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Abstract

HEX-programs are an extension of answer set programs (ASP) with external sources. To this end, external

atoms provide a bidirectional interface between the program and an external source. The traditional evalu-

ation algorithm for HEX-programs is based on guessing truth values of external atoms and verifying them

by explicit calls of the external source. The approach was optimized by techniques that reduce the num-

ber of necessary verification calls or speed them up, but the remaining external calls are still expensive. In

this paper we present an alternative evaluation approach based on inlining of external atoms, motivated by

existing but less general approaches for specialized formalisms such as DL-programs. External atoms are

then compiled away such that no verification calls are necessary. The approach is implemented in the dlvhex

reasoner. Experiments show a significant performance gain. Besides performance improvements, we further

exploit inlining for extending previous (semantic) characterizations of program equivalence from ASP to

HEX-programs, including those of strong equivalence, uniform equivalence and 〈H,B〉-equivalence. Fi-

nally, based on these equivalence criteria, we characterize also inconsistency of programs wrt. extensions.

Since well-known ASP extensions (such as constraint ASP) are special cases of HEX, the results are inter-

esting beyond the particular formalism.

Under consideration in Theory and Practice of Logic Programming (TPLP).
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1 Introduction

HEX-programs extend answer set progams (ASP) as introduced by Gelfond and Lifschitz (1991)

with external sources. Like ASP, HEX-programs are based on nonmonotonic programs and have

a multi-model semantics. External sources are used to represent knowledge and computation

sources such as, for instance, description logic ontologies and Web resources. To this end, so-

called external atoms are used to send information from the logic program to an external source,

which returns values to the program. Cyclic rules that involve external atoms are allowed, such

that recursive data exchange between the program and external sources is possible. A concrete

example is the external atom &edge[g](x, y) which evaluates to true for all edges (x, y) contained

in a graph that is stored in a file identified by a filename g.

The traditional evaluation procedure for HEX-programs is based on rewriting external atoms

∗ This article is an extension of preliminary work presented at AAAI 2017 (Redl 2017b; Redl 2017c). This work has
been supported by the Austrian Science Fund (FWF) Grant P27730.
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to ordinary atoms and guessing their truth values. This yields answer set candidates that are sub-

sequently checked to ensure that the guessed values coincide with the actual semantics of the ex-

ternal atoms. Furthermore, an additional minimality check is necessary to exclude self-justified

atoms, which involves even more external calls. Although this approach has been refined by

integrating advanced techniques for learning (Eiter et al. 2012) and efficient minimality check-

ing (Eiter et al. 2014), which tightly integrate the solver with the external sources and reduce the

number of external calls, the remaining calls are still expensive. In addition to the complexity

of the external sources themselves, also overhead on the implementation side, such as calls of

external libraries and cache misses after jumps out of core algorithms, may decrease efficiency

compared to ordinary ASP-programs.

In this paper we present a novel method for HEX-program evaluation based on inlining

of external atoms. In contrast to existing approaches for DL-programs (Heymans et al. 2010;

Xiao and Eiter 2011; Bajraktari et al. 2017), ours is generic and can be applied to arbitrary ex-

ternal sources. Therefore, it is interesting beyond HEX-programs and also applicable to special-

ized formalisms such as constraint ASP (Gebser et al. 2009; Ostrowski and Schaub 2012). The

approach uses support sets (cf. e.g. Darwiche and Marquis (2002)), i.e., sets of literals that de-

fine assignments of input atoms that guarantee that an external atom is true. Support sets were

previously exploited for HEX-program evaluation (Eiter et al. 2014); however, this was only for

speeding up but not for eliminating the necessary verification step. In contrast, our new approach

compiles external atoms away altogether such that there are no guesses at all that need to be

verified, i.e., the semantics of external atoms is embedded in the ASP-program. We use a bench-

mark suite to show significant performance improvements for certain classes of external

atoms.

Next, we have a look at equivalence notions for ASP such as strong equivalence (Lifschitz et al. 2001),

uniform equivalence (Eiter and Fink 2003) and the more general notion of 〈H,B〉-equivalence (Woltran 2008);

all these notions identify programs as equivalent also wrt. program extensions. Equivalence no-

tions have received quite some attention and in fact have also been developed for other for-

malisms such as abstract argumentation (Baumann et al. 2017). Thus it is a natural goal to also

use equivalence notions from ordinary ASP-programs for HEX-programs (and again, also

special cases thereof), which turns out to be possible based on our inlining approach. We are

able to show that equivalence can be (semantically) characterized similarly as for ordinary ASP-

programs. To this end, we show that the existing criteria for equivalence of ASP-programs char-

acterize also the equivalence of HEX-programs. Based on the equivalence characterization of

HEX-programs, we further derive a (semantic) characterization of inconsistency of a program

wrt. program extensions, which we call persistent inconsistency. More precisely, due to non-

monotonicity, an inconsistent program can in general become consistent when additional rules

are added. Our notion of persistent inconsistency captures programs which remain inconsistent

even under (certain) program extensions. While the main results are decision criteria based on

programs and their reducts, we further derive a criterion for checking persistent inconsistency

based on unfounded sets. Unfounded sets are sets of atoms which support each other only cycli-

cally and are often used in implementations to realize minimality checks of answer sets. Thus, a

criterion based on unfounded sets is convenient in view of practical applications in the course of

reasoner development; we discuss one such application as the end of this paper.

To summarize the main contributions, we present

1. a technique for external source inlining and three applications thereof, namely
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2. a new evaluation technique for HEX-programs,

3. a generalization of equivalence characterizations from ASP- to HEX-programs, and

4. a novel notion of inconsistency of HEX-programs wrt. program extensions and an

according characterization.

Here, item 1. is the foundation for the contributions in items 2., 3., and 4.

After the preliminaries in Section 2 we proceed as follows:

• In Section 3 we show how external atoms can be inlined (embedded) into a program. To

handle nonmonotonicity we use a saturation encoding based on support sets. For the sake

of a simpler presentation we first restrict the discussion to positive external atoms and then

extend our approach to handle also negated ones.

• In Section 4 we exploit this approach for performance gains. To this end, we implement the

approach in the dlvhex system and perform an experimental evaluation, which shows a sig-

nificant speedup for certain classes of external atoms. The speedup is both over traditional

evaluation and over a previous approach based on support sets for guess verification.

• As another application of the inlining technique, Section 5 characterizes equivalence of

HEX-programs, which generalizes results by Woltran (2008). The generalizations of strong (Lifschitz et al. 2001)

and uniform equivalence (Eiter and Fink 2003) correspond to special cases thereof.

• In Section 6 we present a characterization of inconsistency of HEX-programs wrt. pro-

gram extensions, which we call persistent inconsistency. This characterization is derived

from the previously presented notion of equivalence. We then discuss an application of the

criteria in context of potential further improvements of the evaluation algorithm.

• Section 7 discusses related work and concludes the paper.

• Proofs are outsourced to Appendix A.

A preliminary version of the results in this paper has been presented at AAAI 2017 (Redl 2017b;

Redl 2017c); the extensions in this work consist of more extensive discussions of the theoretical

contributions, additional experiments and formal proofs of the results.

2 Preliminaries

Our alphabet consists of possibly infinite, mutually disjoint sets of constant symbols C, predicate

symbolsP , and external predicatesX ; in this paper we refrain from using variables in the formal

part, as will be justified below.

In the following, a (ground) ordinary atom a is of form p(c1, . . . , cℓ) with predicate p ∈ P

and constant symbols c1, . . . , cℓ ∈ C, abbreviated as p(c); we write c ∈ c if c = ci for some

1 ≤ i ≤ ℓ. For ℓ = 0 we might drop the parentheses and write p() simply as p. In the following

we may drop ‘ordinary’ and call it simply an atom whenever clear from context.

An assignment Y over a set A of atoms is a set Y ⊆ A, where a ∈ Y expresses that a is true

under Y , also denoted Y |= a, and a 6∈ Y that a is false, also denoted Y 6|= a. For a default-literal

not a over an atom a we let Y |= not a if Y 6|= a and Y 6|= not a otherwise.

HEX-Programs. We recall HEX-programs (Eiter et al. 2016), which generalize (disjunctive) logic

programs under the answer set semantics (Gelfond and Lifschitz 1991), as follows.

Syntax. HEX-programs extend ordinary ASP-programs by external atoms which provide a bidi-

rectional interface between the program and external sources. A ground external atom is of the
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form &g[p](c), where &g ∈ X is an external predicate, p = p1, . . . , pk is a list of input pa-

rameters (predicates from P or object constants from C), called input list, and c = c1, . . . , cl are

output constants from C.

Definition 1

A HEX-program P consists of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn ,

where each ai is an ordinary atom and each bj is either an ordinary atom or an external atom.

For such a rule r, its head is H(r) = {a1, . . . , ak}, its body is B(r) = {b1, . . . , bm, not bm+1,

. . . , not bn}, its positive body is B+(r) = {b1, . . . , bm} and its negative body is B−(r) =

{bm+1, . . . , bn}. For a program P we let X(P ) =
⋃

r∈P X(r) for X ∈ {H,B,B+, B−}.

For a program P and a set of constants C, let HBC(P ) denote the Herbrand base containing

all atoms constructible from the predicates occurring in P and constants C.

We restrict the formal discussion to programs without variables as suitable safety condi-

tions guarantee the existence of a finite grounding that suffices for answer set computation, see

e.g. Eiter et al. (2016).

Semantics. In the following, assignments are over the set of ordinary atoms constructible from

predicates P and constants C. The semantics of an external atom &g[p](c). wrt. an assignment

Y is given by the value of a decidable 1+k+l-ary two-valued (Boolean) oracle function f&g

that is defined for all possible values of Y , p and c. We say that &g[p](c) is true relative to

Y if f&g(Y,p, c) = T, and it is false otherwise. We make the restriction that f&g(Y,p, c) =

f&g(Y
′,p, c) for all assignments Y and Y ′ which coincide on all atoms over predicates in p.

That is, only atoms over the predicates in p may influence the value of the external atom, which

resembles the idea of p being the ‘input’ to the external source; we call such atoms also the input

atoms of &g[p](c).

Satisfaction of ordinary rules and ASP-programs (Gelfond and Lifschitz 1991) is then ex-

tended to HEX-rules and -programs as follows. A rule r as by Definition 1 is true under Y ,

denoted Y |= r, if Y |= h for some h ∈ H(r) or Y 6|= b for some b ∈ B(r).

The answer sets of a HEX-program P are defined as follows. Let the FLP-reduct of P wrt. an

assignment Y be the set fPY = {r ∈ P | Y |= b for all b ∈ B(r)}. Then:

Definition 2

An assignment Y is an answer set of a HEX-program P if Y is a subset-minimal model of the

FLP-reduct fP Y of P wrt. Y .

Example 1

Consider the program P = {p← &id [p]()}, where &id [p]() is true iff p is true. Then P has the

answer set Y1 = ∅; indeed it is a subset-minimal model of fP Y1 = ∅.

For an ordinary program P , the above definition of answer sets is equivalent to Gelfond &

Lifschitz’ answer sets.

Traditional Evaluation Approach. A HEX-programs P is transformed to an ordinary ASP-

program P̂ as follows. Each external atom &g[p](c) in P is replaced by an ordinary replacement

atom e&g[p](c) and a rule e&g[p](c) ∨ ne&g[p](c) ← is added. The answer sets of the resulting

guessing program P̂ are computed by an ASP solver. However, the assignment Y extracted from
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an answer set Ŷ of P̂ by projecting it to the ordinary atoms A(P ) in P may not satisfy P as

&g[p](c) under f&g may differ from the guessed value of e&g[p](c). The answer set is merely a

candidate. If a compatibility check against the external source succeeds, it is a compatible set as

formalized as follows:

Definition 3

A compatible set of a program P is an answer set Ŷ of the guessing program P̂ such that

f&g(Ŷ ,p, c) = T iff e&g[p](c) ∈ Ŷ for all external atoms &g[p](c) in P .

Example 2

Consider P = { p(a) ∨ p(b) ← &atMostOne[p]() }, where &atMostOne[p]() is true under

an assignment Y if {p(a), p(b)} * Y , i.e., at most one of p(a) or p(b) is true under Y , and

it is false otherwise. Then we have P̂ = {p(a) ∨ p(b) ← e&atMostOne[p]; e&atMostOne[p] ∨

ne&atMostOne[p] ←}, which has the answer sets Ŷ1 = {p(a), e&atMostOne[p]}, Ŷ2 = {p(b), e&atMostOne[p]},

Ŷ3 = {ne&atMostOne[p]} (while {p(a), p(b), e&atMostOne[p]} is not an answer set of P̂ ). How-

ever, although Ŷ3 is an answer set of P̂ , its projection Y3 = ∅ to atoms A(P ) in P is not an

answer set of P because Y3 |= &atMostOne[p]() but e&atMostOne[p] 6∈ Ŷ3, and thus the compat-

ibility check for Ŷ3 fails. In contrast, the compatibility checks for Ŷ1 and Ŷ2 pass, i.e., they are

compatible sets of P , and their projections Y1 = {p(a)} and Y2 = {p(b)} to atoms A(P ) in P

are answer sets of P .

However, if the compatibility check succeeds, the projected interpretation is not always au-

tomatically an answer set of the original program. Instead, after the compatibility check of an

answer set Ŷ of P was passed, another final check is needed to guarantee also subset-minimality

of its projection Y wrt. fP Y . Each answer set Y of P is the projection of some compatible set

Ŷ to A(P ), but not vice versa.

Example 3

ReconsiderP = { p← &id [p]() } from above. Then P̂ = {p← e&id[p](); e&id [p]∨ne&id [p] ← }

has the answer sets Ŷ1 = {ne&id [p]} and Ŷ2 = {p, e&id [p]}. Here, Y1 = ∅ is a ⊆-minimal model

of fP Y1 = ∅, but Y2 = {p} not of fP Y2 = P .

There are several approaches for checking this minimality, e.g. based on unfounded sets,

which are sets of atoms that support each other only cyclically (Faber 2005). However, the de-

tails of this check are not relevant for this paper, which is why we refer the interested reader

to Eiter et al. (2014) for a discussion and evaluation of various approaches.

Learning Techniques. In practice, the guessing program P̂ has usually many answer sets, but

many of them fail the compatibility check against external sources (often because of the same

wrong guess), which turns out to be an evaluation bottleneck. To overcome the problem, tech-

niques that extend conflict-driven learning have been introduced as external behavior learning

(EBL) (Eiter et al. 2012).

As in ordinary ASP solving, the traditional HEX-algorithm translates the guessing program

to a set of nogoods, i.e., a set of literals that must not be true at the same time. Given this

representation, techniques from SAT solving are applied to find an assignment that satisfies

all nogoods (Gebser et al. 2012). Notably, as the encoding as a set of nogoods is of exponen-

tial size due to loop nogoods that avoid cyclic justifications of atoms, those parts are generated

only on-the-fly. Moreover, additional nogoods are learned from conflict situations, i.e., violated
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nogoods that cause the solver to backtrack; this is called conflict-driven nogood learning, see

e.g. Franco and Martin (2009).

EBL extends this algorithm by learning additional nogoods not only from conflict situations

in the ordinary part, but also from verification calls to external sources. Whenever an external

atom e&e[p](c) is evaluated under an assignment Y for the sake of compatibility checking, the

actual truth value under the assignment becomes evident. Then, regardless of whether the guessed

value was correct or not, one can add a nogood that represents that e&e[p](c) must be true under

Y if Y |= &e[p](c) or that e&e[p](c) must be false under Y if Y 6|= &e[p](c). If the guess

was incorrect, the newly learned nogood will trigger backtracking, if the guess was correct, the

learned nogood will prevent future wrong guesses.

Example 4

Suppose &atMostOne[p]() is evaluated under Y = {p(a), p(b)}. Then the real truth value of

&atMostOne[p]() under Y becomes evident: in this case Y 6|= &atMostOne[p](). One can then

learn the nogood {p(a), p(b), e&atMostOne[p]()} to represent that p(a), p(b) and &atMostOne[p]()

cannot be true at the same time.

Learning realizes a tight coupling of the reasoner and the external source by adding parts of

the semantics on-demand to the program instance, which is similar to theory propagation in SMT

(see e.g. Nieuwenhuis and Oliveras (2005)) and lazy clause generation (Ohrimenko et al. 2009;

Drescher and Walsh 2012). However, while these approaches consider only specific theories such

as integer constraints, EBL in HEX supports arbitrary external sources. Moreover, EBL does

not depend on application-specific procedures for generating learned clauses but rather derives

them from the observed behavior of the source. Experimental results show that EBL leads to a

significant, up to exponential speedup, which is explained by the exclusion of up to exponentially

many guesses by the learned nogoods, but the remaining verification calls are still expensive

and – depending on the type of the external source – can account for large parts of the overall

runtime (Eiter et al. 2014).

Evaluation Based on Support Sets. Later, an alternative evaluation approach was developed.

While the basic idea of guessing the values of external atoms as in the traditional approach

remains, the verification is now accomplished by using so-called support sets instead of explicit

evaluation (Eiter et al. 2014). Here, a positive resp. negative support set for an external atom e is

a set of literals over the input atoms of e whose satisfaction implies satisfaction resp. falsification

of e. Informally, the verification is done by checking whether the answer set candidate matches

with a support set of the external atom. If this is the case, the guess is verified resp. falsified.

More precisely, for a set S of literals a or¬a, where a is an atom, let¬S = {¬a | a ∈ S}∪{a |

¬a ∈ S} be the set of literals S with swapped sign. We call a set S of literals consistent if there

is no atom a such that {a,¬a} ⊆ S. We formalize support sets as follows:

Definition 4 (Support Set)

Let e = &g[y](x) be an external atom in a program P . A support set for e is a consistent set

Sσ = S+
σ ∪ S−σ with σ ∈ {T,F}, S+

σ ⊆ HBC(P ), and S−σ ⊆ ¬HBC(P ) s.t. Y ⊇ S+
σ and

Y ∩ ¬S−σ = ∅ implies Y |= e if σ = T and Y 6|= e if σ = F for all assignments Y .

We call the support set Sσ positive if σ = T and negative if σ = F.

Example 5
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Suppose &diff [p, q](c) computes the set of all elements c that are in the extension1 of p but not in

that of q. Then {p(a),¬q(a)} is a positive support set for &diff [p, q](a) because any assignment

Y with {p(a)} ⊆ Y but Y ∩ {q(a)} = ∅ satisfies &diff [p, q](a).

We are in particular interested in families (=sets) of support sets which describe the behavior

of external atoms completely:

Definition 5 ((Complete) Support Set Family)

A positive resp. negative family of support sets Sσ with σ ∈ {T,F} for external atom e is a set

of positive resp. negative support sets of e; Sσ is complete if for each assignment Y with Y |= e

resp. Y 6|= e there is an Sσ ∈ Sσ s.t. Y ⊇ S+
σ and Y ∩ ¬S−σ = ∅.

Complete support set families Sσ can be used for the verification of external atoms as follows.

One still uses the rewriting P̂ , but instead of explicit evaluation and comparison of the guess of a

replacement atom to the actual value under the current assignment, one checks whether for some

Sσ ∈ Sσ we have Y ⊇ S+
σ and Y ∩ ¬S−σ = ∅ for the current assignment Y . If this is the case,

the external atom must be true if σ = T and false if σ = F; otherwise, it must be false if σ = T

and true if σ = F. This method is in particular advantageous if the support sets in Sσ are small

and few.

As a further improvement, positive support sets ST for &g[p](c) can be added as constraints

← S+
T , {not a | ¬a ∈ S−T}, not&g[p](c) to the program in order to exclude false negative

guesses. Analogously, for negative support sets we can add← S+
F , {not a | ¬a ∈ S−F },&g[p](c)

to exclude false positive guesses. This was exploited in existing approaches for performance im-

provements (Eiter et al. 2014); we will also use this technique in Section 4 when comparing our

new approach to the previous support-set-based approach. This amounts to a learning technique

similar to EBL. However, note that this learns only a fixed number of nogoods at the beginning,

while learning by EBL is not done here as external sources are not evaluated during solving.

Note that even if all ST ∈ ST are added as constraints, the verification check is still necessary.

This is because adding a positive support set ST as a constraint eliminates only false negative

guesses, but not false positive guesses (since they encode only when the external atom is true but

not when it is false). Conversely, adding all SF ∈ SF prevents only false positive guesses but not

false negative ones.

The approach was also lifted to the non-ground level (Eiter et al. 2014). Intuitively, non-ground

support sets may contain variables as shortcuts for all ground instances. Prior to the use of non-

ground support sets, the variables are substituted by all relevant constants that appear in the

program. However, in the following we restrict the formal discussion to the ground level for

simplicity.

To summarize, improvements in the traditional evaluation approach (learning) have reduced

the number of verification calls, and the alternative support set approach has replaced explicit

verification calls by matching an assignment with support sets, but neither of them did eliminate

the need for guessing and subsequent verification altogether. In the next section we go a step

further and eliminate this need.

Construction of Support Sets. Obviously, in order to make use of support sets there must be

procedures that can effectively and efficiently construct them, which is why we have a look at this

1 The extension of a (unary) predicate p wrt. an assignment Y is the set {c | p(c) ∈ Y }; likewise for predicates with
other arities.
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aspect. Constructing support sets depends on the external source (Eiter et al. 2014). In general,

the developer of an external atom is aware of its semantic structure, which usually allows her/him

to provide this knowledge in form of support sets. Then, providing support sets can be seen as an

alternative way to define and implement oracle functions. For certain classes of external atoms,

procedures for constructing support sets are in fact already in place.

Compactness of families of support sets is an important aspect for evaluation techniques

based on families of support sets. It is therefore crucial for the approach by Eiter et al. (2014)

and our contribution that, although there may be exponentially many support sets in the worst

case, many realistic external sources have small support set families. For certain types of exter-

nal sources, their small size is even provable and known before evaluating the program. Exter-

nal sources with provably small support set families include, for instance, the description logic

DL-LiteA (Calvanese et al. 2007). Generally, support set families tend to be small for sources

whose behavior is structured, i.e., whose output often depends only on parts of the input and

does not change completely with small changes in the input (Eiter et al. 2014). Note that such a

structure in many realistic applications is also the key to parameterized complexity. In this paper,

we focus on such sources; also the sources used in our benchmarks are guaranteed to have small

families of support sets (whose sizes we will discuss together with the respective benchmark

results).

As an example we have a closer look at constructing support sets for a DL-LiteA-ontology that

is accessed from the logic program using dedicated external atoms (also called DL-atoms (Eiter et al. 2008)).

DL-atoms allow for answering queries over the ontology under a (possibly) extended Abox based

on input from the program. We use the external atom &DL[ont , inpc, inpr , con ](X) to access

an ontology ont and retrieve all individuals X in the concept con , where the binary resp. ternary

predicates inpc and inpr allow for answering the query under the assumption that certain con-

cept resp. role assertions are added to the Abox of the ontology before answering the query.

More precisely, the query is answered wrt. an assignment Y under the assumption that concept

assertion c(i) is added for each inpc(c, i) ∈ Y and role assertion r(i1, i2) is added for each

inpr(r, i1, i2) ∈ Y .

For instance, suppose the program contains atoms of form inpc(“Person”, ·) to specify per-

sons and atoms of form inpr (“childOf ”, ·, ·) to specify parent-child relations. Then the external

atom &DL[ont , inpc, inpr , “OnlyChild”](X) queries all members of concept OnlyChild under

the assumption that concepts Person and roles childOf has been extended according to the truth

values of the inpc and inpr atoms in the program.2

For this type of description logic, Calvanese et al. (2007) have proven that at most one asser-

tion is needed to derive an instance query from a consistent ontology. Hence, for each concept

c and individual i there is a (positive) support set either of form ∅ or of form {p(x)}, where the

latter encodes that if p(x) ∈ Y , then Y |= &DL[ont , inpc, inpr , c](i) for all assignments Y .

Moreover, at most two added ABox assertions are needed to make such an ontology inconsistent

(in which case all queries are true). For each possibility where the ontology becomes inconsistent

there is a (positive) support set of form {p(x), p′(x′)}. Then, each support set is of one of only

three different forms, which are all at most binary. Moreover, Lembo et al. (2011) have proven

that the number of different constants appearing in x resp. x′ in these support sets is limited by

2 This is often written as DL[ont ;Person ⊎p, childOf ⊎c;OnlyChild ](X) using a more convenient syntax tailored
to DL-atoms, where additions to concepts and rules are expressed by operator ⊎ and p and c are unary and binary
(instead of binary and ternary) predicates, respectively.
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three. The limited cardinality and number of constants also limits the number of possible support

sets required to describe the overall ontology to a quadratic number in the size of the program

and the Abox.

Moreover, as one can see, the support sets are easy to construct by a syntactic analysis of the

ontology and the DL-atoms. For details regarding the construction of support sets for DL-LiteA

we refer to Eiter et al. (2014).

3 External Source Inlining

In this section we present a rewriting which compiles HEX-programs into equivalent ordinary

ASP-programs (modulo auxiliary atoms) based on support sets, and thus embeds external sources

into the program; we call the technique inlining. Due to nonmonotonic behavior of external

atoms, inlining is not straightforward. In particular, it is not sufficient to substitute external atoms

by ordinary replacement atoms and derive their truth values based on their support sets, which is

surprising at first glance. Intuitively, this is because rules that define replacement atoms can be

missing in the reduct and it is not guaranteed any longer that the replacement atoms resemble the

original semantics; we will demonstrate this in more detail in Section 3.1. Afterwards we present

a sound and complete encoding based on the saturation technique (cf. e.g. Eiter et al. (2009)) in

Section 3.2.

3.1 Observations

We start with observations that can be made when attempting to inline external sources in a

straightforward way. The first intuitive attempt to inline an external atom e might be to replace

it by an ordinary atom xe and add rules of kind xe ← L, where L is constructed from a positive

support set ST of e by adding S+
T as positive atoms and S−T as default-negated ones. However,

this alone is in general incorrect even if repeated for all ST ∈ ST for a complete family of

support sets ST, as the following example demonstrates.

Example 6

Consider P = {a ← &true[a]()} where e = &true[a]() is always true; a complete family of

positive support sets is ST = {{a}, {¬a}}. The program is expected to have the answer set

Y = {a}. However, the translated program P ′ = {xe ← a; xe ← not a; a ← xe} has no

answer set because the only candidate is Y ′ = {a, xe} and fP ′Y = {xe ← a; a← xe} has the

smaller model ∅.

In the example, P ′ fails to have an answer set because the former external atom &true[a]() is

true also if not a holds, but the rule xe ← not a, which represents this case, is dropped from the

reduct wrt. Y ′ because its body not a is unsatisfied by Y ′. Hence, although the external atom e

holds both under Y ′ and under the smaller model ∅ of the reduct which dismisses Y ′, this is not

detected since the representation of the external atom in the reduct is incomplete. In such a case,

the value of xe and e under a model of the reduct can differ.

An attempt to fix this problem might be to explicitly guess the value of the external atom and

represent both when it is true and when it is false. Indeed, P ′′ = {xe ∨ xe←; ← a, not xe; ←

not a, not xe; a ← xe} is a valid rewriting of the previous program (Y ′ is an answer set).

However, this rewriting is also incorrect in general, as the next example shows.
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Example 7

Consider P = {a ← &id [a]()} where e = &id [a]() is true iff a is true. The program is ex-

pected to have the answer set Y = ∅. However, the translated program P ′ = {xe ∨ xe←; ←

a, not xe; ← not a, xe; a ← xe} has not only the intended answer set {xe} but also Y ′ =

{a, xe} because fP ′Y
′

= {xe ∨ xe←; a← xe} has no smaller model.

While the second rewriting attempt from Example 7 works for Example 6, and, conversely,

the one applied in Example 6 works for Example 7, a general rewriting schema must be more

elaborated.

In fact, since HEX-programs with recursive nonmonotonic external atoms are on the second

level of the polynomial hierarchy, we present a rewriting which involves head-cycles. Before we

start, let us first discuss this aspect in more detail. Faber et al. (2011) reduced 2QBF polynomially

to a program without disjunctions but with nonmonotonic aggregates, which are special cases

of external atoms. This, together with a membership proof, shows that programs with external

atoms are complete for the second level, even in the disjunction-free case. Since ordinary ASP-

programs without head-cycles are only complete for the first level, this implies that a further

polynomial reduction to ordinary ASP must introduce disjunctions with head-cycles.

Interestingly, all aggregates used by Faber et al. (2011) depend only on two input atoms each,

which implies that they can be described by a complete family of support sets of constant size (at

most two support sets are needed if an optimal encoding is used). This shows that HEX-programs

are already on the second level even if they are disjunction-free and all external atoms can be

described by families of support sets with constant size.

The size of the encoding we are going to present depends linearly on the size of the given

complete family of support sets; since there can be exponentially many support sets even for

polynomial external sources (e.g. for the parity function), this can lead to an exponential en-

coding. However, for polynomial families of support sets our encoding remains polynomial as

well. Because HEX-programs are already on the second level even if they are disjunction-free and

all external atoms can be described by families of support sets with constant size (as discussed

above), this is only possible because our rewriting to ordinary ASP uses head-cycles.

3.2 Encoding in Disjunctive ASP

In this section we present a general rewriting for inlining external atoms. In the following, for an

external atom e in a program P , let I(e, P ) be the set of all ordinary atoms in P whose predicate

occurs as a predicate parameter in e, i.e., the set of all input atoms to e. Furthermore, let ST(e, P )

be an arbitrary but fixed complete positive support set family over atoms in P .

For a simpler presentation we proceed in two steps. We first restrict the discussion to positive

external atoms, and then extend the approach to negative ones in Section 3.2.2.

3.2.1 Inlining Positive External Atoms

We present the encoding for inlining single positive external atoms into a program and explain

it rule by rule afterwards. In the following, a new atom is an atom that does not occur in the

program P at hand and such that its predicate does not occur in the input list of any external

atom in P (but its building blocks occur in the vocabulary). This insures that inlining does not

introduce any undesired interference with existing parts of the program.
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Definition 6 (External Atom Inlining)

For a HEX-program P and external atom e that occurs only positively in P , let

P[e] = {xe ← S+
T ∪ {a | ¬a ∈ S−T} | ST ∈ ST(e, P )} (1)

∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ I(e, P )} (2)

∪ {xe ← not xe} (3)

∪ P |e→xe
(4)

where a is a new atom for each a, xe and xe are new atoms for external atom e, and P |e→xe
=

⋃

r∈P r|e→xe
where r|e→xe

denotes rule r with every occurrence of e replaced by xe.

The rewriting works as follows. The atom xe represents the former external atom, i.e., that e

is true, while xe represents that it is false. The rules in (1) represent all input assignments that

satisfy xe (resp. e). More specifically, each rule in {xe ← S+
T ∪{a | ¬a ∈ S−T} | S ∈ ST(e, P )}

represents one possibility to satisfy the former external atom e, using the complete positive family

of support sets ST; in each such case xe is derived. Next, for an input atom a, the atom a

represents that a is false or that xe (resp. e) is true, as formalized by the rules (2). The latter is

in order to ensure that for an assignment Y , all relevant rules in (1), i.e. those that might apply

to subsets of Y , are contained in the reduct wrt. Y (because a could become false in a smaller

model of the reduct); recall that in Example 6 the reason for incorrectness of the rewriting was

exactly that these rules were dropped. The derivation of a despite a being true is only necessary

if xe is true wrt. Y ; if xe is false then all rules containing xe are dropped from the reduct anyway.

The idea amounts to a saturation encoding (Eiter et al. 2009). Next, rule (3) enforces xe to be

true whenever xe is false. Finally, rules (4) resemble the original program with xe in place of e.

For the following Proposition 1 we first assume that the complete family of support sets

ST(e, P ) contains only support sets that contain all input atoms of e in P explicitly in posi-

tive or negative form. That is, for all ST ∈ ST(e, P ) we have that S+
T ∪ ¬S

−
T = I(e, P ). Note

that each complete family of support sets can be modified to fulfill this criterion: replace each

ST ∈ ST(e, P ) with S+
T ∪ ¬S

−
T ( I(e, P ) by all of the support sets C = {S+

T ∪ S−T ∪ R |

R ⊆ U ∪ ¬U,R consistent} where U = I(e, P ) \ (S+
T ∪ ¬S

−
T). These are all the support sets

constructible by adding ‘undefined atoms’ (those which occur neither positively nor negatively

in ST) either in positive or negative form in all possible ways. The intuition is that ST encodes

the following condition for satisfaction of e: all of S+
T but none of S−T must be true, while the

value of the atoms U are irrelevant for satisfaction of e. Thus, adding the atoms from U in all

combinations of positive and negative polarities makes it only explicit that e is true in all of these

cases. Formally, this means that for any Y ⊆ I(e, P ) we have that Y ⊇ S+
T and Y ∩ ¬S−T = ∅

iff Y ⊇ C+
T and Y ∩ ¬C−T = ∅ for some C ∈ C. This might lead to an exponential blowup of

the size of the family of support sets, but is made in order to simplify the first result and its proof;

however, we show below that the result still goes through without this blowup.

We show now that for such families of support sets the rewriting is sound and complete. Here,

we say that the answer sets of programs P and Q are equivalent modulo a set of atoms A, if there

is a one-to-one correspondence between their answer sets in the sense that every answer set of P

can be extended to one of Q in a unique way by adding atoms from A, and every answer set of

Q can be shrinked to one of P by removing atoms that are also in A.

Proposition 1

For all HEX-programs P , external atoms e in P and a positive complete family of support sets
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ST(e, P ) such that S+
T ∪ ¬S

−
T = I(e, P ) for all ST ∈ ST(e, P ), the answer sets of P are

equivalent to those of P[e], modulo the atoms newly introduced in P[e].

Next we show that the idea still works for arbitrary complete positive families of support

sets ST(e, P ). To this end, we first show that two rules xe ← B, b and xe ← B, b in the above

encoding, stemming from two support sets that differ only in b resp. b, can be replaced by a single

rule xe ← B without affecting the semantics of the program. Intuitively, this corresponds to the

case where two support sets {a ∈ B}∪{¬a | a ∈ B}∪{b} and {a ∈ B}∪{¬a | a ∈ B}∪{¬b}

imply that e is true whenever all of B and one of b or b hold, which might be also be expressed

by a single support set {a ∈ B}∪ {¬a | a ∈ B} that expresses that B suffices as a precondition;

this idea is similarly to resolution.

Proposition 2

Let X be a set of atoms and P be a HEX-program such that

P ⊇ {r1 : xe ← B, b; r2 : xe ← B, b}

∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ X}

∪ {xe ← not xe}

where B ⊆ {a, a | a ∈ X}, b ∈ X , and xe occurs only in the rules explicitly shown above. Then

P is equivalent to P ′ = (P \ {r1, r2}) ∪ {r : xe ← B}.

The idea of the next corollary is then as follows. Suppose we start with a rewriting based

on a positive complete family of support sets ST(e, P ) such that S+
T ∪ ¬S

−
T = I(e, P ) for all

ST ∈ ST(e, P ). We know by Proposition 1 that this rewriting is sound an complete. Any other

positive complete family of support sets can be constructed by iteratively combining support sets

in ST(e, P ) which differ only in the polarity of a single atom. Since the likewise combination

of the respective rules in the rewriting does not change the semantics of the resulting program

as shown by Proposition 2, the rewriting can be constructed from an arbitrary positive complete

family of support sets right from the beginning.

Corollary 1

For all HEX-programs P , external atoms e in P and a positive complete family of support sets

ST(e, P ), the answer sets of P are equivalent to those of P[e], modulo the atoms newly intro-

duced in program P[e].

We demonstrate the rewriting with an example.

Example 8

Consider P = {a← &aOrNotB [a, b]()}, where e = &aOrNotB [a, b]() evaluates to true if a is

true or b is false. Let ST(e, P ) = {{a}, {¬b}}. Then we have:

P[e] = {xe ← a; xe ← b

a← not a; a← xe; b← not b; b← xe; a ∨ a← not xe; b ∨ b← not xe

xe ← not xe

a← xe}

The program has the unique answer set Y ′ = {a, xe, a, b}, which represents the answer set

Y = {a} of P .
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Multiple external atoms can be inlined by iterative application. For a program P and a set E

of external atoms in P we denote by P[E] the program after all external atoms from E have been

inlined. Importantly, separate auxiliaries must be introduced for atoms that are input to multiple

external atoms.

3.2.2 Inlining Negated External Atoms

Until now we restricted the discussion to positive external atoms based on positive support sets.

One can observe that the rewriting from Definition 6 does indeed not work for external atoms e

that occur (also) in form not e because programs P and P [e] are in this case not equivalent in

general.

Example 9

Consider P = {p ← not&neg[p]()}, where &neg[p]() is true if p is false and vice versa. The

only answer set of P is Y = ∅ but the rewriting from Definition 6 yields

P[&neg[p]()] = {xe ← p

p← not p; p← xe; p ∨ p← not xe

xe ← not xe

p← not xe}

which has the answer sets Y ′1 = {xe, p} and Y ′2 = {xe, p} that represent the assignments Y1 = ∅

and Y2 = {p} over P . However, only Y1 (= Y ) is an answer set of P .

Intuitively, the rewriting does not work for negated external atoms because their input atoms

may support themselves. More precisely, due to rule (3), an external atom is false by default if

none of the rules (1) apply. If one of the external atom’s input atoms depends on falsehood of

the external atom, as in Example 9, then the input atom might be supported by falsehood of the

external atom, although this falsehood itself depends on the input atom.

In order to extend our approach to the inlining of negated external atoms not e in a program

P , we make use of an arbitrary but fixed negative complete family SF(e, P ) of support sets as by

Definition 5. The idea is then to replace a negated external atom not e by a positive one e′ that is

defined such that Y |= e′ iff Y 6|= e for all assignments Y ; obviously, the resulting program has

the same answer sets as before. This reduces the case for negated external atoms to the case for

positive ones. The semantics of e′ is fully described by the negative complete family of support

sets of e and we may apply the rewriting of Definition 6.

The idea is formalized by the following definition:

Definition 7 (Negated External Atom Inlining)

For a HEX-program P and negated external atom not e in P , let

P[not e]={xe ← S+
F ∪ {a | ¬a ∈ S−F }|SF ∈ SF(e, P )} (5)

∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ I(e, P )} (6)

∪ {xe ← not xe} (7)

∪ P |not e→xe
(8)

where a is a new atom for each a, xe and xe are new atoms for external atom e, and P |not e→xe
=

⋃

r∈P r|not e→xe
where r|not e→xe

denotes rule r with every occurrence of not e replaced by xe.
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Informally, the effects of changing a negated external atom to a positive one and using a

negative family of support sets cancel each other out. One can show that this rewriting is sound

and complete.

Proposition 3

For all HEX-programs P , negated external atoms not e in P and a negative complete family of

support sets SF(e, P ), the answer sets of P are equivalent to those of P[not e], modulo the atoms

newly introduced in program P[not e].

As before, iterative application allows for inlining multiple negated external atoms. In the

following, for a program P and a set E of either positive or negated external atoms in P , we

denote by P[E] the program after all external atoms from E have been inlined.

Transforming Complete Families of Support Sets. For the sake of completeness we show that

one can change the polarity of complete families of support sets:

Proposition 4

Let Sσ be a positive resp. negative complete family of support sets for some external atom e

in a program P , where σ ∈ {T,F}. Then Sσ = {Sσ ∈
∏

Sσ∈Sσ
¬Sσ | Sσ is consistent} is a

negative resp. positive complete family of support sets, where T = F and F = T.

Intuitively, since a complete family family of positive support sets ST fully describes under

which conditions the external atom is true, one can construct a negative support set by picking an

arbitrary literal from each ST ∈ ST and changing its sign. Then, whenever the newly generated

set is contained in the assignment, none of the original support sets in ST can match. The case

for families of negative support sets is symmetric.

However, similarly to the transformation of the formula from conjunctive normal form to

disjunctive normal form or vice versa, this may result in an exponential blow-up. In the spirit

of our initial assumption that compact complete families of support sets exist, it is suggested to

construct families of support sets of the required polarity right from the beginning, which we will

also do in our experiments.

4 Exploiting External Source Inlining for Performance Boosts

An application of the techniques from the previous section are algorithmic improvements by

skipping explicit verification calls for the sake of performance gains. As stated in Section 2,

learning techniques may reduce the number of required verification calls, and – alternatively –

using support sets for verification instead of explicit calls may lead to an efficiency improvement

when checking external source guesses, but neither of these techniques eliminates the checks

altogether (Eiter et al. 2014). In contrast, inlining embeds the semantics of external sources di-

rectly in the logic program. Thus, no more checks are needed; the resulting program can actually

be evaluated by an ordinary ASP solver.

4.1 Implementation

We implemented this approach in the dlvhex3 system, which is based on gringo and clasp from

the Potassco suite4. External sources are supposed to provide a complete set of support sets.

3 www.kr.tuwien.ac.at/research/systems/dlvhex
4 https://potassco.org

www.kr.tuwien.ac.at/research/systems/dlvhex
https://potassco.org
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The system allows also for using universally quantified variables in the specification of support

sets, which are automatically substituted by all constants occurring in the program. After exter-

nal source inlining during preprocessing, the HEX-program is evaluated entirely by the backend

without any external calls.

The rewriting makes both the compatibility check (cf. Definition 3) and the minimality check

wrt. the reduct and external sources (cf. Section 2 and Eiter et al. (2014)) obsolete. With the tra-

ditional approach, compatible sets are not necessarily answer sets. This is because cyclic support

of atoms that involves external sources is not detected by the ordinary ASP solver when evalu-

ating P̂ . But after inlining, due to soundness and completeness of our rewriting, the minimality

check performed by the ordinary ASP solver suffices.

We evaluated the approach using the experiments described in the following.

4.2 Experimental Setup

We present several benchmarks with 100 randomly generated instances each, which were run on a

Linux server with two 12-core AMD 6176 SE CPUs and 128GB RAM using a 300 seconds time-

out. The instances are available fromhttp://www.kr.tuwien.ac.at/research/projects/inthex/inlining,

while the program encodings and scripts used for running the benchmarks are included in the

sourcecode repository of the dlvhex system, which is available fromhttps://github.com/hexhex.

Although some of the benchmark problems are similar to those used by Eiter et al. (2014) and

in the conference versions of this paper, the runtime results are not directly comparable because

of technical improvements in the implementation of support set generation and other (unrelated)

solver improvements. Moreover, for the taxi benchmark we use a different scenario since the pre-

vious one was too easy in this context. However, for the pre-existing approaches the fundamental

trend that the approach based on support sets outperforms the traditional approach is the same.

In our tables we compare three evaluation approaches (configurations), which we evaluate both

for computing all and the first answer set only. The runtimes specify the wall-clock time needed

for the whole reasoning task including grounding, solving and side tasks; the observed runtime

differences, however, stem only from the solving technique since grounding and other reasoning

tasks are the same for all configurations. The numbers in parentheses indicate the number of

timeout instances, which were counted as 300 seconds when computing the average runtime of

the instances; otherwise timeout instances could even decrease the average runtime compared to

instances which finish shortly before the deadline.5 The traditional evaluation algorithm guesses

the truth values of external atoms and verifies them by evaluation. In our experiments we use

the learning technique EBL (Eiter et al. 2012) to learn parts of the external atom’s behavior,

i.e., there is a tight coupling of the reasoner with external sources. The second approach as

by Eiter et al. (2014) is based on support sets (sup.sets), which are provided by the external

source and learned at the beginning of the evaluation process. It then guesses external atoms

as in the traditional approach, but verifies them by matching candidate compatible sets against

support sets rather than by evaluation. While we add learned support sets as nogoods at the

beginning, which exclude some but not all wrong guesses, recall that on-the-fly learning as by

EBL is not done in this approach since external sources are only called at the beginning; this

5 Due to this it might happen in few cases that two configurations behave similar wrt. runtime but the number of timeout
instances is different. This is explained by instances which terminate shortly before the deadline with one configuration
and do not terminate in time with the other.

http://www.kr.tuwien.ac.at/research/projects/inthex/inlining
https://github.com/hexhex
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may be a drawback compared to traditional. The new inlining approach, based on the results

from this paper, also learns support sets at the beginning similar to sup.sets, but uses them for

rewriting external atoms as demonstrated in Section 3. Then, all answer sets of the rewritten

ASP-program are accepted without the necessity for additional checks. Wrong guesses that are

not detected by the ordinary ASP solver backend, cannot occur here.

Note that our goal is to show improvements compared to previous HEX-algorithms, but not to

compare HEX to other formalisms or encodings in ordinary (disjunctive) ASP, which might be

feasible for some of the benchmark programs. Compact (i.e., polynomial) complete families of

support sets exist for all scenarios considered in the following; we make the statement about the

sizes more precise when we discuss the individual benchmarks below.

Our hypothesis is that inlining outperforms both traditional and sup.sets for external sources

with compact complete support set families. More precisely, we expect that inlining leads to a

further speedup over sup.sets in many cases, especially when there are many candidate answer

sets. Moreover, we expect that in cases where inlining cannot yield further improvements over

sup.sets, then it does at least not harm much. This is because with inlining, (i) no external calls

and (ii) no additional minimality checks are needed, which potentially leads to speedups. On the

other hand, the only significant costs when generating the rewriting are caused by support set

learning; however, this is also necessary with sup.sets, which was already shown to outperform

traditional if small complete families of support sets exist. Hence, we expect further benefits but

negligible additional costs.

House Problem. We first consider an abstraction of configuration problems, consisting of sets

of cabinets, rooms, objects and persons (Mayer et al. 2009). The goal is to assign cabinets to

persons, cabinets to rooms, and objects to cabinets, such that there are no more than four cabinets

in a room or more than five objects in a cabinet. Objects belonging to a person must be stored in

a cabinet belonging to the same person, and a room must not contain cabinets of more than one

person. We assume that we have already a partial assignment to be completed. We use an existing

guess-and-check encoding6 which implements the check as external source. Instances of size n

have n persons, n+2 cabinets, n+1 rooms, and 2n objects randomly assigned to persons; 2n−2

objects are already stored.

The number and size of support sets is polynomially bounded by (2n)5; this is due to the

constraints that no more than four cabinets can be in a room and no more than five objects can

be in a cabinet.

Table 1 shows the results. As expected, we have that sup.sets clearly outperforms traditional

both when computing all answer sets and the first answer set only, which is because of faster can-

didate checking as already observed by Eiter et al. (2014). When computing all answer sets, the

new inlining approach leads to a further speedup as it eliminates wrong guesses and the checking

step altogether, while the additional initialization overhead is negligible. This is consistent with

our hypothesis. When computing only a single answer set, inlining does not yield a further visi-

ble speedup, which can be explained by the fact that only few candidates must be checked before

an answer set is found. In this case the additional initialization overhead compared to sup.sets is

slightly visible, but as can be seen it is little such that the new technique does in fact not harm,

as expected.

Taxi Assignment. We consider a program which uses external atoms to access a DL-LiteA-

6 The encoding was taken from http://143.205.174.183/reconcile/tools.

http://143.205.174.183/reconcile/tools
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n all answer sets first answer set

traditional sup.sets inlining traditional sup.sets inlining

5 99.88 (17) 5.81 (0) 3.57 (0) 5.17 (0) 0.39 (0) 0.40 (0)

6 193.56 (35) 19.40 (1) 11.51 (0) 13.03 (0) 0.75 (0) 0.77 (0)

7 252.61 (81) 35.72 (3) 22.04 (2) 23.68 (2) 1.50 (0) 1.54 (0)

8 267.01 (85) 93.39 (13) 59.25 (11) 64.89 (10) 3.06 (0) 3.14 (0)

9 274.23 (85) 129.37 (29) 85.85 (13) 79.52 (13) 6.15 (0) 6.34 (0)

10 281.55 (83) 154.29 (42) 120.66 (16) 107.86 (12) 11.80 (0) 12.17 (0)

11 297.28 (86) 206.15 (53) 166.84 (45) 160.25 (49) 21.84 (0) 22.55 (0)

12 300.00 (100) 246.40 (57) 179.59 (41) 162.33 (47) 39.31 (0) 40.62 (0)

13 297.43 (99) 281.02 (91) 239.08 (69) 214.30 (65) 68.07 (0) 70.43 (0)

14 300.00 (100) 287.11 (91) 253.58 (65) 213.63 (63) 114.56 (0) 118.81 (0)

15 300.00 (100) 296.36 (92) 287.66 (75) 240.21 (75) 187.94 (0) 195.09 (0)

Table 1: House configuration

ontology, called a DL-atom (Eiter et al. 2008). As discussed in Section 2, Calvanese et al. (2007)

have proven that for this type of description logic at most one assertion is needed to derive an

instance query from a consistent ontology. Moreover, at most two added ABox assertions are

needed to make such an ontology inconsistent. Hence, the support sets required to describe the

ontology are of only few different and small forms, which limits also the number of possible

support sets to a quadratic number in the size of the program and the Abox. Moreover, the support

sets are easy to construct by a syntactic analysis of the ontology and the DL-atoms, for details

we refer to Eiter et al. (2014).

The task in this benchmark is to assign taxi drivers to customers. Each customer and driver is

in a region. A customer may only be assigned to a driver in the same region. Up to four customers

may be assigned to a driver. We let some customers be e-customers who use only electronic cars,

and some drivers be e-drivers who drive electronic cars. The ontology stores information about

individuals such as their locations (randomly chosen but balanced among regions). The encoding

is taken fromhttp://www.kr.tuwien.ac.at/research/projects/inthex/partialevaluation.

An instance of size 4 ≤ n ≤ 9 consists of n drivers, n customers including n/2 e-customers and

n/2 regions.

Table 2 shows the results. The sup.sets approach is faster than the traditional one. When

computing all answer sets, the difference is still clearly visible but less dramatic than when

computing only the first answer set or in other benchmarks. This is because there is a large

number of candidates and answer sets in this benchmark, which allow the learning techniques

used in traditional to learn the behavior of the external sources well over time. The reasoner

can then prevent wrong guesses and verification calls effectively, such that the advantage of

improved verification calls as in sup.sets decreases the longer the solver runs. However, the

inlining approach leads to a significant speedup since wrong guesses are impossible from the

beginning and all verification calls are spared.

LUBM Diamond. While description logics correspond to fragments of first-order logic and

are monotonic, their cyclic interaction with rules allow for default reasoning, i.e., making as-

sumptions which might have to be withdrawn if more information becomes available (such

as classifying an object based on absence of information). We consider default reasoning over

the LUBM DL-LiteA ontology (http://swat.cse.lehigh.edu/projects/lubm/).

Defaults express that assistants are normally employees and students are normally not employ-

http://www.kr.tuwien.ac.at/research/projects/inthex/partialevaluation
http://swat.cse.lehigh.edu/projects/lubm/
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n all answer sets first answer set

traditional sup.sets inlining traditional sup.sets inlining

4 0.54 (0) 0.47 (0) 0.22 (0) 0.19 (0) 0.16 (0) 0.16 (0)

5 5.40 (0) 5.92 (0) 1.10 (0) 0.82 (0) 0.21 (0) 0.18 (0)

6 88.93 (9) 63.24 (2) 8.92 (0) 8.86 (0) 0.28 (0) 0.21 (0)

7 295.94 (98) 277.64 (84) 149.56 (19) 154.71 (42) 0.90 (0) 0.26 (0)

8 300.00 (100) 299.99 (99) 290.00 (94) 249.79 (81) 3.55 (1) 0.32 (0)

9 300.00 (100) 300.00 (100) 300.00 (100) 281.35 (92) 2.77 (0) 0.39 (0)

10 300.00 (100) 300.00 (100) 300.00 (100) 289.54 (96) 3.33 (1) 0.49 (0)

Table 2: Driver-customer assignment

n all answer sets first answer set

traditional sup.sets inlining traditional sup.sets inlining

20 1.17 (0) 0.33 (0) 0.30 (0) 0.34 (0) 0.31 (0) 0.30 (0)

30 30.05 (3) 0.98 (0) 0.33 (0) 6.29 (0) 0.61 (0) 0.33 (0)

40 148.57 (40) 16.66 (2) 0.37 (0) 86.69 (22) 8.88 (0) 0.37 (0)

50 250.26 (75) 80.51 (15) 0.44 (0) 214.68 (65) 51.94 (4) 0.43 (0)

60 286.58 (89) 183.79 (47) 0.52 (0) 265.91 (87) 153.05 (36) 0.52 (0)

70 297.94 (99) 253.66 (73) 0.65 (0) 297.16 (99) 225.54 (65) 0.65 (0)

80 300.00 (100) 282.01 (91) 0.81 (0) 300.00 (100) 271.19 (84) 0.81 (0)

90 300.00 (100) 298.71 (99) 1.04 (0) 300.00 (100) 296.06 (97) 1.04 (0)

100 300.00 (100) 300.00 (100) 1.27 (0) 300.00 (100) 298.45 (99) 1.27 (0)

110 300.00 (100) 300.00 (100) 1.59 (0) 300.00 (100) 300.00 (100) 1.58 (0)

120 300.00 (100) 300.00 (100) 2.00 (0) 300.00 (100) 300.00 (100) 2.00 (0)

Table 3: Default rules over LUBM in DL-LiteA

ees. The ontology entails that assistants are students, resembling Nixon’s diamond. The instance

size is the number of persons who are randomly marked as students, assistants or employees.

The task is to classify all persons in the ontology. Due to incomplete information the result is not

unique.

Table 3 shows the results. As already observed by Eiter et al. (2014), sup.sets outperforms

traditional. Compared to the taxi benchmark there is a significantly smaller number of model

candidates, which makes learning in the traditional approach less effective. This can in particular

be seen when computing all answer sets, since when computing the first answer set only, learning

is less effective anyway (as described in the previous benchmark). The decreased effectiveness of

learning from external calls is then more easily compensated by the more efficient compatibility

check as by sup.sets, which is why the relative speedup is larger now. However, inlining is again

the most efficient approach due to elimination of the compatibility check. Thanks to the existence

of a quadratic family of support sets for DL-LiteA-ontologies (see previous benchmark), the

speedup is dramatic.

Non-3-Colorability. We consider the problem of deciding if a given graph is not 3-colorable,

i.e., if it is not possible to color the nodes such that adjacent nodes have different colors. To make

the problem more challenging, we want to represent the answer by a dedicated atom within the

program. That is, we do not simply want to compute all valid 3-colorings and leave the program

inconsistent in case there is no valid 3-coloring, but the program should rather be consistent
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in this case and a dedicated atom should represent that there is no 3-coloring; this allows, for

instance, continuing reasoning based on the result.

We use a saturation encoding which splits the guessing partPcol from the checking partPcheck .

The latter, which is itself implemented as logic program

Pcheck = {inv ← inp(col , U, C), inp(col , V, C), inp(edge, U, V )},

is used as an external source from the guessing part. For a color assignment, given by facts

of kind inp(col , v, c) where v is a vertex and c is a color, Pcheck derives the atom inv in its

only answer set, otherwise it has an empty answer set. We then use the following program Pcol

to guess a coloring and check it using the external atom &query[Pcheck , inp, inv ]() for query

answering over subprograms. We let &query [Pcheck , inp, inv ]() evaluate to true iff program

Pcheck , extended with facts over predicate inp, delivers an answer set that contains inv .7 In

this case we saturate the model. We add a constraint that eliminates answer sets other than the

saturated one, thus each instance has either no or exactly one answer set. The size of the instances

is the number of nodes n.

A compact complete family of support sets for &query [Pcheck , inp, inv ]() exists: the number

of edges to be checked is no greater than quadratic in the number of nodes and the number of

colors is constant, which allows the check to be encoded by a quadratic number of binary support

sets.

The encoding is as follows:

Pcol =
{

col (V, r) ∨ col(V, g) ∨ col(V, b)← node(V )

inp(p, X, Y )← p(X,Y ) | p ∈ {col , edge}

inval ← &query[Pcheck , inp, inv ]()

col(V, c)← inval , node(V ) | c ∈ {r, g, b}

← not inval
}

The results are shown in Table 4. While sup.sets already outperforms traditional, inlining

leads to a further small speedup when computing all answer sets. Compared to previous bench-

marks, there are significantly fewer support sets, which makes candidate checking in sup.sets

inexpensive. This explains the large speedup of sup.sets over traditional, and that avoiding the

check in inlining does not lead to a large further speedup. However, due to a negligible additional

overhead, inlining does at least not harm, which is in line with our hypothesis.

Interestingly, the runtimes when computing all and the first answer set only are almost the

same. Although this effect occurs with all configurations and is not related to our new approach,

we briefly discuss it. Each instance has either one or no answer set. Despite this, computing all

answer sets can in principle be slower than computing the first answer set since the reasoner has

to determine that there are no further ones. However, in this case, the instances terminate almost

immediately after the (only) answer set has been found. Since the only answer set of a non-3-

colorable instance is the saturated one, which is also the only classical model, the reasoner needs

to perform only a single minimality check.

Nonexistence of a Vertex Covering. Next, we consider the coNP-complete problem of checking

whether for a given undirected graph there is no vertex covering of a certain maximal size. More

7 Here, the parameter inv ∈ P is a predicate symbol, whose purpose is to inform the external source about the propo-
sitional atom it should look for in the answer sets of the subprogram.
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n all answer sets first answer set

traditional sup.sets inlining traditional sup.sets inlining

20 298.94 (99) 0.19 (0) 0.16 (0) 298.96 (99) 0.19 (0) 0.16 (0)

60 300.00 (100) 1.61 (0) 1.35 (0) 300.00 (100) 1.61 (0) 1.35 (0)

100 300.00 (100) 8.45 (0) 7.81 (0) 300.00 (100) 8.44 (0) 7.83 (0)

140 300.00 (100) 28.18 (0) 27.30 (0) 300.00 (100) 28.17 (0) 27.34 (0)

180 300.00 (100) 73.03 (0) 72.32 (0) 300.00 (100) 72.88 (0) 72.43 (0)

220 300.00 (100) 148.87 (20) 147.98 (20) 300.00 (100) 149.16 (19) 148.35 (20)

260 300.00 (100) 200.16 (44) 199.02 (45) 300.00 (100) 200.20 (45) 198.96 (46)

300 300.00 (100) 230.51 (60) 228.65 (60) 300.00 (100) 230.54 (60) 228.76 (60)

340 300.00 (100) 250.51 (70) 248.46 (70) 300.00 (100) 250.64 (70) 248.50 (70)

380 300.00 (100) 264.10 (80) 262.12 (80) 300.00 (100) 264.23 (80) 262.10 (80)

420 300.00 (100) 275.91 (80) 273.07 (80) 300.00 (100) 276.02 (80) 273.17 (80)

460 300.00 (100) 282.03 (90) 280.20 (90) 300.00 (100) 282.11 (90) 280.14 (90)

Table 4: Non-3-colorability

precisely, given a graph 〈V,E〉, a vertex covering is a node selection C ⊆ V such that for each

edge {v, u} ∈ E we have {v, u}∩C 6= ∅. As before we want the program to be consistent in case

there is no vertex covering of the given maximum size, and a dedicated atom should represent

this. Our instances consist of such a graph 〈V,E〉, given by atoms of kind node(·) and edge(·, ·),

and a positive integer L (limit), given by limit(L). The task is to decide whether there is no

vertex covering containing at most L nodes. The size of the instances is the number of nodes

n = |V |.

Similarly as for the previous benchmark, we use an encoding which splits the guessing part

PnonVC from the checking part, where the latter is realized as an external source. An important

difference to the previous benchmark is that the checking component must now aggregate over

the node selection to check the size constraint. Since we want the program to be consistent

whenever there is no vertex covering, we need again a saturation encoding. However, the size

check requires aggregate atoms, which means that aggregate atoms must be used in a cycle;

many reasoners do not support this. However, HEX-programs, which inherently support cyclic

external atoms, allow for pushing the check into an external source.

The number and size of support sets is polynomial in the size of the graph, but exponential in

the limit L. In this benchmark we consider L to be a constant number that is for each instance

randomly chosen from the range 1 ≤ L ≤ 20. We exclude instances with graphs 〈V,E〉 and

limits L such that L ≥ |V | as in such cases the final answer to the considered problem is trivially

false (since V is trivially a vertex covering of size no greater than L).

The encoding is as follows. The guessing part is similar as before and construct a candidate

vertex covering given by atoms of kind in(n) or out(n) for nodes n. In the checking part, the

external atom &checkVC [in, out , edge, L]() is true iff in and out encode an invalid vertex cov-

ering of the graph specified by edge of size no greater than limit L. A complete family of support
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n all answer sets first answer set

traditional sup.sets inlining traditional sup.sets inlining

8 15.45 (0) 4.13 (0) 0.61 (0) 15.42 (0) 4.12 (0) 0.61 (0)

9 62.89 (11) 31.23 (8) 7.72 (0) 62.81 (11) 31.26 (8) 7.64 (0)

10 102.15 (22) 80.65 (24) 36.09 (8) 102.17 (22) 80.57 (24) 36.11 (8)

11 181.35 (55) 89.87 (26) 47.42 (13) 181.41 (55) 89.96 (26) 47.45 (13)

12 222.05 (66) 135.79 (43) 89.43 (25) 222.05 (66) 135.82 (43) 89.36 (25)

13 256.16 (82) 158.63 (50) 110.26 (32) 256.16 (82) 158.71 (51) 110.19 (32)

14 288.93 (96) 189.18 (62) 152.59 (50) 288.94 (96) 189.24 (62) 152.60 (50)

15 284.97 (93) 178.66 (59) 145.46 (47) 284.96 (93) 178.66 (59) 145.42 (47)

16 294.77 (98) 219.03 (72) 191.25 (62) 294.74 (98) 218.98 (72) 191.21 (62)

17 300.00 (100) 219.19 (73) 175.57 (56) 300.00 (100) 219.19 (73) 175.45 (56)

18 300.00 (100) 231.10 (77) 195.14 (63) 300.00 (100) 231.10 (77) 195.13 (63)

19 300.00 (100) 243.12 (81) 220.70 (71) 300.00 (100) 243.11 (81) 220.72 (71)

20 300.00 (100) 237.07 (79) 217.87 (70) 300.00 (100) 237.07 (79) 217.86 (70)

Table 5: Nonexistence of a vertex covering

sets for &checkVC [in , out , edge, L]() is of size at most nL, where L is bounded in our scenario.

PnonVC =
{

in(V ) ∨ out(V )← node(V )

inval ← &checkVC [in, out , edge, L](), limit(L)

in(V )← inval , node(V )

out(V )← inval , node(V )

← not inval
}

The results are shown in Table 5. Note that although L is bounded and the size of the family

of support sets nL is therefore polynomial in the size of the graph, it is in general still much

larger than in the previous benchmark. This is because the order L of the polynom is randomly

chosen such that 1 ≤ L ≤ min(20, |V |), where |V | is the size of the respective instance, while

for non-3-colorability the family of support sets is always quadratic in the size of the input graph.

The benchmark shows that the approach is still feasible in such cases. Here, checking guesses

based on support sets in the sup.sets configuration is more expensive than for non-3-colorability

because the verification of guesses requires a significantly larger number of comparisons to sup-

port sets. This makes the relative speedup of sup.sets over traditional smaller (but still clearly

visible). On the other hand, there is now more room for further improvement by the inlining

configuration. Eliminating the (more expensive) check against support sets altogether yields now

a larger further speedup.

Discussion and Summary. As stated above, this paper focuses on external sources that possess

a compact complete family of support sets. For the sake of completeness we still discuss also

the case where a complete family of support sets is not small. As an extreme case, consider

P = {p(n + 1) ← &even[p]()} ∪ {p(i) ← | 1 ≤ i ≤ n} for a given integer n, where

&even[p]() is true iff the number of true atoms over p is even. The program has a single answer

set Y = {p(i) | 1 ≤ i ≤ n} if n is odd, and no answer set if n is even. This is because p(n+ 1)

would be derived based on &even [p](), which makes the number of p-atoms odd and destroys

support of p(n + 1). In any case, P̂ has only two candidates which are easily checked in the

traditional approach, while exponentially many support sets must be generated to represent the
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semantics of &even[p]() (one for each subset of {p(i)← | 1 ≤ i ≤ n} with an even number of

elements). In such cases, traditional might be exponentially faster than sup.sets and inlining.

However, this is not the case for many realistic types of external sources, where the existence

of a compact family of support sets is often even provable, such as the ones we used in our

experiments. The size of the inlining encoding is directly linked to the size of the complete family

of support sets, and if this size is small then the inlining approach is clearly superior to sup.sets

as it eliminates the compatibility check and minimality check wrt. external sources altogether,

while it has only slightly higher initialization overhead. This overhead can be neglected even in

cases where there is no further speedup by inlining. Sup.sets is in turn superior to traditional

(even with learning technique EBL) as already observed by Eiter et al. (2014). We can therefore

conclude that inlining is a significant improvement over sup.sets and, for the considered types

of external sources, also over traditional.

5 Equivalence of HEX-Programs

In this section we present another application of the technique of external source inlining from

Section 3. Two programs P and Q are considered to be equivalent if P ∪ R and Q ∪ R have

the same answer sets for all programs R of a certain type, which depends on the notion of

equivalence at hand. Most importantly, for strongly equivalent programs we have that P ∪ R

and Q∪R have the same answer sets for any program R (Lifschitz et al. 2001), while uniformly

equivalent programs guarantee this only if R is a set of facts (Eiter and Fink 2003). Later, these

notions were extended to the non-ground case (Eiter et al. 2005). We will use the more fine-

grained notion of 〈H,B〉-equivalence by Woltran (2008), where R can contain rules other than

facts, but the sets of atoms that can occur in rule heads and bodies are restricted by sets of atoms

H and B, respectively. This notion generalizes both strong and uniform equivalence. Formal

criteria allow for semantically characterizing equivalence of two programs.

We extend a characterization of 〈H,B〉-equivalence from ordinary ASP- to HEX-programs.

Due to the support for external atoms, which can even be nonmonotonic, and the use of the FLP-

reduct (Faber et al. 2011) instead of the GL-reduct (Gelfond and Lifschitz 1988) in the semantics

of HEX-programs, this result is not immediate. Since well-known ASP extensions such as pro-

grams with aggregates (Faber et al. 2011) and constraint ASP (Gebser et al. 2009; Ostrowski and Schaub 2012)

are special cases of HEX-programs, the results carry over.

We proceed as follows. In the first step (Section 5.1), only the programs P and Q can be HEX-

programs, but the added program R must be ordinary. This amounts to a generalization of the

results by Woltran (2008) from ordinary ASP to HEX-programs. In the second step (Section 5.2),

we allow also the added program R to contain external atoms. For this purpose, we exploit the

possibility to inline external atoms.

5.1 Generalizing Equivalence Results

In the following, for sets H and B of atoms we let P〈H,B〉 = {P is an ASP-program|H(P ) ⊆

H, B+(P ) ∪ B−(P ) ⊆ B} be the set of ordinary programs whose head and body atoms come

only fromH and B, respectively. Ordinary ASP-programs P and Q are called 〈H,B〉-equivalent,

if the answer sets of P ∪ R and Q ∪ R are the same for all ordinary ASP-programs R that use

only head atoms fromH and only body atoms from B, i.e., R ∈ P〈H,B〉.
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We first lift this definition to the case whereP andQ are general HEX-programs which possibly

contain external atoms, while R remains an ordinary ASP-program. Formally:

Definition 8

HEX-programs P and Q are equivalent wrt. a pair 〈H,B〉 of sets of atoms, or 〈H,B〉-equivalent,

denoted P ≡〈H,B〉 Q, if AS(P ∪R) = AS(Q ∪R) for all R ∈ P〈H,B〉.

Similarly, we write P ⊆〈H,B〉 Q if AS(P ∪R) ⊆ AS(Q ∪R) for all R ∈ P〈H,B〉.

Towards a characterization of equivalence of HEX-programs, one can first show that if there is

a counterexample R for P ≡〈H,B〉 Q, i.e., an R ∈ P〈H,B〉 such that AS(P ∪R) 6= AS(Q∪R),

then there is also a simple counterexample in form of a positive program R′ ∈ P〈H,B〉.

Proposition 5

Let P and Q be HEX-programs,R be an ordinary ASP-program, and Y be an assignment s.t. Y ∈

AS(P ∪ R) but Y 6∈ AS(Q ∪R). Then there is also a positive ordinary ASP-program R′ such

that Y ∈ AS(P ∪R′) but Y 6∈ AS(Q ∪R′) and B(R′) ⊆ B(R) and H(R′) ⊆ H(R).

The idea of the constructive proof is to show for given programsP , Q andR and an assignment

Y that the GL-reduct (Gelfond and Lifschitz 1988) RY , which is a positive program, is such a

simple counterexample.

Next, we show that the concepts on equivalence generalize from ordinary ASP to HEX-programs.

In the following, for an assignment Y and a set of atoms A we write Y |A for for the projection

Y ∩ A of Y to A. Moreover, for sets of atoms X , Y we write X ≤BH Y if X |H ⊆ Y |H and

X |B ⊇ Y |B. Intuitively, if X ≤BH Y then Y satisfies all positive programs from P〈H,B〉 that

are also satisfied by X because it satisfies no fewer heads and no more bodies than X . We write

X <BH Y if X ≤BH Y and X |H∪B 6= Y |H∪B.

We use the following concept for witnessing that AS(P ∪R) ⊆ AS(Q ∪R) does not hold.

Definition 9

A witness for P 6⊆〈H,B〉 Q is a pair (X,Y ) of assignments with X ⊆ Y such that8:

(i) Y |= P and for each Y ′ ( Y with Y ′ |= fP Y we have Y ′|H ( Y |H; and

(ii) if Y |= Q then X ( Y , X |= fQY and for all X ′ with X ≤BH X ′ ( Y we have

X ′ 6|= fPY .

The idea is that a witness represents a counterexample to the containment. To this end, X

characterizes a program R and Y is an assignment that is an answer set of P ∪ R but not of

Q ∪ R. One can show that the existence of a witness and the violation of the containment are

equivalent.

Because some steps in the according considerations for ordinary ASP depend on the fact that

GL-reducts of programs wrt. assignments are positive programs (cf. ≤BH), it is an interesting

result that the following propositions still hold in its generalized form. Because we use FLP-

reducts instead, and P and Q might even contain nonmonotonic external atoms, the results do not

automatically carry over. However, a closer analysis reveals that the property of being a positive

program is only required for the reduct of R but not the reducts of P or Q. Since we restricted R

to ordinary ASP-programs for now, and Proposition 5 allows us to further restrict it to positive

8 Note that Woltran (2008) called this a witness for P ⊆〈H,B〉 Q, but since it is actually a witness for the violation of
the containment, we change the terminology.
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programs, the use of the FLP-reduct does not harm: if R is positive from the beginning, then also

its FLP-reduct (wrt. any assignment) is positive. Hence, the main idea is that due to restrictions

of the input program, the reduct is still guaranteed to be positive despite the switch from the GL-

to the FLP-reduct. This allows for lifting the proof of the following proposition from ordinary

ASP to HEX.

Proposition 6

For HEX-programs P and Q and sets H and B of atoms, there is a program R ∈ P〈H,B〉 with

AS(P ∪R) 6⊆ AS(Q ∪R) iff there is a witness for P 6⊆〈H,B〉 Q.

While witnesses compare the sets of answer sets of two programs directly, the next concept

of 〈H,B〉-models can be used to characterize a single program. In the following, for two sets of

atomsH and B, a pair (X,Y ) of assignments is called ≤BH-maximal for P if X |= fPY and for

all X ′ with X <BH X ′ ( Y we have X ′ 6|= fP Y .

Definition 10

Given setsH, B of atoms, a pair (X,Y ) of assignments is an 〈H,B〉-model of a program P if

(i) Y |= P and for each Y ′ ( Y with Y ′ |= fP Y we have Y ′|H ( Y |H; and

(ii) if X ( Y then there exists an X ′ ( Y with X ′|H∪B = X such that (X ′, Y ) is ≤BH-

maximal for P .

Intuitively, 〈H,B〉-models (X,Y ) characterize potential answer sets Y of a program P and

the models of its reducts fPY . More precisely, the assignments Y represent classical models

of a program which can potentially be turned into an answer set by adding a program from

R ∈ P〈H,B〉 (which can be empty if Y is already an answer set of P ). Turning Y into an answer

set requires that smaller models of the reduct fP Y (if existing) can be eliminated, which is

only possible if they contain fewer atoms from H since these are the only atoms which can get

support by adding R (cf. Condition (i)). Furthermore, for such a classical model Y , different

models of the reduct fPY that coincide on H and B behave the same over f(P ∪ R)Y for any

R ∈ P〈H,B〉: either all or neither of them are models of the extended reduct; such different

models are represented by a single 〈H,B〉-model (X,Y ) as formalized by Condition (ii).

One can show that 〈H,B〉-equivalence of two programs can be reduced to a comparison of

their 〈H,B〉-models. We denote the set of all 〈H,B〉-models of a program P by σ〈H,B〉(P ).

Proposition 7

For sets H and B of atoms and HEX-programs P and Q, we have P ≡〈H,B〉 Q iff σ〈H,B〉(P ) =

σ〈H,B〉(Q).

We demonstrate the lifted results using three examples.

Example 10

Consider the programs P = {a ← &aOrNotB [a, b]()} and Q = {a ← a; a ← not b} where

&aOrNotB [a, b]() evaluates to true whenever a is true or b is false, and to false otherwise. Let

H = B = {a, b}. We have that σ〈H,B〉(P ) = σ〈H,B〉(Q) = {(∅, {b}), ({a}, {a}), ({b}, {b}),

({a}, {a, b}), ({b}, {a, b}), ({a, b}, {a, b})}, and thus P and Q are 〈H,B〉-equivalent.

It is easy to see that for any of the 〈H,B〉-models of form (Y, Y ), Y is a model both of P and

Q, and for any Y ′ 6⊆ Y we have Y ′|H ( Y |H; for the fourth candidate (∅, ∅) one can observe

that ∅ is neither a model of P nor of Q.

For the 〈H,B〉-models of form ({a}, {a, b}) resp. ({b}, {a, b}), one can observe that X ′ =
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{a} resp. X ′ = {b} satisfies Condition (ii) of Definition 10 both for P and Q, while for

(∅, {a, b}) the only candidate for X ′ ( {a, b} with X ′|H∪B = X is X ′ = ∅, but (∅, {a, b})

is neither ≤BH-maximal for P nor for Q because ∅ 6|= fP {a,b} and ∅ 6|= fQ{a,b}.

For unary Y , the only 〈H,B〉-model (X,Y ) with X 6= Y of P or Q is (∅, {b}) because for

X ′ = ∅ we have ∅ |= fP {b} and ∅ |= fQ{b}, and (∅, {b}) is also ≤BH-maximal for P and for Q.

On the other hand, (∅, {a}) fails to be an 〈H,B〉-model because the only candidate for X ′ is ∅,

but ∅ 6|= fP {a} and ∅ 6|= fQ{a}.

Example 11

Consider the programs P = {a← &neg[b](); b← &neg [a](); a← b} and Q = {a∨ b←; a←

b} where &neg[x]() evaluates to true whenever x is false and to true otherwise.

For H = {a, b} and B = {b} we have that σ〈H,B〉(P ) = σ〈H,B〉(Q) = {({a}, {a}),

({a}, {a, b}), ({a, b}, {a, b})}, and thus the programs are 〈H,B〉-equivalent. The most interest-

ing candidate which fails to be an 〈H,B〉-model of either progam is (∅, {a, b}). For P we have

that fP {a,b} = {a ← b}, of which ∅ is a model, but for {a} we have ∅ ≤BH {a} ( Y and

{a} |= fP {a,b}, thus ∅ is not≤BH-maximal for P ; for Q we have that fQ{a,b} = {a∨ b; a← b},

which is unsatisfied under ∅.

Example 12

Consider the programs P and Q from Example 11 and H = {a, b} and B = {a, b}. We have

that σ〈H,B〉(P ) = {({a}, {a}), (∅, {a, b}), ({a}, {a, b}), ({a, b}, {a, b})}. Note that (∅, {a, b})

is now an 〈H,B〉-model of P because ∅ is a model of fP {a,b} = {a← b} and there is no X ′ with

∅ ≤BH X ′ ( Y with X ′ |= fP {a←b} (because now ∅ 6≤BH {a}); thus ∅ is ≤BH-maximal for P . On

the other hand, σ〈H,B〉(Q) = {({a}, {a}), ({a}, {a, b}), ({a, b}, {a, b})}. That is, (∅, {a, b}) is

still not an 〈H,B〉-model of Q because ∅ is not a model of fQ{a,b} = {a ∨ b←; a ← b}. And

thus the programs are not 〈H,B〉-equivalent.

Indeed, for R = {b ← a} ∈ P〈H,B〉 we have that Y = {a, b} is an answer set of Q ∪ R but

not of P ∪R.

5.2 Adding General HEX-Programs

Up to this point we allowed only the addition of ordinary ASP-programs R ∈ P〈H,B〉. As a

preparation for the addition of general HEX-programs, we show now that if programs P and Q

are 〈H,B〉-equivalent, then sets B andH can be extended by atoms that do not appear in P and

Q and the programs are still equivalent wrt. the expanded sets. Intuitively, this allows introducing

auxiliary atoms without harming their equivalence. This possibility is needed for our extension

of the results to the case where R can be a general HEX-program.

Expanding Sets B and H. If programs P and Q are 〈H,B〉-equivalent, then they are also

〈H′,B′〉-equivalent whenever H′ \ H and B′ \ B contain only atoms that do not appear in P

or Q. This is intuitively the case because such atoms cannot interfere with atoms that are already

in the program.

Formally, one can show the following result:

Proposition 8

For sets H and B of atoms, HEX-programs P and Q, and an atom a that does not occur in P or

Q, the following holds:
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(i) P ≡〈H,B〉 Q iff P ≡〈H∪{a},B〉 Q; and

(ii) P ≡〈H,B〉 Q iff P ≡〈H,B∪{a}〉 Q.

The proof is done by contraposition. The main idea of the (⇒)-direction of (i) is to assume

wlog. that P 6⊆〈H∪{a},B〉 Q and start with a witness thereof. One can then construct also a

witness for P 6⊆〈H,B〉 Q. The (⇐)-direction is trivial because P ≡〈H∪{a},B〉 Q is a stronger

condition than P ≡〈H,B〉 Q. The proof for (ii) is analogous.

By iterative applications of this result we get the desired result:

Corollary 2

LetH, B,H′ and B′ be sets of atoms and let P and Q be programs such that the atoms inH′∪B′

do not occur in P or Q. Then we have P ≡〈H,B〉 Q iff P ≡〈H∪H′,B∪B′〉 Q.

Addition of General HEX-Programs. In the following, for sets H, B of atoms we define the set

Pe
〈H,B〉 =

{

HEX-program P
∣

∣

H(P ) ⊆ H, B+(P ) ∪B−(P ) ⊆ B,

only B are input to external atoms

}

of general HEX-programs whose head atoms come only fromH and whose body atoms and input

atoms to external atoms come only from B.9 We then extend Definition 8 as follows.

Definition 11

HEX-programsP andQ are e-equivalent wrt. a pair 〈H,B〉 of sets of atoms, or 〈H,B〉e-equivalent,

denoted P ≡e
〈H,B〉 Q, if AS(P ∪R) = AS(Q ∪R) for all R ∈ Pe

〈H,B〉.

Towards a characterization of 〈H,B〉e-equivalence, we make use of external atom inlining as

by Definition 6 without changing the answer sets of a program, cf. Proposition 1.

We start with a technical result which allows for renaming a predicate input parameter pi ∈ p

of an external atom e = &g[p](c) in a program P to a new predicate q that does not occur in P .

This allows us to rename predicates such that inlining does not introduce rules that derive atoms

other than auxiliaries, which is advantageous in the following.

The idea of the renaming is to add auxiliary rules that define q such that its extension represents

exactly the former atoms over pi, i.e., each atom pi(d) is represented by q(pi,d). Then, external

predicate &g is replaced by a new &g ′ whose semantics is adopted to this encoding of the input

atoms.

For the formalization of this idea, let p|pi→q be vector p after replacement of its i-th element

pi by q. Moreover, for an assignment Y let Y q = Y ∪ {pi(d) | q(pi,d) ∈ Y } be the extended

assignment which ‘extracts’ from each atom q(pi,d) ∈ Y the original atom pi(d). One can then

show that for any program P , renaming input predicates of an external atom does not change the

semantics of P (modulo auxiliary atoms):

Lemma 1

For an external atom e = &g[p](c) in program P , pi ∈ p, a new predicate q, let e′ =

&g ′[p|pi→q](c) s.t. f&g′(Y,p|pi→q, c) = f&g(Y
q,p, c) for all assignments Y .

For P ′ = P |e→e′ ∪ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )}, AS(P ) and AS(P ′) coincide,

modulo atoms q(·).

9 Input atoms to external atoms must also be in B as they appear in bodies of our rewriting by Lemma 1 below.
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We now come to the actual inlining. Observe that Definitions 6 and 7 are modular in the

sense that inlining external atoms E in a program P affects only the rules of P containing some

external atom from E and adds additional rules, but does not change the remaining rules (i.e., our

transformation performs only changes that are ‘local’ to rules that contain some external atom

from E). One can formally show:

Lemma 2

For a HEX-program P and a set of (positive or negative) external atoms E in P , we have

P∩P[E] = {r ∈ P | none of E occur in r}.

This equips us to turn to our main goal of characterizing equivalence of HEX-programs. If

programs P and Q are 〈H,B〉-equivalent, then P ∪R and Q ∪R have the same answer sets for

all ordinary ASP-programs R ∈ P〈H,B〉. We will show that equivalence holds in fact even for

HEX-programs R ∈ Pe
〈H,B〉. To this end, assume that P and Q are 〈H,B〉-equivalent for some

H and B and let R ∈ Pe
〈H,B〉.

We want to inline all (positive or negative) occurrences of external atoms from E in P ∪R and

Q∪R that appear in the R part, but not the occurrences in the P part or Q part. However, since

the application of the transformation as by Definition 6 to P ∪ R resp. Q ∪ R would inline all

occurrences of E, we first have to standardize occurrences in R apart from those in P resp. Q.

This can be done by introducing a copy of the external predicate; we assume in the following that

external atoms have been standardized apart as needed, i.e., the external atoms E appear only in

R but not in P and Q. Note that although external atoms from E appear only in program part R,

the transformation is formally still applied to P ∪ R and Q ∪ R and not just to R. The overall

transformation is then given as follows:

(1) rename their input parameters using Lemma 1; and

(2) subsequently inline them by applying Definition 6 to P ∪R and Q ∪R.

Note that neither of the two steps modifies the program parts P or Q: for (1) this is by construc-

tion of the modified program in Lemma 1, for (2) this follows from Lemma 2. Hence, what we

get are programs of formP∪R′ andQ∪R′, whereR′ consists of modified rules fromR and some

auxiliary rules. As observable from Lemma 1 and Definition 6, head atoms H(R′) in R′ come ei-

ther from H(R) or are newly introduced auxiliary atoms; the renaming as by Lemma 1 prohibits

that H(R′) contains input atoms to external atoms in R. Body atoms B(R′) in R′ come either

from B(R), from input atoms to external atoms in R (see rules (2)), or are newly introduced

auxiliary atoms. Since R ∈ Pe
〈H,B〉, this implies that H(R′) ⊆ H ∪ H′ and B(R′) ⊆ B ∪ B′,

where H′ and B′ are newly introduced auxiliary atoms. Since the auxiliary atoms do not oc-

cur in P and Q, by Corollary 2 they do not harm equivalence, i.e., 〈H,B〉-equivalence implies

〈H ∪ H′,B ∪ B′〉-equivalence. Thus, 〈H,B〉-equivalence of P and Q implies that P ∪ R′ and

Q ∪R′ have the same answer sets.

The claim follows then from the observation that, due to Lemma 1 and soundness and com-

pleteness of inlining (cf. Proposition 1), P ∪R and Q ∪R have the same answer sets whenever

P ∪R′ and Q ∪R′ have the same answer sets.

Example 13

Consider the programs

P ={a← &neg[b](); b← &neg[a](); a← b}

Q ={a ∨ b←; a← b}
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and let H = {a, c} and B = {b}. Note that P ≡〈H,B〉 Q. To observe this result, recall that

we know P ≡〈{a,b},{b}〉 Q from Example 11, which implies P ≡〈{a},{b}〉 Q. As c 6∈ A(P ),

c 6∈ A(Q), Proposition 8 further implies that P ≡〈{a,c},{b}〉 Q.

Let R = {c ← &neg[b]()} ∈ Pe
〈H,B〉. Renaming the input predicate of &neg[b]() by step (1)

yields the program {q(b)← b; c← &neg ′[q]()}. After step (2) we have:

R′ = {q(b)← b; c← xe; xe ← q(b); xe ← not xe

q(b)← not q(b); q(b)← xe; q(b) ∨ q(b)← xe}

Here, rule q(b) ← b comes from step (1), c ← xe represents the rule in R, and the remaining

rules from inlining in step (2). Except for new auxiliary atoms, we have that H(R′) use only

atoms fromH and B(R′) only atoms from B(R′). One can check that P ∪R′ and Q ∪R′ have

the same (unique) answer set {a, c, xe, q(b)}, which corresponds to the (same) unique answer set

{a, c} of P ∪R and Q ∪R, respectively.

One can then show that equivalence wrt. program extensions that contain external atoms is

characterized by the same criterion as extensions with ordinary ASP-programs only.

Proposition 9

For sets H and B of atoms and HEX-programs P and Q, we have P ≡e
〈H,B〉 Q iff σ〈H,B〉(P ) =

σ〈H,B〉(Q).

The idea of the proof is to reduce the problem to the case where R is free of external atoms and

apply Proposition 7. To this end, we inline the external atoms in R. This reduction is possible

thanks to the fact that inlining introduces only auxiliary atoms that to not appear in P and Q,

which do not affect equivalence as stated by Corollary 2.

For the Herbrand base HBC(P ) of all atoms constructible from the predicates in P and

the constants C, strong equivalence (Lifschitz et al. 2001) corresponds to the special case of

〈HBC(P ),HBC(P )〉-equivalence, and uniform equivalence (Eiter and Fink 2003) corresponds

to 〈HBC(P ), ∅〉-equivalence; this follows directly from definition of strong resp. uniform equiv-

alence.

6 Inconsistency of HEX-Programs

We turn now to inconsistency of HEX-programs. Similarly to equivalence, we want to character-

ize inconsistency wrt. program extensions. Inconsistent programs are programs without answer

sets. Observe that due to nonmonotonicity, inconsistent HEX-program can become consistent

under program extensions.

Example 14

Consider the program P = {p ← &neg[p]()}, which resembles P ′ = {p ← not p} in ordinary

ASP. The program is inconsistent because Y1 = ∅ violates the (only) rule of the program, while

Y2 = {p} is not a minimal model of the reduct fP Y2 = ∅. However, the extended program

P ∪ {p←} has the answer set Y2.

Some program extensions preserve inconsistency of a program, and it is a natural question

under which program extensions this is the case. Akin to equivalence, sets H and B constrain

the atoms that may occur in rule heads, rule bodies and input atoms to external atoms of the
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added program, respectively. In contrast to equivalence, the criterion naturally concerns only a

single program. However, we are still able to derive the criterion from the above results.

Deriving a Criterion for Inconsistency. We formalize our envisaged notion of inconsistency

from above as follows:

Definition 12

A HEX-program P is called persistently inconsistent wrt. sets of atoms H and B, if P ∪ R is

inconsistent for all R ∈ Pe
〈H,B〉.

Example 15

The program P = {p ← &neg[p]()} is persistently inconsistent wrt. all H and B such that

p 6∈ H. This is because any model Y of P , and thus of P ∪ R for some R ∈ Pe
〈H,B〉, must set p

to true due to the rule p ← &neg[p](). However, Y \ {p} is a model of f(P ∪R)Y if no rule in

R derives p, hence Y is not a subset-minimal model of f(P ∪R)Y .

We now want to characterize persistent inconsistency of a program wrt. sets of atomsH and B

in terms of a formal criterion. We start deriving the criterion by observing that a program P⊥ is

persistently inconsistent wrt. any H and B whenever it is classically inconsistent. Then P⊥ ∪ R

does not even have classical models for any R ∈ Pe
〈H,B〉, and thus it cannot have answer sets.

For such a P⊥, another program P is persistently inconsistent wrt. H and B iff it is 〈H,B〉e-

equivalent to P⊥; the latter can by Proposition 7 be checked by comparing their 〈H,B〉-models.

This allows us to derive the desired criterion in fact as a special case of the one for equivalence.

Classically inconsistent programs do not have 〈H,B〉-models due to violation of Property (i)

of Definition 10. Therefore, checking for persistent inconsistency works by checking whether P

does not have 〈H,B〉-models either. To this end, it is necessary that each classical model Y of P

violates Property (i) of Definition 10, otherwise (Y, Y ) (and possibly (X,Y ) for some X ( Y )

would be 〈H,B〉-models of P . Formally:

Proposition 10

A HEX-program P is persistently inconsistent wrt. sets of atoms H and B iff for each classical

model Y of P there is an Y ′ ( Y such that Y ′ |= fP Y and Y ′|H = Y |H.

Example 16 (cont’d)

For the program P from Example 15 we have that Y ⊇ {p} holds for each classical model Y

of P . However, for each such Y we have that Y ′ = Y \ {p} is a model of fP Y , Y ′ ( Y and

Y |H = Y ′|H, which proves that P ∪R is inconsistent for all R ∈ P〈H,B〉.

Example 17

Consider the program P = {a ← &aOrNotB [a, b](); ← a}. It is persistently inconsistent

wrt. all H and B such that b 6∈ H. This is the case because the rule a ← &aOrNotB [a, b]()

derives a whenever b is false, which violates the constraint← a. Formally, one can observe that

we have a 6∈ Y and b ∈ Y for each classical model Y of P . But then Y ′ = Y \ {b} is a model

of fP Y , Y ′ ( Y and Y |H = Y ′|H.

The criterion for inconsistency follows therefore as a special case from the criterion for pro-

gram equivalence.

Applying the Criterion using Unfounded Sets. Proposition 10 formalizes a condition for de-

ciding persistent inconsistency based on models of the program’s reduct. However, practical
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implementations usually do not explicitly generate the reduct, but are often based on unfounded

sets (Faber 2005). For a model Y of a program P , smaller models Y ′ ( Y of the reduct fP Y

and unfounded sets of P wrt. Y correspond to each other one-by-one. This allows us to transform

the above decision criterion such that it can be directly checked using unfounded sets.

We use unfounded sets for logic programs as introduced by Faber (2005) for programs with

arbitrary aggregates.

Definition 13 (Unfounded Set)

Given a program P and an assignment Y , let U be any set of atoms appearing in P . Then U is an

unfounded set for P wrt. Y if, for each r ∈ P with H(r) ∩ U 6= ∅, at least one of the following

holds:

(i) some literal of B(r) is false wrt. Y ; or

(ii) some literal of B(r) is false wrt. Y \ U ; or

(iii) some atom of H(r) \ U is true wrt. Y .

Lemma 3

For a HEX-program P and a model Y of P , a set of atoms U is an unfounded set of P wrt. Y iff

Y \ U |= fPY .

The lemma is shown for all rules of the program ony-by-one. By contraposition, the lemma

implies that for a model Y of P and a model Y ′ ⊆ Y of fP Y we have that Y \Y ′ is an unfounded

set of P wrt. Y . This allows us to restate our decision criterion as follows:

Corollary 3

A HEX-program P is persistently inconsistent wrt. sets of atoms H and B iff for each classical

model Y of P there is a nonempty unfounded set U of P wrt. Y s.t. U ∩ Y 6= ∅ and U ∩H = ∅.

Example 18 (cont’d)

For the program P from Example 17 we have that U = {b} is an unfounded set of P wrt. any

classical model Y of P ; by assumption b 6∈ H we have U ∩H = ∅.

Application. We now want to discuss a specific use-case of the decision criterion for program

inconsistency. However, we stress that this section focuses on the study of the criterion, which

is interesting by itself, while a detailed realization of the application is beyond its scope and

discussed in more detail by Redl (2017a).

The state-of-the-art evaluation approach for HEX-programs makes use of program splitting for

handling programs with variables. That is, the overall program is partitioned into components that

are arranged in an acyclic graph. Then, beginning from the components without predecessors,

each component is separately grounded and solved, and each answer set is one-by-one added

as facts to the successor components. The process is repeated in a recursive manner such that

eventually the leaf components will yield the final answer sets, cf. Eiter et al. (2016).

The main reason for program splitting is value invention, which is supported by non-ground

HEX-programs, i.e., the introduction of constants by external sources that do not occur in the

input program. In general, determining the set of relevant constants is computationally expensive.

This may lead to a grounding bottleneck if evaluated as monolithic program. This is because the

grounder needs to evaluate external atoms under all possible inputs in order to ensure that all

possible outputs are respected in the grounding, as demonstrated by the following example.
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P1 = {r1, r2} P2 = {r3, r4}

Fig. 1: Evaluation of P from Example 19 based on program splitting

P1 = {r1, r2} P2 = {r3, r4}

add answer set as input atoms I

detect persistent inconsistency

wrt. H = I and B = ∅

inconsistency reason R

in terms of input facts I compute

add as constraint cR

Fig. 2: Exploiting persistent inconsistency for search space pruning

Example 19

Consider the program

P = {r1 : in(X) ∨ out(X)← node(X)

r2 : ← in(X), in(Y ), edge(X,Y )

r3 : size(S)← &count [in ](S)

r4 : ←size(S), S<limit}

where facts over node(·) and edge(·) define a graph. Then r1 and r2 guess an independent set

and r3 computes its size, that is limited to a certain minimum size limit in r4. The grounder must

evaluate &count under all exponentially many possible extensions of in in order to instantiate

rule r3 for all relevant values of variable S.

In this example, program splitting allows for avoiding unnecessary evaluations. To this end,

the program might be split into P1 = {r1, r2} and P2 = {r3, r4} as illustrated in Figure 1. Then

the state-of-the-art algorithm grounds and solves P1, which computes all independent sets, and

for each of them P2 is grounded and solved.

Since the number of independent sets can be exponentially smaller than the set of all node

selections, the grounding bottleneck can be avoided. However, program splitting has the dis-

advantage that nogoods learned from conflict-driven algorithms (Gebser et al. 2012) cannot be

effectively propagated through the whole program, but only within a component.

The results from Section 6 can be used to identify a program component as persistently in-

consistent wrt. possible input facts from the predecessor component. This information might be

used to construct a constraint that describes the reason R for this inconsistency in terms of the

input facts, which can be added as constraint cR to predecessor components in order to eliminate

assignments earlier, that would make a successor component inconsistent anyway. The idea is

visualized in Figure 2.

For details about the computation of inconsistency reasons, exploiting them for the evaluation

and experiments we refer to Redl (2017a).
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7 Discussion and Conclusion

Applying the Results to Special Cases of HEX. The results presented in this paper carry over to

special cases of HEX, which, however, often use a specialized syntax. Considering the example

of constraint ASP we briefly sketch how the results can still be applied using another rewriting.

Constraint ASP allows for using constraint atoms in place of ordinary atoms, which are of kind

a1 ◦a2, where a1 and a2 are arithmetic expressions over (constraint) variables and constants, and

◦ is a comparison operator. A concrete example is work (lea)$ + work (john)$ > 10, which

expresses that the sum of the working hours of lea and john , represented by constraint variables

work(lea) and work (john), is greater than 10.

Consider the program

P = {project1 ∨ project2 ←

work (lea)$ + work (john)$ > 10← project1

work (lea)$ + work (john)$ > 15← project2

← work (lea)$ > 6

← work (john)$ > 6},

which represents that either project1 or project2 is to be realized. If project1 is chosen, then lea

and john together have to spend more than 10 hours working on the project, for project2 they

have to work more than 15 hours. However, neither of them wants to spend more than 6 hours on

the project.

Here, the ASP solver assigns truth values to the ordinary and to the constraint atoms, while a

constraint solver at the backend ensures that these truth values are consistent with the semantics

of the constraint theory, i.e., that there is an assignment of integers to all constraint variables that

witness the truth values of the constraint atoms assigned by the ASP solver. For instance, the ASP

solver may assign project1 and work (lea)$ + work(john)$ > 10 to true, and work (lea)$ +

work(john)$ > 15, work (lea)$ > 6 and work (john)$ > 6 to false in order to satisfy all

rules of the program. This assignment is consistent with the constraint solver since assigning

both work(lea) and work (john) to 6 is consistent with the truth values of the constraint atoms.

In contrast, if the ASP solver assigns project2 and work(lea)$ + work(john)$ > 15 to true

and both work (lea)$ > 6 and work (john)$ > 6 to false, then one cannot assign integers to

work(lea) and work(john) that are each smaller or equal to 6 but whose sum is greater than 15.

Thus, as expected, the only solution is to realize project1 .

Although the syntax is tailored and different from HEX, constraint ASP is in fact a special case

and can be rewritten to a standard HEX-program. To this end, one may introduce a guessing rule

of kind ctrue(“work (lea)$ > 6”)∨ cfalse(“work (lea)$ > 6”)← for each constraint atom and

feed the guesses as input to a special external atom of kind &constraintSolverOk [ctrue, cfalse](),

which interfaces the constraint solver. We assume that &constraintSolverOk [ctrue, cfalse ]()

evaluates to true iff the guess is consistent with the constraint solver and to false otherwise. Then

an ASP-constraint of form ← not&constraintSolverOk [ctrue, cfalse]() in the HEX-program

can check the guesses. For details of this rewriting we refer to De Rosis et al. (2015).

One way to apply the results in this paper to special cases of HEX is therefore to first translate

dedicated syntax to standard HEX-syntax using a rewriting whose correctness was shown. Con-

versely, using such a rewriting as a starting point, one may also translate the results of this paper

to the language of special cases of HEX.
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Applying the results of this paper to special cases of HEX allows for making use of the inlining

technique also when evaluating programs or when checking equivalence of programs that belong

to such special cases. For instance, one can use the inlining technique for evaluating programs

with constraint theories or check equivalence of DL-programs.

Related Work. Our external source inlining approach is related to inlining-based evaluation ap-

proaches for DL-programs (Eiter et al. 2008), i.e., programs with ontologies, cf. Heymans et al. (2010),

Xiao and Eiter (2011) and Bajraktari et al. (2017), but it is more general. The former approaches

are specific for embedding (certain types of) description logic ontologies. In contrast, ours is

generic and can handle arbitrary external sources as long as they are decidable and have finite

output for each input (cf. Section 2). Note that DL-programs can be seen as HEX-programs with

a tailored syntax, cf. Eiter et al. (2008) for formal rewritings of DL-programs to HEX. When ab-

stracting from these syntactic differences, one can say that our rewriting is correct for a larger

class of input programs compared to existing rewritings.

Our rewriting uses the saturation technique, similar to the one by Alviano et al. (2015) (cf. also

Alviano (2016)), who translated nonmonotonic (cyclic) aggregates to disjunctions. However, an

important difference to our approach is that they support only a fixed set of traditional aggregates

(such as minimum, maximum, etc) whose semantics is directly exploited in a hard-coded fashion

in their rewriting, while our approach is generic and thus more flexible. Our approach can be

seen as a generalization of previous approaches for specialized formalisms to an integration of

ASP with arbitrary sources. Another important difference is that existing rewritings still use

simplified (monotonic) aggregates in the resulting rewritten program while we go a step further

and eliminate external atoms altogether. Hence, our rewriting not only supports a larger class

of input programs, but also rewrites this larger class to a program from a narrower class. This

allows the resulting program to be directly forwarded to an ordinary ASP solver, while support

for aggregates of any kind or additional compatibility checks of guesses are not required.

Based on this inlining approach, we further provided a characterization of equivalence of

HEX-programs. The criteria generalize previous results for ordinary ASP by Woltran (2008).

Strong (Lifschitz et al. 2001) and uniform equivalence (Eiter and Fink 2003) are well-known and

important special cases thereof and carry over as well.

Woltran (2004) also discussed the special cases of head-relativized equivalence (H = HBC(P )

while B can be freely chosen), and body-relativized equivalence (B = HBC(P ) while H can be

freely chosen). Also the cases where B ⊆ H and H ⊆ B were analyzed. Corollaries have been

derived that simplify the conditions to check for these special cases. They all follow directly

from an analogous version of Proposition 9 for plain ASP by substituting H or B by a fixed

value. Since we established by Proposition 9 that the requirements hold also for HEX-programs,

their corollaries, as summarized in Section 5 by Woltran (2008), hold analogously.

The work is also related to the one by Truszczyński (2010), who extended strong equivalence

to propositional theories under FLP-semantics. However, the relationship concerns only the use

of the FLP-semantics, while the notion of equivalence and the formalism for which the equiv-

alence is shown are different. In particular, 〈H,B〉-equivalence and external sources were not

considered.

Conclusion and Outlook. We presented an approach for external source inlining based on sup-

port sets. Due to nonmonotonicity of external atoms, the encoding is not trivial and requires a

saturation encoding. We note that the results are interesting beyond HEX-programs since well-

known ASP extensions, such as programs with aggregates (Faber et al. 2011) or with specific
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external atoms such as constraint atoms (Gebser et al. 2009), are special cases of HEX, and thus

the results are applicable in such cases.

One application of the technique can be found in an alternative evaluation approach, which

is intended to be used for external sources that have a compact representation as support sets.

Previous approaches had to guess the truth values of external atoms and verify the guesses either

by explicit evaluation (as in the traditional approach) or by matching guesses against support sets

(as in the approach by Eiter et al. (2014)). Instead, the new inlining-based approach compiles

external atoms away altogether such that the program can be entirely evaluated by an ordinary

ASP solver. For the considered class of external sources, our experiments show a clear and sig-

nificant improvement over the previous support-set-based approach by Eiter et al. (2014), which

is explained by the fact that the slightly higher initialization costs are exceeded by the significant

benefits of avoiding external calls altogether, and for the considered types of external sources

also over the traditional approach.

Another application is found in the extension of previous characterizations of program equiv-

alence from ordinary ASP- to HEX-programs. We generalizes such characterizations from ordi-

nary ASP to HEX-programs. Since this is a theoretical result, compact representation of external

sources is not an issue here. From the criterion for program equivalence we derive further cri-

teria for program inconsistency wrt. program extensions, which have applications in context of

evaluation algorithms for HEX-programs.

Potential future work includes refinements of the rewriting. Currently, a new auxiliary variable

a is introduced for all input atoms a of all external atoms. Thus, a quadratic number of auxiliary

atoms is required. While the reuse of the auxiliary variables is not always possible, the identi-

fication of cases were auxiliary variables can be shared among multiple inlined external atoms

is interesting. For the equivalence criterion, future work may also include the extension of the

results to non-ground programs, cf. Eiter et al. (2005).

Moreover, currently we do not distinguish between body atoms and input atoms to external

atoms when we define which programs are allows to be added. A more fine-grained approach that

supports this distinction may allow for identifying programs as equivalent that are not equivalent

wrt. to the current notion. Also allowing only external atoms with specific properties, such as

monotonicity, may lead to more fine-grained criteria.

Furthermore, a recent alternative notion of equivalence is rule equivalence (Bliem and Woltran 2016).

Here, not the set of atoms that can occur in the added program is constrained, but the type of the

rules. In particular, proper rules may be added, while the addition of facts is limited to certain

atoms; generalizing this notion to HEX-programs is a possible starting point for future work.
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building framework for answer set programming with external computations. TPLP 16, 4, 418–464.

EITER, T., FINK, M., KRENNWALLNER, T., AND REDL, C. 2012. Conflict-driven ASP solving with

external sources. TPLP 12, 4-5, 659–679.

EITER, T., FINK, M., KRENNWALLNER, T., AND REDL, C. 2016. Domain expansion for ASP-programs

with external sources. Artificial Intelligence 233, 84–121.

EITER, T., FINK, M., KRENNWALLNER, T., REDL, C., AND SCHÜLLER, P. 2014. Efficient HEX-program
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TRUSZCZYŃSKI, M. 2010. Reducts of propositional theories, satisfiability relations, and generalizations

of semantics of logic programs. Artificial Intelligence 174, 16, 1285 – 1306.

WOLTRAN, S. 2004. Characterizations for relativized notions of equivalence in answer set programming.

In Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September

27-30, 2004, Proceedings, J. J. Alferes and J. A. Leite, Eds. Lecture Notes in Computer Science, vol.

3229. Springer, 161–173.

WOLTRAN, S. 2008. A common view on strong, uniform, and other notions of equivalence in answer-set

programming. TPLP 8, 2, 217–234.



Inlining External Sources in Answer Set Programs 37

XIAO, G. AND EITER, T. 2011. Inline evaluation of hybrid knowledge bases - PhD description. In Web

Reasoning and Rule Systems - 5th International Conference, RR 2011, Galway, Ireland, August 29-30,

2011. Proceedings, S. Rudolph and C. Gutierrez, Eds. Lecture Notes in Computer Science, vol. 6902.

Springer, 300–305.



38 Redl

Appendix A Proofs

Proposition 1

For all HEX-programs P , external atoms e in P and a positive complete family of support sets

ST(e, P ) such that S+
T ∪ ¬S

−
T = I(e, P ) for all ST ∈ ST(e, P ), the answer sets of P are

equivalent to those of P[e], modulo the atoms newly introduced in P[e].

Proof

(⇐) Let Y ′ be an answer set of P[e]. We show that its restriction Y to ordinary atoms in P is an

answer set of P .

• We first show that Y is a model of P . It suffices to show that Y ′ |= xe iff Y |= e. Since Y

and Y ′ coincide on the input atoms of e (they coincide on all ordinary atoms in P ), we have that

Y |= e iff Y ′ |= e, and thus it further suffices to show Y ′ |= xe iff Y ′ |= e.

The if-direction is obvious as the rules in (1) force xe to be true whenever e is. For the only-if-

direction, observe that if Y ′ 6|= e but xe ∈ Y ′, then Y ′ \ ({xe} ∪ {a | a ∈ Y ′}) ( Y ′ is a model

of fP Y ′

[a] because it does not satisfy any body in (1), which contradicts the assumption that Y ′ is

an answer set of P[e].

• Suppose there is a smaller model Y< ( Y of fP Y . We show by case distinction that also

fP Y ′

[e] has a smaller model than Y ′.

(a) Case xe ∈ Y ′:

We show that Y ′< = Y<∪{a | a ∈ I(e, P )\Y<}∪{a | a ∈ I(e, P ), Y< |= e}∪{xe | Y< |=

e} is a model of fP Y ′

[e] and that Y ′< ( Y ′. For the rules in (1), if Y<∪{a | a ∈ I(e, P )\Y<}

satisfies one of their bodies, then we have that Y< |= e and we set xe to true, thus the rules

are all satisfied. If Y< ∪ {a | a ∈ I(e, P ) \ Y<} does not satisfy one of their bodies but

Y ′< does, then the additional atoms in Y ′< can only come from {a | a ∈ I(e, P ), Y< |= e},

which implies Y< |= e (by construction) and thus xe ∈ Y< also in this case. Hence, the rules

in (1) are all satisfied. The construction satisfies also the rules in (2) because we set a to true

whenever a is false or xe is true in Y ′< (due to Y ′< |= e). Rule (3) is not in fP Y ′

[e] because

xe ∈ Y ′ by assumption. For the rules P |e→xe
in (4) satisfaction is given because r ∈ fP Y

iff r|e→xe
∈ fP Y ′

[e] (since Y |= e iff Y ′ |= xe), and by construction of Y ′<, we set xe to true

iff Y ′< |= e.

Now suppose Y ′< 6( Y ′. We have that Y< ( Y ⊆ Y ′ and that Y ′ \ Y contains only atoms

from S = {a | a ∈ I(e, P )}∪ {xe, xe}, and therefore Y ′ \ Y< contains some atom not in S.

But then Y ′< 6( Y ′ is only possible if Y ′< adds an atom from S to Y< that is not in Y ′, i.e.,

Y ′< \ Y
′ contains an atom from S. But this is impossible since xe ∈ Y ′, thus we also have

a ∈ Y ′ for all a ∈ I(e, P ), while xe 6∈ Y ′< by construction.

Moreover, Y ′< ( Y ′ because they differ in an atom other than {a | a ∈ I(e, P )} ∪ {xe, xe}

due to Y< ( Y .

(b) Case xe ∈ Y ′:

We show that Y ′< = Y< ∪ {a | a ∈ I(e, P ) \ Y ′} ∪ {xe} is a model of fP Y ′

[e] and that

Y ′< ( Y ′.

The rules in (1) are all eliminated from fP Y ′

[e] because xe 6∈ Y ′ implies Y ′ 6|= e and thus

Y ′ does not satisfy any body of the rules in (1); this is because due to minimality of Y ′ and

falsehood of xe, no a is set to true if a is already true in Y ′. The rules in (2) are satisfied

because for every a ∈ I(e, P ) we have that either a ← not a is not in fP Y ′

[e] (if a ∈ Y ′) or

a ∈ Y ′< by construction (each such a is also in Y ′). We further have xe ∈ Y ′< by construction



Inlining External Sources in Answer Set Programs 39

and thus rule (3) is satisfied. For the rules r′ ∈ f(P |e→xe
)Y

′

in (4), observe that there are

corresponding rules r ∈ fP Y , and that Y ′< coincides with Y< on atoms other than xe. If

Y< |= r because Y< |= H(r) or Y< 6|= B(r) \ {e}, then this implies Y ′< |= r′. If Y< |= r

because Y< 6|= e, then Y ′< |= r′ because Y ′< 6|= xe by construction of Y ′<.

Moreover, Y ′< ( Y ′ because they differ in an atom other than {a | a ∈ I(e, P )} ∪ {xe, xe}

due to Y< ( Y .

(⇒) Let Y be an answer set of P . We show that

Y ′ = Y ∪ {a | a ∈ I(e, P ) \ Y } ∪ {a | a ∈ I(e, P ), Y |= e}

∪ {xe | Y |= e} ∪ {xe | Y 6|= e}

is an answer set of P[e]; afterwards we show that Y ′ is actually the only extension of Y to an

answer set of P[e].

• We first show that Y ′ is a model of P[e]. If Y ∪ {a | a ∈ I(e, P ) \ Y } satisfies one of the rule

bodies in (1), then S+
T ⊆ Y and (I(e, P ) \ S−T) ∩ Y = ∅ (if some a ∈ I(e, P ) \ S−T would be in

Y , then a would not be in Y ∪ {a | a ∈ I(e, P ) \ Y } and the rule body would not be satisfied)

for some ST ∈ S
−
T (e, P ); this implies Y |= e and, by construction, xe ∈ Y ′. If only Y ′ but not

Y ∪ {a | a ∈ I(e, P ) \ Y } satisfies one of the rule bodies in (1), then additional atoms of kind a

must be in Y ′, which are only added if Y |= e; this also implies, by construction, xe ∈ Y ′. Thus

we have xe ∈ Y ′ whenever Y ′ satisfies one of the rule bodies in (1), and thus these rules are all

satisfied. We further add a whenever a 6∈ Y or xe is added (due to Y |= e) for all a ∈ I(e, P ),

which satisfies rules (2), and we add xe whenever xe is not added (due to Y 6|= e), thus the rule

(3) is satisfied. Moreover, the rules in (4) are satisfied because Y is a model of P and the value

of xe under Y ′ coincides with the value of e under Y by construction.

• Suppose there is a smaller model Y ′< ( Y ′ of fP Y ′

[e] and assume that this Y ′< is subset-minimal.

We show that then, for the restriction Y< of Y ′< to the atoms in P it holds that (i) Y< is a model

of fP Y and (ii) Y< ( Y , which contradicts the assumption that Y is an answer set of P .

(i) Suppose there is a rule r ∈ fPY such that Y< 6|= r. Observe that for r′ = r|e→xe
we

have r′ ∈ fP Y ′

[e] because we have Y |= B(r) (since r ∈ fP Y ) and Y ′ |= xe iff Y |= e

(by construction of Y ′), which implies Y ′ |= B(r′). Moreover, since Y ′< |= r′, we either have

Y ′< |= H(r′) or Y ′< 6|= B(r′). In the former case we also have Y< |= H(r), and thus Y< |= r,

because the two assignments resp. rules coincide on ordinary atoms inP ; with the same argument

Y< |= r holds also in the latter case if a body atom in B(r′) \ {xe} is unsatisfied under Y ′<.

Hence, Y ′< |= r′ and Y< 6|= r is only possible if e ∈ B(r), Y ′< 6|= xe, and Y< |= e; the latter

implies Y ′< |= e as Y< and Y ′< coincide on I(e, P ). Moreover, Y ′ |= B(r′) implies Y ′ |= xe; by

construction of Y ′ this further implies xe 6∈ Y ′.

Since xe could not be false in Y ′< if (at least) one of the rules r1, . . . , rn in (1) would be in P Y ′

[e]

and had a satisfied body, for each ri, 1 ≤ i ≤ n, one of Y ′ 6|= B(ri) (then ri is not even in P Y ′

[e] )

or Y ′< 6|= B(ri) must hold; but since Y ′< ( Y ′ and B(ri) consists only of positive atoms, the

former case in fact implies the latter, thus Y ′< 6|= B(ri) must hold for all 1 ≤ i ≤ n.

Moreover, we have that a ∈ Y ′< whenever a 6∈ Y ′< for all a ∈ I(e, P ). This is because xe 6∈ Y ′

and thus a ∨ a ← not xe ∈ P Y ′

[e] for all a ∈ I(e, P ) (cf. rules (2)) and xe 6∈ Y ′<; a 6∈ Y ′<
and a 6∈ Y ′< would violate this rule. But then Y ′< does not fulfill any of the cases in which e is

true, hence Y ′< 6|= e, which contradicts our previous observation, thus the initial assumption that

Y< 6|= r is false and we have Y< |= P Y .

(ii) Finally, we show that Y< ( Y , i.e., Y ′\Y ′< contains not only atoms from {a | a ∈ I(e, P )}∪
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{xe, xe}. We first consider the case xe ∈ Y ′. Then Y ′ \ Y ′< cannot contain xe (because it is not

even in Y ′ by construction) or xe (because it would leave rule (3) unsatisfied). It further cannot

contain any a because Y ′< is assumed to be subset-minimal and thus contains a only if a 6∈ Y ′

(and thus a 6∈ Y ′<); this is because xe 6∈ Y ′ and thus all rules in (2) which force a to be true,

except a ← not a, are dropped from fP Y ′

[e] ; but then removal of any a would leave the rule

a← not a in (2), which is contained in fPY ′

[e] , unsatisfied.

In case xe ∈ Y ′, if Y ′ \ Y ′< contains only atoms from {a | a ∈ I(e, P )} ∪ {xe, xe}, then it

contains xe (because xe 6∈ Y ′ and all a for a ∈ I(e, P ) must be true whenever xe is due to the

rules in (2), which are all also in P Y ′

[e] ). Moreover, we have that a ∈ Y ′< whenever a 6∈ Y ′< because

a ∨ a← not xe ∈ fP Y ′

[e] for all a ∈ I(e, P ) (cf. rules in (2)); a 6∈ Y ′< and a 6∈ Y ′< would violate

this rule. But then Y ′< does not fulfill any of the cases in which e is true (otherwise Y ′< would

satisfy a body of (1), which would also be satisfied by Y ′ ) Y ′<, such that the rule would be in

P Y ′

[e] and xe could not be false in Y ′<), hence Y ′< 6|= e; since xe ∈ Y ′ implies that Y ′ |= e we have

that Y ′ \ Y ′< must contain at least one of I(e, P ) such that the truth values of e can differ under

the two assignments, thus it does not only contain atoms from {a | a ∈ I(e, P )} ∪ {xe, xe}.

It remains to show that Y ′ is the only extension of Y that is an answer set of P[e]. To this end,

consider an arbitrary answer set Y ′′ of P[e] which coincides with Y ′ on the atoms in P (i.e., they

are both extensions of Y ); we have to show that Y ′′ = Y ′. Since the only rules in the encoding

which support xe are the rules in (1), minimality of answer sets implies that Y ′ |= e iff Y ′ |= xe

and Y ′′ |= e iff Y ′′ |= xe; since the value of e depends only on atoms in P and is thus the same

under Y ′ and Y ′′, this further implies Y ′ |= xe iff Y ′′ |= xe, i.e., the value of xe under Y ′ and

Y ′′ is the same. Then the value of xe, which is only defined in rule (3), is also the same in Y ′ and

Y ′′. Finally, since Y ′ and Y ′′ coincide on each atom a in P , and the value of a, which is defined

only in rules (2), depends only on atoms which have already been shown to be the same under

Y ′ and Y ′′, we have that also the value of a is the same under Y ′ and Y ′′. Thus Y ′ = Y ′′.

Proposition 2

Let X be a set of atoms and P be a HEX-program such that

P ⊇ {r1 : xe ← B, b; r2 : xe ← B, b}

∪ {a← not a; a← xe; a ∨ a← not xe | a ∈ X}

∪ {xe ← not xe}

where B ⊆ {a, a | a ∈ X}, b ∈ X , and xe occurs only in the rules explicitly shown above. Then

P is equivalent to P ′ = (P \ {r1, r2}) ∪ {r : xe ← B}.

Proof

We have to show that an assignment Y is an answer set of P iff it is an answer set of P ′. It

suffices to restrict the discussion to r1, r2 ∈ P and the corresponding rule r ∈ P ′ because the

other rules in P vs. P ′ and their reducts P Y vs. P ′Y wrt. a fixed assignment Y coincide.

(⇒) Let Y be an answer set of P . We first show that Y |= P ′. It suffices show that Y |= r.

Towards a contradiction, suppose Y 6|= xe and Y |= B. Since we have (at least) one of b ∈ Y or

b ∈ Y (otherwise Y could not satisfy the rule b← not b ∈ P ), we also have Y 6|= r1 or Y 6|= r2,

which is impossible because Y is an answer set of P .

Thus Y |= P ′. Towards a contradiction, suppose there is a smaller model Y< ( Y of fP ′Y .

If r 6∈ fP ′Y then Y 6|= B(r), which implies that Y 6|= B(r1) and Y 6|= B(r2), and thus neither

r1 nor r2 is in fP Y . Otherwise, since Y< |= fP ′Y we have Y< |= r and thus either Y< |= xe or
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Y< 6|= B. But in both cases also Y< |= r1 and Y< |= r2, thus Y< |= P Y , which contradicts the

assumption that Y is an answer set of P .

(⇐) Let Y be an answer set of P ′. We immediately get Y |= P because Y |= r and r1 and r2
are even easier to satisfy than r.

Towards a contradiction, suppose there is a smaller model Y< ( Y of fP Y . If Y 6|= B we

have that r 6∈ fP ′Y and thus Y< |= fP ′Y , which contradicts the assumption that Y is an answer

set of P ′.

Then Y |= B and we have that r ∈ fP ′Y and have to show that Y< |= r.

If Y |= xe then Y 6|= xe (otherwise Y \ {xe} |= fP ′Y , contradicting our assumption that Y

is an answer set of P ′). Moreover, due to the rule b← not b, one of b or b must be true in Y . But

then Y cannot not satisfy both r1 and r2, hence Y 6|= xe.

Then Y |= xe (since Y |= xe ← not xe). If Y< |= xe or Y< 6|= B then also Y< |= r and we

are done. Otherwise, since Y< |= fP Y , we have (i) either Y 6|= b (thus r1 6∈ fPY ) or Y< 6|= b

(thus Y< |= r1), where the former case implies the latter since Y< ( Y , and (ii) either Y 6|= b

(thus r2 6∈ fP Y ) or Y< 6|= b (thus Y< |= r2), where the former case implies the latter since

Y< ( Y . Thus, we have in any case both Y< 6|= b and Y< 6|= b. But then Y< 6|= b ∨ b← not xe,

and since this rule is in fPY because Y 6|= xe, we get Y< 6|= fP Y . This contradicts our initial

assumption that fP Y has a smaller model than Y , hence Y is an answer set.

Corollary 1

For all HEX-programs P , external atoms e in P and a positive complete family of support sets

ST(e, P ), the answer sets of P are equivalent to those ofP[e], modulo the atoms newly introduced

in program P[e].

Proof

A support set of kind ST with S+
T ∪¬S

−
T ( I(e, P ) is equivalent to the set C = {S+

T ∪S
−
T ∪R |

R ⊆ U ∪ ¬U,R consistent} of support sets, where U = I(e, P ) \ (S+
T ∪ ¬S

−
T), in the sense

that ST is applicable if one of C is applicable. Conversely, each such support set can be retrieved

by recursive resolution-like replacement of support sets in C which differ only in the polarity

of a single atom. According to Proposition 2, such a replacement in ST(e, P ) does not change

the semantics of the program P[e] constructed based on ST(e, P ). Thus the encoding can be

constructed from an arbitrary positive complete family of support sets right from the beginning.

Proposition 3

For all HEX-programs P , negated external atoms not e in P and a negative complete family of

support sets SF(e, P ), the answer sets of P are equivalent to those of P[not e], modulo the atoms

newly introduced in program P[not e].

Proof

Using a negative complete family of support sets for defining the auxiliary variable xe in the

rules (5), and replacing not e by xe amounts to the replacement of not e by a new external atom

e′, and applying the rewriting from Definition 6 afterwards.

Proposition 4

Let Sσ be a positive resp. negative complete family of support sets for some external atom e in

a program P , where σ ∈ {T,F}. Then Sσ = {Sσ ∈
∏

Sσ∈Sσ
¬Sσ | Sσ is consistent} is a

negative resp. positive complete family of support sets, where T = F and F = T.
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Proof

We restrict the proof to the case σ = T; the case σ = F is symmetric.

If ST is a positive complete family of support sets, then the support sets ST ∈ ST describe

the possibilities to satisfy e exhaustively. Thus, in order to falsify e, at least one literal of each

ST ∈ ST must be falsified, i.e., at least one literal in ¬ST must be satisfied. Thus amounts to the

Cartesian product of all sets ¬ST with ST ∈ ST.

Proposition 5

Let P andQ be HEX-programs,R be an ordinary ASP-program, and Y be an assignment s.t. Y ∈

AS(P ∪R) but Y 6∈ AS(Q ∪R). Then there is also a positive ordinary ASP-program R′ such

that Y ∈ AS(P ∪R′) but Y 6∈ AS(Q ∪R′) and B(R′) ⊆ B(R) and H(R′) ⊆ H(R).

Proof

Let P and Q be HEX-programs, R be an ordinary ASP-program, and Y be an assignment such

that Y ∈ AS(P ∪ R) but Y 6∈ AS(Q ∪ R). We have to show that there is a positive R′ such

that Y ∈ AS(P ∪ R′) but Y 6∈ AS(Q ∪ R′). As Woltran (2008), we show this in particular

for R′ = RY , where RY = {H(r) ← B+(r) | r ∈ R, Y 6|= b for all b ∈ B−(r)} is the GL-

reduct (Gelfond and Lifschitz 1988), not to be confused with the FLP-reduct which is used in the

definition of the HEX-semantics. Obviously we have B(R′) ⊆ B(R) and H(R′) ⊆ H(R).

• We first show that Y ∈ AS(P ∪ R′). For modelhood, we know that Y is a model of P , thus

it suffices to discuss R′. Let r′ ∈ R′. Then there is a corresponding rule r ∈ R such that r′ is

the only rule in {r}Y . We have that Y 6|= B−(r), otherwise r′ would not be in {r}Y . But then,

since Y |= r (because Y |= R since Y ∈ AS(P ∪R) by assumption), we have that Y |= H(r)

or Y 6|= B+(r), which implies that Y |= r′.

It remains to show that there is no Y ′ ( Y such that Y ′ |= f(P ∪R′)Y . Towards a contradiction,

suppose there is such an Y ′; we show that it is also a model of f(P ∪ R)Y , which contradicts

the assumption that Y is an answer set of P ∪R. Obviously we have Y ′ |= fPY . Now consider

r ∈ fRY . Then Y |= B+(r) and Y 6|= B−(r). But then H(r) ← B+(r) ∈ R′ and H(r) ←

B+(r) ∈ fR′Y . Since Y ′ |= fR′Y , we have that Y ′ |= H(r) or Y ′ 6|= B+(r) and thus Y ′ |= r.

Since this holds for all r ∈ fRY this implies Y ′ |= f(P∪R)Y , which contradicts the assumption

that Y is an answer set of P ∪R, thus Y ′ cannot exist and Y is an answer set of P ∪R′.

• We now show that Y 6∈ AS(Q ∪R′). If Y 6|= Q ∪R then also Y 6|= Q ∪R′ because for each

r ∈ R we either have that Y |= B−(r) (and thus r is not relevant for the inconsistency of Q∪R)

or R′ contains H(r)← B+(r) instead, which is even harder to satisfy (i.e., is violated whenever

r is).

If Y |= Q ∪ R then there is an Y ′ ( Y such that Y ′ |= f(Q ∪ R)Y . We show that Y ′ is also

a model of f(Q ∪ R′)Y . Towards a contradiction, suppose there is an r′ ∈ f(Q ∪ R′)Y such

that Y ′ 6|= r′. Then r′ must be in fR′Y because if it would be in fQY then Y ′ could not be a

model of f(Q ∪ R)Y . Then Y ′ 6|= H(r′) but Y ′ |= B+(r′). But then there is a rule r ∈ fRY

with H(r) = H(r′) and B+(r) = B+(r′) such that Y ′ 6|= B−(r) (otherwise Y |= B−(r)

and r′ could not be in R′ and thus also not in f(Q ∪ R′)Y ). However, then Y ′ 6|= r and thus

Y ′ 6|= f(Q ∪R)Y , which contradicts our assumption.

Proposition 6

For HEX-programs P and Q and sets H and B of atoms, there is a program R ∈ P〈H,B〉 with

AS(P ∪R) 6⊆ AS(Q ∪R) iff there is a witness for P 6⊆〈H,B〉 Q.
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Proof

(⇒) If AS(P ∪ R) 6⊆ AS(Q ∪ R) for a program R, then there is an assignment Y such that

Y ∈ AS(P ∪R) but Y 6∈ AS(Q ∪R). Due to Proposition 5 we can assume that R is a positive

program.

We show that Y satisfies Condition (i) of Definition 9. Since Y ∈ AS(P∪R) we have Y |= P .

Towards a contradiction, suppose there is an Y ′ ( Y such that Y ′ |= fP Y and Y ′|H 6( Y |H.

Then, since Y ′ ⊆ Y , we have Y ′|H = Y |H. We further have Y ′|B ⊆ Y |B , i.e., Y ≤BH Y ′. Since

R is positive, Y |= R implies Y ′ |= R, and since fRY ⊆ R this further implies Y ′ |= fRY .

Since we further have Y ′ |= fP Y this gives Y ′ |= f(P ∪ R)Y and thus Y cannot be an answer

set of P ∪R, which contradicts our assumption and therefore Condition (i) is satisfied.

We show now that there is an X such that (X,Y ) satisfies also Condition (ii), i.e., is a witness

as by Definition 9. If Y 6|= Q then Condition (ii) is trivially satisfied for any X ⊆ Y and e.g.

(Y, Y ) is a witness. Otherwise (Y |= Q), note that we have Y |= R since Y ∈ AS(P ∪ R).

Together with the precondition that Y 6∈ AS(Q ∪ R) this implies that there is an X ( Y such

that X |= f(Q ∪ R)Y , which is equivalent to X |= fQY and X |= fRY . We show that for

this X , Condition (ii) is satisfied, hence (X,Y ) is a witness. As we already have X ( Y and

X |= fQY , it remains to show that for any X ′ with X ≤BH X ′ ( Y we have X ′ 6|= fP Y . If there

would be an X ′ with X ≤BH X ′ ( Y with X ′ |= fP Y , then, since we also have X ′ |= fRY

(because X |= fRY and fRY is positive), this implies X ′ |= f(P ∪ R)Y and contradicts the

precondition that Y ∈ AS(P ∪ R). Thus such an X ′ cannot exist and Condition (ii) is satisfied

by (X,Y ).

(⇐) Let (X,Y ) be a witness for AS(P ∪ R) 6⊆ AS(Q ∪ R). We make a case distinction:

either Y 6|= Q or Y |= Q.

• Case Y 6|= Q:

We show for the following R ∈ P〈H,B〉 that Y ∈ AS(P ∪R) but Y 6∈ AS(Q ∪R):

R = {a← | a ∈ Y |H}

Since (X,Y ) is a witness, by Property (i) we have Y |= P . We further have Y |= R, thus

Y |= P ∪ R. Moreover, we obviously have fRY = R, which contains all atoms from Y |H
as facts. Suppose there is a Y ′ ( Y such that Y ′ |= f(P ∪ R)Y ; then Y ′ |= fPY and by

Property (i) we have Y ′|H ( Y |H, i.e., at least one atom from Y |H is unsatisfied under Y ′. But

then Y ′ 6|= fRY and thus Y ′ 6|= f(P ∪R)Y , i.e., Y is an answer set of P ∪R. On the other hand,

Y 6|= Q implies Y 6|= Q ∪R and therefore Y cannot be an answer set of Q ∪R.

• Case Y |= Q:

We show for the following R ∈ P〈H,B〉 that Y ∈ AS(P ∪R) but Y 6∈ AS(Q ∪R):

R ={a← | a ∈ X |H} ∪

{a← b | a ∈ (Y \X)|H, b ∈ (Y \X)|B}

We first show that Y ∈ AS(P ∪ R). Since (X,Y ) is a witness as by Definition 9, we have

Y |= P . We further have Y |= R by construction of R because all heads of its rules are in Y .

Thus it remains to show that it is also a subset-minimal model of f(P ∪ R)Y . Towards a con-

tradiction, assume that there is a Z ( Y such that Z |= f(P ∪ R)Y , which is equivalent to

Z |= fP Y and Z |= fRY , where fRY = R (by construction of R). By construction of R,

Z |= R implies that X |H ⊆ Z|H. Property (i) of Definition 9 implies that Z|H ( Y |H and

thus X |H ⊆ Z|H ( Y |H. This implies that there is an a ∈ (Y \ X)|H which is not in Z|H.

Since Y |= Q, Z ( Y , Z |= fPY and X |H ⊆ Z|H, Property (ii) further implies Z|B 6⊆ X |B
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(since violating X ≤BH Z is the only remaining option to satisfy the property). As we also have

Z|B ⊆ Y |B (because Z ( Y ), there is a b ∈ (Y \X)|B which is also in Z . Hence, we have an

a ∈ (Y \ X)|H and a b ∈ (Y \ X)|B such that only b is also in Z , hence the rule a ← b ∈ R

(and a ← b ∈ fRY ) is violated by Z , thus Z 6|= fRY and Z 6|= f(P ∪ R)Y , which contradicts

our assumption.

It remains to show that Y 6∈ AS(Q ∪ R). We already know that Y |= Q ∪ R and must show

that f(Q ∪ R)Y has a smaller model than Y . Since (X,Y ) is a witness, we have X ( Y and

X |= fQY by Property (ii). As X |= R (it satisfies all facts {a ← | a ∈ X |H} and no other

rules of R are applicable as their bodies contain only atoms that are not in X), we get X |= fRY

and have X |= f(Q ∪R)Y . Therefore Y 6∈ AS(Q ∪R).

Towards a characterization of equivalence in terms of 〈H,B〉-models we introduce the following

lemma.

Lemma 4

For sets H and B of atoms and programs P , Q, (Y, Y ) ∈ σ〈H,B〉(P ) \ σ〈H,B〉(Q) iff there is a

witness (X,Y ) for P ⊆〈H,B〉 Q with X |H = Y |H.

Proof

(⇒) Since (Y, Y ) ∈ σ〈H,B〉(P ), Property (i) of Definition 9 holds because Property (i) of Def-

inition 10 is the same and holds. For Property (ii) of Definition 9, (Y, Y ) 6∈ σ〈H,B〉(Q) implies

that either Y 6|= Q or there is a Y ′ ( Y such that Y ′ |= fQY and Y ′|H = Y |H. In the former

case, Property (ii) of Definition 9 holds trivially for all X ⊆ Y and, e.g., (Y, Y ) is witness for

P ⊆〈H,B〉 Q, for which Y |H = Y |H clearly holds. In case Y |= Q we have that there is some

X ( Y with X |= fQY and X |H = Y |H. In order to show that (X,Y ) satisfies Property (ii),

it remains to show that for all X ′ with X ≤BH X ′ ( Y we have X ′ 6|= fPY . If there would be

an X ′ with X ≤BH X ′ ( Y and X ′ |= fPY , then X |H = Y |H would imply X ′|H = Y |H,

and thus Property (i) of Definition 10 would be violated by (Y, Y ) wrt. P , which contradicts the

assumption that (Y, Y ) ∈ σ〈H,B〉(P ).

(⇐) For a witness (X,Y ) for P ⊆〈H,B〉 Q with X |H = Y |H, Property (i) of Definition 9

implies that (Y, Y ) ∈ σ〈H,B〉(P ) and it remains to show that (Y, Y ) 6∈ σ〈H,B〉(Q). Since (X,Y )

is a witness with X |H = Y |H, we have either Y 6|= Q or X ( Y and X |= fQY . In the former

case (Y, Y ) cannot be an 〈H,B〉-model of Q due to violation of Property (i) of Definition 10. In

the latter case (Y, Y ) cannot be an 〈H,B〉-model of Q since our assumption X |H = Y |H also

contradicts Property (i) of Definition 10.

Proposition 7

For sets H and B of atoms and HEX-programs P and Q, we have P ≡〈H,B〉 Q iff σ〈H,B〉(P ) =

σ〈H,B〉(Q).

Proof

(⇒) We make a proof by contraposition. Wlog. assume there is an (X,Y ) ∈ σ〈H,B〉(P ) \

σ〈H,B〉(Q) (the case (X,Y ) ∈ σ〈H,B〉(Q) \ σ〈H,B〉(P ) is symmetric). We have to show that

then P ≡〈H,B〉 Q does not hold.

Since (X,Y ) ∈ σ〈H,B〉(P ), we also have (Y, Y ) ∈ σ〈H,B〉(P ) (cf. Definition 10). If (Y, Y ) 6∈

σ〈H,B〉(Q) then by Lemma 4 there is a witness (X,Y ) for P 6⊆〈H,B〉 Q and thus by Proposition 6
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there is a program R ∈ P〈H,B〉 with AS(P ∪ R) 6⊆ AS(Q ∪ R), hence P ≡〈H,B〉 Q does not

hold.

In case (Y, Y ) ∈ σ〈H,B〉(Q) we have X ( Y (X and Y cannot be equal because (X,Y ) 6∈

σ〈H,B〉(Q)). We make a case distinction.

• Case 1: There exists an X ′ with X ≤BH X ′ ( Y such that (X ′, Y ) ∈ σ〈H,B〉(Q):

Since (Y, Y ) ∈ σ〈H,B〉(Q) but (X,Y ) 6∈ σ〈H,B〉(Q), the latter fails to satisfy Definition 10 due

to Property (ii). Then X <BH X ′ must hold (rather than X |H∪B = X ′|H∪B) because only in this

case satisfaction of Property (ii) of Definition 10 wrt. X can differ from satisfaction wrt. X ′. Then

there is a Z ( Y with Z|H∪B = X ′ such that (Z, Y ) is ≤BH-maximal for Q and thus Z |= fQY .

We show that (Z, Y ) is a witness for P 6⊆〈H,B〉 Q. Since (Y, Y ) ∈ σ〈H,B〉(P ), Property (i) of

Definition 9 holds for (Z, Y ). Moreover, we have Z |= fQY and, since (X,Y ) ∈ σ〈H,B〉(P ),

we have by Property (ii) of Definition 10 for all X ′′ with X <BH X ′′ ( Y that X ′′ 6|= fP Y .

Since X <BH Z (as a consequence of Z|H∪B = X ′ and X <BH X ′), Property (ii) of Definition 9

holds for Z and thus (Z, Y ) is a witness for P 6⊆〈H,B〉 Q.

• Case 2: For each X ′ with X ≤BH X ′ ( Y we have (X ′, Y ) 6∈ σ〈H,B〉(Q):

We already have (X,Y ) ∈ σ〈H,B〉(P ) and thus there is a Z ( X with Z|H∪B = X such

that Z |= fPY . We show that (Z, Y ) is a witness for the reverse problem Q 6⊆〈H,B〉 P . Since

(Y, Y ) ∈ σ〈H,B〉(Q) we have that Property (i) of Definition 9 is satisfied. We have Y |= P (due

to Property (i) of Definition 10 wrt. (X,Y ) ∈ σ〈H,B〉(P )), thus for satisfaction of Property (ii)

of Definition 9 recall that we have Z |= fP Y and it remains to show that for each X ′′ with

X ≤BH X ′′ ( Y we have X ′′ 6|= fQY . If there would be such an X ′′ with X ′′ |= fQY , then

there would also a ≤BH-maximal one X ′′′ and (X ′′′, Y ) would be an 〈H,B〉-model of Q, which

contradicts our assumption that (X ′, Y ) 6∈ σ〈H,B〉(Q) for each X ′ with X ≤BH X ′ ( Y .

(⇐) We make a proof by contraposition. Suppose P 6≡〈H,B〉 Q, then either P ⊆〈H,B〉 Q or

Q ⊆〈H,B〉 P does not hold; we assume wlog. that P ⊆〈H,B〉 Q does not hold (the other case is

symmetric). We have to show that σ〈H,B〉(P ) = σ〈H,B〉(Q) does not hold either.

By Proposition 6 there is a witness (X,Y ) for P 6⊆〈H,B〉 Q. Then by Property (i) of Defi-

nition 9 we have Y |= P and for all Y ′ ( Y with Y ′ |= fPY we have Y ′|H = Y |H, which

implies that (Y, Y ) ∈ σ〈H,B〉(P ).

If (Y, Y ) 6∈ σ〈H,B〉(Q), it is proven that σ〈H,B〉(P ) 6= σ〈H,B〉(Q).

Otherwise we have (Y, Y ) ∈ σ〈H,B〉(Q). By Property (i) of Definition 9 we then have Y |=

Q and by Lemma 4 we have X |H 6= Y |H and thus X ( Y . Since (X,Y ) is a witness for

P 6⊆〈H,B〉 Q we have X |= fQY and for all X ′ with X ≤BH X ′ ( Y we have X ′ 6|= fP Y .

Take an arbitrary pair (Z, Y ) of assignments with Z ( Y for which X ≤BH Z holds and which

is ≤BH-maximal for Q (such a pair exists because we already know that X |= fQY ). Moreover,

(Y, Y ) ∈ σ〈H,B〉(Q) implies that Property (i) of Definition 10 holds for (Z|H∪B, Y ). Therefore

(Z|H∪B, Y ) ∈ σ〈H,B〉(Q).

On the other hand, (Z|H∪B, Y ) 6∈ σ〈H,B〉(P ) because (X,Y ) is a witness for P 6⊆〈H,B〉 Q

and therefore for all X ′ with X ≤BH X ′ ( Y we have X ′ 6|= fP Y . Since X ≤BH Z ( Y we

also have that X ′′ 6|= fP Y for all X ′′ such that Z|H∪B ≤BH X ′′ ( Y . But then there cannot be

an X ′′ with X ′′|H∪B = Z|H∪B such that X ′′ |= fP Y . Therefore Property (ii) of Definition 10

cannot be satisfied due to failure to find a pair (X ′′, Y ) with X ′′ ( Y and X ′′|H∪B = Z|H∪B
that is ≤BH-maximal for P .

Proposition 8
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For setsH and B of atoms, HEX-programs P and Q, and an atom a that does not occur in P or

Q, the following holds:

(i) P ≡〈H,B〉 Q iff P ≡〈H∪{a},B〉 Q; and

(ii) P ≡〈H,B〉 Q iff P ≡〈H,B∪{a}〉 Q.

Proof

Property (i) (⇒) We make a proof by contraposition. If P ≡〈H∪{a},B〉 Q does not hold, then

either P ⊆〈H∪{a},B〉 Q or Q ⊆〈H∪{a},B〉 P ; as the two cases are symmetric it suffices to

consider the former. If P ⊆〈H∪{a},B〉 Q does not hold then by Proposition 6 there is a witness

(X,Y ) for P 6⊆〈H∪{a},B〉 Q. We show that we can also construct a witness for P 6⊆〈H,B〉 Q,

which implies by another application of Proposition 6 that P ⊆〈H,B〉 Q and thus P ≡〈H,B〉 Q

do not hold.

In particular, (X \ {a}, Y \ {a}) is a witness for P 6⊆〈H,B〉 Q. We show this separately

depending on the type of (X,Y ).

• If neither X nor Y contains a, then (X,Y ) itself is also a witness for P 6⊆〈H,B〉 Q. Property (i)

of Definition 9 holds because we know that Y |= P and for each Y ′ ( Y with Y ′ |= fPY we

have that Y ′|H∪{a} ( Y |H∪{a}; the latter implies Y ′|H ( Y |H since a 6∈ Y and thus Y ′ and Y

must differ in an atom fromH.

For Property (ii), if Y 6|= Q we are done. Otherwise we know that X ( Y and X |= fQY

and that for all X ′ with X ≤BH∪{a} X
′ we have X ′ 6|= fP Y (since (X,Y ) satisfies Property (ii)

wrt.H∪{a} andB). We have to show that X ′ 6|= fP Y holds also for all X ′ with X ≤BH X ′ ( Y .

However, each X ′ such that X ≤BH X ′ has to satisfy X ′|H ⊇ X |H and X ′|B ⊆ X |B; the former

implies X ′|H∪{a} ⊇ X |H∪{a} because a 6∈ Y , X ( Y and X ′ ( Y . Then for this X ′ also

X ≤BH∪{a} X ′ holds, and therefore satisfaction of Property (ii) wrt. H ∪ {a} and B implies

X ′ 6|= fPY . Thus Property (ii) holds also wrt. H and B.

• If only Y but not X contains a, then (X,Y \ {a}) is also a witness for P 6⊆〈H,B〉 Q. For

Property (i), Y |= P implies Y \ {a} |= P because a does not occur in P . Now suppose there is

a Y ′ ( Y \ {a} such that Y ′ |= fP Y and Y ′|H = Y |H. Then Y ′ and Y differ in an atom other

than a and we have that Y ′ ∪ {a} ( Y and Y ′ ∪ {a}|H∪{a} = Y |H∪{a}; this contradicts the

assumption that Property (i) holds wrt. H ∪ {a} and B.

For Property (ii), if Y 6|= Q then also Y \ {a} 6|= Q because a does not occur in Q and we are

done. Otherwise we know that X ( Y and X |= fQY and that for all X ′ with X ≤BH∪{a} X
′

we have X ′ 6|= fP Y (since (X,Y ) satisfies Property (ii) wrt. H ∪ {a} and B). In this case, X

and Y must in fact differ in more atoms than just a: otherwise Y |= P would imply X |= fP Y

(because a does not occur in P and fP Y ⊆ P ); since X ≤BH∪{a} X ′ ( Y for any X ′ with

X ′|H∪B = X |H∪B this would contradict the assumption that Property (ii) holds wrt. H ∪ {a}

and B. But then X ( Y \ {a}. Moreover, each X ′ such that X ≤BH X ′ ( Y \ {a} has to satisfy

X ′|H ⊇ X |H and X ′|B ⊆ X |B; the former implies X ′|H∪{a} ⊇ X |H∪{a} because a 6∈ Y \ {a},

X ( Y and X ′ ( Y . Then for this X ′ also X ≤BH∪{a} X
′ ( Y holds, and therefore satisfaction

of Property (ii) wrt.H∪{a} and B implies X ′ 6|= fP Y . Thus Property (ii) holds also wrt.H and

B.

• If both X and Y contain a, then (X \ {a}, Y \ {a}) is also a witness for P 6⊆〈H,B〉 Q. For

Property (i), Y |= P implies Y \ {a} |= P because a does not occur in P . Now suppose there is

a Y ′ ( Y \ {a} such that Y ′ |= fP Y and Y ′|H = (Y \ {a})|H. Then Y ′ and Y \ {a} differ in

an atom other than a and we have that Y ′ ∪ {a} ( Y , Y ′ ∪ {a} |= fP Y (since a does not occur
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in P ) and Y ′ ∪ {a}|H∪{a} = Y |H∪{a}; this contradicts the assumption that Property (i) holds

wrt.H ∪ {a} and B.

For Property (ii), if Y 6|= Q then also Y \{a} 6|= Q because a does not occur inQ and we are done.

Otherwise we know that X ( Y (and thus X \{a} ( Y \{a}) and X |= fQY and that for all X ′

with X ≤BH∪{a} X
′ ( Y we have X ′ 6|= fP Y (since (X,Y ) satisfies Property (ii) wrt.H∪ {a}

and B). We have to show that X ′ 6|= fP Y holds also for all X ′ with X \ {a} ≤BH X ′ ( Y \ {a}.

Consider such an X ′, then X ′|H ⊇ (X \ {a})|H, X ′|B ⊆ (X \ {a})|B, and X ′ ( Y \ {a}. Now

let X ′′ = X ′ ∪ {a}. Then X ′′|H∪{a} ⊇ X |H∪{a} because a is added to X ′′ and the superset

relation is already known to hold for all other atoms fromH. Moreover, X ′′|B ⊆ X |B still holds

because X ′|B ⊆ X |B and the only element a added to X ′′ is also in X . Moreover, we still

have X ′′ ( Y because a ∈ Y and X ′ and Y differ in at least one atom other than a due to

X ′ ( Y \ {a}. These conditions together imply X ≤BH∪{a} X
′′ ( Y , and thus satisfaction of

Property (ii) wrt. H ∪ {a} and B implies X ′′ 6|= fP Y . Since X ′′ and X ′ differ only in a, that

does not appear in fPY , this further implies X ′ 6|= fP Y . Hence Property (ii) holds also wrt. H

and B.

Property (i) (⇐) Trivial because P ≡〈H∪{a},B〉 Q is a stronger condition than P ≡〈H,B〉 Q

since it allows a larger class of programs to be added.

Property (ii) (⇒) We make a proof by contraposition. If P ≡〈H,B∪{a}〉 Q does not hold,

then either P ⊆〈H,B∪{a}〉 Q or Q ⊆〈H,B∪{a}〉 P ; as the two cases are symmetric it suffices to

consider the former. If P ⊆〈H,B∪{a}〉 Q does not hold then by Proposition 6 there is a witness

(X,Y ) for P 6⊆〈H,B∪{a}〉 Q. We show that we can also construct a witness for P 6⊆〈H,B〉 Q,

which implies by another application of Proposition 6 that P ⊆〈H,B〉 Q and thus P ≡〈H,B〉 Q

does not hold.

We show in particular that (X,Y ) is also a witness for P 6⊆〈H,B〉 Q. Property (i) of Defini-

tion 9 is also satisfied wrt.H and B (instead ofH and B ∪ {a}) as this condition is independent

of B.

If Y 6|= Q then Property (ii) is also satisfied and we are done. Otherwise we know, that X ( Y ,

X |= fQY and for all X ′ with X ≤
B∪{a}
H X ′ ( Y we have X ′ 6|= fP Y . We have to show that

X ′ 6|= fPY holds also for all X ′ with X ≤BH X ′ ( Y . Consider such an X ′, then X ′|H ⊇ X |H,

X ′|B ⊆ X |B and X ′ ( Y . Now let X ′′ = X ′ \ {a} if a ∈ X ′ and a 6∈ X , and X ′′ = X ′

otherwise. We have then X ′′|B∪{a} ⊆ X |B∪{a} because a is removed fromX ′′ whenever it is not

in X , and the subset relation is known for all other atoms from B. Moreover, X ′′|H ⊇ X |H still

holds because X ′|H ⊇ X |H and the only element a which might be missing in X ′′ compared to

X is only removed if it is not in X anyway. These conditions together imply X ≤
B∪{a}
H X ′ ( Y ,

and thus satisfaction of Property (ii) wrt.H and B ∪ {a} implies X ′′ 6|= fPY . Since X ′′ and X ′

may only differ in a, which does not appear in fPY , this implies X ′ 6|= fP Y . Hence Property (ii)

holds also wrt.H and B.

Property (ii) (⇐) Trivial because P ≡〈H,B∪{a}〉 Q is a stronger condition than P ≡〈H,B〉 Q

since it allows a larger class of programs to be added.

Corollary 2

LetH, B,H′ and B′ be sets of atoms and let P and Q be programs such that the atoms inH′∪B′

do not occur in P or Q. Then we have P ≡〈H,B〉 Q iff P ≡〈H∪H′,B∪B′〉 Q.

Proof
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The claim follows immediately by applying Proposition 8 iteratively to each element in H′

resp. B′.

Lemma 1

For an external atom e = &g[p](c) in program P , pi ∈ p, a new predicate q, let e′ =

&g ′[p|pi→q](c) s.t. f&g′(Y,p|pi→q, c) = f&g(Y
q,p, c) for all assignments Y .

For P ′ = P |e→e′ ∪ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )}, AS(P ) and AS(P ′) coincide,

modulo atoms q(·).

Proof

(⇒) For an answer set Y of P we show that Y ′ = Y ∪ {q(pi,d) | pi(d) ∈ Y } is an answer set

of P ′.

Since input parameter q in e′ behaves like pi in e, Y ′ |= q(pi,d) iff Y |= pi(d) for all pi(d) ∈

A(P ) by construction, and Y ′ satisfies all rules r ∈ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )} by

construction, we have that Y ′ is a model of P ′.

Now suppose towards a contradiction that there is a smaller model Y ′< ( Y ′ of fP ′Y
′

and

let this model be subset-minimal. Then Y ′< \ Y
′ must contain at least one atom other than over

q because switching an atom q(pi,d) to false is only possible if the respective atom pi(d) is

also switched to false, otherwise a rule r ∈ {q(pi,d) ← pi(d) | pi(d) ∈ A(P )} (which is

contained in the reduct fP ′Y
′

because Y ′ |= B(r)) would remain unsatisfied. But then for

Y< = Y ′<∩A(P ) we have that Y< ( Y . Now consider some r ∈ fPY : then there is a respective

r′ ∈ fP ′Y
′

with e′ in place of e and such that Y ′< |= r′. Observe that pi(d) ∈ Y< implies

q(pi,d) ∈ Y ′< (otherwise a rule in fP ′Y
′

remains unsatisfied under Y ′<) and that q(pi,d) ∈ Y ′<
implies pi(d) ∈ Y< due to assumed subset-minimality of Y ′< (there is no reason to set q(pi,d)

to true if pi(d) is false). This gives in summary that q(pi,d) ∈ Y ′< iff pi(d) ∈ Y< for all atoms

pi(d) ∈ A(P ). But then we have also Y< |= r because the only possible difference between r

and r′ is that r might contain e while r′ contains e′, but since q(pi,d) ∈ Y ′< iff pi(d) for all

atoms pi(d) ∈ A(P ), we have that Y ′< |= r′ implies Y< |= r. That is, Y< ( Y is a smaller

model of fPY , which contradicts the assumption that Y is an answer set.

(⇐) For an answer set Y ′ of P ′ we show that Y = Y ′ ∩ A(P ) is an answer set of P . First

observe that for any pi(d) ∈ A(P ) we have that q(pi,d) ∈ Y ′ iff pi(d) ∈ Y : the if-direction

follows from satisfaction of the rules in P ′ under Y ′, the only-if direction follows from subset-

minimality of Y ′.

Then the external atoms e in P behave under Y like the respective e′ in P ′ under Y ′, which

implies that Y |= P .

Now suppose towards a contradiction that there is a smaller model Y< ( Y of fPY . We show

that then for Y ′< = Y< ∪ {q(pi,d) | pi(d) ∈ Y<} we have Y ′< |= fP ′Y
′

. But this follows from

the observation that fP ′Y
′

consists only of (i) rules that correspond to rules in fP Y but with e′ in

place of e, and (ii) the rule q(pi,d)← pi(d) for all pi(d) ∈ Y ′. Satisfaction of (i) follows from

the fact that Y |= e iff Y ′ |= e′, satisfaction of (ii) is given by construction of Y ′<. Moreover,

we have that Y ′< ( Y ′: we have Y< ( Y ⊆ Y ′ and all atoms q(pi,d) added to Y< are also in

Y ′ because it satisfies the rule q(pi,d)← pi(d) ∈ P ′; properness of the subset-relation follows

from Y< ( Y . Therefore we have Y ′< ( Y ′ and Y ′< |= fP ′Y
′

, which contradicts the assumption

that Y ′ is an answer set of P ′.

Lemma 2

For a HEX-program P and a set of (positive or negative) external atoms E in P , we have

P∩P[E] = {r ∈ P | none of E occur in r}.



Inlining External Sources in Answer Set Programs 49

Proof

For a single external atom e ∈ E observe that all rules r ∈ P[e], which were constructed by

(1)-(3) in Definition 6, contain at least one atom that does not appear in P . Thus these rules can

only be in P[e] but not in P and thus not in P∩P[e]. For the rules r ∈ P[e] constructed by (4) in

Definition 6, note that r ∈ P iff e does not appear in r. This is further the case iff r ∈ P∩P[e].

In summary, P∩P[e] contains all and only the rules from P that do not contain e.

By iteration of the argument, one gets the same result for the set E of external atoms.

Proposition 9

For sets H and B of atoms and HEX-programs P and Q, we have P ≡e
〈H,B〉 Q iff σ〈H,B〉(P ) =

σ〈H,B〉(Q).

Proof

(⇒) IfAS(P∪R) = AS(Q∪R) for all R ∈ Pe
〈H,B〉, then this holds in particular for all programs

R ∈ P〈H,B〉 without external atoms. Then by Proposition 7 we have σ〈H,B〉(P ) = σ〈H,B〉(Q).

(⇐) Suppose σ〈H,B〉(P ) = σ〈H,B〉(Q), then by Proposition 7 we have P ≡〈H,B〉 Q and by

Corollary 2 we have P ≡〈H∪H′,B∪B′〉 Q for all setsH′, B′ of atoms that do not occur in P or Q.

Now consider R ∈ Pe
〈H,B〉. We have to show that AS(P ∪R) = AS(Q ∪R).

Let R′ be the ordinary ASP-program after standardizing input atoms to external atoms apart

from the atoms in P and Q (using Lemma 1) and subsequent inlining all external atoms in R

using Definition 6. Note that R′ uses only atoms fromH in its heads, atoms from B in its bodies,

and newly introduced atoms A(R′) \ A(R); the latter are selected such that they do not occur

in P or Q. We further have that R′ is free of external atoms, thus R′ ∈ P〈H∪H′,B∪B′〉 for

H′ = B′ = A(R′) \A(R).

We then have P ≡〈H∪H′,B∪B′〉 Q (by Corollary 2, as discussed above). By definition of

≡〈H∪H′,B∪B′〉 this gives AS(P ∪ R′) = AS(Q ∪ R′). Then by Proposition 1 we have that

AS(P ∪R) = AS(Q ∪R).

Proposition 10

A HEX-program P is persistently inconsistent wrt. sets of atoms H and B iff for each classical

model Y of P there is an Y ′ ( Y such that Y ′ |= fP Y and Y ′|H = Y |H.

Proof

Let P⊥ be a program without classical models (e.g., {a ←; ← a}). Then, by monotonicity of

classical logic, P⊥∪R is inconsistent (wrt. the HEX-semantics) for all R ∈ Pe
〈H,B〉, i.e., we have

that AS(P⊥ ∪R) = ∅ for all R ∈ Pe
〈H,B〉.

We have to show that AS(P ∪ R) = ∅ for all R ∈ Pe
〈H,B〉 iff for each model Y of P there

is an Y ′ ( Y such that Y ′ |= fP Y and Y ′|H = Y |H. Due to Proposition 1, each program

with external atoms may be replaced by an ordinary ASP-program such that the answer sets

correspond to each other one-by-one; therefore the former statement holds iff AS(P ∪ R) = ∅

for all R ∈ P〈H,B〉, i.e., it suffices to consider ordinary ASP-programs R. The claim is proven if

we can show that AS(P ∪R) ⊆ AS(P⊥ ∪R) for all R ∈ P〈H,B〉.

This corresponds to deciding P ⊆〈H,B〉 P⊥. By Proposition 6, P ⊆〈H,B〉 P⊥ is the case iff no

witness for P 6⊆〈H,B〉 P⊥ exists. Since P⊥ does not have any classical models, each pair (X,Y )

of assignments trivially satisfies Condition (ii) because Y 6|= P⊥, thus a pair (X,Y ) is not a

witness iff it violates Property (i). This condition is violated by (X,Y ) iff Y 6|= P or there exists

a Y ′ ( Y such that Y ′ |= fPY and Y ′|H = Y |H; this is exactly the stated condition.
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Lemma 3

For a HEX-program P and a model Y of P , a set of atoms U is an unfounded set of P wrt. Y iff

Y \ U |= fPY .

Proof

(⇒) We have to show that any rule r ∈ fPY is satisfied underY \U . First observe that Y |= H(r)

because otherwise we also had Y 6|= B(r) (since Y is a model of P ) and thus r 6∈ fP Y . If

Y \U |= H(r) we are done (Y \U |= r). Otherwise we have H(r) ∩U 6= ∅ and thus one of the

conditions of Definition 13 holds for r. This cannot be Condition (i) because otherwise we had

r 6∈ fP Y . If it is Condition (ii) then Y \ U 6|= B(r) and thus Y \ U |= r. If it is Condition (iii)

then Y \ U |= H(r) and thus Y \ U |= r.

(⇐) Let Y ′ ⊆ Y be a model of fPY . We have to show that U = Y \ Y ′ is a unfounded set of

P wrt. Y . To this end we need to show that for all r ∈ P with H(r)∩U 6= ∅ one of the conditions

of Definition 13 holds. If r 6∈ fP Y then Y 6|= B(r) and thus Condition (i) holds. If r ∈ fP Y

then we either have Y ′ 6|= B(r) or Y ′ |= H(r). If Y ′ 6|= B(r) then Y \ U 6|= B(r) because

Y \ U = Y ′, i.e., Condition (ii) holds. If Y ′ |= H(r) then there is an h ∈ H(r) s.t. h ∈ Y and

h ∈ Y ′ and thus h 6∈ U . Then we have h ∈ Y \ U and thus Y |= h, i.e., Condition (iii) holds.

Corollary 3

A HEX-program P is persistently inconsistent wrt. sets of atoms H and B iff for each classical

model Y of P there is a nonempty unfounded set U of P wrt. Y s.t. U ∩Y 6= ∅ and U ∩H = ∅.

Proof

By Proposition 10 we know that P ∪R is inconsistent for all R ∈ P〈H,B〉 iff for each model Y of

P there is an Y ′ ( Y such that Y ′ |= fPY and Y ′|H = Y |H. Each such model Y ′ corresponds

one-by-one to a nonempty unfounded set U = Y \ Y ′ of P wrt. Y , for that we obviously have

U ∩ Y 6= ∅ and Y ′|H = Y |H iff U ∩H = ∅.
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