−1,Z 2=Z 3−1,

ack2(M 2,Y 2,Z 2), ack2(X 2,Z 3,A2)

The equivalence of the functions computed by the programs for ackermann1 and

ackermann2 is expressed in terms of the predicates defined by clauses 1–8 as follows:

for all integers M 1, M 2, N 1, N 2, we have that if M 1 ≥ 0, M 1=M 2, N 1≥0,

N 1=N 2, and ackermann1(M 1,N 1,A1) and ackermann2(M 2,N 2,A2) both hold,

then A1=A2 holds. Thus, given the clause:

9. false← A1 6=A2, M 1≥0, M 1=M 2, N 1≥0, N 1=N 2,

ackermann1(M 1,N 1,A1), ackermann2(M 2,N 2,A2)

the proof that ackermann1 and ackermann2 are equivalent is reduced to the con-

struction of a model for clauses 1–9 (note that the constraint A1 6= A2 in clause 9

states that the values returned by the two programs are different).

Now we have that no CHC solver that constructs LIA-definable models, can prove

the satisfiability of clauses 1–9. Indeed, in order to make that proof, the solver should

discover that the atoms ackermann1(M 1,N 1,A1) and ackermann2(M 2,N 2,A2)

imply the two equalities A1=ackermann(M 1,N 1) and A2=ackermann(M 2,N 2),

respectively, where ackermann is the function specified by equations S1–S3, and

these equalities cannot be expressed as linear integer constraints.

Thus, in order to allow a CHC solver to construct a LIA-definable model for

clauses 1–9, one should avoid reasoning on the two predicates ackermann1 and

ackermann2 in a separate way, and instead, one should reason on the conjunc-

tion of those predicates. Indeed, in what follows we will derive for that conjunc-

tion a new, equisatisfiable set of clauses that has a LIA-definable model. In this

new set of clauses we will discover suitable LIA constraints relating the arguments

of the predicates ackermann1(M 1,N 1,A1) and ackermann2(M 2,N 2,A2). Using

these constraints the CHC solver Z3 can show the existence of a LIA-definable

model for clauses 1–9, thereby proving the desired equivalence between programs

ackermann1 and ackermann2.

This new set of clauses will be derived from clause 9 by applying a sequence of

transformation rules according to the Predicate Pairing strategy, as indicated in

Algorithm 1. The algorithm takes as input a set of clauses {Cinit}∪Q ∪R, that is,

{9}∪{1, 2, 3, 4}∪{5, 6, 7, 8} in our case, and produces as output a new set of clauses

by applying the unfolding, definition, and folding rules. During the application of

that strategy we silently apply the constraint replacement rule to remove clauses

which have unsatisfiable constraints in their body.

Predicate Pairing for Program Verification 17

• First iteration of the body of the while-loop of Predicate Pairing.

Since InCls = {9}, ackermann1 occurs in Q , and ackermann2 occurs in R, we

start off by unfolding ackermann1(M 1,N 1,A1) and ackermann2(M 2,N 2,A2) in

clause 9. These unfoldings correspond to a symbolic evaluation step of each of the

two atoms. We get:

10. false← A1 6=A2, M 1≥0, M 1=M 2, N 1≥0, N 1=N 2, A2=A3+1,

ack1(M 1,N 1,A1), ack2(M 2,N 2,A3)

Then in order to fold clause 10, we introduce the following definition clause 11

which pairs together the atoms with predicate ack1 occurring in Q and predicate

ack2 occurring in R. In the body of this definition we have the equality constraints

M 1=M 2 and N 1=N 2 between the arguments of ack1 and ack2.

11. new1(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,N 1=N 2,

ack1(M 1,N 1,A1), ack2(M 2,N 2,A2)

The definition of new1 is then used for replacing, by folding, the conjunction of the

atoms with predicates ack1 and ack2 in the body of clause 10. Thus, from clause 10,

by folding, we derive:

12. false← A1 6=A2, M 1≥0, M 1=M 2, N 1≥0, N 1=N 2, A2=A3+1,

new1(M 1,N 1,A1,M 2,N 2,A3)

• Second iteration of the body of the while-loop of Predicate Pairing.

Since InCls = {11}, ack1 occurs in Q , and ack2 occurs in R, we have to perform

a second iteration of the body of the while-loop of the Predicate Pairing.

We unfold the atoms with predicate ack1 and ack2 in the premise of clause 11,

and we get the following three clauses:

13. new1(M 1,N 1,A1,M 2,N 2,N 2)←M 1≤0,M 1=M 2,N 1=N 2,A1=N 1+1

14. new1(M 1,N 1,A1,M 2,N 2,A2)← M 1>0,M 1=M 2,N 1=0,N 1=N 2,

X 1=M 1−1,Y 1=1,X 2=M 2−1,Y 2=1, ack1(X 1,Y 1,A1), ack2(X 2,Y 2,A2)

15. new1(M 1,N 1,A1,M 2,N 2,A2)← M 1>0,M 1=M 2,N 1>0,N 1=N 2,N 2 6=0,

Y 1=N 1−1,X 1=M 1−1,Y 2=N 2−1,X 2=M 2−1,Z 3=Z 2+1,

ack1(M 1,Y 1,Z 1), ack1(X 1,Z 1,A1), ack2(M 2,Y 2,Z 2), ack2(X 2,Z 3,A2)

Clause 13 need not be folded because it has no atoms in its body. Clause 14 can

be folded using clause 11 (the conditions for folding given in Section 3 are indeed

satisfied), and we get:

16. new1(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1=N 2,N 1=0,

X 1=M 1−1,Y 1=1,X 2=M 2−1,Y 2=1,new1(X 1,Y 1,A1,X 2,Y 2,A2)

Clause 15 should be folded, but first we need to choose the atoms to be paired

together. According to our goal of proving a relation between the arguments of

ackermann1 and ackermann2, we should pair together an ack1 atom with an ack2

atom. However, the choice of the atoms to be paired can be made in different ways

because in clause 15 there are two ack1 atoms and two ack2 atoms. The strategy

we propose looks at the arguments of the atoms and selects the two atoms which

share a maximal number of equality constraints holding between an argument of

ack1 and an argument of ack2.

According to this strategy we have that ack1(M 1,Y 1,Z 1) should be paired with

ack2(M 2,Y 2,Z 2) because these two atoms share the two equalities M 1 = M 2

18 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

and Y 1 = Y 2 (this last equality follows from N 1 = N 2), while ack1(M 1,Y 1,Z 1)

shares no equalities with ack2(X 2,Z 3,A2). Moreover, ack1(X 1,Z 1,A1) shares

one equality only, namely X 1 = X 2 (this equality follows from M 1 = M 2) with

ack2(X 2,Z 3,A2). Thus, we pair ack1(M 1,Y 1,Z 1) with ack2(M 2,Y 2,Z 2) and

then we take clause 11 for folding these two atoms.

In order to fold the other two atoms occurring in clause 15, that is, ack1(X 1,Z 1,A1)

and ack2(X 2,Z 3,A2), we introduce the following clause:

17. new2(M 1,N 1,A1,M 2,N 2,A2)←M 1=M 2, ack1(M 1,N 1,A1), ack2(M 2,N 2,A2)

Thus, by folding clause 15 using clauses 11 and 17, we get:

18. new1(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1=N 2,N 1>0,N 2 6=0,
Y 1=N 1−1,X 1=M 1−1,Y 2=N 2−1,X 2=M 2−1,Z 3=Z 2+1,
new1(M 1,Y 1,Z 1,M 2,Y 2,Z 2), new2(X 1,Z 1,A1,X 2,Z 3,A2)

The basic idea of our pairing strategy is that the atoms that are paired together,

having some of their arguments equal, have a somewhat synchronized behavior

and this synchronization may determine, for the other arguments, the existence of

simple relations that are easy to express in the theory of constraints one considers.

At this point of the application of the Predicate Pairing strategy we have that

TransfCls =Q ∪ R ∪ {12, 13, 16, 18}, Defs = {11, 17}, and InCls = {17}.
• Third iteration of the body of the while-loop of Predicate Pairing.

Since InCls = {17} and clause 17 has the atom ack1 that occurs in Q and the

atom ack2 that occurs in R, we have to perform a new iteration of the body of the

while-loop of the Predicate Pairing.

In clause 17 we unfold once the atom with predicate ack1 and the atom with

predicate ack2, and we get:

19. new2(M 1,N 1,A1,M 2,N 2,N 2)← M 1=M 2,M 1≤0,A1=N 2+1
20. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1=0,N 2=0,

X 1=M 1−1,Y 1=1,X 2=M 2−1,Y 2=1, ack1(X 1,Y 1,A1), ack2(X 2,Y 2,A2)
21. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1=0,N 2 6=0,

X 1=M 1−1,Y 1=1,X 2=M 2−1,Y 2=N 2−1,Z 3=Z 2+1,

ack1(X 1,Y 1,A1), ack2(M 2,Y 2,Z 2), ack2(X 2,Z 3,A2)
22. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1>0,N 2=0,

X 1=M 1−1,Y 1=N 1−1,X 2=M 2−1,Y 2=1,

ack1(M 1,Y 1,Z 1), ack1(X 1,Z 1,A1), ack2(X 2,Y 2,A2)
23. new2(M 1,N 2,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1>0,N 2 6=0,

X 1=M 1−1,Y 1=N 2−1,X 2=M 2−1,Y 2=N 2−1,Z 2 + 1 = Z 3,

ack1(M 1,Y 1,Z 1), ack1(X 1,Z 1,A1), ack2(M 2,Y 2,Z 2), ack2(X 2,Z 3,A2)

Clause 19 need not be folded. Clause 20 can be folded using definition 17 and we

get:

24. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1=0,N 2=0,

X 1=M 1−1,Y 1=1,X 2=M 2−1,Y 2=1,new2(X 1,Y 1,A1,X 2,Y 2,A2)

In order to fold clause 21, first we select the two atoms with the predicates to be

paired. We have that ack1(X 1,Y 1,A1) shares one equality with ack2(X 2,Z 3,A2),

that is, X 1=X 2 (this equality follows from M 1=M 2), and shares no equalities with

ack2(M 2,Y 2,Z 2). Hence we select the atoms ack1(X 1,Y 1,A1) and ack2(X 2,Z 3,A2)

Predicate Pairing for Program Verification 19

in the body of clause 21, and we fold that clause by using clause 17, thereby deriving

the following clause:

25. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1=0,N 2 6= 0,

X 1=M 1−1,Y 1 = 1,X 2=M 2−1,Y 2=N 2−1,Z 3=Z 2+1,

new2(X 1,Y 1,A1,X 2,Z 3,A2), ack2(M 2,Y 2,Z 2)

By processing clauses 22 and 23 in a similar manner, we get:

26. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1>0,N 2=0,

X 1=M 1−1,Y 1=N 1−1,X 2=M 2−1,Y 2=1,

new2(X 1,Z 1,A1,X 2,Y 2,A2), ack1(M 1,Y 1,Z 1)

27. new2(M 1,N 1,A1,M 2,N 2,A2)← M 1=M 2,M 1>0,N 1>0,N 2 6=0,

X 1=M 1−1,Y 1=N 1−1,X 2=M 2−1,Y 2=N 2−1,Z 3=Z 2+1,

new2(M 1,Y 1,Z 1,M 2,Y 2,Z 2),new2(X 1,Z 1,A1,X 2,Z 3,A2)

Since InCls = ∅ no new iteration of the body of the while-loop of the Predicate

Pairing is required. Thus, the application of that strategy terminates. The resulting

set of clauses is TransfCls =Q ∪ R ∪ {12, 13, 16, 18, 19, 24, 25, 26, 27}.
Now, the CHC solver Z3, when given as input the set TransfCls of clauses, con-

structs a LIA-definable model of TransfCls. In particular, it constructs a LIA-defin-

able model of clause 12 by inferring that new1(M 1,N 1,A1,M 2,N 2,A3) implies

A1 = A3+1, which together with A2 = A3+1, implies A1 = A2, and hence the

body of the clause is shown to be false.

By Theorem 2 the existence of a LIA-definable model for TransfCls entails that

clauses 1–9 have a Z-model, and this concludes the proof that programs ackermann1

and ackermann2 are equivalent.

We end this section by stating some results about the Predicate Pairing strategy.

First, we have that Predicate Pairing always terminates because the number of new

predicate definitions that can be introduced is bounded by the number k of different

conjunctions of the form (e,A,B), where A and B are atoms whose predicates occur

in Q ∪ R, and e is a conjunction of equalities between variables in (A,B). Hence,

the number of executions of the body of the while-loop of Predicate Pairing is at

most k .

It is easy to see that the sequence of applications of the transformation rules

performed by the Predicate Pairing strategy constructs a transformation sequence

where every definition in Defs is unfolded at least once. Thus, from Theorem 2,

which states the equivalence with respect to D-satisfiability, and Theorem 4, which

states the preservation of A-definable models, we get the following result.

Theorem 6 (Termination and soundness of the Predicate Pairing strategy)

Let the sets {Cinit}, Q , and R of clauses be the input of the Predicate Pairing

strategy. Then the strategy terminates and returns a set TransfCls of clauses such

that:

(i) {Cinit} ∪Q ∪ R is D-satisfiable iff TransfCls is D-satisfiable, and

(ii) if {Cinit}∪Q ∪R has an A-definable model, then TransfCls has an A-definable

model.

Finally, note that the application of the Predicate Paring strategy may be iter-

20 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

ated, and hence, at the end of the transformation of a set of clauses, more than two

predicates may turn out to be tupled together.

5 Case Studies: Relational Program Properties

In this section we illustrate the application of the Predicate Pairing strategy to

some relevant classes of relational program properties. In particular, we have consid-

ered the following classes of properties: (i) the equivalence of programs implement-

ing nonlinear and/or nested recursive functions, (ii.1) the injectivity of programs,

(ii.2) the monotonicity of programs, (ii.3) the functional dependence of programs,

(iii) non-interference of programs, (iv) equivalence of loop-optimized versions of

programs with respect to the corresponding non-optimized versions, and (v) the

equivalence of programs that manipulate integer arrays. We will consider these

classes of properties in separate subsections.

Now we briefly show how to encode relational properties between the executions

of two programs P and Q (De Angelis et al. 2016). We assume that the operational

semantics of programs P and Q is represented by predicates p(A,B) and q(X ,Y),

where A and X represent (tuples of) input values, and B and Y represent (tu-

ples of) output values, respectively. As already mentioned in the previous sections,

the clauses defining p and q can be derived by specializing the interpreter of the

imperative language with respect to the programs (De Angelis et al. 2017).

Let us now consider the relational property stating that, if the constraint pre(A,B)

holds before the execution of P and Q and the execution of these programs termi-

nates, then the constraint post(A,B ,X ,Y) holds after the execution. This property

can be verified by testing the satisfiability of the CHC set consisting of the clauses

defining predicates p and q , together with the following clause:

RP : false← pre(A,B), notpost(A,B ,X ,Y), p(A,B), q(X ,Y)

where notpost(A,B ,X ,Y) is a constraint which is equivalent to the negation of

post(A,B ,X ,Y)1.

The application of our method based on the use of the Predicate Pairing strategy,

is often crucial for solving satisfiability problems that encode relational program

properties. In Section 6 we will discuss the results we have obtained in an extensive

experimental evaluation that we have conducted.

5.1 Functions with Nonlinear and/or Nested Recursion

Similarly to what has been considered in Section 4, where we have presented two

imperative programs implementing the Ackermann function specification and then

proved their equivalence, in this section we consider various equivalence problems for

pairs of imperative programs implementing some functional specifications. In each

1 If the constraint language has no negation symbol, but the negation of a constraint is equivalent
to a disjunction of constraints, as in the case of LIA, then the relational property can be encoded
by a set of clauses.

Predicate Pairing for Program Verification 21

pair one imperative program uses recursion only and the other one uses recursion

and iteration.

The operational semantics of the two imperative programs is encoded using two

distinct sets of CHCs, each defining a predicate for each program. The recursive

structure of these predicate definitions mirrors the control flow of two imperative

programs.

Let us consider two predicates p1 and p2 that encode the operational semantics

of the two imperative programs, say P1 and P2, implementing a given function

specification. The equivalence between P1 and P2 holds if, under some precondition

on the input values, p1 and p2 define the same input/output relation. This property

holds if the following clause, together with the set of clauses defining the predicates

p1 and p2, is satisfiable:

EQ : false← c(X 1), X 1=X 2, Y 1 6=Y 2, p1(X 1,Y 1), p2(X 2,Y 2)

where: (i) X 1, X 2 represent tuples of input values, (ii) Y 1, Y 2 represent tuples

of output values, and (iii) c(X 1) is a precondition on the input values. The reader

may note that clause EQ is an instance of clause RP defining the general relational

property. Note also that clause 9 in Section 4, encoding the equivalence relation

between the two implementations of the Ackermann function, is an instance of EQ.

We have considered equivalence problems for imperative programs implementing

nonlinear recursive functional specifications, that is, functional specifications with

two or more recursive calls that depend on the same call (as in the case of the

Fibonacci function). Also, several of these specifications have nested recursions,

that is, they have recursive calls that are arguments of other recursive calls (as in

the case of the Ackermann function), thus making the verification problem more

challenging.

In particular, in our experiments we have considered the following specifications

of variants of the Ackermann function2. (Here and in the other function definitions

we assume that x , y , and z are non-negative integers.)

(1) Original version by W. Ackermann:

A(0, y , z) = y +z , A(1, y , 0) = 0, A(2, y , 0) = 1,

A(x +3, y , 0) = y , A(x +1, y , z +1) = A(x , y ,A(x +1, y , z))

(2) Variant by H. Edelsbrunner:

E (0, y , z) = y +z , E (x +1, y , 0) = 0, E (x +1, y , 1) = y ,

E (x +1, y , z +2) = E (x , y ,E (x +1, y , z +1))

(3) Variant by R. Robinson (we have used this variant in Section 4):

R(0, y) = y +1, R(x +1, 0) = R(x , 1), R(x +1, y +1) = R(x ,R(x +1, y))

(4) Variant by R. Péter:

P(0, y) = 2y+1, P(x + 1, 0) = P(x , 1), P(x +1, y+1) = P(x ,P(x +1, y))

Note that, these variants of the specification of the Ackermann function actually cor-

respond to pairwise different functions. Indeed, we have that A(2, y , 0) 6=E (2, y , 0)

for all y≥0, and R(0, y) 6=P(0, y) for all y>0.

2 http://mrob.com/pub/math/ln-2deep.html

22 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Additionally, we have considered some other equivalence problems for pairs of

imperative programs encoding the following functional specifications:

(5) a variant of the Sudan function:

S (0, y , z) = y +z , S (x +1, y , 0) = S (x , y +1, 0),

S (x +1, y , z +1) = S (x ,S (x +1, y , z), y +S (x +1, y , z))

(6) the B function:

B(0, y) = y +1, B(x +1, y) = B(x ,B(x +1, y−1))

(7) the G function:

G(1, y) = y+3, G(x+2, 0) = G(x+1, 1), G(x+2, y+1) = G(x+1,G(x+2, y))

(8) the McCarthy 91 function: M (x) = if x >100 then x−10 else M (M (x +11))

(9) the Dijkstra fusc function:

fusc(0) = 0, fusc(1) = 1, fusc(2x) = fusc(x),

fusc(2x +1) = fusc(x +1) + fusc(x), and

(10) a function that computes the minimum number of moves needed for the solu-

tion of the towers of Hanoi problem.

Our strategy turns out to be very effective in increasing the ability of the CHC

solver to prove the satisfiability, or the unsatisfiability, of the clauses encoding the

considered problems. As already mentioned, the main reason for this effectiveness is

due to the fact that, by pairing together two atoms, the Predicate Pairing strategy

often enables the discovery of relations between some of their arguments.

5.2 Monotonicity, Injectivity, and Functional Dependence

Some interesting classes of relational properties we have considered are those of

monotonicity, injectivity, and functional dependency. These notions relate two dif-

ferent terminating executions of the same program on two distinct input values,

say x and y , computing the output values, say m and n, respectively. The defini-

tion of these properties are derived in a straightforward manner from those of the

mathematical functions.

In particular, monotonicity properties state that the application of the program

on ordered input values produces ordered output values. For example, a typical

monotonicity property is the following: if x≤y , then m≤n.

Injectivity properties state that any two executions of the same program on

different inputs produce different outputs, that is, if x 6=y , then m 6=n.

Functional dependence properties state that the output of a program is a function

of (a possibly proper subset of) its input values: for instance, if x =y , then m =n.

In particular, let us consider the following constrained Horn clauses encoding the

operational semantics of a given imperative recursive program Fib that computes

the Fibonacci numbers:

fib(X ,Y)← X =0,Y =0

fib(X ,Y)← X =1,Y =1

fib(X ,Y)← X ≥2,X 1=X−1,X 2=X−2,Y =Y 1+Y 2, fib(X 1,Y 1), fib(X 2,Y 2)

where the first argument of fib encodes the input and the second argument of

Predicate Pairing for Program Verification 23

fib encodes the output. Then, the above mentioned properties of monotonicity,

injectivity, and functional dependence of the program Fib can be checked by testing

the satisfiability of the following clauses:

false← Y 2≥Y 1+1, X 1≥X 2, fib(X 1,Y 1), fib(X 2,Y 2) (Monotonicity)

false← Y 1=Y 2, X 1 6=X 2, fib(X 1,Y 1), fib(X 2,Y 2) (Injectivity)

false← Y 1 6=Y 2, X 1=X 2, fib(X 1,Y 1), fib(X 2,Y 2) (Functional Dependence)

Note that the above clauses are all instances of clause RP encoding the general

relational property.

Based on this example, the reader will not find it difficult to express monotonicity,

injectivity, and functional dependence for other given imperative programs. We

have successfully verified these properties for programs computing: (i) the sum of

two numbers (by iterated increment), (ii) the product of two numbers (by iterated

addition), and (iii) the square and the cube of a number (by iterated addition). We

have also considered some more programs containing simple, sequential, or nested

while-loops, possibly combined with conditionals.

5.3 Non-interference

Non-interference is a property that guarantees information-flow security. It can be

viewed as a variant of the functional dependence property as we now indicate.

Let us consider an imperative program P whose variables are partitioned into

a set of public variables (or low security variables) and a set of private variables

(or high security variables). We say that P satisfies the non-interference property

if any two terminating executions of P , starting with the same initial values of

the public variables, but possibly with different values of the private variables,

compute the same values of the public variables. Thus, if a program satisfies the

non-interference property, an attacker cannot acquire information about the private

variables by observing the input/output relation between the public variables, which

are functionally dependent on the public input variables only.

To clarify the ideas, let us consider the following simple imperative program HL:

while (high >= 1) { high = high-1; low = high; }

where low is a public variable and high is a private variable. Program HL violates

the non-interference property because there exist two different executions starting

with identical values of the variable low and terminating in configurations having

different values for variable low. Indeed, if initially we have that high is at least 1,

then the body of while-loop is executed and the final value of low will be 0, otherwise

the value of low is left unchanged.

The non-interference property for program P can be verified by checking the

satisfiability of the following set of clauses:

false← OutL 6=OutL1, L=L1, p(L,H ,OutL), p(L1,H 1,OutL1)

p(L,H ,OutL)← H <1, OutL=L

p(L,H ,OutL)← H ≥1, H 1=H−1, L1=H 1, p(L1,H 1,OutL)

where: (i) the predicate p(L,H ,OutL) encodes the input/output relation among the

variables of program P , (ii) the variables L and H encode the values of the variables

24 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

low and high at the beginning of the while-loop, and (iii) OutL encodes the value

of the variable low at the end of the while-loop. Note that the set of clauses shown

above is unsatisfiable because program P violates the non-interference property.

The reader may note that the first clause, encoding the non-interference property

for program P , is an instance of clause RP defining the general relational property.

The encoding of the non-interference property for other programs can be done in a

similar way.

The following program HL1 is representative of a class of programs for which we

have successfully verified that the non-interference property holds:

low1 = low2; low1 = low1 + f(high); low1 = low1 - g(high,low1);

where: (i) low1 and low2 are public variables, high is a private variable, and (ii) f

and g are two functions defined as follows:

int f(int m) {

int i = 0, s = 0;

while (i <= m) { s += i+m; i++; }

return s; }

int g(int m, int n) {

int i = 0, s = 0;

if (n <= m) { while (i<= n) { s += i+m; i++; } } ;

while (i <= m) { s += i+m; i++; }

return s; }

Note that, in the program HL1 the functions f and g compute the same value. This

program HL1 does satisfy the non-interference property, and thus the corresponding

set of clauses is satisfiable. Indeed, in the program HL1 the public variable low1

is first incremented and then decremented by the same value, which, however, is

computed by the distinct, yet equivalent functions f and g, which take the private

variable high as input.

5.4 Loop Optimizations

Modern compilers often perform a series of optimizations for producing a new pro-

gram that is semantically equivalent to an old program, but whose execution is

faster, or requires less memory, or has lower energy consumption.

By applying our method we have successfully verified equivalence properties be-

tween some imperative programs and their optimized versions (Lopes and Monteiro

2016). The CHC encoding of program equivalence is the one defined by clause EQ in

Section 5.1. For instance, we have proved the equivalence of the following program:

while (i < n) {

if (n > 5) { a = a+n; i = i+1; }

else { a = a+1; i = i+1; }

}
and the one derived from it by the loop unswitching optimization:

if (n > 5) { while (i < n) { a = a+n; i = i+1; } }

else { while (i < n) { a = a+1; i = i+1; } }

Predicate Pairing for Program Verification 25

where the conditional statement occurring in the while-loop is moved outside the

loop, so that the evaluation of the conditional expression is performed only once,

instead of being performed at each loop iteration.

We have also considered some specific instances of other equivalence problems

relating original, non-optimized programs to new programs obtained by applying

the following loop optimizations:

(i) loop fission, that splits the commands occurring in a loop in two blocks that are

then executed by two consecutive, independent loops;

(ii) loop fusion, that merges the commands occurring in consecutive loops and

executes them in a single loop;

(iii) loop reversal, that executes the commands occurring in a loop, in a new loop

where the iteration proceeds in reversed order with respect to the order of the

original loop;

(iv) strength reduction, that replaces iterated expensive computations in a loop

by cheaper ones (for instance, replacing multiplication by a loop index with

addition); and

(v) code sinking, that moves code occurring immediately before or after a loop

inside the loop itself, possibly using conditionals for keeping the semantics of

the program unaltered.

We have also considered other loop optimizations, including loop tiling, loop align-

ing, loop pipelining as well as other optimizations for removing redundant assign-

ments, expression evaluations, and conditionals.

We are confident that our method of proving equivalence of programs can be

extended for proving correctness of code optimizations at a schematic level (Leroy

2009; Lopes and Monteiro 2016), and not for some specific instances only. We leave

this study for future research.

5.5 Array-manipulating Programs

We have applied our verification method to relational properties of imperative pro-

grams manipulating integer variables and integer arrays.

Let us first introduce some preliminary notions. An integer array a (or an array,

for short) is a finite sequence of integers whose length, called the dimension of the

array, is denoted dim(a). An atomic array constraint is either read(a, i , v), denoting

that the i -th element of the array a is the integer v , or write(a, i , v , b), denoting

that, for k = 1, . . . , dim(a), if k 6= i , then the k -th element of a is equal to the k-th

element of b, and if k = i , then the k -th element of b is the integer v .

The read and write constraints satisfy the following implicative axioms (Bradley

et al. 2006), whose variables are assumed to be universally quantified at the front:(
I =J , read(A, I ,U), read(A, J ,V)

)
→ U =V (array congruence)(

I =J , write(A, I ,U ,B), read(B , J ,V)
)
→ U =V (read-over-write)(

I 6=J , write(A, I ,U ,B), read(B , J ,V)
)
→ read(A, J ,V) (read-over-write)

26 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

For example, the operational semantics of the following imperative program which

acts on the array a:

i = 1; a[0] = 3;

while (i < n) { a[i] = a[i-1]+2; i++; }

can be represented by the following set of CHCs:

prog(N ,A1,A3)← I =1, K =0, U =3, write(A1,K ,U ,A2), loop(N ,A2, I ,A3)

loop(N ,A1, I ,A3)← I + 1≤N , J =I−1, read(A1, J ,U),

V =U +2, write(A1, I ,V ,A2), I 1=I +1, loop(N ,A2, I 1,A3)

loop(N ,A, I ,A)← I ≥N

In these clauses: (i) the predicate loop(N ,A1, I ,A2) encodes the while-loop, (ii) its

arguments N ,A1, and I encode the values of variables n, a, and i, respectively, at

loop entry, and (iii) A2 encodes the value of a at loop exit.

Now we show an example of an equivalence property between array manipulat-

ing programs that has been proved by using our method based on the Predicate

Pairing strategy. Let us consider the programs P1 and P2 shown in Table 1, where

program P2 is obtained from program P1 by applying the loop-pipelining optimiza-

tion, a commonly used technique for enabling instruction-level parallelism at the

hardware level.

Program P1 Program P2

i=0;

while (i < n) {

a[i]++;

b[i] += a[i];

c[i] += b[i];

i++;

}

i = 0;

a[0]++;

b[0] += a[0];

a[1]++;

while (i < n-2) {

a[i+2]++;

b[i+1] += a[i+1];

c[i] += b[i];

i++;

}

c[i] += b[i];

b[i+1] += a[i+1];

c[i+1] += b[i+1];

Table 1. The source program P1 (left) and the optimized program P2 obtained by

applying the loop pipelining transformation (right).

The equivalence between programs P1 and P2 with respect to the output ar-

ray c, is expressed by the following clause F (which is an instance of clause EQ of

Section 5.1):

F : false← X 6= Y , N ≥ 1, J ≥ 0, J ≤ N−1, read(C 1, J ,X), read(C 2, J ,Y),

new11(N ,A,C 1), new21(N ,A,C 2)

where new11(N ,A,C 1) represents the input/output relation of the source pro-

gram P1, and in particular, N is the value of the integer variable n, A is the value

of the array a at the beginning of program execution, and C 1 is the value of the ar-

Predicate Pairing for Program Verification 27

ray c at the end of program execution. Similarly, new21 represents the input/output

relation of the optimized program P2.

Thus, by proving the satisfiability of the set of clauses consisting of F together

with the clauses defining new11 and new21, we have been able to prove that pro-

grams P1 and P2 produce identical values for the array c as output, when provided

with identical values for the array a as input.

6 Experimental Evaluation

In this section we present the experimental evaluation we have performed for as-

sessing the effectiveness of the Predicate Pairing strategy (PP strategy, for short)

presented in Section 4.

Implementation. We have implemented Algorithm 1 by using the VeriMAP sys-

tem (De Angelis et al. 2014b), which is a tool for software model checking based

on transformation techniques for CHCs. Then we have used the SMT solver Z3

(de Moura and Bjørner 2008) for checking the satisfiability of the clauses gener-

ated by VeriMAP. In particular, we have used Z3 version 4.5.0 with the Duality

fixed-point engine (McMillan and Rybalchenko 2013), which provides support for

constraints defined on linear integers and integer arrays.

Our prototype implementation consists of two components: (1) a module that

realizes Algorithm 1, and (2) a module that translates the generated CHCs into the

SMT-LIB format which is the format accepted by Z3 (see Figure 3). The VeriMAP

system also provides a front-end module (T) that takes a pair of C programs,

together with a relational property to be verified, and translates them into the

CHCs that encode the verification problem (De Angelis et al. 2016).

Figure 3. The Verification System: (1) the Predicate Pairing module, implementing

Algorithm 1, and (2) the Translator to SMT-LIB module.

Verification problems. We have considered a benchmark3 of 163 sets of CHCs

(153 of which are satisfiable and the other 10 are unsatisfiable), representing veri-

fication problems (all acting on integers and 14 of them acting on integer arrays),

3 The benchmark set can be found at http://map.uniroma2.it/predicate-pairing

http://map.uniroma2.it/predicate-pairing

28 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

which refer to relational properties of small, yet non-trivial, imperative programs

mostly taken from the literature (Barthe et al. 2011; Benton 2004; Felsing et al.

2014; De Angelis et al. 2015a; De Angelis et al. 2016; Lopes and Monteiro 2016).

We have considered the following categories of relational verification problems.

(1) The category nlin, which refers to equivalence properties between programs im-

plementing functions with nonlinear and/or nested recursion. For instance, we have

verified the equivalence of two programs for computing the Ackermann function

(see the running example presented in Section 4 and the examples of Section 5.1).

(2)–(6) The categories mon, inj, fun, nint, and lopt, which refer to monotonicity,

injectivity, functional dependence, non-interference, and loop optimizations prob-

lems, respectively (see Section 5). (7) The category ite, which refers to equivalence

properties and inequality properties relating two iterative programs acting on inte-

gers (by an inequality property we mean that the values computed by the programs

are related by ≤). (8) The category arr, which refers to equivalence and inequality

properties between iterative programs acting on integer arrays. (9) The category

rec, which refers to equivalence properties between recursive programs. (10) The

category i-r, which refers to equivalence properties between an iterative program

and a (non-tail) recursive program. For example, we have verified the equivalence of

the iterative and recursive versions of programs for computing: (i) the greatest com-

mon divisor of two integers, and (ii) the m-th triangular number, that is,
∑m

x=1 x .

(11) The category comp, which refers to equivalence and inequality properties be-

tween programs that contain compositions of different numbers of loops acting on

integers (3 problems) and integer arrays (7 problems). (12) The category pcor,

which refers to partial correctness properties of an iterative program with respect

to a recursive functional postcondition (De Angelis et al. 2015a).

Note that in our benchmark set, 31 problems (belonging to the categories nlin,

nint, and comp) are encoded by sets of clauses that include nonlinear clauses,

besides the ones that encode the relational properties, which are always nonlinear

(see Sections 4 and 5 for some examples).

Technical resources. The experimental evaluation has been performed on a single

core of an Intel Core Duo E7300 2.66GHz processor with 4GB of memory running

Ubuntu. For all problems we have set the timeout limit of 300 seconds.

Experimental processes. We have considered the following two experimental pro-

cesses. (E1) The first experimental process consists in running Z3 for checking the

satisfiability of the original sets of CHCs that encode the verification problems.

(E2) The second experimental process consists in running Algorithm 1 on the orig-

inal sets of CHCs for each verification problem, and then running Z3 for checking

the satisfiability of the derived CHCs. In this second process the PP strategy has

been iterated (see the end of Section 4), if more than one pair of atoms was present

in the bodies of the original sets of clauses. In particular, PP has been iterated for

24 sets of CHCs, in total, belonging to categories nint, arr, comp, and pcor.

Results. The results of the experimental evaluation are summarized in Table 2.

The times reported are the CPU seconds spent in user mode and kernel mode by

(i) VeriMAP for transforming the clauses, and (ii) Z3 for checking their satisfia-

Predicate Pairing for Program Verification 29

Problems Z3 before PP PP Z3 after PP

Category P S1 T1 TPP S2 T2

(1) nlin 13 4 16.11 25.80 13 13.12

(2) mon 18 1 1.04 2.27 12 3.72

(3) inj 11 0 – 1.36 8 1.39

(4) fun 7 4 1.39 1.24 7 1.48

(5) nint 18 3 0.27 55.80 17 41.33

(6) lopt 20 2 4.83 2.98 15 10.71

(7) ite 22 5 26.67 4.53 18 17.01

(8) arr 6 1 7.45 2.04 5 3.25

(9) rec 15 6 2.89 1.50 13 4.28

(10) i-r 4 0 – 0.65 3 1.02

(11) comp 10 0 – 16.35 7 6.46

(12) pcor 19 5 83.93 17.84 17 17.65

Total number 163 31 144.58 132.36 135 121.42

Average Time 4.66 0.81 0.90

Table 2. The first two columns report the names of the problem categories and

the number P of problems in each category, respectively. Columns S1 and S2 report

the number of verification problems solved by Z3 before and after the application

of the PP strategy, respectively. Columns T1 and T2 report the time taken by Z3

to solve the problems reported in columns S1 and S2, respectively. Column TPP

reports the time taken by VeriMAP to apply the PP strategy on the P problems.

Times are in seconds. The timeout is of 300 seconds. No timeout occurred during

the application of the PP strategy.

bility. The times required for translating the CHCs into the SMT-LIB format (this

translation is necessary for running Z3) are: 6.39 seconds for the first experimen-

tal process E1, and 22.59 seconds for the second experimental process E2. Those

translation times are not very high with respect to the solving times which are

144.58 seconds and 121.42 seconds, respectively.

As expected, the use of the PP strategy significantly increases the number of

problems that are solved by Z3. In particular, the number of solved problems in-

creases from 31 (Total of Column S1) to 135 (Total of Column S2). Note, however,

the PP strategy can derive a set of clauses which is larger than the original set. In

our benchmark we have observed that size increases of about 2.16 times on average.

Note also that the PP strategy increases the efficiency of the satisfiability check.

Indeed, the average time taken to run PP and then Z3 (1.88 seconds) is lower

than the average time taken to run Z3 on the original set of clauses (4.66 seconds).

30 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Although we have proved that the application of the PP strategy preserves all

LIA-definable models, in our experiments we have found three problems which

Z3 was able to solve before the application of the PP strategy (i.e., in the first

experimental process), and it was no longer able to solve, within the given time

limit, after the application of the PP strategy (i.e, in the second experimental

process). This phenomenon may be due to the fact that the termination of the

algorithms implemented by the Z3 solver is sensitive to the syntactic form of the

input clauses, and the PP strategy modifies that form. Further work is needed to

improve the termination behavior of the solver.

Finally, we would like to point out that the application of the PP strategy does

not decrease the efficiency of the whole verification process. If we consider only the

28 problems for which Z3 is able to solve both before and after the application of

the PP strategy, the average time taken to run PP and then Z3 (1.58 seconds) is

slightly lower than the time taken by Z3 alone (1.77 seconds).

7 Related Work and Conclusions

The basic idea behind the Predicate Pairing transformation strategy for constrained

Horn clauses is that, by finding a recursive definition of a predicate denoting the

conjunction of two atoms, it is often possible to infer relations among the vari-

ables occurring in the two atoms which would have been impossible to discover by

considering each atom separately.

Techniques for transforming logic programs by deriving new predicates defined

in terms of conjunctions of atoms have been largely studied. Let us recall, for

instance, the well-known tupling transformation strategy (Pettorossi and Proietti

1994) and the conjunctive partial deduction technique for logic program specializa-

tion (De Schreye et al. 1999). The main objective of tupling and conjunctive partial

deduction is the derivation of more efficient logic programs by avoiding multiple

traversals of data structures and repeated evaluations of predicate calls, and by

producing specialized program versions.

Thus, Predicate Pairing shares with tupling and conjunctive partial deduction

the idea of promoting a conjunction of atoms to a new predicate. However, in this

paper we have shown that the application of this idea to constrained Horn clauses

can also play a key role in improving the effectiveness of CHC solvers for proving

properties of imperative programs, besides the optimization of the execution of logic

programs, which is the objective of tupling and conjunctive partial deduction. This

is the case especially when the CHC solvers are required to test the satisfiability

of clauses that encode relational program properties, that is, properties that relate

two programs, or two executions of the same program. Indeed, as shown by many

examples considered in this paper, state-of-the-art solvers often fail to prove the

satisfiability of sets of clauses encoding relational properties because they can only

infer relations among the variables of individual atoms.

We have considered CHC solvers that prove satisfiability by using predicate ab-

straction, that is, by looking for models that are definable in a specific class A of

constraints (Bjørner et al. 2015). We have shown that, in principle, the Predicate

Predicate Pairing for Program Verification 31

Pairing strategy cannot worsen the effectiveness of the CHC solver. Indeed, we have

proved a very general result concerning the unfold/fold transformation rules used

by the strategy: if a set of clauses is transformed by applying the unfold/fold rules,

and the original set of clauses has an A-definable model, then also the transformed

set of clauses has an A-definable model. Thus, if the CHC solver is able to find

an A-definable model whenever it exists (and this is indeed possible if the validity

problem for the constraints in A is decidable), then every set of clauses that can

be proved satisfiable by the solver before the transformation, will also be proved

satisfiable by the solver after the transformation. We have shown that, in practice,

for the Z3 solver this property is guaranteed with very few exceptions.

We have also given some restrictions on the use of the rules that guarantee that

the converse of the above property holds, that is: if a set of clauses is transformed by

applying the unfold/fold rules, and the transformed set of clauses has anA-definable

model, then also the original set of clauses has an A-definable model. However, this

property is not always desirable. Indeed, the fact that in some cases Predicate

Pairing is able to transform (satisfiable) clauses that do not have an A-definable

model into clauses that have an A-definable model, may be a great advantage.

Indeed, this means that while a CHC solver that looks for A-definable models is

not able to prove the satisfiability of the original clauses, the same solver may be

able to prove the satisfiability of the transformed clauses.

The study of the properties that relate unfold/fold transformations and the ex-

istence of A-definable models is not present in the literature on tupling and con-

junctive partial deduction.

Then, we have presented an algorithm that implements the Predicate Pairing

strategy. One of the novel points of this algorithm with respect to tupling and

conjunctive partial deduction is that it realizes a heuristic to choose the appro-

priate atoms to be paired together in a new predicate definition, by maximizing

the number of equality constraints that relate the variables occurring in a pair of

atoms. This heuristic is crucially needed when dealing with nonlinear clauses that,

by unfolding, may generate clauses with more than two atoms in their body. We

have implemented our algorithm on the VeriMAP transformation and verification

system (De Angelis et al. 2014b), and we have evaluated its effectiveness on a

benchmark of over 160 problems encoding relational properties of small, yet non-

trivial C-like programs. The properties were of various kinds, including equivalence,

injectivity, functional dependence, and non-interference (a property of interest for

enforcing software security). The results show that the use of Predicate Pairing as

a preprocessor greatly improves the ability of the Z3 CHC solver (with the Du-

ality fixed-point computation engine (McMillan and Rybalchenko 2013)) to prove

satisfiability.

Several transformation-based techniques for constrained Horn clauses, or con-

straint logic programs, have been proposed as a means of facilitating program ver-

ification. Many of them are non-conjunctive specialization techniques, which work

by propagating the constraints occurring in the goal, thereby producing clauses

with strengthened constraints in their bodies (Albert et al. 2007; De Angelis et al.

2014a; De Angelis et al. 2017; De Angelis et al. 2015a; Kafle and Gallagher 2015;

32 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Kafle and Gallagher 2017; Méndez-Lojo et al. 2008; Peralta et al. 1998). Even if

specialization techniques have been shown to be very successful, in most cases they

cannot achieve the same effect as Predicate Pairing. Indeed, as already mentioned,

Predicate Pairing works by introducing new predicates corresponding to conjunc-

tions of old predicates, whereas non-conjunctive specialization can only introduce

new predicates that correspond to instances of old predicates. We have experimen-

tally checked that most of the problems considered in Section 6 cannot be solved via

(non-conjunctive) specialization alone. Due to lack of space we have not reported

these results.

The query-answer transformation (and variants thereof) is another pre-processing

technique that is sometimes applied before performing satisfiability tests using

CHC solvers (De Angelis et al. 2014a; Kafle and Gallagher 2015; Kafle and Gal-

lagher 2017). The aim of this transformation is to simulate the top-down, goal

oriented evaluation of the clauses in a bottom-up framework. The results we have

presented here, showing that Predicate Pairing is able to transform clauses without

an A-definable model into clauses with an A-definable model, are independent of

the evaluation strategy adopted by the CHC solvers, and hence the query-answer

transformation and the Predicate Pairing strategy should be viewed as orthogonal

techniques.

Predicate Pairing is an extension of the Linearization transformation, whose ob-

jective is to transform a set of linear clauses (that is, clauses with at most one atom

in their body) together with a nonlinear goal, into a set of linear clauses and linear

goals (De Angelis et al. 2015b). The Predicate Pairing strategy does not need any

linearity assumption, and indeed in Sections 4, 5, and 6 we have shown that this

strategy can solve several verification problems encoded by sets of nonlinear clauses.

It has also been shown that Linearization preserves the existence of LIA-definable

models (De Angelis et al. 2015b). Here we have generalized this result by proving

that the application of the unfold/fold transformation rules, independently of the

strategy, preserves the existence of A-definable models, for any class of constraints.

The Predicate Pairing algorithm presented here is an improvement of the one

reported in previous work presented at the SAS Symposium (De Angelis et al.

2016). Indeed, as already mentioned, here we use an equality-based heuristic to

choose the appropriate atoms to be paired together, and this technique has been

shown very effective in practice for handling nonlinear clauses. Also the case studies

and the benchmark set we consider in the present paper are much larger, and include

verification problems such as non-interference, correctness of loop optimizations,

and equivalence of nonlinear recursive programs that have not been considered in

our SAS paper (De Angelis et al. 2016). Neither in that paper there are general

results concerning the preservation of A-models.

Bjørner et al. have shown that unfolding preserves A-definable models provided

that the set A of constraints admits Craig interpolation (Bjørner et al. 2015). In

the present paper we have generalized this result by considering also other trans-

formations, and in particular folding, and we dropped the assumption about Craig

interpolation. Moreover, we assume that A is a subset of the set C of constraints

over which the clauses are defined, while Bjørner et al. take A to be equal to C.

Predicate Pairing for Program Verification 33

Our generalization is significant because sometimes CHC solvers that make use of

predicate abstraction look for models defined in subsets of the constraints used for

the clauses, such as the popular domain of the octagons (Miné 2006).

The problem of verifying relational properties is very relevant in the context of

software engineering. Indeed, during software development it is often the case that

one modifies the program text, and hence needs a proof that the semantics of the

new program version has some specified relation to the semantics of the old version.

This kind of proof is sometimes called regression verification (Godlin and Strichman

2008).

Several logics and methods have been presented in the literature for reasoning

about various relational program properties. A Hoare-like axiomatization of rela-

tional reasoning for simple while programs has been proposed by Benton (Benton

2004), who however does not present any technique for the automation of the proofs.

Program equivalence is one of the relational properties that have been extensively

studied in the past, and still receives remarkable attention in recent work (Barthe

et al. 2011; Chaki et al. 2012; Ciobâcă et al. 2014; Fedyukovich et al. 2016; Fels-

ing et al. 2014; Godlin and Strichman 2008; Lopes and Monteiro 2016; Strichman

and Veitsman 2016; Verdoolaege et al. 2012; Zaks and Pnueli 2008). A fruitful

idea for easing the problem of proving program equivalence is to reduce it to a

standard verification task by using some composition operator between imperative

programs (Barthe et al. 2011; Lahiri et al. 2013; Zaks and Pnueli 2008). The ap-

plication of these operators requires human ingenuity, and it is still necessary to

provide the suitable invariants to be used by the program verifier.

A method for reusing available verification techniques to prove program equival-

ence is proposed by Ganty et al. (Ganty et al. 2013), who identify a class of recursive

programs for which it is possible to precisely compute the so called summaries. This

method can be used to reduce the problem of checking the equivalence of two re-

cursive programs to the problem of checking the equivalence of their summaries.

Lopes and Monteiro proposed a different method for proving program equival-

ence that is based on the computation of precise (that is, not over-approximated)

summaries (Lopes and Monteiro 2016). This method considers programs over the

integers and is based on a transformation into integer (possibly nonlinear) polyno-

mials. The equivalence checking algorithm then works on loop-free programs. This

method has been applied to prove the correctness of several loop optimizations. As

shown in Section 5, Predicate Pairing is able to prove similar correctness properties,

by avoiding the use of nonlinear arithmetic.

Felsing et al. propose a technique for proving relational properties of imperative

programs, which is based on a translation of special purpose proof rules into con-

strained Horn clauses (Felsing et al. 2014). The satisfiability of these clauses is then

checked by state-of-the-art CHC solvers. The main difference between our approach

and the one of Felsing et al. is that we generate a translation of the relational prop-

erties into sets of CHCs starting from the semantics of the imperative language,

and hence we do not need any special purpose proof rule that depends on the pro-

gramming language and the class of properties under consideration. Instead, we use

language independent transformation rules for CHCs. In particular, unlike Felsing

34 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

et al., by using our approach we are able to verify relations between programs that

have different structure, because the transformation rules are independent of the

syntax of the source programs.

In conclusion, we would like to stress that our work confirms once again the

great advantages offered by the program verification approach based on the use of

constrained Horn clauses. Indeed, by reducing the problem of verifying properties

of programs in a given language to the problem of reasoning with constrained

Horn clauses, we are able to use general purpose techniques and very effective tools

developed over the last four decades in the fields of logic programming, constraint-

based reasoning, and automated theorem proving. In this way, we get verification

methods with a very high level of flexibility and parametricity with respect to the

language in which programs are written.

8 Acknowledgments

We warmly thank the anonymous referees for their very helpful comments and

criticism. This work has been partially supported by the National Group of Com-

puting Science (GNCS-INDAM). E. De Angelis, F. Fioravanti, and A. Pettorossi

are research associates at CNR-IASI, Rome, Italy.

References

Albert, E., Gómez-Zamalloa, M., Hubert, L., and Puebla, G. 2007. Verification
of Java Bytecode Using Analysis and Transformation of Logic Programs. In Practical
Aspects of Declarative Languages, M. Hanus, Ed. Lecture Notes in Computer Science
4354. Springer, 124–139.

Barthe, G., Crespo, J. M., and Kunz, C. 2011. Relational verification using product
programs. In FM 2011: Formal Methods - 17th International Symposium on Formal
Methods, Limerick, Ireland, June 20-24, 2011. Proceedings. Lecture Notes in Computer
Science 6664. Springer, 200–214.

Benoy, F. and King, A. 1997. Inferring argument size relationships with CLP(R).
In Proceedings of the 6th International Workshop on Logic Program Synthesis and
Transformation, LOPSTR’96, Stockholm, Sweden, August 28-30, 1996, J. P. Gallagher,
Ed. Lecture Notes in Computer Science 1207. Springer, 204–223.

Benton, N. 2004. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004.
ACM, 14–25.

Bjørner, N., Gurfinkel, A., McMillan, K. L., and Rybalchenko, A. 2015. Horn
Clause Solvers for Program Verification. In Fields of Logic and Computation II - Essays
Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, L. D. Beklemishev,
A. Blass, N. Dershowitz, B. Finkbeiner, and W. Schulte, Eds. Lecture Notes in Computer
Science 9300. Springer, Switzerland, 24–51.

Bradley, A. R., Manna, Z., and Sipma, H. B. 2006. What’s decidable about arrays? In
Proceedings of the 7th International Conference on Verification, Model Checking, and
Abstract Interpretation. VMCAI ’06. Lecture Notes in Computer Science, vol. 3855.
Springer, 427–442.

Predicate Pairing for Program Verification 35

Chaki, S., Gurfinkel, A., and Strichman, O. 2012. Regression verification for multi-
threaded programs. In Verification, Model Checking, and Abstract Interpretation - 13th
International Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012.
Proceedings, V. Kuncak and A. Rybalchenko, Eds. Lecture Notes in Computer Science
7148. Springer, 119–135.

Ciobâcă, S., Lucanu, D., Rusu, V., and Rosu, G. 2014. A language-independent proof
system for mutual program equivalence. In Formal Methods and Software Engineering
- 16th International Conference on Formal Engineering Methods, ICFEM 2014, Lux-
embourg, Luxembourg, November 3-5, 2014. Proceedings, S. Merz and J. Pang, Eds.
Lecture Notes in Computer Science 8829. Springer, 75–90.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixpoints. In Pro-
ceedings of the 4th ACM-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL ’77. ACM, 238–252.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014a. Program
verification via iterated specialization. Science of Computer Programming 95, Part 2,
149–175. Selected and extended papers from Partial Evaluation and Program Manipu-
lation 2013.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014b. VeriMAP:
A Tool for Verifying Programs through Transformations. In Proceedings of the 20th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS ’14. Lecture Notes in Computer Science 8413. Springer, 568–574.
Available at: http://www.map.uniroma2.it/VeriMAP.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2015a. Proving
correctness of imperative programs by linearizing constrained Horn clauses. Theory and
Practice of Logic Programming 15, 4-5, 635–650.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2015b. A rule-
based verification strategy for array manipulating programs. Fundamenta Informati-
cae 140, 3-4, 329–355.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2016. Relational
verification through horn clause transformation. In Proceedings of the 23rd Interna-
tional Symposium on Static Analysis, SAS 2016, Edinburgh, UK, September 8-10, 2016,
X. Rival, Ed. Lecture Notes in Computer Science 9837. Springer, 147–169.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2017. Semantics-
based generation of verification conditions via program specialization. Science of Com-
puter Programming (to appear).

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS ’08. Lecture Notes in Computer Science 4963. Springer,
337–340.

De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., and
Sørensen, M. H. 1999. Conjunctive partial deduction: Foundations, control, algo-
rithms, and experiments. Journal of Logic Programming 41, 2–3, 231–277.

Debray, S. K. and Ramakrishnan, R. 1994. Abstract interpretation of logic programs
using magic transformations. Journal of Logic Programming 18, 149–176.

Etalle, S. and Gabbrielli, M. 1996. Transformations of CLP modules. Theoretical
Computer Science 166, 101–146.

Fedyukovich, G., Gurfinkel, A., and Sharygina, N. 2016. Property directed equival-
ence via abstract simulation. In Computer Aided Verification: 28th International Confer-
ence, CAV 2016, Toronto, Canada, July 17-23, 2016, Proceedings, Part II, S. Chaudhuri

36 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

and A. Farzan, Eds. Lecture Notes in Computer Science, vol. 7792. Springer Interna-
tional Publishing.

Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., and Ulbrich, M. 2014. Au-
tomating regression verification. In ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, I. Crnkovic,
M. Chechik, and P. Grünbacher, Eds. 349–360.

Ganty, P., Iosif, R., and Konečný, F. 2013. Underapproximation of procedure sum-
maries for integer programs. In Tools and Algorithms for the Construction and Analysis
of Systems: 19th International Conference, TACAS 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, S. A. Piterman, Nirand Smolka, Ed. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 245–259.

Godlin, B. and Strichman, O. 2008. Inference rules for proving the equivalence of
recursive procedures. Acta Informatica 45, 6, 403–439.

Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. Syn-
thesizing software verifiers from proof rules. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12. 405–416.

Gurfinkel, A., Kahsai, T., Komuravelli, A., and Navas, J. 2015. The SeaHorn Ver-
ification Framework. In Computer Aided Verification: 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015. Lecture Notes in Computer
Science 9206. Springer, 343–361.

Hoare, C. 1969. An Axiomatic Basis for Computer Programming. Communications of
the ACM 12, 10 (October), 576–580, 583.

Hoder, K., Bjørner, N., and de Moura, L. M. 2011. µZ– An efficient engine for fixed
points with constraints. In Computer Aided Verification, 23rd International Conference,
CAV ’11, Snowbird, UT, USA, July 14–20, 2011. Proceedings, G. Gopalakrishnan and
S. Qadeer, Eds. Lecture Notes in Computer Science 6806. Springer, 457–462.

Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., and Rümmer, P. 2012.
A verification toolkit for numerical transition systems. In FM ’12: Formal Methods,
18th International Symposium, Paris, France, August 27–31, 2012. Proceedings, D. Gi-
annakopoulou and D. Méry, Eds. Lecture Notes in Computer Science 7436. Springer,
247–251.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: A survey. Journal of
Logic Programming 19/20, 503–581.

Jaffar, J., Santosa, A., and Voicu, R. 2009. An interpolation method for CLP traver-
sal. In Principles and Practice of Constraint Programming, CP ’09, I. Gent, Ed. Lecture
Notes in Computer Science 5732. Springer, 454–469.

Kafle, B. and Gallagher, J. P. 2015. Constraint Specialisation in Horn Clause Ver-
ification. In Proceedings of the 2015 Workshop on Partial Evaluation and Program
Manipulation, PEPM ’15, Mumbai, India, January 15–17, 2015. ACM, 85–90.

Kafle, B. and Gallagher, J. P. 2017. Horn clause verification with convex polyhedral
abstraction and tree automata-based refinement. Computer Languages, Systems &
Structures 47, 2–18.

Kafle, B., Gallagher, J. P., and Morales, J. F. 2016. RAHFT: A tool for verifying
Horn clauses using abstract interpretation and finite tree automata. In Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I. Lecture Notes in Computer Science 9779. Springer,
261–268.

Lahiri, S. K., McMillan, K. L., Sharma, R., and Hawblitzel, C. 2013. Differential
assertion checking. In Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

Predicate Pairing for Program Verification 37

ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013, B. Meyer,
L. Baresi, and M. Mezini, Eds. ACM, 345–355.

Leroy, X. 2009. Formal verification of a realistic compiler. Communications of the
ACM 52, 7, 107–115.

Leuschel, M. and Bruynooghe, M. 2002. Logic program specialisation through partial
deduction: Control issues. Theory and Practice of Logic Programming 2, 4&5, 461–515.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin. Second
Edition.

Lopes, N. P. and Monteiro, J. 2016. Automatic equivalence checking of programs with
uninterpreted functions and integer arithmetic. International Journal on Software Tools
for Technology Transfer 18, 4, 359–374.

McMillan, K. L. and Rybalchenko, A. 2013. Solving constrained Horn clauses using
interpolation. MSR Technical Report 2013-6, Microsoft Report.

Mendelson, E. 1997. Introduction to Mathematical Logic. Chapman & Hall, London,
UK. Fourth Edition.

Méndez-Lojo, M., Navas, J. A., and Hermenegildo, M. V. 2008. A flexible, (C)LP-
based approach to the analysis of object-oriented programs. In 17th International Sym-
posium on Logic-Based Program Synthesis and Transformation, LOPSTR ’07, Kon-
gens Lyngby, Denmark, August 23–24, 2007. Lecture Notes in Computer Science 4915.
Springer, 154–168.

Miné, A. 2006. The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19, 1, 31–100.

Peralta, J. C., Gallagher, J. P., and Saglam, H. 1998. Analysis of Imperative
Programs through Analysis of Constraint Logic Programs. In Proceedings of the 5th
International Symposium on Static Analysis, SAS ’98, G. Levi, Ed. Lecture Notes in
Computer Science 1503. Springer, 246–261.

Pettorossi, A. and Proietti, M. 1994. Transformation of logic programs: Foundations
and techniques. Journal of Logic Programming 19,20, 261–320.

Podelski, A. and Rybalchenko, A. 2007. ARMC: The Logical Choice for Software
Model Checking with Abstraction Refinement. In Practical Aspects of Declarative
Languages, PADL ’07, M. Hanus, Ed. Lecture Notes in Computer Science 4354. Springer,
245–259.

Rümmer, P., Hojjat, H., and Kuncak, V. 2013. Disjunctive interpolants for Horn-
clause verification. In Proceedings of the 25th International Conference on Computer
Aided Verification, CAV ’13, Saint Petersburg, Russia, July 13–19, 2013, N. Sharygina
and H. Veith, Eds. Lecture Notes in Computer Science 8044. Springer, 347–363.

Strichman, O. and Veitsman, M. 2016. Regression verification for unbalanced recursive
functions. In FM 2016: Formal Methods - 21st International Symposium, Limassol,
Cyprus, November 9-11, 2016, Proceedings. Lecture Notes in Computer Science, vol.
9995. Springer International Publishing, 645–658.

Tamaki, H. and Sato, T. 1984. Unfold/fold transformation of logic programs. In Pro-
ceedings of the Second International Conference on Logic Programming, ICLP ’84, S.-Å.
Tärnlund, Ed. Uppsala University, Uppsala, Sweden, 127–138.

Verdoolaege, S., Janssens, G., and Bruynooghe, M. 2012. Equivalence checking
of static affine programs using widening to handle recurrences. ACM Trans. Program.
Lang. Syst. 34, 3, 11.

Zaks, A. and Pnueli, A. 2008. CoVaC: Compiler validation by program analysis of the
cross-product. In Proceedings of the 15th International Symposium on Formal Methods
(FM 2008), Turku, Finland, May 26-30, 2008, J. Cuéllar, T. S. E. Maibaum, and K. Sere,
Eds. Lecture Notes in Computer Science 5014. Springer, 35–51.

38 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

Appendix

Proof of Theorem 3

Proof
Let us assume that there exists an A-definable model Σ of Pi that is tight on Defsi .

We will construct an A-definable model Σ′ of Pi+1 that is tight on Defsi+1. The

proof proceeds by cases on the transformation rule applied to derive Pi+1 from Pi .

(Case R1) Suppose that Pi+1 is derived from Pi by applying the definition rule.

Thus, Pi+1 = Pi ∪ {D} and Defsi+1 = Defsi ∪ {D}, where D is the clause

newp(X1, . . . ,Xk) ← c,G , and the following conditions hold: (i) newp is a new

predicate symbol, (ii) c ∈ A, (iii) all predicates occurring in G also occur in P0,

and (iv) X1, . . . ,Xk are distinct variables occurring free in (c,G).

Let Σ′ be a symbolic interpretation that is equal to Σ for all atoms whose pred-

icate is different from newp, and Σ′(newp(X1, . . . ,Xk)) = ∃Y1 . . . ∃Ym(c ∧ Σ(G))

where {Y1, . . . ,Ym} = Fvars(c ∧ Σ(G)) {X1, . . . ,Xk}.
Now we have that Σ′ is an A-definable model of Pi+1, as the following two points

hold:

Point (i): Σ′ is an A-definable model of Pi because Σ′ is equal to Σ for all atoms

whose predicates occur in Pi , and

Point (ii): Σ′ is an A-definable model of D , that is,

D |= ∀(c ∧ Σ′(G)→ Σ′(newp(X1, . . . ,Xk))).

Point (ii) is shown as follows. Since Y1, . . . ,Ym do not occur free in the formula

Σ′(newp(X1, . . . ,Xk)) and newp does not occur in G ,

D |= ∀(c ∧ Σ′(G)→ Σ′(newp(X1, . . . ,Xk)))

iff D |= ∀(∃Y1 . . . ∃Ym(c ∧ Σ(G))→ Σ′(newp(X1, . . . ,Xk)))

and the latter implication holds by the definition of Σ′. Moreover, from the definition

of Σ′ and from the hypothesis that Σ is tight on Defsi , it follows immediately that

Σ′ is tight on Defsi+1.

(Case R2) Suppose that Pi+1 is derived from Pi by applying the unfolding rule.

Thus, Pi+1 = (Pi {C}) ∪ {H ← c, cj ,G1,Bj ,G2 | j = 1, . . . ,m}, where C is

the clause H ← c,G1, p(X1, . . . ,Xk),G2 in Pi and {p(X1, . . . ,Xk) ← cj ,Bj | j =

1, . . . ,m} is the set of clauses in Pi whose head predicate is p.

Now we show that Σ is an A-definable model of Pi+1 that is tight on Defsi+1.

By the hypothesis that Σ is an A-definable model of Pi we have that

D |= ∀(c ∧ Σ(G1) ∧ Σ(p(X1, . . . ,Xk)) ∧ Σ(G2)→ Σ(H))

and, for j =1, . . . ,m,

D |= ∀(cj ∧ Σ(Bj)→ Σ(p(X1, . . . ,Xk))).

Then, for j =1, . . . ,m,

D |= ∀(c ∧ cj ∧ Σ(G1) ∧ Σ(Bj) ∧ Σ(G2)→ Σ(H))

and hence Σ is an A-definable model of Pi+1.

Obviously, Σ is tight on Defsi+1, which is equal to Defsi .

(Case R3) Suppose that Pi+1 is derived from Pi by applying the folding rule. Thus,

Pi+1 = (Pi {C})∪{E}, where C is the clause H ← c,G1,Q ,G2 in Pi and E is the

clause H ← e,G1,Kϑ,G2 derived using the clause D : K ← d ,B in Defsi according

Predicate Pairing for Program Verification 39

to rule R3. Moreover, Conditions (i)–(iii) listed above when introducing rule R3,

do hold.

Now we show that Σ is an A-definable model of Pi+1 that is tight on Defsi+1.

By the hypothesis that Σ is an A-definable model of Pi we have that

D |= ∀(c ∧ Σ(G1) ∧ Σ(Q) ∧ Σ(G2)→ Σ(H)).

By Conditions (ii) and (iii) and the definition of symbolic interpretation, we get

that

D |= ∀(e ∧ Σ(G1) ∧ (∃Y1 . . . ∃Ym(d ∧ Σ(B)))ϑ ∧ Σ(G2)→ Σ(H))

where {Y1, . . . ,Ym} = Fvars(d ∧Σ(B)) Fvars(Σ(K)). Since Σ is a symbolic inter-

pretation that is tight on Defsi , we have that

D |= ∀(e ∧ Σ(G1) ∧ Σ(Kϑ) ∧ Σ(G2)→ Σ(H)).

Thus, Σ is an A-definable model of Pi+1.

Obviously, Σ is tight on Defsi+1, which is equal to Defsi .

(Case R4) Suppose that Pi+1 is derived from Pi by applying the constraint replace-

ment rule. Thus, Pi+1 = (Pi {(H ← c1,G), . . . , (H ← ck ,G)}) ∪ {(H ← d1,G),

. . . , (H ← dm ,G)}, where

D |= ∀ (∃Y1 . . . ∃Yr (c1 ∨ . . . ∨ ck)↔ ∃Z1 . . . ∃Zs (d1 ∨ . . . ∨ dm)),

{Y1, . . . ,Yr} = Fvars(c1 ∨ . . . ∨ ck) vars({H ,G}), and {Z1, . . . ,Zs} = Fvars(d1 ∨
. . . ∨ dm) vars({H ,G}).

Now we show that Σ is an A-definable model of Pi+1 that is tight on Defsi+1.

By the hypothesis that Σ is an A-definable model of Pi , the fact that Y1, . . . ,Yr

do not occur in (G ,H), and the distributivity law, we have that

D |= ∀(∃Y1 . . . ∃Yr (c1 ∨ . . . ∨ ck) ∧ Σ(G)→ Σ(H))

and hence

D |= ∀(∃Z1 . . . ∃Zs (d1 ∨ . . . ∨ dm) ∧ Σ(G)→ Σ(H)).

Thus, by using again the distributivity law, and the fact that Z1, . . . ,Zs do not

occur in (G ,H), we get that Σ is an A-definable model of Pi+1. Moreover, Σ is

tight on Defsi+1, which is equal to Defsi .

Proof of Theorem 5

Proof

Let us assume that there exists an A-definable model Σ′ of Pi+1, for i =0, . . . ,n−1.

We will construct an A-definable model Σ of Pi . The proof proceeds by cases on

the transformation rule applied to derive Pi+1 from Pi .

(Case R1) Suppose that Pi+1 is derived from Pi by applying the definition rule.

Thus, Pi+1 = Pi ∪ {D}, where D is a new clause. Let Σ be equal to Σ′. Σ is an

A-definable model of every subset of Pi+1, and hence it is an A-definable model

of Pi .

(Case R2) Suppose that Pi+1 is derived from Pi by applying the unfolding rule.

Thus, Pi+1 = (Pi {C}) ∪ {H ← c, cj ,G1,Bj ,G2 | j = 1, . . . ,m}, where C is

the clause H ← c,G1, p(X1, . . . ,Xk),G2 in Pi and {p(X1, . . . ,Xk) ← cj ,Bj | j =

1, . . . ,m} is the set of clauses in Pi whose head predicate is p. From the hypothesis

that the transformation is not a self-unfolding, that is, H is either false or its

40 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti

predicate is different from p, it follows that the set {p(X1, . . . ,Xk) ← cj ,Bj | j =

1, . . . ,m} is a subset of Pi+1. Since Σ′ is an A-definable model of Pi+1, we have

that, for j =1, . . . ,m,

D |= ∀(c ∧ cj ∧ Σ′(G1) ∧ Σ′(Bj) ∧ Σ′(G2)→ Σ′(H)) and (1)

D |= ∀(cj ∧ Σ′(Bj)→ Σ′(p(X1, . . . ,Xk))) (2)

Now let us define

Σ(q(X1, . . . ,Xl)) = Σ′(q(X1, . . . ,Xl)) for q different from p, (3)

Σ(p(X1, . . . ,Xk)) = ∃Y1 . . . ∃Yn

∨m
j=1(cj ∧ Σ′(Bj)) (4)

where {Y1, . . . ,Yn} = Fvars(
∨m

j=1(cj ∧ Σ′(Bj))) {X1, . . . ,Xk}.
From (2) and (4) it follows that

D |= ∀(Σ(p(X1, . . . ,Xk))→ Σ′(p(X1, . . . ,Xk))) (5)

and hence, for every conjunction of atoms G ,

D |= ∀(Σ(G)→ Σ′(G)) (6)

Now we show that Σ is an A-definable model of Pi , that is, Σ is an A-definable

model of each clause D in Pi . We consider the following three subcases.

(Subcase 1) D is the clause C : H ← c,G1, p(X1, . . . ,Xk),G2 to which the unfolding

rule is applied. By definition of Σ, since H is either false or its predicate is different

from p, by (3), we get

Σ(H) = Σ′(H).

and hence, by (1), we get

D |= ∀(c ∧ Σ′(G1) ∧
∨m

j=1(cj ∧ Σ′(Bj)) ∧ Σ′(G2)→ Σ(H))

By (4), we get

D |= ∀(c ∧ Σ′(G1) ∧ Σ(p(X1, . . . ,Xk)) ∧ Σ′(G2)→ Σ(H))

and, finally, by (6),

D |= ∀(c ∧ Σ(G1) ∧ Σ(p(X1, . . . ,Xk)) ∧ Σ(G2)→ Σ(H))

(Subcase 2) D is one of the clauses p(X1, . . . ,Xk) ← cj ,Bj used for unfolding

p(X1, . . . ,Xk) in C . From the definition of Σ(p(X1, . . . ,Xk)) given by (4), it follows

that

D |= ∀(cj ∧ Σ′(Bj)→ Σ(p(X1, . . . ,Xk)))

and hence, by (6),

D |= ∀(cj ∧ Σ(Bj)→ Σ(p(X1, . . . ,Xk)))

(Subcase 3) D is a clause in Pi ({C} ∪ {p(X1, . . . ,Xk) ← cj ,Bj | j = 1, . . . ,m}).
Let D be a clause of the form K ← e,Q . Since K is either false or its predicate is

different from p, by (3) it follows that Σ(K) = Σ′(K). Since D is different from C ,

it also belongs to Pi+1, and by the hypothesis that Σ′ is an A-definable model of

Pi+1, we have that

D |= ∀(e ∧ Σ′(Q)→ Σ(K))

Thus, by (6),

D |= ∀(e ∧ Σ(Q)→ Σ(K)).

(Case R3) Suppose that Pi+1 is derived from Pi by applying the folding rule. Thus,

Pi+1 = (Pi {C})∪{E}, where C is the clause H ← c,G1,Q ,G2 in Pi and E is the

clause H ← e,G1,Kϑ,G2 derived using the clause D : K ← d ,B in Defsi according

Predicate Pairing for Program Verification 41

to rule R3. Moreover, Conditions (i)–(iii) listed above when introducing rule R3,

do hold.

Now we show that Σ′ is an A-definable model of Pi , and hence we can take Σ to

be equal to Σ′. From the hypothesis that the application of folding is reversible it

follows that D belongs to Pi+1, and since Σ′ is an A-definable model of Pi+1, we

have that

D |= ∀(d ∧ Σ′(B)→ Σ′(K)) and

D |= ∀(e ∧ Σ′(G1),Σ′(Kϑ),Σ′(G2)→ Σ′(H))

and hence, by the definition of symbolic interpretation,

D |= ∀(e ∧ dϑ ∧ Σ′(G1),Σ′(Bϑ),Σ′(G2)→ Σ′(H))

By Conditions (i)–(ii) of rule R3, we get

D |= ∀(c ∧ Σ′(G1),Σ′(Q),Σ′(G2)→ Σ′(H))

and thus Σ′ is an A-definable model of Pi .

(Case R4) Suppose that Pi+1 is derived from Pi by applying the constraint replace-

ment rule. Thus, Pi+1 = (Pi {(H ← c1,G), . . . , (H ← ck ,G)}) ∪ {(H ← d1,G),

. . . , (H ← dm ,G)}, where

D |= ∀ (∃Y1 . . . ∃Yr (c1 ∨ . . . ∨ ck)↔ ∃Z1 . . . ∃Zs (d1 ∨ . . . ∨ dm)),

{Y1, . . . ,Yr} = Fvars(c1 ∨ . . . ∨ ck) vars({H ,G}), and {Z1, . . . ,Zs} = Fvars(d1 ∨
. . . ∨ dm) vars({H ,G}).

Now we show that Σ′ is an A-definable model of Pi , and hence we can take Σ to

be equal to Σ′. By the hypothesis that Σ′ is an A-definable model of Pi+1, the fact

that Z1, . . . ,Zs do not occur in (G ,H), and the distributivity law, we have that

D |= ∀(∃Z1 . . . ∃Zs (d1 ∨ . . . ∨ dm) ∧ Σ′(G)→ Σ′(H))

and hence

D |= ∀(∃Y1 . . . ∃Yr (c1 ∨ . . . ∨ ck) ∧ Σ′(G)→ Σ′(H)).

Thus, by using again the distributivity law and the fact that Y1, . . . ,Yr do not

occur in (G ,H), we get that Σ′ is an A-definable model of Pi .

	1 Introduction
	2 Constrained Horn Clauses
	3 Transformation Rules and Preservation of A-definable Models
	4 Predicate Pairing
	5 Case Studies: Relational Program Properties
	5.1 Functions with Nonlinear and/or Nested Recursion
	5.2 Monotonicity, Injectivity, and Functional Dependence
	5.3 Non-interference
	5.4 Loop Optimizations
	5.5 Array-manipulating Programs

	6 Experimental Evaluation
	7 Related Work and Conclusions
	8 Acknowledgments
	References

