
TLP 18 (5–6): 806–845, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000418

806

Scaling-up reasoning and advanced analytics on
BigData�

TYSON CONDIE, ARIYAM DAS, MATTEO INTERLANDI,

ALEXANDER SHKAPSKY, MOHAN YANG and

CARLO ZANIOLO

University of California, Los Angeles, CA, USA

(e-mails: tcondie@cs.ucla.edu, ariyam@cs.ucla.edu, minterlandi@cs.ucla.edu,
shkapsky@cs.ucla.edu, yang@cs.ucla.edu, zaniolo@cs.ucla.edu)

submitted 15 May 2017; revised 12 July 2018; accepted 22 July 2018

Abstract

BigDatalog is an extension of Datalog that achieves performance and scalability on both

Apache Spark and multicore systems to the point that its graph analytics outperform those

written in GraphX. Looking back, we see how this realizes the ambitious goal pursued by

deductive database researchers beginning 40 years ago: this is the goal of combining the rigor

and power of logic in expressing queries and reasoning with the performance and scalability

by which relational databases managed BigData. This goal led to Datalog which is based on

Horn Clauses like Prolog but employs implementation techniques, such as semi-näıve fixpoint

and magic sets, that extend the bottom-up computation model of relational systems, and

thus obtain the performance and scalability that relational systems had achieved, as far back

as the 80s, using data-parallelization on shared-nothing architectures. But this goal proved

difficult to achieve because of major issues at (i) the language level and (ii) at the system

level. The paper describes how (i) was addressed by simple rules under which the fixpoint

semantics extends to programs using count, sum and extrema in recursion, and (ii) was tamed

by parallel compilation techniques that achieve scalability on multicore systems and Apache

Spark. This paper is under consideration for acceptance in Theory and Practice of Logic

Programming.
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1 Introduction

A growing body of research on scalable data analytics has brought a renaissance

of interest in Datalog because of its ability to specify declaratively advanced data-

intensive applications that execute efficiently over different systems and architectures,

including massively parallel ones (Seo et al. 2013; Shkapsky et al. 2013; Yang and

Zaniolo 2014; Aref et al. 2015; Wang et al. 2015; Yang et al. 2015; Shkapsky

et al. 2016; Yang et al. 2017). The trends and developments that have led to this

� This work was supported in part by NSF under Grants IIS-1218471, IIS-1302698 and CNS-1351047,
and in part by NIH BigData to Knowledge (BD2K) under Grant U54EB020404.

https://doi.org/10.1017/S1471068418000418 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000418


Scaling-up reasoning and advanced analytics 807

renaissance can be better appreciated if we contrast them with those that motivated

the early research on Datalog back in the 80s. The most obvious difference is the

great importance and pervasiveness of BigData that, by enabling intelligent decision

making and solving complex problems, is delivering major benefits to societies and

economies. This is remarkably different from the early work on Datalog in the 80s,

which was motivated by interest in expert system applications that then proved to

be only of transient significance. The main objective of this paper is to present the

significant technological advances that have made possible for Datalog to exploit

the opportunities created by BigData applications. One is the newly found ability

to support a larger set of applications by extending the declarative framework of

Horn clauses to include aggregates in recursive rules. The other is the ability of

scaling up Datalog applications on BigData by exploiting parallel systems featuring

multicore and distributed architectures. We will next introduce and discuss the first

topic, by summarizing the recent findings presented in Zaniolo et al. (2017) and then

extending them with new examples of graph algorithms, and knowledge discovery

and data mining applications. The second topic is briefly discussed in this section;

then, it is revisited in Section 5 and fully discussed in Sections 6 and 7 on the basis

of results and techniques from Shkapsky et al. (2016) and Yang et al. (2017).

A common trend in the new generation of Datalog systems is the usage of

aggregates in recursion, since they enable the concise expression and efficient support

of much more powerful algorithms than those expressible by programs that are

stratified w.r.t. negation and aggregates (Seo et al. 2013; Shkapsky et al. 2013;

Wang et al. 2015; Shkapsky et al. 2016). As discussed in more detail in the related

work section, extending the declarative semantics of Datalog to allow aggregates

in recursion represents a difficult problem that had seen much action in the early

days of Datalog (Kemp and Stuckey 1991; Greco et al. 1992; Ross and Sagiv

1992). Those approaches sought to achieve both (i) a formal declarative semantics

for deterministic queries using the basic SQL aggregates, min, max, count and sum,

in recursion and (ii) their efficient implementation by extending techniques of the

early Datalog systems (Morris et al. 1986; Chimenti et al. 1987; Ramakrishnan

et al. 1992; Vaghani et al. 1994; Arni et al. 2003). Unfortunately, as discussed in

the related work section, some of those approaches had limited generality since

they did not deal with all four basic aggregates, while the proposal presented in

Ross and Sagiv (1992) that was covering all four basic aggregates using different

lattices for different aggregates faced other limitations, including those pointed out

by Van Gelder (1993) that are discussed in Section 8. These works were followed

by more recent approaches that addressed the problem of using more powerful

semantics, such as answer-set semantics, that require higher levels of computational

complexity and thus are a better for higher-complexity problems than for the very

efficient algorithms needed on BigData (Simons et al. 2002; Pelov et al. 2007; Son

and Pontelli 2007; Swift and Warren 2010; Faber et al. 2011; Gelfond and Zhang

2014).

The recent explosion of work on BigData has also produced a revival of interest

in Datalog as a parallelizable language for expressing and supporting efficiently

BigData Analytics (Seo et al. 2013; Shkapsky et al. 2013; Wang et al. 2015). As
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described from Section 5 onward, the projects discussed in those papers have

demonstrated the ability of Datalog to provide scalable support for BigData

applications on both multicore and distributed systems. Most of the algorithms

discussed in those papers are graph algorithms or other algorithms that use

aggregates in recursion, whereby a full convergence of formal declarative semantics

and amenability to efficient implementation becomes a critical objective. By sup-

porting graph applications written in Datalog and compiled onto Apache Spark

with better performance than the same applications written in GraphX (a Spark

framework optimized for graph algorithms) and Scala (Spark’s native language),

our BigDatalog system (Shkapsky et al. 2016) proved that we have achieved this

very difficult objective. Along with the post-MapReduce advances demonstrated

by Apache Spark, this success was made possible by the theoretical developments

presented in Zaniolo et al. (2017), where the concept of premappability (PreM) was

introduced for constraints using a unifying semantics that makes possible the use

of the aggregates min, max, count and sum in recursive programs. Indeed, PreM of

constraints provides a simple criterion that (i) the system optimizer can utilize to

push constraints into recursion, and (ii) the user can utilize to write programs using

aggregates in recursion, with the guarantee that they have indeed a formal fixpoint

semantics. Along with its formal fixpoint semantics, this approach also extends the

applicability of traditional Datalog optimization techniques, to programs that use

aggregates in rules defining recursive predicates.

The rest of this paper is organized as follows. In the next section, we introduce

the problem of supporting aggregates in recursion; then, in Section 3, we present

how such Datalog extension can be used in practice to implement efficient graph

applications. We thus introduce in Section 4 even more advanced knowledge

discovery and data mining analytics such as classification and regression. Sections 5–

7 introduce our BigDatalog and BigDatalog-MC systems that support scalable

and efficient analytics through distributed and multicore architectures, respectively.

Related work and conclusion presented in Sections 8 and 9 bring the paper to a

closing.

2 Datalog extensions: min and max in recursive rules

In this section, we first introduce some basics about Datalog before explaining its

recent extensions. A Datalog program is formally represented as a finite set of rules.

A Datalog rule, in turn, can be represented as h ← b1, . . . , bn, where h denotes

the head of the rule and b1, . . . , bn represents the corresponding body. Technically,

h and each bi are literals assuming the form pi(t1, . . . , tj), where pi is a predicate

and each ti can either be a constant or a variable. A rule with an empty body is

called a fact. The comma separating literals in a body of the rule represents logical

conjunction (AND). Throughout the paper, we follow the convention that predicate

and function names begin with lower case letters, and variable names begin with

upper case letters.

A most significant advance in terms of language and expressive power offered by

our systems (Shkapsky et al. 2016; Yang et al. 2017) is that they provide a formal
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semantics and efficient implementation for recursive programs that use min, max,

count and sum in recursion. We present here an informal summary of these advances

for which Zaniolo et al. (2017) provides a formal in-depth coverage.

Consider for instance Example 1, where the goal is min((X, Z), (Dxz)) in r3 specifies

that we want the min values of Dxz for each unique pair of values (X, Z) in dpath

defined by rules r1 and r2.

Example 1 (Computing distances between node pairs, and finding their min)

r1 : dpath(X, Z, Dxz) <- darc(X, Z, Dxz).

r2 : dpath(X, Z, Dxz) <- dpath(X, Y, Dxy), darc(Y, Z, Dyz),

Dxz = Dxy + Dyz.

r3 : spath(X, Z, Dxz) <- dpath(X, Z, Dxz), is min((X, Z), (Dxz)).

Thus, the special notation is min((X, Z), (Dxz)) tells the compiler that

spath(X, Z, Dxz) is a special predicate supported by a specialized implementation

(the query and optimization techniques will be discussed in the following sections).

Similar observations also hold for is max. However, the formal semantics of rules

with extrema constructs is defined using standard (closed-world) negation, whereby

the semantics of r3 is defined by the following two rules1.

spath(X, Z, Dxz) <- dpath(X, Z, Dxz),¬lesser(X, Z, Dxz).
lesser(X, Z, Dxz) <- dpath(X, Z, Dxz), dpath(X, Z, D1), D1 < Dxz.

Expressing is min via negation also reveals the non-monotonic nature of extrema

constrains, whereby this program will be treated as a stratified program, with a “per-

fect model” semantics, realized by an iterated-fixpoint computation (Przymusinski

1988). In this computation, dpath is assigned to a stratum lower than spath and

thus the computation of dpath must complete before the computation of spath

via is min in r3 can begin. This stratified computation can be very inefficient or

even non-terminating when the original graph of Example 1 contains cycles. Thus,

much research work was spent on solving this problem, before the simple solution

described next emerged, and was used in BigDatalog to support graph algorithms

with superior performance (Shkapsky et al. 2016). This solution consists in taking

the is min constraint on dpath in r3 and moving it to the rules r1 and r2 defining

dpath, producing the rules in Example 2. This rewriting will be called a transfer of

constraints2.

1 This rewriting assumes that there is only one is min in our program. In the presence of multiple
occurrences, we will need to add a subscript to keep them distinct.

2 In the example at hand, we have conveniently used the same names for corresponding variables in
all our rules. In general, however, the transfer also involves a renaming for the variable(s) used in
specifying the constraint.

https://doi.org/10.1017/S1471068418000418 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000418


810 T. Condie et al.

Example 2 (Shortest distances between node pairs)

r′1 : dpath(X, Z, Dxz) <- darc(X, Z, Dxz), is min((X, Z), (Dxz)).

r′2 : dpath(X, Z, Dxz) <- dpath(X, Y, Dxy), darc(Y, Z, Dyz),

Dxz = Dxy + Dyz, is min((X, Z), (Dxz)).

r′3 : spath(X, Z, Dxz) <- dpath(X, Z, Dxz).

While, at the syntactic level, this transfer of constraint is quite simple, at the semantic

level, it raises the following two critical questions: (i) does the program in Example

2 have a formal semantics, notwithstanding the fact that it uses non-monotonic

constructs in recursion, and (ii) is it equivalent to the original program, insofar as it

produces the same answers for spath? A positive formal answer to both questions

was provided in Zaniolo et al. (2017) using the notion of premappability (PreM),

which is summarized next.

Premappability (PreM) for constraints. Let T denote the immediate consequence

operator (ICO) for the rules defining a recursive predicate3. Since our rules are

positive, the mapping defined by T has a least-fixpoint in the lattice of set

containment. Moreover, the property that such least-fixpoint is equivalent to the

fixpoint iteration T ↑ω(∅) allows us to turn this declarative semantics into a concrete

one. Now, let γ be a constraint, such as an extrema constraint like min. We have the

following important definition:

Definition 1

The constraint γ is said to be PreM to T when, for every interpretation I , we have

that: γ(T (I)) = γ(T (γ(I))).

For convenience of notation, we will also denote by Tγ the composition of the

function T with the function γ, i.e., Tγ(I) = γ(T (I)), which will be called the

constrained ICO for T and the rules having T as their ICO. Then, PreM holds

whenever Tγ(I) = Tγ(γ(I)). We will next focus on cases of practical interest where

the transfer of constraints under PreM produces optimized programs that are safe

and terminating (even when the original programs do not terminate). Additionally,

we prove that the transformation is indeed equivalence-preserving. Thus, we focus

on situations where T ↑nγ (∅) = T ↑n+1
γ (∅), i.e., the fixpoint iteration converges after a

finite number of steps n. The rules defining a recursive predicate p are those having

as head p or predicates that are mutually recursive with p. Then, the following

theorem was proven in Zaniolo et al. (2017):

Theorem 1

In a Datalog program, let T be the ICO for the positive rules defining a recursive

predicate. If the constraint γ is PreM to T , and a fixpoint exists such that T ↑n+1(∅) =

T ↑n(∅) for some integer n, then γ(T ↑ω(∅)) = T ↑nγ (∅).

In Zaniolo et al. (2017), it was also shown that the fixpoint so derived is a minimal

fixpoint for the program produced by the transfer of constraints. Thus, if a constraint

3 The case of multiple mutually recursive predicates will be discussed later.
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is PreM to the given recursive rules, its transfer produces an optimized program

having a declarative semantics defined by the minimal fixpoint of its constrained ICO

(Tγ) and operational semantics supported by a terminating fixpoint iteration, with

all the theoretical and computational properties that follow from such semantics.

For instance, PreM for extrema constraints holds for Example 1, and since directed

arcs in our graph have non-negative lengths, we conclude that its optimized version

in Example 2 terminates even if the original graph has cycles.

For most applications of practical interest, PreM is simple for users to program

with, and for the system to support4. For instance, to realize that PreM of min

and max holds for the rules for our Example 1, the programmer will test PreM by

asking how the mapping established by rules r′1 and r′2 in Example 2 changes if,

in addition to the post-constraint is min that applies to the cost arguments of the

head of rules r′1 and r′2, we add the goal is min in the body of our two rules to

pre-constrain the values of the cost argument in every dpath goal. Of course, PreM

is trivially satisfied in r′1 since this is an exit rule with no dpath goal, whereby the

rule and its associate mapping remain unchanged. In rule r′2, the application of the

pre-constraint is min((X, Y), Dxy) to the values generated by dpath(X, Y, Dxy) does

not change the final values returned by this rule because of the arithmetic properties

of its interpreted goals Dxz = Dxy + Dyz; in fact, these assure that every Dxy > Dxy

can be eliminated since the value Dxz = Dxy + Dyz it produces is higher than Dxz

and will thus be eliminated by the is min((X, Z), Dxz) post-constraint.

This line of reasoning is simple enough for the programmer to understand and

for the system to verify. More general conditions for PreM are given in Zaniolo

et al. (2017) using the notions of inflation-preserving and deflation-preserving rules.

There, we also discuss the premappability of the lower-bound and the upper-

bound constraints, which are often used in conjunction with extrema, and interact

with them to determine PreM and the termination of the resulting program. For

instance, to find the maximum distance between nodes in a graph that is free of

directed cycles, the programmer will simply replace is min with is max in Examples

1 and 2 with the assurance that the second program so obtained is the optimized

equivalent of the first since (i) premappability holds, and (ii) its computation

terminates in a finite number of steps5. However, say that the programmer wants to

add to the recursive rule of this second program the condition Dxz < Upperbound

either because (i) only results that satisfy this inequality are of interest, or (ii)

4 In fact, premappability is a very general property that has been widely used in advanced analytics
under different names and environments. For instance, the antimonotonic property of frequent item
sets represents just a particular form of premappability that will be discussed in Section 4. Also, with
OP denoting sum or min or max, we have that

OP(
⋃

1�j�K

Sj ) = OP(
⋃

1�j�K

OP(Sj ))

Thus, OP is premappable w.r.t. union; this is the pre-aggregation property that is commonly used in
distributed processing since it delivers major optimizations (Yu et al. 2009).

5 Besides representing a practical requirement in applications, termination is also required from a
theoretical viewpoint since, for programs such as that of Example 2, a stable model exists if and only
if it has a termination (A. Das and M. Interlandi, personal communication).
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this precautionary step is needed to guarantee termination when fortuitous cycles

are created by accidental insertions of wrong data6. However, if the condition

Dxz < Upperbound is added as a goal to recursive rule of our program, its PreM

property is compromised. To solve this problem the Datalog programmer should

instead replace Dyz=Dxz+Dxy with the following condition:

if(Dxy+Dyz > Upperbound then Dxz=Upperbound else Dxz=Dxy+Dyz)

This condition can be expressed as such in our systems, or can be re-expressed

using a pair of positive rules in other Datalog systems. This formulation ensures

termination while preserving PreM for max constraints. Symmetrically, the addition

of lower-bound constraints in our Example 2 must be performed in a similar way

to avoid compromising PreM.

Our experience suggests that using the insights gained from these simple examples,

a programmer can master the use of PreM constraints to express significant

algorithms in Datalog, with assurance they will deliver performance and scalability.

In the next example, we present a non-linear version of Example 1, where we use

the head notation for aggregates that is supported in our system.

Example 3 (Shortest distances between node pairs)

(r4) dpath(X, Z, min〈Dxz〉) <- darc(X, Z, Dxz), Dxz > 0.

(r5) dpath(X, Z, min〈Dxz〉) <- dpath(X, Y, Dxy), dpath(Y, Z, Dyz), Dxz = Dxy+Dyz.

The special head notation, is in fact a short hand for adding final goal

is min((X, Z), (Dxz)) that still defines the formal semantics of our rules. Therefore,

PreM for r5 is determined by adding the pre-constraints is min((X, Y), (Dxy)) and

is min((Y, Z), (Dxy)), respectively, after the first and the second goal and asking if

these changes affect the final values that survive the post-constraint in the head of

the rule. Here again, the values Dxy > Dxy and values Dyz > Dyz can be eliminated

without changing the head results once the post-constraint is applied.

2.1 From monotonic count to regular COUNT and SUM

At the core of the approach proposed in Mazuran et al. (2013b) there is the

observation that the cumulative version of standard count is monotonic in the

lattice of set containment. Thus, the authors introduced mcount as the aggregate

function that returns all natural numbers up to the cardinality of the set. The use of

mcount in actual applications is illustrated by the following example that uses the

motonic count mcount in the head of rules to express an application similar to the

one proposed in Ross and Sagiv (1992).

6 For example, Bill of Materials databases store, for each part in the assembly, its subparts with their
quantities. Bill of Materials databases define acyclic directed graphs; but the risk of some bad data
can never be ruled out in such databases containing millions of records.
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Example 4 (Join the party once you see that three of your friends have joined )

The organizer of the party will attend, while other people will attend if the number

of their friends attending is greater or equal to 3, i.e., Nfx � 3.

r6 : attend(X) <- organizer(X).

r7 : attend(X) <- cntfriends(X, Nfx), Nfx � 3.

r8 : cntfriends(Y, mcount〈X〉) <- attend(X), friend(Y, X).

r9 : finalcnt(Y, max〈N〉) <- cntfriends(Y, N).

As described in Mazuran et al. (2013b), the formal semantics of mcount can be

reduced to the formal semantics of Horn Clauses. Thus, mcount is a monotonic

aggregate function and as such is fully compatible with standard semantics of

Datalog and its optimization techniques, including the transfer of extrema, discussed

in the previous section. In terms of operational semantics, however, mcount will

enumerate new friends one at the time and could be somewhat slow. An obvious

alternative consists in premapping the max value to mcount since the combination

of mcount and max defines the traditional count. Then, in the fixpoint computation,

the new count value will be upgraded to the new max, rather than the succession

of +1 upgrades computed by mcount. Thus, the rules r8, r9 can be substituted with

r′8, r
′
9, respectively, as follows:

r′8 : cntfriends(Y, count〈X〉) <- attend(X), friend(Y, X).

r′9 : finalcnt(Y, N) <- cntfriends(Y, N).

The question of whether max is PreM to our rules can be formulated by assuming

that we apply a vector of constraints one for each mutually recursive predicate.

Thus, in Example 4, we will apply the max constraint to cntfriends and a null

constraint, that we will call nofilter, to attend. Now, the addition of nofilter(X)

does not change the mapping defined by r8, and the addition of is max(X, Nfx) does

not change the mapping defined by r7 since the condition Nfx � 3 is satisfied for

some Nfx value iff it is satisfied by the max of these values. Thus, PreM is satisfied

and mcount in r8 can be replaced by the regular count.

From monotonic SUM to SUM. The notion of monotonic sum, i.e., msum, for positive

numbers introduced in Mazuran et al. (2013b) used the fact that its semantics can be

easily reduced to that of mcount, as illustrated by the example below that computes

the total number of each part available in a city by adding up the quantities held in

each store of that city:

pCnt InCity(Pno, City, sum〈Qty, Store〉) <- pqs(Pno, Store, Qty), cs(Store, City).

Here, the sum is computed by adding up the Qty values, but the presence of

Store makes sure that all the repeated occurrences of the same Qty are considered

in the addition, rather than being ignored as a set semantics would imply. The

results returned by this rule are the same as those returned by the following rule

where posint simply enumerates the positive integers up to Qty:

partCnt InCity(Pno, City, count〈Eq, Store〉) <-
pqs(Pno, Store, Qty), cs(Store, City), posint(Qty, Eq).
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Then, consider the following example where we want to count the distinct paths

connecting any pair of node in the graph:
cpath(X, X, 1) <- arc(X, ).

cpath(X, Z, sum〈Cxy, Y〉) <- cpath(X, Y, Cxy), arc(Y, Z).

Then, the semantics of our program is defined by its equivalent rewriting

Example 5 (Sum of positive numbers expressed via count )

cpath(X, Y, 1) <- edge(X, Y).

cpath(X, Z, count〈Y, Ixy〉) <- cpath(X, Y, Cxy), edge(Y, Z), posint(Cxy, Ixy).

Thus, whenever a sum aggregate is used, the programmer and the compiler will

determine its correctness, by (i) replacing sum with msum, (ii) replacing msum by

mcount via the posint expansion and (iii) checking that the max aggregate is

PreM in the program so rewritten. Of course, once this check succeeds, the actual

implementation uses the sum aggregate directly, rather than its equivalent, due to

the inefficient expansion of the count aggregator. While, in this example, we have

used positive integers for cost arguments, the sum of positive floating point numbers

can also be handled in the same fashion (Mazuran et al. 2013b).

3 In-database graph applications

The use of aggregates in recursion has allowed to express efficiently a wide spectrum

of applications that were very difficult to express and support in traditional Datalog.

Several graph and mixed graph-relation applications were described in Shkapsky

et al. (2016) and Yang (2017). Other applications7 include, the Viterbi algorithm

for hidden Markov models, connected components by label propagation, temporal

coalescing of closed periods, the people you know, the multilevel marketing network

bonus calculation and several bill of materials queries such as parts, costs and

days required in an assembly. Two new graph applications that we have recently

developed are given next, and advanced analytics and data mining applications are

discussed in the next section.

Example 6 (Diameter estimation)

Many graph applications, particularly those appearing in the social networks setting,

need to make an estimation about the diameter of its underlying network in order

to complete several critical graph mining tasks like tracking evolving graphs over

time (Kang et al. 2011). The traditional definition of the diameter as the farthest

distance between two connected nodes is often susceptible to outliers. Hence, we

compute the effective diameter (Kang et al. 2011), which is defined as follows: the

effective diameter d of a graph G is formally defined as the minimum number of

hops in which 90% of all connected pairs of nodes can reach each other. This

measure is tightly related to closeness centrality and in fact is widely adopted in

7 Programs available at http://wis.cs.ucla.edu/deals/
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many network mining tasks (Cardoso et al. 2009). The following Datalog program

shows how effective diameter can be estimated using aggregates in recursion.

r6.1 : hops(X, Y, H) <- arc(X, Y), H = 1.

r6.2 : hops(X, Y, min〈C〉) <- hops(X, Z, C1), hops(Z, Y, C2), C = C1 + C2.

r6.3 : minhops(X, Y, C) <- hops(X, Y, C).

r6.4 : totalpairs(count〈X〉) <- minhops(X, , ).

r6.5 : cumulhops(C, count〈(X, Y)〉) <- minhops(X, Y, C).

r6.6 : cumulhops(H2, sum〈(H1, C)〉) <- cumulhops(H1, C1), cumulhops(H2, C2),

H1 < H2, C = C1 + C2.

r6.7 : effdiameter(min〈H〉) <- cumulhops(H, C), totalpairs(N), C/N � 0.9.

Rules r6.1–r6.3 find the minimum number of hops for each connected pair of vertices

whereas rules r6.5–r6.6 compute the cumulative distribution of hops recursively using

the fact that any pair of connected vertices covered within H1 hops is also covered

in H2 hops (H1 < H2). The final rule r6.7 extracts the effective diameter as per its

definition (Kang et al. 2011).

Example 7 (k-cores determination)

A k-core of a graph G is a maximal connected subgraph of G in which all vertices

have degree of at least k. k-core computation (Matula and Beck 1983) is critical in

many graph applications to understand the clustering structure of the networks and

is frequently used in bioinformatics and in many network visualization tools (Shin

et al. 2016). The following Datalog program computes all the k-cores of a graph for

an input k. Using aggregates in recursion in the following computation we determine

all the connected components of the corresponding subgraph with degree k or more.

r7.1 : degree(X, count〈Y〉) <- arc(X, Y).

r7.2 : validArc(X, Y) <- arc(X, Y), degree(X, D1), D1 � k,

degree(Y, D2), D2 � k.

r7.3 : connComp(A, A) <- validArc(A, ).

r7.4 : connComp(C, min〈B〉) <- connComp(A, B), validArc(A, C).

r7.5 : kCores(A, B) <- connComp(A, B).

Example 7 determines k-cores by determining all the connected components (r7.3,

r7.4), considering only vertices with degree k or more (r7.1, r7.2). The lowest vertex ID

is selected as the connected component ID among the k-cores.

4 Advanced analytics

The application area of ever-growing importance, advanced analytics, encompass

applications using standard online analytical processing (OLAP) to complex data

mining and machine learning queries like frequent itemset mining (Agrawal et al.

1994), building classification models, etc. This new generation of advanced analytics
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Table 1. Training examples for the PlayTennis table

Outlook Temperature Humidity Wind Play tennis
ID (1) (2) (3) (4) (5)

1 Overcast Cool Normal Strong Yes

2 Overcast Hot High Weak Yes

3 Overcast Hot Normal Weak Yes

4 Overcast Mild High Strong Yes

5 Rain Mild High Weak Yes

6 Rain Cool Normal Weak Yes

7 Rain Cool Normal Strong No

8 Rain Mild High Strong No

9 Rain Mild Normal Weak Yes

10 Sunny Hot High Weak No

. . . . . . . . . . . . . . . . . .

is extremely useful in extracting meaningful and rich insights from data (Agrawal

et al. 1994). However, these advanced analytics have created major challenges to

database researchers (Agrawal et al. 1994) and the Datalog community (Giannotti

and Manco 2002; Arni et al. 2003; Giannotti et al. 2004; Borkar et al. 2012). The

major success that BigDatalog has achieved on graph algorithms suggests that we

should revisit this hard problem and look beyond the initial applications discussed in

Tsur (1991) by leveraging on the new opportunities created by the use of aggregates

in recursion. We next describe briefly the approach we have taken and the results

obtained so far.

Verticalized representation. First, we need to specify algorithms that can support

advanced analytics on tables with arbitrary number of columns. A simple way to

achieve this genericity is to use verticalized representations for tables. For instance,

consider the excerpt from the well-known PlayTennis example from Mitchell (1997),

shown in Table 1. The corresponding verticalized view is presented in Table 2, where

each row contains the original tuple ID, a column number and the value of the

corresponding column, respectively. The verticalization of a table with n columns

(excluding the ID column) can be easily expressed by n rules; however, a special

“@” construct is provided in our language to expedite this task. The use of this

special construct is demonstrated by the rule below, which converts Table 1 into the

verticalized view of Table 2.

vtrain(ID, Col, Val) <- train(ID, Val@Col).

Given a vertical representation, a simple data mining algorithm such as naive

Bayesian classifiers (Lewis 1998) can be expressed by simple non-recursive rules8.

However, a more advanced compact representation is needed to support complex

tasks efficiently, as outlined next.

8 http://wis.cs.ucla.edu/deals/tutorial/nbc.php
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Table 2. Vertical view of the tuples in Table 1

ID Col Val

1 1 Overcast

1 2 Cool

1 3 Normal

1 4 Strong

1 5 Yes

2 1 Overcast

2 2 Hot

2 3 High

2 4 Weak

2 5 Yes

. . . . . . . . .

Rollup prefix table. To support efficiently more complex algorithms, such as frequent

itemset mining (Agrawal et al. 1994) and decision tree construction (Quinlan 1986),

we use an intuitive prefix-tree like representation that is basically a compact

representation of the SQL-2003 count rollup
9 aggregate. For instance, the count

rollup on Table 1 yields the output of Table 3, where we limit the output to the first

14 lines.

Interestingly, the output of rollup contains many redundant null values and

only the items in the main diagonal hold new information (highlighted in red). In

fact, the items to left of the diagonal are repeating the previous values (i.e., sharing

the prefix), whereas those to right are nulls. With this observation, we can compact

Table 3 to a more logically concise representation shown in Table 4, where the first

four columns contain the same information as an item in the main diagonal does,

whereas the last column (PID) specifies the ID of the parent tuple from where we

can find the value of the previous column. We refer to this condensed representation

as a prefix table since it is in fact a table representation of the well-known prefix

tree data structure. In this particular case, we have a rollup prefix table for count,

and similar representations can be used for other aggregates.

An easier way to understand and visualize Table 4 is through the logically

equivalent and more user intuitive representation, compact rollups, shown in Table 5

(equivalent values in Tables 3–5 are marked in red). In this representation, each item

e that is not under the ID column and is not empty, represents a tuple in the rollup

prefix table, where the values for ID, Col, Val, count columns are the tuple ID of e,

e’s column number, e’s value and the number associated with e’s value, respectively.

Thus, Table 4 captures in a verticalized form the information that in a horizontal

form is displayed by Table 5. In turn, this is a significantly compressed version of

Table 3.

These rollups are simple to generate from our verticalized representation and

they provide a good basis for programming other analytics (Das and Zaniolo

9 https://technet.microsoft.com/en-us/library/bb522495(v=sql.105).aspx
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Table 3. The SQL-2003 count rollup on Table 1

Outlook Temp. Humidity Wind Play

RID (1) (2) (3) (4) (5) Count

1 Null Null Null Null Null 14

2 Overcast Null Null Null Null 4

3 Overcast Cool Null Null Null 1

4 Overcast Cool Normal Null Null 1

5 Overcast Cool Normal Strong Null 1

6 Overcast Cool Normal Strong Yes 1

7 Overcast Hot Null Null Null 2

8 Overcast Hot High Null Null 1

9 Overcast Hot High Weak Null 1

10 Overcast Hot High Weak Yes 1

11 Overcast Hot Normal Null Null 1

12 Overcast Hot Normal Weak Null 1

13 Overcast Hot Normal Weak Yes 1

14 Overcast Mild Null Null Null 1

. . . . . . . . . . . . . . . . . . . . .

Table 4. A rollup prefix table

ID Col Val Count PID

1 1 Null 14 1

2 1 Overcast 4 1

3 2 Cool 1 2

4 3 Normal 1 3

5 4 Strong 1 4

6 5 Yes 1 5

7 2 Hot 2 2

8 3 High 1 7

9 4 Weak 1 8

10 5 Yes 1 9

11 3 Normal 1 7

12 4 Weak 1 11

13 5 Yes 1 12

14 2 Mild 1 2

. . . . . . . . . . . . . . .

Table 5. A compact rollup for the example in Table 1

Outlook C1 Temperature C2 Humidity C3 Wind C4 Play C5

Overcast 4 Cool 1 Normal 1 Strong 1 Yes 1

Hot 2 High 1 Weak 1 Yes 1

Normal 1 Weak 1 Yes 1

Mild 1 High 1 Strong 1 Yes 1
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2016; Yang 2017). We illustrate the construction of the rollup prefix table from

the corresponding verticalized representation, using the rules described in the next

example, which exploits aggregates in recursion.

Example 8 (From a verticalized view vtrain to a rollup prefix table)

Given two rows T1 and T2, we say that the row T1 can represent the row T2 (or

T1 can represent T2 for short) for the first C columns if both rows are identical in

the first C columns (i.e., their prefixes are the same). repr is a recursive relation

that represents vtrain in a different format, where each tuple (T, C, V) in vtrain

is augmented with one more column T1 indicating that T1 can represent T in first

C− 1 columns, i.e., the parent ID of the current row is T1. Then, a prefix table rupt

is constructed (without the node count) on top of repr in r1, where among all the

rows with the same parent ID Ta, and the same value V in column C, the one with

the minimal ID T is selected as a representative by the aggregate min.

r8.1 : repr(T1, C, V, T) <- vtrain(T, C, V), C = 1, T1 = 1.

r8.2 : rupt(min〈T〉, C, V, Ta) <- repr(Ta, C, V, T).

r8.3 : repr(T1, C, V, T) <- vtrain(T, C, V), C1 = C− 1, repr(Ta, C1, V1, T),

rupt(T1, C1, V1, Ta).

Assuming we want the rollup prefix table for count (Table 4), we can extract the

node count using the aggregate count〈TID〉 outside the recursion to derive the final

table myrupt as follows.

r8.4 : myrupt(T, C, V, count〈TID〉, Ta) <- rupt(T, C, V, Ta), repr(Ta, C, V, TID).

In this example, the aggregate count could be transferred into recursion, but it

would not save any computation time. However, if we want to further use anti-

monotonic constraints like (COUNT � k)10 to prune many of the nodes from the

prefix tree, then pushing count into recursion is a computationally efficient choice.

Moreover, in the example, since the generation of the counts connected with the

rollup prefix table is top-down, such lower-bound anti-monotonic constraints are

PreM. The popular a priori constraint (Agrawal et al. 1994) used in frequent itemset

mining is a well-known example that exploits PreM. It is also important to point out

that generation of other aggregates like max and min on the rollup prefix table can

be performed efficiently in a bottom-up manner when we have PreM constraints.

In fact, the rollup computation can be stopped for (i) max when it fails the lower

bound constraint and (ii) min when it fails the upper bound constraint.

Example 9 (Computing length of the longest maximal pattern from a rollup prefix table)

Many data mining applications extract condensed representations like maximal

patterns (Giacometti et al. 2014) from rollup prefix-tree like structures (e.g., frequent-

pattern tree or FP-tree (Han et al. 2000)). More recently, interesting mining

applications have been developed, which depend on computing the length of the

10 Often used in iceberg queries (Fang et al. 1998) and frequent itemset mining (Agrawal et al. 1994).
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longest maximal pattern from a FP-tree11 (Hu et al. 2008). The following Datalog

program performs this task by using aggregates in recursion on the rollup prefix

table for count myrupt.

r9.1 : items(C, V, sum〈Cnt〉) <- myrupt( , C, V, Cnt, ).

r9.2 : freqItems(C, V) <- items(C, V, Cnt), Cnt � k.

r9.3 : len(T, 0) <- myrupt(T, C, V, , ),¬myrupt( , , , , T),¬freqItems(C, V).
r9.4 : len(T, 1) <- myrupt(T, C, V, , ),¬myrupt( , , , , T), freqItems(C, V).
r9.5 : len(T, max〈L〉) <- len(TC, L1), myrupt(TC, , , , T), myrupt(T, C, V, , ),

¬freqItems(C, V), L = L1.

r9.6 : len(T, max〈L〉) <- len(TC, L1), myrupt(TC, , , , T), myrupt(T, C, V, , ),

freqItems(C, V), L = L1 + 1.

r9.7 : longest(max〈L〉) <- len( , L).

Rules r9.1, r9.2 first compute singleton frequent items (i.e., items occurring above

a threshold k), which are identified by the column number and its value. Since the

longest maximal pattern occurs along the path from the leaf to the root of the

prefix tree, rules r9.5, r9.6 recursively compute the maximum pattern length at each

node from its descendants in a bottom-up manner from the leaves (selected by rules

r9.3, r9.4) to the root. In addition to this, several other advanced analytics like iceberg

queries (Fang et al. 1998), frequent itemset mining (Agrawal et al. 1994) and decision

tree construction (Quinlan 1986) can be performed efficiently exploiting this rollup

prefix table, as it has been pointed out in detail in Yang (2017).

5 Performance and scalability with multicore and distributed processing

Multicore and distributed systems were developed along different technology paths

to provide two successful competing solutions to the problem of achieving scalability

via parallelism. For a long time, Moore’s law meant that programmers could virtually

double the speed of their software by updating the hardware. But starting in

2005, circa, it became impossible to double transistor densities every two years.

Since then therefore, computer manufacturers exploring alternative ways to increase

performance developed the very successful computer line of multicore processing

systems. Around the same time (2004–2005), the distributed processing approach

to scalability used in cluster computing was developed by big users of BigData.

This approach was first developed by database vendors, such as Teradata, and then

popularized by web companies such as Google and Yahoo!, since they realized

that distributed processing among their large clusters of shared-nothing computers

provide an effective method to process their large and fast-growing data sets.

The growing popularity of the distributed processing approach has been both

the cause and the result of better programming support for parallel applications:

11 A FP-tree is logically equivalent to a rollup prefix table.
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for instance in MapReduce (Dean and Ghemawat 2004) users have only to provide

a map and reduce program, while the system takes care of low level details such

as data communication, process scheduling and fault tolerance. Finally, a major

advance in usability was delivered by Apache Spark which provides higher level

application programming interfaces (APIs) that have made possible the development

of languages and systems supporting critical application areas, such as database

applications written in SQL, graph applications using GraphX and data mining

application suites. But Datalog can go beyond these advances by (i) providing

unified declarative framework to support different applications, and (ii) achieving

portability over different parallel systems. The significance of point (i) is underscored

by the fact that BigDatalog was able to outperform GraphX on graph applications

(Shkapsky et al. 2016), and the importance of point (ii) is demonstrated by the fact

that while our Datalog applications will execute efficiently on both Apache Spark

and multicore systems, the porting of parallel applications from the former platform

to the latter can be quite challenging even for an expert programmer12.

In the rest of the paper, we discuss the techniques used in ensuring that declarative

programs expressed in Datalog have performance comparable to hand-written

parallel programs on specialized domain-specific languages running on clusters

of distributed shared-nothing computers (Shkapsky et al. 2016) and a multicore

machine (Yang et al. 2017).

6 Datalog on Apache Spark

In this section, we provide a summary of BigDatalog−Spark (Shkapsky et al.

2016), a full Datalog language implementation on Apache Spark. BigDatalog−Spark

supports relational algebra, aggregation and recursion, as well as a host of declarative

optimizations. It also exploits the previously introduced semantic extensions for

programs with aggregation in recursion. As a result, the Spark programmer can now

implement complex analytics pipelines of relational, graph and machine learning

tasks in a single language, instead of stitching together programs written in different

APIs, i.e., Spark SQL (Armbrust et al. 2015), GraphX (Gonzalez et al. 2014) and

MLlib.

6.1 Apache Spark

Apache Spark (Zaharia et al. 2012) is attracting a great deal of interest as a general

platform for large-scale analytics, particularly because of its support for in-memory

iterative analytics. Spark enhances the MapReduce programming model by providing

a language-integrated Scala API enabling the expression of programs as dataflows

of second order transformations (e.g., map, filter) on resilient distributed datasets

(RDD) (Zaharia et al. 2012). An RDD is a distributed shared memory abstraction

representing a partitioned dataset. RDDs are immutable, and transformations are

12 Non-trivial optimization techniques such as those presented in Section 7 could be necessary in general.
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coarse-grained and thus apply to all items in the RDD to produce a new RDD.

RDDs can be explicitly cached by the programmer in memory or on disk at workers.

RDDs provide fault tolerance by recomputing the sequence of transformations for

the missing partition(s).

Once a Spark job is submitted, the scheduler groups transformations that can be

pipelined into a single stage. Stages are executed synchronously in a topological order:

a stage will not be scheduled until all stages it is dependent upon have finished

successfully. Similar to MapReduce, Spark shuffles between stages to repartition

outputs among the nodes of the cluster. Spark has libraries for structured data

processing (Spark SQL), stream processing (Spark Streaming), machine learning

(MLlib) and graph processing (GraphX).

Spark as a runtime for Datalog. Spark is a good candidate to support a Datalog

compiler and Datalog evaluation; Spark is a general data processing system and

provides the Spark SQL API (Armbrust et al. 2015). Spark SQL provides logical

and physical relational operators, and Spark SQL’s Catalyst compiler and optimizer

supports the compilation and optimization of Spark SQL programs into physical

plans. BigDatalog−Spark uses and extends Spark SQL operators, and also introduces

operators implemented in the Catalyst framework so Catalyst planning features can

be used on BigDatalog recursive plans.

BigDatalog−Spark is designed for general analytical workloads, and although we

will focus much of the discussion and experiments on graph queries and recursive

program evaluation, we do not claim that Spark is the best platform for graph

workloads in general. In fact, BigDatalog can also be built into other general

dataflow systems, including Naiad (Murray et al. 2013) and Hyracks (Borkar et al.

2011), and many of the optimization techniques presented in this section will also

apply.

Challenges for Datalog on Spark. The following represent the main challenges with

implementing Datalog on Spark:

(1) Spark SQL supports acyclic plans: Spark SQL lacks recursion operators, oper-

ators are designed for acyclic use, and the Catalyst optimizer plans non-recursive

queries.

(2) Synchronous scheduling: Spark’s synchronous stage-based scheduler requires

unnecessary coordination for monotonic Datalog programs because monotonic

Datalog programs are eventually consistent (Ameloot et al. 2011; Interlandi and

Tanca 2015).

(3) Memory utilization: Each iteration of recursion will produce a new RDD to

represent the updated recursive relation. If poorly managed, recursive applications

on Spark can experience memory utilization problems.

6.2 BigDatalog–Spark

We highlight the features of BigDatalog−Spark with the help of the well-known

transitive closure (Example 10) and same generation (Example 11) programs.
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Figure 1. BigDatalog–Spark program.

Example 10 (Transitive closure (TC))

r1 : tc(X, Y) <- arc(X, Y).

r2 : tc(X, Y) <- tc(X, Z), arc(Z, Y).

r1 is an exit rule because it serves as a base case of the recursion. In r1, the arc

predicate represents the edges of the graph – arc is a base relation. r1 produces a

tc fact for each arc fact. r2 will recursively produce tc facts from the conjunction

of previously produced tc facts and arc facts. The query to evaluate TC is of

the form tc(X, Y). Last, this program uses a linear recursion in r2, since there is a

single recursive predicate literal, whereas a non-linear recursion would have multiple

recursive literals in its body. The number of iterations required to evaluate TC is, in

the worst case, equal to the longest simple path in the graph.

Example 11 (Same generation (SG))

r1 : sg(X, Y) <- arc(P, X), arc(P, Y), X ! = Y.

r2 : sg(X, Y) <- arc(A, X), sg(A, B), arc(B, Y).

The exit rule r1 produces all X, Y pairs with the same parents (i.e., siblings) and

the recursive rule r2 produces new X, Y pairs where both X and Y have parents of

the same generation.

BigDatalog−Spark programs are expressed as Datalog rules, then compiled,

optimized and executed on Spark. Figure 1 is the program to compute the size

of the transitive closure of a graph using the BigDatalog−Spark API. The user

first gets a BigDatalogContext (line 1), which wraps the SparkContext (sc) –

the entry point for writing and executing Spark programs. The user then specifies

a schema definition for base relations and program rules (lines 2–4). Lines 3 and

4 implement TC from Example 10. The database definition and rules are given

to the BigDatalog−Spark compiler that loads the database schema into a relation

catalog (line 5). Next, the data source (e.g., local or HDFS file path, or RDD) for

the arc relation is provided (line 6). Then, the query to evaluate is given to the

BigDatalogContext (line 7), which compiles it and returns an execution plan used

to evaluate the query. As with other Spark programs, evaluation is lazy – the query

is evaluated when count is executed (line 8).

Parallel semi-naı̈ve evaluation on Spark. BigDatalog−Spark programs are evaluated

using a parallel version of semi-näıve evaluation we call parallel semi-naı̈ve evaluation
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(PSN). PSN is an execution framework for a recursive predicate and it is implemented

using RDD transformations. Since Spark evaluates synchronously, PSN will evaluate

one iteration at a time; an iteration will not begin until all tasks from the previous

iteration have completed.

The two types of rules for a recursive predicate – the exit rules and recursive

rules – are compiled into separate physical plans (plans), which are then used in the

PSN evaluator. Physical plans are composed of Spark SQL and BigDatalog−Spark

operators that produce RDDs. The exit rules plan is first evaluated once, and then

the recursive rules plan is repeatedly evaluated until a fixpoint is reached. Note that

like the semi-näıve evaluation, PSN will also evaluate symbolically rewritten rules

(e.g., tc(X, Y)← δtc(X, Z), arc(Z, Y).).

Algorithm 1 PSN evaluator with RDDs

1: delta = exitRulesPlan.toRDD().distinct()

2: all = delta

3: updateCatalog(all, delta)

4: do

5: delta = recursiveRulesPlan.toRDD()

6: .subtract(all).distinct()

7: all = all.union(delta)

8: updateCatalog(all, delta)

9: while (delta.count() > 0)

10: return all

Algorithm 1 is the pseudo-code for the PSN evaluator. The exitRulesPlan (line

1) and recursiveRulesPlan (line 5) are plans for the exit rules and recursive rules,

respectively. We use toRDD() (lines 1 and 5) to produce the RDD for the plan. Each

iteration produces two new RDDs – an RDD for the new results produced during

the iteration (delta) and an RDD for all results produced thus far for the predicate

(all). The updateCatalog (lines 3 and 8) stores new all and delta RDDs into

a catalog for plans to access. The exit rule plan is evaluated first. The result is

de-duplicated (distinct) (line 1) to produce the initial delta and all RDDs (line

2), which are used to evaluate the first iteration of the recursion. Each iteration is a

new job executed by count (line 9). First, the recursiveRulesPlan is evaluated using

the delta RDD from the previous iteration. This will produce an RDD that is

set-differenced (subtract) with the all RDD (line 6) and de-duplicated to produce

a new delta RDD. With lazy evaluation, the union of all and delta (line 7) from

the previous iteration is evaluated prior to its use in subtract (line 6).

We have implemented PSN to cache RDDs that will be reused, namely all and

delta, but we omit this from Algorithm 1 to simplify its presentation. Last, in cases

of mutual recursion, when two or more rules belonging to different predicates

reference each other (e.g., A ← B, B ← A), one predicate13 will “drive” the

recursion with PSN and the other recursive predicate(s) will be an operator in

the driver’s recursive rules plan. The “driver” predicate is determined from the

13 Any of the mutually recursive predicates can be selected.
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(a) TC (b) SG

Figure 2. PSN with SetRDD physical plans: (a) TC and (b) SG.

predicate connection graph, which is basically a dependency graph constructed by

the compiler. The use of predicate connection graph is common in many Datalog

system architectures like LDL++ (Arni et al. 2003).

6.3 Optimizations

This section presents optimizations to improve the performance of BigDatalog−Spark

programs. Details on the performance gain enabled by the discussed optimizations

can be found in Tables 1–5 of the original BigDatalog−Spark paper (Shkapsky et al.

2016).

Optimizing PSN. As shown in Algorithm 1, PSN can be implemented with RDDs

and standard transformations. However, using standard RDD transformations is

inefficient because at each iteration the results of the recursive rules are set-

differenced with the entire recursive relation (line 6 in Algorithm 1), which is

growing in each iteration, and thus expensive data structures must be created for

each iteration. We propose, instead, the use of SetRDD, which is a specialized RDD

for storing distinct Rows and tailored for set operations needed for PSN. Each

partition of a SetRDD is a set data structure. Although an RDD is intended to

be immutable, we make SetRDD mutable under the union operation. The union
mutates the set data structure of each SetRDD partition and outputs a new SetRDD

comprised of these same set data structures. If a task performing union fails and

must be re-executed, this approach will not lead to incorrect results because union

is monotonic and facts can be added only once. Last, SetRDD transformations are

implemented to not shuffle, and therefore the compiler must add shuffle operators

to a plan. This approach allows for a simplified and generalized PSN evaluator.

Partitioning. An earlier research on Datalog showed that a good partitioning

strategy (i.e., finding the arguments on which to partition) for a recursive predicate

was important for an efficient parallel evaluation (Cohen and Wolfson 1989;

Ganguly et al. 1990, 1992; Wolfson and Ozeri 1990). Since transferring data (i.e.,

communication) has a high cost in a cluster, we seek a partitioning strategy that

limits shuffling. The default partitioning strategy employed by BigDatalog−Spark is

to partition the recursive predicate on the first argument. Figure 2(a) is the plan for
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Figure 3. SG with broadcast joins.

Program 10 for PSN with SetRDD. With the recursive predicate (tc) partitioned

on the first argument both the exit rule and recursive rule plans terminate with a

shuffle operator.

In the plan in Figure 2(a), δtc requires shuffling prior to the join since it is

not partitioned on the join key (Z) because the default partitioning is the first

argument (X). However, if the default partitioning strategy was to use instead the

second argument, the inefficiency with Figure 2(a) would be resolved but then other

programs such as SG (plan shown in Fig. 2(b)) would suffer (δsg would require a

shuffle prior to the join). Therefore, BigDatalog−Spark allows the user to define a

recursive predicate’s partitioning via configuration.

Join optimizations for linear recursion. By keeping the number of partitions static,

a shuffle join implementing a linear recursion can have the non-recursive join input

cached because the non-recursive inputs will not change during evaluation. This can

lead to significant performance improvement since input partitions no longer have

to be shuffled and loaded into lookup tables prior to the join in each iteration.

Instead of shuffle joins, each partition of a recursive relation can be joined with an

entire relation (e.g., broadcast join). For either type of join, the non-recursive input

is loaded into a lookup table. For a broadcast join, the cost of loading the entire

relation into a lookup table is amortized over the recursion because the lookup

table is cached and then reused in every iteration. Figure 3 shows a recursive rules

plan for Example 11 (SG) with two levels of broadcast joins. In the event that a

broadcast relation is used multiple times in a plan, as in Figure 3, BigDatalog−Spark

will broadcast it once and share it among all broadcast join operators joining the

relation.

Decomposable programs. Previous research on parallel evaluation of Datalog pro-

grams determined that some programs are decomposable and thus evaluable in

parallel without redundancy (a fact is only produced once) and without processor

communication or synchronization (Wolfson and Silberschatz 1988). Since mitigating

the cost of synchronization and shuffling can lead to significant execution time

speedup, enabling BigDatalog−Spark to support techniques for identifying and

evaluating decomposable programs is desirable.

We consider a BigDatalog−Spark physical plan decomposable if the recursive rules

plan has no shuffle operators. Example 10 (linear TC) is a decomposable program

https://doi.org/10.1017/S1471068418000418 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000418


Scaling-up reasoning and advanced analytics 827

Figure 4. Decomposable TC plan.

(Wolfson and Silberschatz 1988); however, its physical plan shown in Figure 2(a)

has shuffle operators in the recursive rules plan. Instead, BigDatalog−Spark can

produce a decomposable physical plan for Example 10. First, tc will be partitioned

by its first argument that divides the recursive relation so that each partition can

be evaluated independently and without shuffling. Second, a broadcast join will be

used which allows each partition of the recursive relation to join with the entire arc

base relation. Figure 4 shows the decomposable physical plan for Example 10. Base

relations are not pre-partitioned, therefore, the exit rules plan has a shuffle operator

to repartition the arc base relation by arc’s first argument X into N partitions.

BigDatalog−Spark identifies decomposable programs via syntactic analysis of

program rules using techniques presented in the generalized pivoting work (Seib and

Lausen 1991). The authors of Seib and Lausen (1991) showed that the existence of a

generalized pivot set for a program is a sufficient condition for decomposability and

present techniques to identify generalized pivot set in arbitrary Datalog programs.

When a BigDatalog−Spark program is submitted to the compiler, the compiler

will apply the generalized pivoting solver to determine if the program’s recursive

predicates have generalized pivot set. If they indeed have, we now have a partitioning

strategy and in conjunction with broadcast joins we can efficiently evaluate the

program with these settings. For example, Example 10 has a generalized pivot

set, which says to partition the tc predicate on its first argument. Note that this

technique is enabled by using Datalog and it allows BigDatalog−Spark to analyze

the program at the logical level. The Spark API alone is unable to provide this

support since programs are written in terms of physical operations.

6.4 Experiments

In Shkapsky et al. (2016), we have tested BigDatalog−Spark over both synthetic

and real-world datasets, and compared against other distributed Datalog imple-

mentations (e.g., Myria (Halperin et al. 2014) and SocialLite (Seo et al. 2013)), as

well as hand-coded versions of programs implemented in Spark. The tests were

executed using the TC, SG, CC, PYMK and MLM programs presented in Section 3

plus some additional ones. Here, we showcase a systems comparison using TC and

SG (Fig. 5) and discuss results of scale-out and scale-up experiments (in Figs. 6

and 7, respectively). Each execution time reported in the figures is calculated by

performing the same experiment five times, discarding the highest and lowest values
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Table 6. Parameters of synthetic graphs

Name Vertices Edges TC SG

Tree11 71,391 71,390 805,001 2,086,271,974

Tree17 13,766,856 13,766,855 237,977,708 . . .

Grid150 22,801 45,300 131,675,775 2,295,050

Grid250 63,001 125,500 1,000,140,875 10,541,750

G5K 5,000 24,973 24,606,562 24,611,547

G10K 10,000 100,185 100,000,000 100,000,000

G10K-0.01 10,000 999,720 100,000,000 100,000,000

G10K-0.1 10,000 9,999,550 100,000,000 100,000,000

G20K 20,000 399,810 400,000,000 400,000,000

G40K 40,000 1,598,714 1,600,000,000 1,600,000,000

G80K 80,000 6,399,376 6,400,000,000 6,400,000,000
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Figure 5. System comparison using TC and SG.

and taking the average of the remaining three values. The unit of time measurement

is seconds.

Configuration. Our experiments were run on a 16-node cluster. Each node ran

Ubuntu 14.04 LTS and had an Intel i7-4770 CPU (3.40 GHz, 4 core/8 thread),

32GB memory and a 1TB 7200 RPM hard drive. Nodes were connected with 1Gbit

network. The BigDatalog−Spark implementation ran on Spark 1.4.0, and the file

system is Hadoop 1.0.4.

Datasets. Table 6 shows the synthetic graphs used for the experiments of this

section and of Section 7. Tree11 and Tree17 are trees of heights 11 and 17,

respectively, and the degree of a non-leaf vertex is a random number between 2 and

6. Grid150 is a 151 by 151 grid, while Grid250 is a 251 by 251 grid. The Gn-p

graphs are n-vertex random graphs (Erdős–Rényi model) generated by randomly

connecting vertices so that each pair is connected with probability p. Gn-p graph

names omitting p use default probability 0.001. Note that for these graphs, TC and

SG are capable of producing result sets many orders of magnitude larger than the

input dataset, as shown by the last two columns in Table 6.

Systems Comparison. For TC, BigDatalog−Spark uses Program 10 with the decom-

posed plan from Figure 4. For SG, BigDatalog uses Program 11 with broadcast joins

(Fig. 3). We use equivalent programs in Myria and Socialite, and hand-optimized

semi-näıve programs written in the Spark API, which are implemented to minimize

shuffling. Figure 5 shows the evaluation time for all four systems.
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Figure 6. Scaling-out cluster size: (a) TC on G20K and (b) SG on G10K.

BigDatalog−Spark is the only system that finishes the evaluation for TC and

SG on all graphs except SG on Tree17 since the size of the result is larger than

the total disk space of the cluster. BigDatalog−Spark has the fastest execution

time on six of the seven graphs for TC; on four of the graphs it outperforms

the other systems by an order of magnitude. The BigDatalog−Spark plan only

performs an initial shuffle of the dataset, and then evaluates the recursion without

shuffling, and proves very efficient. In the case of Grid150, which is the smallest

graphs used in this experiment in terms of both edges and queries output sizes,

Myria outperforms BigDatalog−Spark both in TC and SG. This is explained as the

evaluation requires many iterations, where each iteration performs very little work,

and therefore the overhead of scheduling in BigDatalog−Spark takes a significant

portion of execution time. However, as the data set becomes larger the superior

scalability of BigDatalog−Spark comes into play enabling it to outperform all

other systems on Grid250. In fact, Figure 5 shows that the execution time of

BigDatalog−Spark on TC only grows to 2.2 times those of Grid150, whereas those

of Myria and Socialite grow by more than one order of magnitude; from Grid150
to Grid250, BigDatalog−Spark also scales better on SG compared to the other

systems. The Spark programs are not only affected by the overhead of scheduling

and shuffling but also suffer memory utilization issues related to dataset caching

and, therefore, ran out of memory for several datasets both in TC and SG.

Scalability. In this set of experiments, we use the Gn-p graphs. Figure 6(a) shows

the speedup for TC on G20K as the number of workers increases from 1 to 15 (all

with one master) w.r.t. using only one worker, and Figure 6(b) shows the same

experiment run for SG with G10K. Both figures show a linear speedup, with the

speedup of using 15 workers as 12X and 14X for TC and SG, respectively.

The scaling-up results shown in Figure 7 were ran with the full cluster, i.e., one

master and 15 workers. With each successively larger graph size, i.e., from G5K
to G10K, the size of the transitive closure quadruples, but we do not observe a

quadrupling of the evaluation time. Instead, evaluation time increases first less than

1.5X (G5K to G10K), then 3X (G10K to G20K), 6X (G20K to G40K), and 9X (G40K to

G80K). Rather than focusing on the size of the TC w.r.t. execution time, the reason

for the increase in execution time is explained by examining the results in Table 7.
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Table 7. TC Scaling-up Experiments Result Details

Time Generated Generated

Graph braodcast(s) TC Generated facts facts/TC facts/second

G5K 4 24,606,562 122,849,424 4.99 30,712,356

G10K 6 100,000,000 1,001,943,756 10.02 166,990,626

G20K 17 400,000,000 7,976,284,603 19.94 469,193,212

G40K 119 1,600,000,000 50,681,485,537 31.68 425,894,836

G80K 1112 6,400,000,000 510,697,190,536 79.80 459,673,439

(Execution time not including the time to broadcast arc.)

Table 8. SG scaling-up experiments result details

Time - Generated Generated

Graph broadcast(s) SG Generated Facts Facts / SG Facts / Sec.

G5K 11 24,611,547 612,891,161 24.90 55,717,378

G10K 71 100,000,000 10,037,915,957 100.38 141,379,098

G20K 905 400,000,000 159,342,570,063 398.36 176,069,138

(Execution time not including the time to broadcast arc)

Broadcasting the arc relation requires between 1s for G5K to 12s for G80K. Table 7

shows the execution time minus the time to broadcast arc, which is the total time

the program required to actually evaluate TC. Table 7 also shows the number of

generated facts, which is the number of total facts produced prior to de-duplication

and is representative of the actual work the system must perform to produce the TC

(i.e., HashSet lookups), the ratio between TC size and generated facts and the number

of generated facts per second (time – broadcast time), which should be viewed as

the evaluation throughput. These details help to explain why the execution times

increase at a rate greater than the increase in TC size – the number of generated facts

is increasing at a rate much greater than the increase in TC size. The last column

shows that even with the increase in number of generated facts, BigDatalog−Spark

still maintains good throughput throughout. Continuing, the first two graphs are

too small to stress the system, but once the graph is large enough (e.g., G20K) the

system exhibits a much greater throughput, which is stable across the larger graphs.

Table 8 displays the same details as Table 7 but for SG. Table 8 displays the

execution time-minus the broadcast time of arc, the result set size, the number of

Figure 7. Scaling-up on Random Graphs.
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generated facts as well as statistics for the ratio of generated facts for each SG fact

and generated fact per second of evaluation (throughput). With SG, the number

of generated facts is much higher than we observe with TC, reflecting the greater

amount of work SG requires. For example, on G10K and G20K SG produces 10X

and 20X the number of generated facts, respectively, than TC produces. We also

observe a much greater rate of increase in generated facts between graph sizes for

SG compared to TC. For example, from G10K to G20K we see a 16X increase in

generated facts for SG versus only an 8X increase for TC. For SG, we do not achieve

as high a throughput as with TC, which is explained in part by the fact that SG

requires shuffling, whereas our TC program evaluates purely in main memory after

an initial shuffle.

7 Datalog on multicore systems: BigDatalog−MC

Multicore machines are composed by one or more processors, where each of them

contains several cores on a chip (Venu 2011). Each core is composed of computation

units and caches, while the main memory is commonly shared. While the individual

cores do not necessarily run as fast as the highest performing single-core processors,

they are able to obtain high performance by handling more tasks in parallel. In this

paper, we will consider multicore processors implemented as a group of homogeneous

cores, where the same computation logic is applied in a divide-and-conquer way over

a partition of the input dataset.

Unfortunately, single-core applications do not get faster automatically on a

multicore architecture with the increase of cores. For this reason, programmers

are forced to write specific parallel logic to exploit the performance of multicore

architectures. Next, we present the techniques used by BigDatalog−MC to enable the

efficient parallel evaluation of Datalog programs over a shared-memory multicore

machine with n processors.

7.1 Parallel bottom-up evaluation

We start with how BigDatalog−MC performs the parallel bottom-up evaluation of

the transitive closure program TC in Example 10. We divide each relation into

n partitions and we use the relation name with a superscript i to denote the ith

partition of the relation. Each partition has its own storage for tuples, unique index

and secondary indexes. Assuming that there are n workers that perform the actual

query evaluation, and one coordinator that manages the coordination between the

workers. Example 12 below shows a parallel evaluation plan for TC.

Example 12 (Parallel bottom-up evaluation of TC)

Let h be a hash function that maps a vertex to an integer between 1 and n. Both

arc and tc are partitioned by the first column, i.e., h(X) = i for each (X, Y) in arci

and h(X) = i for each (X, Y) in tci. The parallel evaluation proceeds as follows.

(1) The ith worker evaluates the exit rule by adding a tuple (X, Y) to tc for each

tuple (X, Y) in arci.
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(2) Once all workers finish Step (1), the coordinator notifies each worker to start

Step (3).

(3) For each new tuple (X, Z) in tci derived in the previous iteration, the ith worker

looks for tuples of the form (Z, Y) in arc and adds a tuple (X, Y) to tc.

(4) Once all workers finish Step (3), the coordinator checks if the evaluation for tc

is completed. If so, the evaluation terminates; otherwise, the evaluation starts

from Step (3).

In Steps (1) and (3), each worker performs its task on one processor while the

coordinator waits. Steps (2) and (4) serve as synchronization barriers.

In the above example, the ith worker only writes to tci in Step (1), and it only

reads from and writes to tci in Step (3). Thus, tci is only accessed by the ith

worker. This property does not always hold in every evaluation plan of tc. For

example, if we keep the current partitioning for arc but instead partition tc by its

second column, then every worker could write to tci in Step (3), and multiple write

operations to tci can occur concurrently; in this plan, we use a lock to ensure only

one write operation to tci is allowed at a time—a worker needs to acquire the lock

before it writes to tci, and it releases the lock once the write operation completes.

In general, we use a lock to control the access to a partition if multiple read/write

operations can occur concurrently. There are two types of locks: (i) an exclusive lock

(x-lock) that allows only one operation at a time; and (ii) a readers–writer lock (rw-

lock) that (a) allows only one write operation at a time, (b) allows concurrent read

operations when no write operation is being performed and (c) disallows any read

operation when a write operation is being performed. We use (i) an x-lock if there

is no read operation and only multiple write operations can occur concurrently;

(ii) an rw-lock if multiple read and write operations can occur concurrently since it

allows for more parallelism than an x-lock.

We assume that every relation is partitioned using the same hash function h

defined as follows:

h(x1, . . . , xt) =

t∑
i=1

g(xi) mod n,

where the input to h is a tuple of any arity t and g is a hash function with a range

no less than n. Then, the key factor that determines whether locks are required

during the evaluation is how each relation is partitioned, which is specified using

discriminating sets. A discriminating set of a (non-nullary) relation R is a non-empty

subset of columns in R. Given a discriminating set of a relation, we divide the

relation into n partitions by the hash value of the columns that belong to the

discriminating set. For each predicate p that corresponds to a base relation or a

derived relation, let R be the relation that stores all tuples corresponding to facts

about p in memory; we select a discriminating set of R that specifies the partitioning

of R used in the evaluation of p. The collection of all the selected discriminating

sets uniquely determines how each relation is partitioned. These discriminating sets

can be arbitrarily selected as long as there is a unique discriminating set for each

derived relation.
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Figure 8. AND/OR tree of SG program in Example 11.

Example 13 (Discriminating sets for the plan in Example 12)

The discriminating sets for the two occurrences of arc are both {1}. Moreover, tc

is a derived relation, and its discriminating set is {1}.

7.2 Parallel evaluation of AND/OR trees

The internal representation used by BigDatalog−MC to represent a Datalog program

is an AND/OR tree (Arni et al. 2003). An OR node represents a predicate and an

AND node represents the head of a rule. The root is an OR node. The children

of an OR node (resp., AND node) are AND nodes (resp., OR nodes). Each node

has a getTuple method that calls the getTuple methods of its children. Each

successful invocation to the method instantiates the variables of one child (resp., all

the children) and the parent itself for an OR node (resp., AND node). The program

is evaluated by repeatedly applying the getTuple method upon its root until it fails.

Thus, for an OR node, the execution (i) exhausts the tuples from the first child; (ii)

continues to the next child; and (iii) fails when the last child fails. An OR node is an

R-node if it reads from a base or derived relation with its getTuple method, while

it is a W-node if it writes to a derived relation with its getTuple method. Finally, an

OR node is an entry node if (i) it is a leaf, (ii) it is the first R-node among its siblings

and (iii) none of its ancestor OR nodes has a left sibling (i.e., a sibling that appears

before the current node) that has an R-node descendant or a W-node descendant.

Example 14 (AND/OR tree of SG)

Figure 8 shows the adorned AND/OR tree of the same generation program SG in

Example 11, where (i) the text inside a node indicates its type and ID, e.g., “Or-1”

indicates that the root is an OR node with ID 1, and (ii) the text adjacent to a node

shows the corresponding predicate with its adornment (b or f in the ith position

means the ith argument in a predicate p is bound or free when p is evaluated). Thus,

Or-4, Or-5, Or-7, Or-8 and Or-9 are R-nodes, and Or-1 is a W-node. Or-4 and

Or-7 are entry nodes in this program. Although Or-5 is an R-node, it is not an
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entry node since it is not the first R-node among its siblings. Similarly, for Or-8 and

Or-9.

In the parallel evaluation of an AND/OR tree with one coordinator and n workers,

we create n copies of the same AND/OR tree, and assign the ith copy to the ith

worker. The evaluation is divided into n disjoint parts, where the ith worker evaluates

an entry node by instantiating variables with constants from the ith partition of the

corresponding relation, while it has full access to all partitions of the corresponding

relations for the remaining R-nodes. The parallel evaluation ensures the same

workflow as the sequential pipelined evaluation by adding synchronization barriers

in the nodes that represent recursion. For example, we create a synchronization

barrier B, and add it to Or-1 of Figure 8 for every copy of the AND/OR tree. Now,

the evaluation works as follows.

(1) Each worker evaluates the exit rule by calling And-2.getTuple until it fails. A

worker waits at B after it finishes.

(2) Once all n workers wait at B, the coordinator notifies each worker to start Step

(3).

(3) Each worker evaluates the recursive rule by calling And-3.getTuple until it

fails. A worker waits at B after it finishes.

(4) Once all n workers wait at B, the coordinator checks if there are new tuples

derived in sg. If so, the evaluation continues from Step (3); otherwise, the

evaluation terminates.

7.3 Selecting a parallel plan

BigDatalog−MC uses a technique called read/write analysis (Yang et al. 2017) to

help find the best discriminating sets to evaluate a program. For a given set of

discriminating sets, the read/write analysis on an adorned AND/OR tree determines

the actual program evaluation plan, including the type of lock needed for each

derived relation, whether an OR node needs to acquire a lock before accessing the

corresponding relation, and which partition of the relation an OR node needs to

access when it accesses the relation through index lookups. The analysis performs

a depth-first traversal on the AND/OR tree that simulates the actual evaluation to

check each read or write operation performed by the ith worker. For each node N

encountered during the traversal, the following three cases are possible:

(1) N is an entry node. In this case, set it as the current entry node; then, for each

W-node that is an ancestor of N and is in the same stratum as N, determine

whether the ith worker only writes to the ith partition of R(pw). This is done

by checking if pe[Xj] = pw[Xk]
14, where pe and pw are the predicates associated

with N and the W-node, respectively, and Xj and Xk are the corresponding

discriminating sets.

14 For a predicate p, R(p) denotes the relation that stores all tuples corresponding to facts about p; p[X]
denotes a tuple of arity |X| by retrieving the arguments in p whose positions belong to X, and it is
treated as a multiset of arguments when involved in equality checking.
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(2) N is an R-node that reads from a derived relation. In this case, determine

whether the ith worker only reads from the ith partition of R(pr) by checking if

Xk ⊆ B and pe[Xj] = pr[Xk], where pe and pr are the predicates associated with

the current entry node and N, respectively, Xj and Xk are the corresponding

discriminating sets, and B is the set of positions for bound arguments in N.

(3) N is an R-node that reads from a base relation through a secondary index.

In this case, determine whether the ith worker only needs to read from one

partition of R(pr) instead of all the partitions by checking if Xk ⊆ B, where pr is

the predicate associated with N, Xk is the corresponding discriminating set, and

B is the set of positions for bound arguments in N.

We can formulate the problem of determining the best discriminating sets for

a given program as an optimization problem that minimizes the cost of program

evaluation. This is equivalent to minimizing the overhead of program evaluation

over the “ideal” plan in which all the constraints are satisfied. Now, for each OR

node N in the AND/OR tree, its contribution to the overhead of program evaluation

is denoted by c(N), and its value is heuristically set as follows:

c(N) =

⎧⎪⎪⎨
⎪⎪⎩

3, if N needs to acquire an r-lock (read lock) before performing an

index lookup and condition Xk ⊆ B is violated;

1, if N needs to acquire a write lock before accessing the relation;

0, otherwise.

Thus, the optimization problem reduces to finding an assignment that minimizes∑
N c(N), where N iterates over the set of OR nodes in the AND/OR tree. In

BigDatalog−MC, this is achieved by enumerating all possible assignments using

brute force, since the number of such valid assignments is totally tractable for most

recursive queries of our interest. It is also important to take a closer look at the

case where c(N) equals three. There are two parts in the corresponding condition:

first, N needs to acquire a read lock before performing an index lookup, and second,

condition Xk ⊆ B is violated. When Xk ⊆ B is not true, this means we need to

perform a lookup for each partition. This cost should be at least two, as there should

be more than one partition during the parallel evaluation (otherwise, there is no

need for parallelizing as there is only one partition and one processor). We also need

to acquire a read lock for each lookup. However, we do not want to penalize this as

much as acquiring a write lock, as acquiring a read lock is relatively less expensive.

So, the contribution from the read lock is counted as one, and the overall cost is

summed as three.

7.4 Experiments

Now, we introduce a set of experiments showcasing the performance of

BigDatalog−MC compared to other (single and multicore) Datalog implementations,

namely LogicBlox (Aref et al. 2015), DLV (Leone et al. 2006), clingo (Gebser et al.

2014) and SociaLite (Seo et al. 2013). Additional experiments and details can be

found in Yang et al. (2017).
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Figure 9. Query evaluation time of recursive queries.

Configuration. We tested the performance of the above systems on a machine with

four AMD Opteron 6376 CPUs (16 cores per CPU) and 256GB memory (configured

into eight NUMA regions). The operating system was Ubuntu Linux 12.04 LTS.

We used LogicBlox 4.1.9 and clingo version 4.5.0. The version of DLV we used is a

single-processor version15, while for SociaLite we used the parallel version that was

downloaded from https://github.com/socialite-lang/socialite.
System Comparison. Figure 9 compares the evaluation time of the five systems

on TC, SG and ATTEND query. Bars for DLV and BDLog-1 show the evaluation

time of DLV and BigDatalog−MC using one processor, while bars for LogicBlox,

Clingo, SociaLite and BDLog-64 show the evaluation time of those systems over

64 processors. In our experiments, we observed both SociaLite and BigDatalog−MC

had higher CPU utilization most of the time, as compared to LogicBlox and clingo,

with the latter utilizing only one processor most of the time.16

When BigDatalog−MC is allowed to use only one processor, it always outperforms

DLV and clingo. This comparison suggests that BigDatalog−MC provides a tighter

implementation compared with the other two systems; specifically, we found that

clingo, although a multicore Datalog implementation, spends most of the time on

the grounder that utilizes only one processor.

Moreover, with only one processor, BigDatalog−MC outperforms or is on par

with LogicBlox and SociaLite, while LogicBlox and SociaLite are allowed to

use all 64 processors. Naturally, BigDatalog−MC always significantly outperforms

LogicBlox and SociaLite when it uses all 64 processors. The performance gap

between LogicBlox and BigDatalog−MC is largely due to the staged evaluation

used by LogicBlox, which stores all the derived tuples in an intermediate relation,

and performs deduplication or aggregation on the intermediate relation. For the

evaluation that produces large amount duplicate tuples, such as TC on Grid150 and

SG on Tree11, this strategy incurs a high space overhead, and the time spent on

the deduplication, which uses only one processor, dominates the evaluation time.

SociaLite instead uses an array of hash tables with an initial capacity of around

1,000 entries for a derived relation, whereas BigDatalog−MC uses an append-only

15 The single-processor version of DLV is downloaded from http://www.dlvsystem.com/files/dlv.
x86-64-linux-elf-static.bin. Although a parallel version is available from http://www.
mat.unical.it/ricca/downloads/parallelground10.zip, it is either much slower than the single-
processor version, or it fails since it is a 32-bit executable that does not support more than 4GB
memory required by evaluation.

16 These observations are obtained from the results of htop (see https://hisham.hm/htop/).
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structure to store the tuples and a B+ tree to index the tuples. Although the cost

of accessing a hash table is lower than that of a B+ tree, the design adopted by

BigDatalog−MC allows a better memory allocation pattern as the relation grows.

Such overhead is amplified when (i) multiple processors try to allocate memory at

the same time, or (ii) the system has a high memory footprint.

Last, note that BigDatalog−MC achieves a greater speedup (the speedup of

BDLog-64 over BDLog-1) for TC than SG and ATTEND since no lock is used in TC,

while SG and ATTEND suffer from lock contention.

8 Related work

Datalog Semantics. Supporting aggregates in recursion is an old and difficult problem

which has been the topic of much previous research work. Remarkably, previous

approaches had primarily focussed on providing a formal semantics that could

accommodate the non-monotonic nature of the aggregates. In particular, Mumick

et al. (1990) discussed programs that are stratified w.r.t. aggregates operators

and proved that a perfect model exists for these programs. Then, Kemp and

Stuckey (1991) defined extensions of the well-founded semantics to programs

with aggregation, and later showed that programs with aggregates might have

multiple and counter-intuitive stable models. The notion of cost-monotonic extrema

aggregates was introduced by Ganguly et al. (1995), using perfect models and well-

founded semantics, whereas Greco et al. (1992) showed that their use to express

greedy algorithms requires the do not-care non-determinism of the stable-model

semantics provided by the choice construct. An approach to optimize programs with

extrema was proposed by Ganguly et al. (1991), and a general optimization technique

based on an early pruning of non-relevant facts was proposed by Sudarshan and

Ramakrishnan (1991).

A general approach to deal with the four aggregates, min, max, count and sum, in a

unified framework was proposed by Ross and Sagiv (1992) who advocated the use of

semantics based on specialized lattices, different from set-containment, whereby each

aggregate will then define a monotonic mapping in its specialized lattice. However,

several limitations of this proposal were pointed out by Van Gelder (1993), including

the assumption that cost arguments of atoms are functionally dependent from the

other arguments. This is a property that does not hold in many applications and

it also difficult to determine, since determining if a derived predicate satisfies a

functional dependency is undecidable in general (Abiteboul and Hull 1988). In the

following years, interest in aggregates for logic-based systems focussed on their use

in the framework of answer-sets (Erdem et al. 2016), which is less conducive to

BigData applications.

A renewed interest in BigData analytics brought a revival of Datalog for

expressing more powerful data-intensive algorithms—including many that require

aggregates in recursion. At UCLA, researchers first introduced the notion of

monotonic sum and count (Mazuran et al. 2013b; Mazuran et al. 2013a), and

then proposed the comprehensive solution that is described in this paper and covers

all four basic aggregates along with efficient techniques for their efficient and scalable

implementation.
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Datalog Implementations. The Myria (Wang et al. 2015) runtime supports Datalog

evaluation using a pipelined, parallel, distributed execution engine that evaluates

graph of operators. Datasets are sharded and stored in PostgreSQL instances at

worker nodes. SociaLite (Seo et al. 2013) is a Datalog language implementation for

social network analysis. SociaLite programs are evaluated by parallel workers that

use message passing to communicate. Both SociaLite and Myria support aggregation

inside recursion focusing on their operational semantics. The lattice-based approach

of Ross and Sagiv (1992) is proposed as the possible basis for a declarative semantics,

but no approach on how to overcome its limitations is discussed. Furthermore, the

advent of graphics processing units has recently led to Datalog implementations

on graphics processing units for relational learning algorithms (Martı́nez-Angeles

et al. 2016). Since the transfer of data between host and graphics processing unit

memory incurs in significant cost, Datalog implementations on graphics processing

units (Martınez-Angeles et al. 2014) optimize this cost through efficient memory

management schemes.

Parallel Datalog Evaluation and Languages. Previous research on parallel evalua-

tion of Datalog programs determined that some programs are evaluable in parallel

without redundancy and without processor communication or synchronization

(Wolfson and Silberschatz 1988). Such programs are called decomposable. Our

parallel implementations identify decomposable programs via syntactic analysis of

program rules using the generalized pivoting method (Seib and Lausen 1991). Others

have also explored the idea of applying extensions of simple 0–1 laws on Datalog

programs to derive at a parallelization plan that maximizes the expected performance

(Lifschitz and Vianu 1998).

Many works produced over 20 years ago focussed on parallelization of bottom-up

evaluation of Datalog programs (Zhang et al. 1995), however, they were largely of

a theoretical nature. For instance, Van Gelder (1993) proposed a message passing

framework for parallel evaluation of logic programs. Techniques to partition program

evaluation efficiently among processors (Wolfson and Ozeri 1990), the trade-off

between redundant evaluation and communication (Ganguly et al. 1990; Ganguly

et al. 1992), and classifying how certain types of Datalog programs can be evaluated

(Cohen and Wolfson 1989) were also studied. A parallel semi-näıve fixpoint has been

proposed for message passing (Wolfson and Ozeri 1990) that includes a step for

sending and receiving tuples from other processors during computation. The PSN

used in this work applies the same program over different partitions and shuffle

operators in place of processor communication. Parallel processing of recursive

queries in particular is also a well-studied problem. One such example is Bell et al.

(1991), where the recursive query is first transformed into a canonical form and then

evaluated in a pipelined fashion.

Recently, Semantic Web reasoning systems dealing with Resource Description

Framework (RDF) data has utilized this early research in parallel implementa-

tions of semi-näıve evaluation (Abiteboul et al. 1995) to handle recursive Datalog

rules much like commercial systems as LogicBlox. One such system is RDFox

(Motik et al. 2014), which is a main-memory, multicore RDF system that uses

a specialized RDF indexing data structure to ensure largely lock-free concurrent
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updates. It is also important to mention in this regard that, with the emergence

of large Knowledge Graphs (Urbani et al. 2016), the Semantic Web community

has significantly contributed to the ongoing research in Datalog reasoning. In fact,

many reasoning systems encode RDF data, as represented in Knowledge Graphs,

into ternary database predicates for writing elegant Datalog rules, which in turn,

have to be efficiently evaluated. One such recent system is Vlog (Urbani et al. 2016),

which exploits column-based memory layout along with selective caching of certain

subquery results. However, Vlog is intrinsically sequential in nature and does not

have a parallel or distributed implementation.

Among the distributed Datalog languages, it is noteworthy to mention OverLog

(Loo et al. 2005; Condie et al. 2008), used in the P2 system to express overlay net-

works, and NDlog (Loo et al. 2006) for declarative networking. The BloomL (Conway

et al. 2012) distributed programming language uses various monotonic lattices, also

based on the semantics of Ross and Sagiv (1992), to identify program elements

not requiring coordination. Bu et al. (2012) showed how XY-stratified Datalog can

support computational models for large-scale machine learning, although no full

Datalog language implementation on a large-scale system was provided.

Beyond Datalog: parallel execution of logic programs. In logic programming, pro-

grams are evaluated in a top-down fashion through unification. An extensive

body of research was produced on parallel logic programming, dating back to

1981 (de Kergommeaux and Codognet 1994; Gupta et al. 2001). Two major

approaches exists for parallelizing logic programs: the implicit approach assumes that

the framework is able to parallelize the given input program automatically without

any programmer intervention. Conversely, in the explicit case specific constructs are

introduced into the source language to guide the parallel evaluation. The approach

used in our BigDatalog systems is implicit parallelism where any input Datalog

program is automatically parallelized by the runtime.

In implicit parallel logic programming, three main forms of parallelism exists:

(i) And-Parallelism whereby multiple literals are evaluated concurrently; (2) Or-

Parallelism where instead clauses are evaluated in parallel; and (3) Unification

Parallelism in which the unification process is parallelized. Our parallel evaluation

of Datalog programs is a form of Or-Parallelism where data is partitioned such that

different rule instantiations are evaluated concurrently.

It is also important to note that the growth of Semantic Web data also propelled

considerable research on large-scale reasoning on distributed frameworks like

MapReduce (Dean and Ghemawat 2004). One such example is the WebPIE system

(Urbani et al. 2012) that implements forward reasoning for RDFs over MapReduce

framework. The key ideas originating from distributed MapReduce frameworks used

for Semantic Web reasoning were also applied for description logic EL+ (Mutharaju

et al. 2010) for EL+ ontology classifications. In this era of BigData, the Semantic Web

community also led considerable research efforts towards large-scale non-monotonic

reasoning of RDF data. One such paper is Tachmazidis et al. (2012), which proposed

a MapReduce-based parallel framework for defeasible logic and predicates of any

arity in presence of noisy data. In the same vein of large scale non-monotonic

reasoning, the authors of Tachmazidis et al. (2014) proposed a similar data parallel
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MapReduce framework for well-founded semantics computation through efficient

implementations of joins and anti-joins.

9 Conclusion

By embracing the Horn-clause logic of Prolog but not its operational constructs such

as the cut, Datalog researchers, 30 years ago, embarked in a significant expedition

toward declarative languages in which logic alone rather than Logic+Control

(Kowalski 1979) can be used to specify algorithms. Significant progress toward

this ambitious goal was made in the 90s with techniques such as semi-näıve fixpoint

and magic sets that support recursive Datalog programs by bottom-up computation

and implementation techniques from relational DB systems. As described in Section

8, however, declarative semantics for algorithms that require aggregates in recursion

largely remained an unsolved problem for this first generation of deductive DB

systems. Moreover, Datalog scalability via parallelization was only discussed in

papers, until recently when the availability of new parallel platforms and an explosion

of interest in BigData renewed interest in Datalog and its parallel implementations

on multicore and distributed systems.

In this paper, we have provided an in-depth description of the UCLA’a BigData-

log/DeAL project that is of significance because of its (i) historical continuity with

first-generation Datalog systems (LDL++ was supported and extended at UCLA

for several years (Arni et al. 2003)), (ii) implementation on multiple platforms,

with levels of performance that surpass those of competing Datalog systems,

GraphX applications and even Apache Spark applications written in Scala and

(iii) support for a wide range of declarative algorithms using the rigorous non-

monotonic semantics for recursive programs with aggregates introduced in Zaniolo

et al. (2017).

Furthermore, we believe that the use of aggregates in recursive rules made possible

by PreM (Zaniolo et al. 2017) can lead to beneficial extensions in several application

areas, e.g., knowledge discovery and data mining algorithms, and in related logic-

based systems, including, e.g., those that use tabled logic programming (Swift and

Warren 2012) and answer-sets (Erdem et al. 2016). Therefore, we see many interesting

new topics deserving further investigation, suggesting that logic and databases

remains a vibrant research area (Zaniolo et al. 2018), although many years have

passed since it was first introduced (Minker et al. 2014).
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Urbani, J., Jacobs, C. J. and Krötzsch, M. 2016. Column-oriented Datalog Materialization

for large knowledge graphs. In Proc. of 30th Conference on Artificial Intelligence (AAAI),

258–264.

Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F. and Bal, H. 2012. Webpie: A

web-scale parallel inference engine using MapReduce. Web Semantics: Science, Services and

Agents on the World Wide Web 10, 59–75.

Vaghani, J., Ramamohanarao, K., Kemp, D. B., Somogyi, Z., Stuckey, P. J., Leask,

T. S. and Harland, J. 1994. The Aditi deductive database system. VLDB Journal 3, 2,

245–288.

Van Gelder, A. 1993. Foundations of aggregation in deductive databases. In Proc. of

International Conference on Deductive and Object-Oriented Databases. Springer, 13–34.

Venu, B. 2011. Multi-core processors – An overview. CoRR abs/1110.3535.

https://doi.org/10.1017/S1471068418000418 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000418


Scaling-up reasoning and advanced analytics 845

Wang, J., Balazinska, M. and Halperin, D. 2015. Asynchronous and fault-tolerant recursive

Datalog evaluation in shared-nothing engines. Proceedings of the VLDB Endowment 8, 12,

1542–1553.

Wolfson, O. and Ozeri, A. 1990. A new paradigm for parallel and distributed rule-processing.

In Proc. of International Conference on Management of Data (SIGMOD), 133–142.

Wolfson, O. and Silberschatz, A. 1988. Distributed processing of logic programs. In Proc.

of International Conference on Management of Data (SIGMOD), 329–336.

Yang, M. 2017. Declarative Languages and Scalable Systems for Graph Analytics and

Knowledge Discovery. Ph.D. thesis, UCLA.

Yang, M., Shkapsky, A. and Zaniolo, C. 2015. Parallel bottom-up evaluation of logic

programs: DeALS on shared-memory multicore machines. In Technical Communications of

ICLP, Cork, Ireland.

Yang, M., Shkapsky, A. and Zaniolo, C. 2017. Scaling up the performance of more powerful

datalog systems on multicore machines. VLDB Journal 26, 2, 229–248.

Yang, M. and Zaniolo, C. 2014. Main memory evaluation of recursive queries on multicore

machines. In Proc. of IEEE International Conference on Big Data, 251–260.

Yu, Y., Gunda, P. K. and Isard, M. 2009. Distributed aggregation for data-parallel

computing: Interfaces and implementations. In Proc. of 22nd Symposium on Operating

Systems Principles (SOSP ’09). ACM, New York, NY, USA, 247–260.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,

Shenker, S. and Stoica, I. 2012. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proc. of 9th USENIX Conference on Networked Systems

Design and Implementation. USENIX Association, 2–2.

Zaniolo, C., Yang, M., Interlandi, M., Das, A., Shkapsky, A. and Condie, T. 2017. Fixpoint

semantics and optimization of recursive datalog programs with aggregates. Theory and

Practice of Logic Programming 17, 5–6, 1048–1065.

Zaniolo, C., Yang, M., Interlandi, M., Das, A., Shkapsky, A. and Condie, T. 2018.

Declarative bigdata algorithms via aggregates and relational database dependencies.

In Proc. of 12th Alberto Mendelzon International Workshop on Foundations of Data

Management, Cali, Colombia, May 21–25.

Zhang, W., Wang, K. and Chau, S.-C. 1995. Data partition and parallel evaluation of datalog

programs. IEEE Transactions on Knowledge and Data Engineering 7, 1, 163–176.

https://doi.org/10.1017/S1471068418000418 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000418

