
Under consideration for publication in Theory and Practice of Logic Programming 1

Optimizing Answer Set Computation via
Heuristic-Based Decomposition ∗

Francesco Calimeri, Simona Perri and Jessica Zangari
Department of Mathematics and Computer Science, University of Calabria,

Rende, Italy
(e-mail: {calimeri,perri,zangari}@mat.unical.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Answer Set Programming (ASP) is a purely declarative formalism developed in the field of logic program-
ming and nonmonotonic reasoning: computational problems are encoded by logic programs whose answer
sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, pro-
grams can be defined for the same problem; however, performance of systems evaluating them might sig-
nificantly vary. We propose an approach for automatically transforming an input logic program into an
equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition
techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply
them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an
ASP system. The method is rather general: it can be adapted to any system and implement different pref-
erence policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the
main phases of the ASP computation; we use them in order to implement the approach into the ASP system
DLV , in particular into its grounding subsystem I -DLV , and carry out an extensive experimental activity
for assessing the impact of the proposal.

KEYWORDS: Answer Set Programming, Artificial Intelligence, ASP in practice

1 Introduction

Answer Set Programming (ASP) (Brewka et al. 2011; Gelfond and Lifschitz 1991) is a declar-
ative programming paradigm proposed in the area of non-monotonic reasoning and logic pro-
gramming. With ASP, computational problems are encoded by logic programs whose answer
sets, corresponding to solutions, are computed by an ASP system (Lifschitz 1999).

The evaluation of ASP programs is “traditionally” split into two phases: grounding, that gen-
erates a propositional theory semantically equivalent to the input program, and solving, that ap-
plies propositional techniques for computing the intended semantics (Alviano et al. 2017; Gebser

∗ This work is the extended version of a paper originally appeared in the Proceedings of 20th Symposium on Practical
Aspects of Declarative Languages (PADL 2018), January 8–9, 2018, Los Angeles, USA. Program chairs were Kevin
Hamlen and Nicola Leone. The paper presents new material that integrates and extends what has been reported in the
original paper; in particular, it provides the reader with proper preliminaries (omitted in the original paper for space
constraints), more detailed discussions on the proposed techniques and richer comparisons with related approaches,
along with an extended number of examples. Furthermore, a more thorough experimental activity is presented, dis-
cussed in part in the main text and in part in the appendices, that covers also new domains that were unexplored in the
original paper.

ar
X

iv
:1

81
2.

09
71

8v
2

 [
cs

.A
I]

 1
1

Ja
n

20
19

2 F. Calimeri, S. Perri and J. Zangari

et al. 2015; Kaufmann et al. 2016; Leone et al. 2006); nevertheless, in the latest years several ap-
proaches that deviate from this schema have been proposed (Palù et al. 2009; Dao-Tran et al.
2012; Eiter et al. 2017; Lefèvre et al. 2017).

Typically, the same computational problem can be encoded by means of many different ASP
programs which are semantically equivalent; however, real ASP systems may perform very dif-
ferently when evaluating each one of them. This behavior is due, in part, to specific aspects, that
strictly depend on the ASP system employed, and, in part, to general “intrinsic” aspects, depend-
ing on the program at hand which could feature some characteristics that can make computation
easier or harder. Thus, often, to have satisfying performance, expert knowledge is required in
order to select the best encoding. This issue, in a certain sense, conflicts with the declarative
nature of ASP that, ideally, should free the users from the burden of the computational aspects.
For this reason, ASP systems tend to be endowed with proper pre-processing means aiming at
making performance less encoding-dependent; intuitively, this is crucial for fostering and easing
the usage of ASP in practice.

A proposal in this direction is lpopt (Bichler et al. 2016a), a pre-processing tool for ASP
systems that rewrites rules in input programs by means of tree-decomposition algorithms. The
rationale comes from the fact that, when programs contain rules featuring long bodies, ASP
systems performance might benefit from a careful split of such rules into multiple, smaller ones.
However, it is worth noting that, while in some cases such decomposition is convenient, in other
cases keeping the original rule is preferable; hence, a black-box decomposition, like the one of
lpopt, makes it difficult to predict whether it will lead to benefits or disadvantages.

Inspired by the idea implemented in lpopt of rewriting ASP programs by means of tree-
decomposition, we propose here a method that aims at taking full advantage from rewriting,
still avoiding performance drawbacks by estimating its effects in advance. It analyzes each input
rule before the evaluation, and estimates whether it is convenient to decompose it into an equiv-
alent set of smaller rules, or not; if more than one decomposition is possible, the most promising
is selected. The method is general and defined so that all choices are made according to proper
criteria and heuristics that can be customized: it can be tailored to different phases of the ASP
computation, and it is not tied to a specific system. Furthermore, we define new heuristics and
criteria relying on data and statistics dynamically computed during the instantiation with the
aim of optimizing the performances of I -DLV (Calimeri et al. 2017b), a recently released de-
ductive database system that currently serves also as the grounding subsystem of DLV (Alviano
et al. 2017). In addition, we present here an actual implementation into I -DLV and perform an
extensive experimental activity in order to asses the effects of our technique on ASP program
optimization.

The remainder of the paper is structured as follows. In Section 2 we recall ASP basics along
with some other preliminary notions; in Section 3 we introduce an abstract heuristic-guided
decomposition algorithm for ASP programs in its general form, while in Section 4 we describe
how we adapt it in order to foster an actual implementation into the I -DLV grounder, along
with custom heuristics for guiding the process. Section 5 presents the results of an extensive
experimental activity aimed at assessing the impact of the proposed method, and effectiveness of
the proposed heuristics on grounding performance; we also shed a light on the impact on solvers.
Our conclusions are drawn in Section 6. Some additional experiments, that have been omitted
from the main text for the sake of readability, are reported and discussed in appendices.

Optimizing Answer Set Computation via Heuristic-Based Decomposition 3

2 Preliminaries

In this section we provide the reader with some preliminaries; in particular, we first briefly intro-
duce Answer Set Programming and then recall how hypergraphs can be used in order to represent
ASP rules along with tree-decomposition strategies for rewriting them.

2.1 Answer Set Programming

A significant amount of work has been carried out on extending the basic language of ASP, and
the community recently agreed on a standard input language for ASP systems: ASP-Core-2 (Cal-
imeri et al. 2013), the official language of the ASP Competition series (Calimeri et al. 2016; Geb-
ser et al. 2016). For the sake of simplicity, we focus next on the basic aspects of the language;
for a complete reference to the ASP-Core-2 standard, and further details about advanced ASP
features, we refer the reader to (Calimeri et al. 2013) and the vast literature.

A term is either a simple term or a functional term. A simple term is either a constant or a
variable. If t1 . . . tn are terms and f is a function symbol of arity n, then f (t1, . . . , tn) is a functional
term. If t1, . . . , tk are terms and p is a predicate symbol of arity k, then p(t1, . . . , tk) is an atom. A
literal l is of the form a or not a, where a is an atom; in the former case l is positive, otherwise
negative. A rule r is of the form α1 | · · · | αk :- β1, . . . ,βn, not βn+1, . . . ,not βm. where m≥ 0,
k ≥ 0; α1, . . . ,αk and β1, . . . ,βm are atoms. We define H(r) = {α1, . . . , αk} (the head of r) and
B(r) = B+(r)∪B−(r) (the body of r), where B+(r) = {β1, . . . , βn} (the positive body) and B−(r)
= {not βn+1, . . . , not βm} (the negative body). If H(r) = /0 then r is a (strong) constraint; if
B(r) = /0 and |H(r)| = 1 then r is a fact. A rule r is safe if each variable of r has an occurrence
in B+(r)1. For a rule r, we denote as headvar(r), bodyvar(r) and var(r) the set of variables
occurring in H(r), B(r) and r, respectively. An ASP program is a finite set P of safe rules. A
program (a rule, a literal) is ground if it contains no variables. A predicate is defined by a rule
r if it occurs in H(r). A predicate defined only by facts is an EDB predicate, the remaining are
IDB predicates. The set of all facts in P is denoted by Facts(P); the set of instances of all EDB
predicates in P is denoted by EDB(P).

Given a program P, the Herbrand universe of P, denoted by UP, consists of all ground terms
that can be built combining constants and function symbols appearing in P. The Herbrand base
of P, denoted by BP, is the set of all ground atoms obtainable from the atoms of P by replacing
variables with elements from UP. A substitution for a rule r ∈ P is a mapping from the set of
variables of r to the set UP of ground terms. A ground instance of a rule r is obtained applying
a substitution to r. The full instantiation Ground(P) of P is defined as the set of all ground
instances of its rules over UP. An interpretation I for P is a subset of BP. A positive literal a
(resp., a negative literal not a) is true w.r.t. I if a ∈ I (resp., a /∈ I); it is false otherwise. Given
a ground rule r, we say that r is satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I
or some literal appearing in B(r) is false w.r.t. I. Given a program P, we say that I is a model of
P, iff all rules in Ground(P) are satisfied w.r.t. I. A model M is minimal if there is no model N
for P such that N ⊂M. The Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991) of P, w.r.t. an
interpretation I, is the positive ground program PI obtained from Ground(P) by: (i) deleting all
rules having a negative literal false w.r.t. I; (ii) deleting all negative literals from the remaining

1 We remark that this definition of safety is specific for the syntax considered herein. For a complete definition we refer
the reader to (Calimeri et al. 2013).

4 F. Calimeri, S. Perri and J. Zangari

rules. I ⊆ BP is an answer set for a program P iff I is a minimal model for PI . The set of all
answer sets for P is denoted by AS(P).

2.2 ASP Computation

The high expressiveness of ASP comes at the price of a high computational cost in the worst
case (Eiter et al. 1997; Leone et al. 2006), which makes the implementation of efficient ASP
systems a difficult task. Thanks to the effort by a scientific community that grew over time, there
are nowadays a number of systems that support ASP and its variants (Simons et al. 2002; Ward
and Schlipf 2004; Janhunen et al. 2006; Giunchiglia et al. 2006; Gebser et al. 2012; Alviano et al.
2015; Leone et al. 2006; Gebser et al. 2014; Palù et al. 2009; Lefèvre et al. 2017; Dao-Tran et al.
2012; Weinzierl 2017).

The well-established, mainstream approach for the evaluation of ASP programs (Kaufmann
et al. 2016) relies on two phases, usually referred to as instantiation or grounding, and solving
or answer sets search, respectively. Given a (non-ground) ASP program P, grounding consists
of producing a propositional theory GP semantically equivalent to P, i.e. such that GP does not
contain any variable but has the same answer sets as P. Given that, in the worst case, the solving
stage may take up to exponential time in the size of GP (Ben-Eliyahu and Dechter 1994; Ben-
Eliyahu-Zohary and Palopoli 1997), modern ASP systems employ intelligent grounding proce-
dures so that GP is significantly smaller than the full instantiation Ground(P). Once the program
GP has been computed, solving takes place, taking as input GP and computing its answer sets
by means of propositional algorithms. The majority of current ASP implementations follows this
two-phase computation, either by explicitly relying on stand-alone grounders (Syrjänen 2001;
Faber et al. 2012; Gebser et al. 2011) and solvers (Simons et al. 2002; Ward and Schlipf 2004;
Janhunen et al. 2006; Giunchiglia et al. 2006; Gebser et al. 2012; Alviano et al. 2015), or in-
tegrating the modules into monolithic systems (Gebser et al. 2014; Leone et al. 2006; Alviano
et al. 2017). Notably, given that both phases are, in general, computationally expensive (Eiter
et al. 1997; Dantsin et al. 2001), efficient ASP implementations depend on proper optimization
of both.

Alternative solutions (Palù et al. 2009; Lefèvre et al. 2017; Dao-Tran et al. 2012; Weinzierl
2017) adopt a lazy grounding technique, in which grounding and solving steps are interleaved,
and rules are grounded on-demand during solving. These systems try to overcome the so called
grounding bottleneck, that occurs on problems for which the instantiation is inherently so huge
that its actual materialization is not suitable in practice. For this reason, this approach looks
promising; however, current implementations do not match, in the general case, performance of
the more “traditional” systems, that proved instead to be reliable and well-performing in a wider
range of scenarios.

Notably, the herein presented technique, introduced in Section 3, is general enough to be
adopted with both approaches, by defining suitable heuristics and properly customizing its in-
tegration.

2.3 Tree-Decompositions for Rewriting ASP Rules

Hypergraphs are useful for describing the structure of many computational problems; further-
more, it is possible to decompose them into different parts, so that the solution(s) of problems
can be obtained by a polynomial divide-and-conquer algorithm that properly exploits this di-

Optimizing Answer Set Computation via Heuristic-Based Decomposition 5

vision (Gottlob et al. 2001; Gottlob et al. 2005). Such ideas can guide a rewriting of an ASP
program: indeed, a logic rule can be represented as a hypergraph (Morak and Woltran 2012), and
hence properly decomposed.

Discussing in detail how tree decompositions can be computed and rewritings induced is out of
the scope of this paper; indeed, our main goal is to find a way for correctly identifying in advance
in which cases their application pays off in terms of efficiency, while dealing with ASP rules.
However, in order to ease the reading, in the following, we briefly recall an intuitive description
of some crucial notions for the ASP context; for further details we refer the reader to (Bichler
et al. 2016a) and the existing literature.

A (undirected) hypergraph is a generalization of a (undirected) graph in which an edge can
join two or more vertices. An ASP rule r can be represented as a hypergraph HG(r) by adding a
hyperedge for each literal l ∈ B(r)∪H(r) containing the variables appearing in l. A tree decom-
position of a hypergraph HG(r) (see (Robertson and Seymour 1986; Gottlob et al. 2016)) is a
tuple (T D(r), χ), where T D(r) = (V (T D(r)),E(T D(r))) is a tree and χ : V (T D(r))→ 2V (HG(r))

is a function associating a set of vertices χ(t)⊆V (HG(r)) to each vertex t of the decomposition
tree T D(r), such that for each e ∈ E(HG(r)) there is a node t ∈ V (T D(r)) such that e ⊆ χ(t),
and for each v ∈ V (HG(r)) the set {t ∈ V (T D(r))|v ∈ χ(t)} is connected in T D(r). Intuitively,
a tree decomposition T D(r) of HG(r) is a tree such that each vertex is associated to a bag, i.e., a
set of nodes of HG(r), and such that each hyperedge of HG(r) is covered by some bag, and for
each node of HG(r) all vertices of T D(r) whose bag contains it induce a connected subtree of
T D(r).

A tree decomposition T D(r) can be used in order to produce a set of rules that rewrites r; such
set is called rule decomposition, and denoted by RD(r). In particular, RD(r) contains a (newly
generated) rule for each vertex v of T D(r), on the basis of the included variables. Roughly, each
literal l in the body of r, such that the set of variables in l is contained in v, is added to the
body of the rule generated for v. Eventually, some optional rules may be added to RD(r) in order
to guarantee safety. Note that, since different choices for handling safety can be performed, the
way in which a tree decomposition is converted into a rule decomposition might be not unique.
Moreover, interestingly, in general, more than one decomposition is possible for each rule.

The following running example, which we will refer to throughout the paper, illustrates this
mechanism.

Example 1
Let us consider the rule:

r1 : p(X ,Y,Z,S) :-s(S), a(X ,Y,S−1), c(D,Y,Z), f (X ,P,S−1), P >= D.

from the encoding of the problem Nomystery from the 6th ASP Competition (see Section 5),
where, for the sake of readability, predicates and variables have been renamed. Figure 1 de-
picts the conversion of r1 into the hypergraph HG(r1), along with two possible decompositions:
T D1(r1) and T D2(r1), that induce two different rewritings. According to T D1(r1), r1 can be
rewritten into the set of rules RD1(r1):

r2 : p(X ,Y,Z,S) :-s(S),a(X ,Y,S−1), f (X ,P,S−1), f resh pred 1(P,Y,Z).
r3 : f resh pred 1(P,Y,Z) :-c(D,Y,Z),P >= D, f resh pred 2(P).
r4 : f resh pred 2(P) :-s(S), f (,P,S−1).

6 F. Calimeri, S. Perri and J. Zangari

Z

X

S

P

Y

D

(a) HG(r1)

{P,Y,Z,S,X}

{D,P,Y,Z}

(b) T D1(r1)

{D,Y,Z,S,X}

{D,P,S,X}

(c) T D2(r1)

Figure 1: Decomposing a rule

In particular, the rule r2 features the same head of r1 and as body the literals needed in order
to cover the node of T D1(r1) containing the variables {P,Y,Z,S,X}; r3 features as head the fresh
predicate f resh pred 1 that links it to r2 and collects in its body a set of literals covering the
variables {D,P,Y,Z} appearing in the other node of T D1(r1); eventually, r4 is needed to ensure
safety of r3: the atom f resh pred 2(P) is added in the body of r3 and to the head of r4, whose
body features a set of literals coming from r1 and covers P (note that in this case the set is
unique). Note that, a different rewriting could be obtained by differently handling safety of r3;
for instance, one could avoid to introduce r4 and, instead, add the literals s(S), and f (,P,S−1)
to the body of r3.

Similarly, according to T D2(r1), r1 can be rewritten into RD2(r1) as follows:

r5 : p(X ,Y,Z,S) :-a(X ,Y,S−1),c(D,Y,Z), f resh pred 1(D,S,X).

r6 : f resh pred 1(D,S,X) :-s(S), f (X ,P,S−1),P >= D, f resh pred 2(D).

r7 : f resh pred 2(D) :-c(D, ,).

3 A Heuristic-guided Decomposition Algorithm

In the previous section we recalled how tree decomposition of hypergraphs can be used in order
to guide rewritings of ASP rules. Interestingly, the lpopt (Bichler et al. 2016a) preprocessor is a
proposal in this direction, that rewrites an ASP program before it is fed to an ASP system.

As previously noted, for each rule, several different rule decompositions might exist. However,
when fed to a real ASP system, different yet equivalent rewritings require, in general, signifi-
cantly different evaluation times. Thus, proper means for reasonably and effectively choose the
“best” rewriting are crucial; furthermore, it might be the case that, whatever the choice, sticking
to the original, unrewritten rule, is still preferable. Hence, a black-box approach, such as the one
of lpopt, makes it difficult to effectively take advantage from the decomposition rewritings; this
is clearly noticeable by looking at experiments, as discussed in Section 5.

In this section we introduce a smart decomposition algorithm that aims at addressing the above
issues; it is designed to be integrated into an ASP system, and uses information available during
the computation to predict, according to proper criteria, whether decomposing will pay off or
not; moreover, it chooses the most promising decomposition, among the several possible ones.
In the following, we first describe the method in its general form, that can be easily adapted
to different real systems; a complete actual implementation, specialized for the DLV system, is
presented later on.

Optimizing Answer Set Computation via Heuristic-Based Decomposition 7

function SMARTDECOMPOSITION(r : Rule) : RuleDecomposition
var er : number, RDS : SetOfRuleDecompositions, eRD : Number,
RD: RuleDecomposition
er← ESTIMATE(r)
RDS← GENERATERULEDECOMPOSITIONS(r)
if RDS 6= /0 then /* r is decomposable */

RD← CHOOSEBESTDECOMPOSITION(RDS,er)
eRD← ESTIMATEDECOMPOSITION(RD)
if DECOMPOSITIONISPREFERABLE(er,eRD) then

return RD
end if

end if
return /0

end function

function GENERATERULEDECOMPOSITONS(r : Rule) : SetOfRuleDecompositions
var HG : Hypergraph, RDS : SetOfRuleDecompositions,
RD : RuleDecomposition, T D : TreeDecomposition
T DS : SetOfTreeDecompositions
HG← TOHYPERGRAPH(r)
T DS← GENERATETREEDECOMPOSITIONS(HG)
for each T D ∈ T DS do

RD← TORULES(T D,r)
RDS = RDS∪{RD}

end for
return RDS

end function
Figure 2: The algorithm SMARTDECOMPOSITION and the GENERATERULEDECOMPOSITONS

function.

The abstract algorithm SMARTDECOMPOSITION is shown in Figure 2; we indicate as tree
decomposition an actual tree decomposition of a hypergraph, while with rule decomposition we
denote the conversion of a tree decomposition into a set of ASP rules. Given a (non-ground)
input rule r, the algorithm first heuristically computes, by means of the ESTIMATE function, a
value er that estimates how much the presence of r in the program impacts on the whole com-
putation; then, the function GENERATERULEDECOMPOSITONS computes a set of possible rule
decompositions RDS, from which CHOOSEBESTDECOMPOSITION selects the best RD ∈ RDS;
hence, function ESTIMATEDECOMPOSITION computes the value eRD that estimates the impact of
having RD in place of r in the input program. Eventually, function DECOMPOSITIONISPREFER-
ABLE is in charge of comparing er and eRD and deciding if decomposing is convenient. We re-
mark that functions ESTIMATE, CHOOSEBESTDECOMPOSITION, ESTIMATEDECOMPOSITION

and DECOMPOSITIONISPREFERABLE are left unimplemented, as they are completely customiz-
able; they must be implemented by defining proper criteria that take into account features and
information within the specific evaluation procedure, and the actual ASP system the algorithm is
being integrated into.

Figure 2 reports also the implementation of function GENERATERULEDECOMPOSITONS.
Here, TOHYPERGRAPH converts a input rule r into a hypergraph HG, which is iteratively anal-
ysed in order to produce possible tree decompositions, by means of the function GENERATE-

8 F. Calimeri, S. Perri and J. Zangari

TREEDECOMPOSITIONS. Also these stages can be customized in an actual implementation, ac-
cording to different criteria and the features of the system at hand; for space reasons, we refrain
from going into details that are not relevant for the description of the approach. The function
TORULES, given a tree decomposition T D and a rule r, converts T D into a rule decomposition
RD for r. In particular, for each node in T D, it adds a new logic rule to RD, possibly along with
some additional auxiliary rules needed for ensuring safety. The process is, again, customizable,
and should be defined according to the function TOHYPERGRAPH.

The general definition of the algorithm provided so far is independent from any actual imple-
mentation, and its behaviour can significantly change depending on the customization choices,
as discussed above. However, in order to give an intuition on how it works, we make use of our
running example for illustrating a plausible execution.

Example 2
Given rule r1 of Example 1, let us imagine that function GENERATERULEDECOMPOSITIONS

computes the tree decompositions T D1(r1) and T D2(r1) and then, by means of TORULES, the
set of rule decompositions consisting of RD1(r1) and RD2(r1) is generated. Note that r4 and r7

are added for ensuring safety of rules r3 and r6, respectively. Next step consists of the choice
between RD1(r1) and RD2(r1) for the best promising decomposition, according to the actual
criteria of choice. Supposing that it is RD1(r1), DECOMPOSITIONISPREFERABLE compares the
estimated impacts er1 and eRD1(r1) , in order to decide if keeping r or substituting it with RD1(r1).

4 Integrating the SMARTDECOMPOSITION Algorithm into a Real System: the DLV Case

In this section we illustrate how the general SMARTDECOMPOSITION algorithm of Section 3
can be customized in order to be integrated into an actual ASP implementation. Interestingly,
such customization can be tailored with different purposes, for both the two-phase-based and the
lazy-grounding-based systems, for optimizing solving or instantiation performance, according
to different criteria (times, size, structure, etc.). In this work, we focus on the widespread DLV
system (Alviano et al. 2017; Leone et al. 2006), which complies to the two-phase strategy, with
the explicit aim of optimizing performance of its grounding subsystem I -DLV (Calimeri et al.
2017b). A detailed description of the I -DLV computation is out of the scope of this work (the
interested reader is referred to (Calimeri et al. 2017b)); however, for the sake of readability, we
briefly recall the basics of its machinery.

Given an ASP program P:

1. P is parsed, and the extensional database (EDB) is built.
2. Each rule in P is analyzed, and possibly rewritten according to different strategies for

optimization purposes; the result constitutes the intensional database (IDB).
3. Dependencies among IDB rules and predicates are examined; such dependencies induce

the splitting of P into modules, and a suitable processing ordering is computed so that an
incremental evaluation is possible according to the definitions in (Faber et al. 2012).

4. The program is grounded one module at a time by means of a proper adaptation of a
semi-naı̈ve schema (Faber et al. 2012; Ullman 1988) that evaluates each rule in a module
according to a rule instantiation procedure that in turn produces its ground instances. Rules
within a module can be recursive or not. While for the former ones the procedure might
be iteratively invoked, for the not recursive rules a single call of the rule instantiation
procedure is enough to produce all their ground instances.

Optimizing Answer Set Computation via Heuristic-Based Decomposition 9

5. The collection of the ground rules generated from all IDB rules compose, along with
EDB(P), the resulting ground program GP.

The core of the I -DLV computation is the rule instantiation process mentioned in the step 4
of the sketch above, which constitutes one of the more computationally heavy tasks. Basically,
when grounding a rule r of P, instead of replacing bodyvar(r) with every possible constant ap-
pearing in P, the rule instantiation iteratively substitutes the variables in each body literal with
constants appearing in the corresponding predicate extension. A predicate extension of a predi-
cate p is the set of all ground atoms having p as predicate. More in detail, given a rule r and the
set of extensions of its body predicates, the rule instantiation produces ground instances of r by
iterating on positive body literals2 and looking for all possible valid substitutions. Intuitively, this
phase resembles the evaluation of relational joins on the positive body literals, where predicate
extensions can be seen as tables whose tuples consist of the ground instances. Once a valid sub-
stitution is found for all variables in bodyvar(r), it is applied to headvar(r) in order to obtain a
totally ground rule, i.e. a ground instance of r, say r′. This possibly leads to the generation of new
ground atoms occurring in the head of r′; such new ground atoms are added to the corresponding
predicate extensions. It is worth noting that, the set of all predicate extensions is built dynami-
cally starting from ground atoms appearing in Facts(P) and then, adding each new ground atom
coming from heads of produced ground rules; the chosen evaluation order plays a key role in this
respect as it ensures that when evaluating a rule r the extensions of all body predicates needed
for instantiating r have been fully generated.

Besides the basic schema herein sketched, I -DLV employs smart optimizations techniques,
geared towards the efficient production of a ground program that is considerably smaller, still pre-
serving the semantics. Roughly, when a rule is going to be instantiated, I -DLV firstly performs a
pre-processing that might lead some adjustments over the rule to different extents, and after that
the actual rule instantiation takes place, a post-processing refines the output. Some optimizations,
such as, for instance, join-ordering strategies, operate in the pre-processing phase; some explic-
itly take place during the actual instantiation process, such as non-chronological backtracking;
some operate across the two phases, such as indexing techniques for a quick instances retrieval;
others take place in the post-processing step, such as the simplification that removes ground rules
and literals in the bodies that do not contribute to the semantics.

The SMARTDECOMPOSITION algorithm implementation herein described works in the pre-
processing phase.

We provide next some details on how we defined the functions that have been left unimple-
mented in the general description of Section 3 (ESTIMATE, CHOOSEBESTDECOMPOSITION,
ESTIMATEDECOMPOSITION and DECOMPOSITIONISPREFERABLE), along with the proposed
heuristics, and discuss further implementation issues.

4.1 The ESTIMATE Function

The function ESTIMATE (Figure 3) heuristically measures the cost of instantiating a rule r before
it is actually grounded. To this aim, we propose a heuristics inspired by the ones introduced in
the database field (Ullman 1988) and adopted in (Leone et al. 2001) to estimate the size of a join

2 Because of the safety condition, in order to generate a completely ground instance of r, it is enough to have a substi-
tution for the variables occurring in the positive literals.

10 F. Calimeri, S. Perri and J. Zangari

operation. In particular, it relies on statistics over body predicates, such as size of extensions and
argument selectivities; we readapted it in order to estimate the cost of grounding a rule as the
total number of operations needed in order to perform the task, rather than estimate the size of
the join of its body literals. Let a = p(t1, . . . , tn) be an atom; we denote with var(a) the set of
variables occurring in a, while T (a) represents the number of different tuples for a in the ground
extension of p. Moreover, for each variable X ∈ var(a), we denote by V (X ,a) the selectivity of X
in a, i.e., the number of distinct values in the field corresponding to X over the ground extension
of p. Given a rule r, let 〈a1, . . . ,am〉 be the ordered list of atoms appearing in B(r), for m > 1.
Initially, the cost of grounding r, denoted by er, is set to T (a1), then the following formula is
iteratively applied up to the last atom in the body in order to obtain the total estimation cost for
r. More in detail, let us suppose that we estimated the cost of joining the atoms 〈a1, . . . ,a j〉 for
j ∈ {1, . . . ,m}, and consequently we want to estimate the cost of joining the next atom a j+1; if
we denote by A j the relation obtained by joining all j atoms in 〈a1, . . . ,a j〉, then:

eA jona j+1 =
T (a j+1)

∏
X∈idx(var(A j)∩var(a j+1))

V (X ,a j+1)
· ∏

X∈(var(A j)∩var(a j+1))

V (X ,A j)

dom(X)
(1)

where dom(X) is the maximum selectivity of X computed among the atoms in B(r) containing
X as variable, and idx(var(A j)∩ var(a j+1)) is the set of the indexing arguments of a j+1. We
note that, at each step, once the atom a j+1 has been considered, V (X ,A j+1), representing the
selectivity of X in the virtual relation obtained at step j+ 1, has to be estimated in order to be
used at next steps:

V (X ,A j+1) =V (X ,A j) ·
V (X ,a j+1)

dom(X)
if X ∈ var(A j)

V (X ,A j+1) =V (X ,a j+1) otherwise
(2)

Intuitively, the formula tries to determine the cost of grounding r, by estimating the total
number of operations to be performed. In particular, the first factor is intended to estimate how
many instances for a j+1 have to be considered, while the second factor represents the reduction
in the search space implied by a j+1. To obtain a realistic estimate, the presence of indexing
techniques, used in I -DLV to reduce the number of such operations (Calimeri et al. 2017b), has
been taken into account.

Example 3
Let us consider the rule:

r1 : p(X ,Y,Z,S) :-s(S), a(X ,Y,S−1), c(D,Y,Z), f (X ,P,S−1), P >= D.

of Example 1, and let us assume that we are dealing with an instance that contains the facts3:

s(1..5). a(1..5,1..5,1..5). c(1..5,1..5,1..5). f (1..5,1..5,1..5).

The ESTIMATE function first estimates, by means of Formula (1), the cost of computing the joins
Ai. In this case, denoting by a1 = s(S), a2 = a(X ,Y,S− 1), a3 = c(D,Y,Z) and so on, we have
that A1 = s(S), A2 = A1 on a(X ,Y,S−1) and it is estimated as:

3 According to ASP-Core-2 syntax, the term (1..k) stands for all values from 1 to k.

Optimizing Answer Set Computation via Heuristic-Based Decomposition 11

function ESTIMATE(r : Rule) : Number
/* Estimate the cost of grounding a rule according to Formula (1) */

end function
function ESTIMATEDECOMPOSITION(RD : SetOfRules) : Number

var eRD : number
PREPROCESS(RD)
eRD← 0
for each r′ ∈ RD do

eRD = eRD+ ESTIMATE(r′)
end for
return eRD

end function
Figure 3: ESTIMATE and ESTIMATEDECOMPOSITION as implemented in I -DLV

eA1ona2 =
T (a2)

V (S,a2)
· V (S,A1)

dom(S)
=

125
5
· 5

5
= 25 = eA2

Then, the formula is used again in order to estimate the cost of the join A3 between A2 and a3,
and so on up to the last join A4. At each step, size and variable selectivities for each ai are known,
while such data for the intermediate relations Ai are estimated. The size of A2 is estimated as eA2 ,
and selectivities of all variables appearing in A2 (i.e., X ,Y , and S) are estimated, according to
Formula (2), as:
- V (X ,A2) = 5 (indeed, X /∈ var(A1))
- V (Y,A2) = 5 (indeed, Y /∈ var(A1))
- V (S,A2) =V (S,A1) · V (S,a2)

dom(S) = 5 (indeed, S ∈ var(A1)).
The process is similarly iterated until the end of the body, from left to right.

4.2 The ESTIMATEDECOMPOSITION Function

The ESTIMATEDECOMPOSITION function is illustrated in Figure 3: after some pre-processing
steps, it computes the cost of a given decomposition as the sum of the cost of each rule in it.
Let r be a rule and RD = {r1, . . . ,rn} be a rule decomposition for r. In order to estimate the cost
of grounding RD, one must estimate the cost of grounding all rules in RD. For each ri ∈ RD
the estimate is performed by means of Formula (1). Nevertheless, it is worth noting that each
ri, in addition to predicates originally appearing in r, denoted as known predicates, may con-
tain some fresh predicates, generated during the decomposition. Concerning known predicates,
thanks to the rule instantiation ordering followed by I -DLV , as already pointed out in Section 4,
extensions size and selectivity needed for computing the formula are directly available: hence,
there is no need for estimations. On the contrary, for fresh predicates, that have been “locally”
introduced and do not appear in any of the rules in the original input program, such data is not
available, and must be estimated. To this aim, the dependencies among the rules in RD are ana-
lyzed, and an ordering that guarantees a correct instantiation is determined. Such dependencies
come out from the definitions in (Faber et al. 2012): rules depending only on known predicates
can be grounded first, while rules depending also on new predicates can be grounded only once
the rules that define them have been instantiated. Assuming that for the set RD a correct instan-

12 F. Calimeri, S. Perri and J. Zangari

tiation order is represented by 〈r1, . . . ,rn〉, for each r′ in this ordered list, if H(r′) = p′(t1, . . . , tk)
for k ≥ 1, and if p′ is a fresh predicate, we estimate: (i) the size of the ground extension of p′,
denoted T (p′), by means of a formula conceived for estimating the size of a join relation, based
on criteria that are well-established in the database field and reported in (Leone et al. 2001); (ii)
the selectivity of each argument as k

√
T (p′). Therefore, the procedure PREPROCESS invoked in

ESTIMATEDECOMPOSITION (see Figure 3) amounts to preprocess the rules in RD according to
a valid grounding order 〈r1, . . . ,rn〉 to obtain the extension sizes and the argument selectivities
for involved fresh predicates, based on the above mentioned formula. Once estimates for fresh
predicates are available, the actual estimate of grounding RD can be performed.

Example 4
Let us consider again the rule r1 of our running Example 1 and its decomposition RD1(r1):

r2 : p(X ,Y,Z,S) :-s(S),a(X ,Y,S−1), f (X ,P,S−1), f resh pred 1(P,Y,Z).
r3 : f resh pred 1(P,Y,Z) :-c(D,Y,Z),P >= D, f resh pred 2(P).
r4 : f resh pred 2(P) :-s(S), f (,P,S−1).

In order to compute eRD1(r1) we first need to determine a correct evaluation order of the rules
in RD1(r1); the only valid one is 〈r4,r3,r2〉. Indeed, r4 has only known predicates in its body,
thus can be evaluated first; the body of r3 contains, besides to known predicates, f resh pred 2,
whose estimates will be available just after the evaluation of r4; eventually, r2 depends also
on f resh pred 1, whose estimates will be available right after the evaluation of r3. Once the
estimates for the fresh predicates f resh pred 1 and f resh pred 2 are obtained, they are used for
computing er4 , er3 and er2 with Formula (1), and then for obtaining eRD1(r1) = er2 + er3 + er4 .

4.3 The CHOOSEBESTDECOMPOSITION and DECOMPOSITIONISPREFERABLE
Functions

The function CHOOSEBESTDECOMPOSITION estimates the costs of all decompositions of a rule
r by means of ESTIMATEDECOMPOSITION, and returns the one with the smallest estimated cost;
let us denote it by RD. The function DECOMPOSITIONISPREFERABLE is then in charge of decid-
ing whether RD will substitute r, by relying on er and eRD, that are the estimated costs associated
to r and RD, respectively. More in detail, it computes the ratio er/eRD. Intuitively, when the ratio
er/eRD ≥ 1, decomposing r is convenient; nevertheless, it is worth remembering that the costs
are estimated, and, in particular, as discussed in Section 4.2, the estimate of the cost of a de-
composition requires to estimate also the extension of some additional predicates introduced by
the rewriting, thus possibly making the estimate less accurate. This leads sometimes to cases in
which the decomposition is preferable even when er/eRD < 1. One can try to improve the estima-
tions, in the first place; however, an error margin will always be present. For this reason, in order
to reduce the impact of such issue, we decided to experimentally test the effects of the choices
under several values of the ratio, and found that decomposition is preferable when er/eRD ≥ 0.5,
that has also been set as a default threshold in our implementation; of course, the user can play
with this at will. We plan to further improve the choice of the threshold by taking advantage from
automatic and more advanced methods, such as machine learning guided techniques.

Example 5
Let us consider again our running Example 1. At the final step, three possible alternatives are
evaluated: (i) leave the rule r1 as it is (i.e. r1 is not decomposed), (ii) choose RD1(r1) or (iii)

Optimizing Answer Set Computation via Heuristic-Based Decomposition 13

choose RD2(r1). Since the nature of the heuristics we implemented into I -DLV have the aim
of optimizing the grounding process, estimations tightly depend on the instance at hand; hence,
choices will possibly vary from instance to instance.

Let us assume that the current instance contains the same facts reported in Example 3. Then,
the costs of instantiating RD1(r1) or RD2(r1) are computed according to what discussed in Sec-
tion 4.2: without reporting all intermediate calculations, we have eRD1(r1) = 122,945, while
eRD2(r1) = 53,075. In this case, the best decomposition is obviously RD2(r1), and it is compared
with the option of grounding r1 as non-decomposed. Again, without reporting all intermediate
calculations, we have that the cost er1 of grounding r1 amounts to 390,625; hence, the ratio
er1/eRD2(r1) is computed as 7.36, and, given that it is greater than 0.5, we prefer to substitute the
original rule with the decomposition RD2(r1) (see discussion above).

Interestingly, with a different input instance, things might change. For instance, if the set of
input facts for f changed to f (1..20,1..20,1..5)., the decomposition RD1(r1) would be preferred.

4.4 Fine-Tuning and Further Implementation Issues

In order to implement the SMARTDECOMPOSITION algorithm, one might rely on lpopt in order
to obtain a rule decomposition for each rule in the program; in particular, this would lead to a
straightforward implementation of TOHYPERGRAPH and TORULES, the functions that convert
a rule into a hypergraph and a tree decomposition into a rule decomposition, respectively. Nev-
ertheless, in order to better take advantage from the features of I -DLV and do not interfere with
its existing optimizations, we designed ad-hoc versions for such functions.

For instance, I -DLV supports the whole ASP-Core-2 language, which contains advanced
constructs like aggregates, choice rules and queries; our implementation, even if resembling the
one of lpopt, introduces custom extensions explicitly tailored to I -DLV optimizations, and some
updates in the way the aforementioned linguistic extensions are handled. It is worth noting that,
when dealing with rules containing aggregate literals or choice atoms (Calimeri et al. 2013),
I -DLV rewrites them: briefly, each conjunction of literals in aggregate and/or choice elements
is replaced by a fresh atom, and an auxiliary rule is added to preserve semantics; this ensures
more efficiency and transparency with respect to I -DLV grounding machinery and its native
optimization techniques. As a result, the SMARTDECOMPOSITION algorithm, that takes place
after such rewritings, does not need to explicitly take care of internal conjunctions of aggregates
or choice constructs; on the contrary, lpopt possibly decomposes also such internal conjunctions.

Differently from lpopt, I -DLV explicitly handles queries, and employs the magic sets rewrit-
ing technique (Alviano et al. 2012) to boost query answering; in our approach, SMARTDECOM-
POSITION is applied after the magic rewriting has occurred, so that decompositions is applied
also to resulting magic rules. In addition, given that I -DLV performs other rewritings on the
input rules for optimization purposes, the function TORULES is in charge of performing such
already existing rewriting tasks also on the rules resulting from the decompositions.

Another relevant issue is related to the safety of the rules generated in a decomposition. In-
deed, due to the abstract nature of SMARTDECOMPOSITION, we cannot assume that they are
safe, since this depends on the schemas selected for converting a rule into a hypergraph, and a
tree decomposition into a set of rules. Hence, the TORULES function must properly take this
into account, as briefly noted in Section 3. In particular, our implementation, given a rule r and
an associated tree decomposition T D, after a rule r′ corresponding to a node in T D has been
generated, checks its safety. If r′ is unsafe, and UV is the set of unsafe variables in r′, an atom a

14 F. Calimeri, S. Perri and J. Zangari

over a fresh predicate p, that contains the variables in UV as terms, is added to B(r′) and a new
rule r′′ is generated, having a as head; a set of literals L binding the variables in UV is extracted
from B(r) and added to B(r′′). Interestingly, the choice of the literals to be inserted in L is in
general not unique, as different combinations of literals might bind the same set of variables;
for instance, one might even directly add L to B(r′) without generating r′′; however, this might
introduce further variables in B(r′), and alter the original join operations in it. For this reason, in
our implementation we decided to still add r′′, and while choosing a possible binding, for each
variable V ∈UV we try to keep the number of literals taken from B(r) small, also preferring to
pick positive literals with small ground extensions.

More in detail, given a variable V ∈UV , we look for a “standard” positive literal l that binds
V and features as terms only variables, constants or functional terms: the rationale behind such
choice is that no additional literals will be needed to guarantee the safety of l itself. If more than
one such literals exists, we select the one with the smallest extension size; if no one is available,
we pick up the first suitable literal according to the following predefined priority order: classical
literals featuring other kind of terms (such as arithmetic terms), built-in atoms and aggregate
literals, respectively. Intuitively, for such literals, additional ones from B(r) may in turn be needed
to ensure their safety. Interestingly, the choice of saviour literals is more careful than what it
would be obtained by using lpopt as a black box, as in this case the choice could not rely on
information that are available only from within the instantiation process.

The current implementation of function GENERATETREEDECOMPOSITIONS, which, given a
hypergraph HG, is in charge of returning a set of tree decompositions T DS, relies on the open-
source C++ library htd (Abseher et al. 2017)4, an efficient and flexible library for computing
customized tree and hypertree decompositions; in our implementation, we used the most recent
version available at the time of writing. The library features several methods for computing tree
decompositions according to different heuristics described in literature; we took advantage from
this, and our implementation allows the user to deviate from the default method via a command-
line option. Interestingly, the htd library features also a fitness mechanism for “ranking” de-
compositions according to a user-provided fitness function. In our setting, we made use of such
mechanism in order to associate a cost estimation relying on Formula (1) (see Section 4.1) to
a computed decomposition; hence, in the decomposition selection phase, I -DLV generates a
number of tree decompositions and selects the best one as the one the lowest instantiation cost,
according to our criteria. This constitutes another important difference w.r.t. the approach of
lpopt, that instead, makes use of the same generation tool in order to obtain just one decomposi-
tion per each rule with no evaluation at all. Obviously, handling the fitness mechanism can imply
some overhead w.r.t. the choice of computing only one, unevaluated, decomposition. For this
reason, in our approach decompositions are requested and evaluated one at a time and, in order
to limit the impact of such phase on performance, I -DLV by default stops the generation of
additional tree decompositions after 3 consecutive generations that do not show improvements in
the fitness values, and never looks for more than a total of 5 generations. These limits have been
set by experimentally observing that the consecutive decompositions generated by htd present
no performance improvements with higher values; however, they can be customized by means of
command-line options. The selected decomposition is then compared against the original rule in
order to check whether it is convenient to actually decompose or not, as described in Section 4.1.

4 https://github.com/mabseher/htd

https://github.com/mabseher/htd

Optimizing Answer Set Computation via Heuristic-Based Decomposition 15

An additional expedient to limit overheads consists in disabling the fitness mechanism in case
of rules featuring very long bodies; indeed, computing multiple decompositions may be particu-
larly costly for such rules (see Section 5). Therefore, we set a limit to body length so that, when
it is exceeded, the fitness mechanism is automatically disabled and just one decomposition is
generated and checked against the original rule. Again, we set a default value experimentally; by
default, the limit is set to 10 literals per body, but it can be changed by means of a command-line
option. In this respect, a possible improvement of our technique, which will be subject of future
work, consists in properly generating a unique, presumably “good” enough, decomposition, thus
preventing the expensive production of multiple ones.

5 Experimental Evaluation

We carried out a thorough experimental activity aimed at assessing the impact of SMARTDE-
COMPOSITION on the grounding performance of I -DLV , analyzing the effectiveness of the pro-
posed heuristics, and also at having a first glance on the effect of the produced instantiation
over state-of-the-art ASP solvers. For the sake of readability, we discuss next only a significant
subset of the experiments that have been carried out; additional experiments are illustrated in
appendices.

5.1 Benchmarks and Results

All the experiments reported in this section and in the following have been performed on a
NUMA machine equipped with two 2.8 GHz AMD Opteron 6320 and 128 GiB of main memory,
running Linux Ubuntu 14.04.4 (kernel ver. 3.19.0-25). Binaries have been generated by
the GNU C++ compiler 5.4.0. We allotted 15 GiB and 600 seconds to each system per each single
run, as memory and time limits. Three versions of I -DLV have been compared: (i) I -DLV
without any decomposition, (ii) lpopt (version 2.2) combined in pipeline with I -DLV (i.e., a
black-box usage of lpopt), (iii) I -DLVSD, i.e. I -DLV empowered with the herein introduced
version of SMARTDECOMPOSITION.

As for benchmarks, we first considered the whole 6th ASP Competition suite (Gebser et al.
2015), the latest available at the time of writing; for each problem, the average time over the
20 selected instances of the official Competition runs is reported; in order to produce replicable
results, the random seed used by lpopt for heuristics has been set to 0 for system (ii).

Results are reported in Table 1, showing number of grounded instances within the allotted time
along with the average time spent. The symbol US in the table indicates that a configuration does
not support the syntax of the encoding for corresponding domain; in particular, this happens in
case of domains featuring queries, as system (ii) is not able to process them because of the lack
of support for queries from lpopt.

Results of the “blind usage” of lpopt (system (ii)) are conflicting: for instance, in some cases
it enjoys a great gain w.r.t. the version of I -DLV without decomposition, in particular while
dealing with the Permutation Pattern Matching problem, yet showing great losses in other cases,
such as Knight Tour With Holes, where instantiating rules resulting from the decomposition re-
quires more time w.r.t. the input ones. On the other hand, from Table 1 it is easy to see that
the SMARTDECOMPOSITION algorithm allows I -DLVSD to always match or overcome I -DLV
performances, still enjoying relevant improvements when decomposition is actually convenient
(up to 96.7% in case of Permutation Pattern Matching), and avoiding negative effects of the

16 F. Calimeri, S. Perri and J. Zangari

Table 1: 6th Competition (20 instances per problem) – Grounding Benchmarks: number of grounded in-
stances and average running times (in seconds). US indicates that corresponding configurations do not sup-
port the adopted syntax.

Problem
I -DLV lpopt | I -DLV I -DLVSD I -DLVSD gap

#grnd time #grnd time #grnd time absolute %

Abstract Dialectical Frameworks 20 0,12 20 0,12 20 0,12 0,00 0%
Combined Configuration 20 13,58 20 13,39 20 13,15 0,24 2%
Complex Optimization 20 57,56 20 60,72 20 57,24 0,32 1%
Connected Still Life 20 0,10 20 0,10 20 0,10 0,00 0%
Consistent Query Answering 20 76,44 0 US 20 77,00 -0,57 -1%
Crossing Minimization 20 0,10 20 0,10 20 0,10 0,00 0%
Graceful Graphs 20 0,30 20 0,31 20 0,30 0,00 0%
Graph Coloring 20 0,10 20 0,10 20 0,10 0,00 0%
Incremental Scheduling 20 16,07 20 15,74 20 16,21 -0,47 -3%
Knight Tour With Holes 20 1,83 20 5,98 20 1,84 -0,01 -1%
Labyrinth 20 1,97 20 1,83 20 2,02 -0,18 -10%
Maximal Clique 20 4,93 20 21,60 20 4,96 -0,03 -1%
MaxSAT 20 3,85 20 8,87 20 3,86 -0,01 0%
Minimal Diagnosis 20 5,09 20 4,30 20 4,22 0,07 2%
Nomistery 20 3,45 20 1,94 20 3,63 -1,68 -87%
Partner Units 20 0,46 20 0,47 20 0,47 0,00 0%
Permutation Pattern Matching 20 130,47 20 4,35 20 4,21 0,14 3%
Qualitative Spatial Reasoning 20 5,44 20 5,50 20 5,44 0,00 0%
Reachability 20 126,54 0 US 20 126,14 0,40 0%
Ricochet Robots 20 0,36 20 0,39 20 0,39 -0,03 -9%
Sokoban 20 1,21 20 1,23 20 1,22 -0,01 -1%
Stable Marriage 20 118,55 20 125,78 20 119,53 -0,99 -1%
Steiner Tree 20 29,00 20 28,92 20 29,11 -0,19 -1%
Strategic Companies 20 0,19 0 US 20 0,20 0,00 -1%
System Synthesis 20 1,09 20 1,15 20 1,08 0,01 1%
Valves Location Problem 20 2,52 20 2,53 20 2,54 -0,02 -1%
Video Streaming 20 0,10 20 0,10 20 0,10 0,00 0%
Visit-all 20 1,18 20 0,44 20 0,48 -0,04 -9%
Total Grounded Instances 560/560 500/560 560/560

black-box decomposition mechanism, as in the case of Knight Tour With Holes. In addition, we
note also that the I -DLVSD is able to limit the overhead w.r.t. I -DLV: indeed, it is negligible
even in cases where decomposition does not pay; the same does not hold for the system (ii)
which suffers from the useless additional invocation of lpopt in all cases when the input program
cannot be decomposed (see, e.g., Maximal Clique).

As a remark, what we expected here is that, while dealing with such benchmarks whose en-
codings coming from the ASP competition are already highly optimized, I -DLVSD performed
similarly to I -DLV (with no decompositions) in all cases where decomposition is not conve-
nient, and similarly to system (ii) otherwise. In order to assess this, we computed absolute and
relative differences in term of times between I -DLVSD and the best performing among the other
two configurations, for each benchmark; data are reported in the two rightmost columns of Ta-
ble 1. As it can be observed, apart from negligible fluctuations and with the only relevant excep-

Optimizing Answer Set Computation via Heuristic-Based Decomposition 17

Figure 4: 6th Competition Grounding Benchmarks (excluding domains featuring queries):
grounded instances over time (in seconds).

Table 2: 2QBF Grounding Benchmarks: number of total grounded instances.

I -DLV lpopt | I -DLV I -DLVSD

8 82 96

tion consisting of Nomystery, our expectations have been met: absolute differences are close to
zero, meaning that I -DLVSD behaviour is systematically comparable with the best one among
the other two. The special case of Nomystery is discussed later in this section.

An additional view of the general picture coming from this set of benchmarks is given by
the plot in Figure 4, built over the same data of Table 1 except for the three domains featur-
ing queries, that, as already mentioned, are unsupported by system (ii). The plot allows us to
appreciate the advantage granted by the decomposition rewriting, as both systems (ii) and (iii)
clearly outperform system (i), and to note that the performance reached thanks to the SMART-
DECOMPOSITION algorithm are consistently better than what achieved via the unconditional use
of decomposition.

Furthermore, we considered an additional set of benchmarks that have been already used
in (Bichler et al. 2016b) in order to test the efficiency of ASP-solvers paired with lpopt over chal-
lenging programs. In particular, in (Bichler et al. 2016b), some publicly available QBF instances
have been ported to ASP, according to a conversion strategy that produces programs featuring
a complex structure and very long rules. This test-suite includes 200 ASP programs, each one
corresponding to a different 2-QBF instance. The results are depicted in Figure 5: the number of
grounded instances is on the x-axis while running times (in seconds) are on the y-axis; the total
number of successfully grounded instances per each tested configuration is reported in Table 2.
First of all, we note that while dealing with these problems applying a decomposition on decom-
posable rules is always a good choice; indeed, when no decomposition is performed the number
of grounded instances is significantly smaller and running times are higher w.r.t. configurations

18 F. Calimeri, S. Perri and J. Zangari

Figure 5: 2QBF Grounding Benchmarks: grounded instances over time (in seconds).

adopting decomposition techniques. Moreover, the heuristics guiding SMARTDECOMPOSITION

in I -DLV work properly, estimating the decompositions as convenient, and I -DLVSD automat-
ically disables, internally, the fitness mechanism because the body size of rules is higher than the
fixed limit, thus reducing the risk of high overheads (cf. Section 4.4). In general, lpopt |I -DLV
and I -DLVSD enjoy similar performance, and I -DLVSD behaves as the best performing version.
Although both versions decompose the same rules, I -DLVSD benefits from a tight integration of
the decomposition mechanism into the evaluation process that allows to better interact with the
other optimization strategies of I -DLV and possibly lead to different choices in decompositions.
Finally, on the technical side, we note that, lpopt and I -DLVSD rely on different versions of the
htd library versions.

In summary, results of experiments clearly show the effectiveness of the herein proposed ap-
proach. Some further considerations can be done about implementation and integration into a
system like I -DLV . Besides merely technical aspects, it is worth remembering that, as already
mentioned, I -DLV is packed with a large number of optimizations; this means that a rewriting-
based technique such as the SMARTDECOMPOSITION algorithm might have non-trivial interac-
tions with them. Our experiments show that, in general, these interactions lead to performance
gains, as it is clear while looking, for instance, at the QBF problem; nevertheless, a few isolated
cases go towards different outcomes. In particular, looking at Table 1, we find that Nomystery
and, even if to a smaller extent, Labyrinth, apparently benefit more from the black-box usage
than from the heuristic-guided one. However, this is not the case: we investigated, and found that
the reason is not related to the choices made according to the heuristics, but rather to the men-
tioned interaction with other internal rewritings performed by I -DLV before the decomposition
stage (for more details, we refer the reader to (Calimeri et al. 2017b)); a more detailed study of
such interaction will be subject of future works.

5.2 On the Effectiveness of the Heuristics

In order to better understand the actual effects on grounding performance of the SMARTDECOM-
POSITION algorithm as guided by the proposed heuristics, we computed some relevant statistics

Optimizing Answer Set Computation via Heuristic-Based Decomposition 19

Table 3: Detailed comparison of I -DLVSD against I -DLV .

I -DLV I -DLVSD I -DLVSD gain

All problems

#solved instances 1688 1787 6%
Average time 22,26 15,39 31%

timeouts 113 19 83%
memouts 5 0 100%

Affected problems

solved instances 392 491 25%
Average time 40,10 10,28 74%

timeouts 103 9 91%
memouts 5 0 100%

starting from the data obtained from experiments over all domains considered in our experimental
activities, thus including, besides those described in Section 5.1, those described in Appendices;
we aggregate them over specific set of instances, as described next, and report the results in a
table comparing the behaviours of I -DLV and I -DLVSD. In particular, Table 3 shows two sets
of data: the first refers to the whole collection of problem domains, while the second to the subset
of “affected domains”, i.e., problems where significant differences on performance are reported,
either positive or negative5. The first two columns report performance of the two system config-
urations, respectively, while the third reports the percentage gain achieved by I -DLVSD thanks
to the SMARTDECOMPOSITION algorithm.

It is easy to see that the positive impact of the technique on grounding performance, on the
overall (i.e., over all problems), is significant: a hundred of additional grounded instances (+6%),
more than 80% of timeouts avoided, and no more instances remain unsolved because of the
excessive amount of required memory. The impact is even more evident if we consider that
average times are computed only over the set of instances that are solved by both I -DLVSD and
I -DLV; still, the performance gain turns out to be over 30%.

When we focus on the set of affected problems, the benefits of the proposed techniques are
even more evident; we just note here as the gain in average grounding times, still computed only
over the set of instances that are grounded by both systems, is almost 75%.

5.3 Impact of I -DLVSD on ASP Solvers

We proved above how a smart decomposition strategy significantly improves performance of a
grounder like I -DLV; interestingly, such improvements on the instantiation process are relevant
from many perspectives. First of all, as already mentioned in the introduction, a grounder like I -
DLV is actually a full-fledged deductive database system, that can profitably employed in many
real-world domains for non-trivially querying knowledge bases of various nature, ranging from
traditional relational to ontology-based ones. In these contexts, typically, programs to be evalu-
ated turn out to be normal and stratified, and thus, completely solvable by a proper grounder. In
all such cases, given that solving phase is not needed, each improvement on the grounding side

5 A problem domain is here considered as “affected” if either the number of instances grounded by the two systems
differ, or, in case the number is the same, difference in average grounding times between the two systems is either
above +10% or below −10%.

20 F. Calimeri, S. Perri and J. Zangari

Figure 6: 6th Competition Solving Benchmarks: solved instances over time (in seconds).

trivially implies improvements on the whole ASP computation. In addition, the proposed tech-
nique can be of great help in all those cases where, given the nature of standard ASP evaluation
strategy, the ground program can be so huge that it constitutes a bottleneck. The SMARTDE-
COMPOSITION algorithm can be useful for mitigating this issue, allowing to actually instantiate
programs that cannot be grounded without: let us think, for instance, of the 2-QBF domain dis-
cussed in Section 5.1. Furthermore, even if the proposed technique aims at improving grounding,
it has a positive impact also on solving times, thus allowing to improve performance of the whole
computational process. To evaluate such impact we performed an additional experimental anal-
ysis; in particular, we combined the same three versions of I -DLV used in Section 5.1 with
the two mainstream ASP solvers clasp (Gebser et al. 2015) (version 5.2.1) and wasp (Alviano
et al. 2015) (version 2.1), and tested the 6 resulting configurations over the 6th ASP Competition
benchmarks.

Average times and number of solved instances within the allotted time are reported in Table 4,
where time outs and cases of unsupported syntax are denoted by TO and US, respectively. First
of all, we observe that both solvers, when coupled with I -DLVSD, show, in general, improved
performance and solve a larger number of instances, w.r.t. the configurations with I -DLV; on the
contrary, the “blind usage” of lpopt leads, in general, to a loss of performance for both solvers:
in spite of the gain in some cases, the total number of solved instances within the suite is sig-
nificantly lower. A different perspective of the results is provided by Figure 6, showing solved
instances over time (in seconds), where the benefits of the proposed techniques are very clear for
both tested solvers.

Improvements on the overall ASP computation observable when I -DLVSD is used are not
only caused by improvements on grounding times; indeed, there are also cases in which solving
times get better even if there is no evident gain in grounding times. This is due to the fact that
the rewriting causes changes in the “form” and the size of the generated instantiation, thus often
inducing positive effects on the solving side. Furthermore, it can be observed that on a same
domain the effects of the decomposition on the two solvers are different: in some cases, benefits
enjoyed by a solver are not reported for the other one (see, for instance, Incremental Scheduling).
This suggests that the heuristics guiding the smart decomposition herein proposed, that already

Optimizing Answer Set Computation via Heuristic-Based Decomposition 21

Ta
bl

e
4:

6t
h

C
om

pe
tit

io
n

(2
0

in
st

an
ce

s
pe

r
pr

ob
le

m
)

–
So

lv
in

g
B

en
ch

m
ar

ks
:

nu
m

be
r

of
so

lv
ed

in
st

an
ce

s
an

d
av

er
ag

e
ru

nn
in

g
tim

es
(i

n
se

co
nd

s)
.

Ti
m

e
ou

t
an

d
un

su
pp

or
te

d
sy

nt
ax

is
su

es
ar

e
de

no
te

d
by

T
O

an
d
U
S

,r
es

pe
ct

iv
el

y.

Pr
ob

le
m

I
-D

LV
|c

la
sp

lp
op

t|
I

-D
LV
|c

la
sp

I
-D

LV
SD
|c

la
sp

I
-D

LV
|w

as
p

lp
op

t|
I

-D
LV
|w

as
p

I
-D

LV
SD
|w

as
p

#s
ol

ve
d

tim
e

#s
ol

ve
d

tim
e

#s
ol

ve
d

tim
e

#s
ol

ve
d

tim
e

#s
ol

ve
d

tim
e

#s
ol

ve
d

tim
e

A
bs

tr
ac

tD
ia

le
ct

ic
al

Fr
am

ew
or

ks
20

6.
88

20
7.

36
20

6.
89

11
33

.2
6

11
22

.3
8

11
32

.2
1

C
om

bi
ne

d
C

on
fig

ur
at

io
n

8
14

8.
64

9
17

6.
67

10
18

2.
41

1
31

1.
89

0
TO

0
TO

C
om

pl
ex

O
pt

im
iz

at
io

n
18

14
9.

84
19

16
7.

58
18

14
9.

44
6

15
0.

30
5

99
.0

5
6

14
8.

00
C

on
ne

ct
ed

St
ill

L
if

e
6

22
0.

70
6

24
3.

05
6

22
2.

12
12

55
.0

2
12

78
.0

3
12

55
.4

7
C

on
si

st
en

tQ
ue

ry
A

ns
w

er
in

g
20

87
.0

5
0

U
S

20
87

.3
9

18
87

.4
7

0
U

S
18

88
.0

5
C

ro
ss

in
g

M
in

im
iz

at
io

n
7

53
.0

2
6

64
.2

3
7

56
.7

9
19

3.
50

19
2.

40
19

5.
58

G
ra

ce
fu

lG
ra

ph
s

9
14

1.
77

10
13

0.
97

9
14

0.
44

6
17

4.
17

4
12

2.
14

6
17

1.
42

G
ra

ph
C

ol
or

in
g

15
16

2.
25

15
17

1.
39

15
16

0.
44

8
13

3.
71

7
21

7.
23

8
13

3.
34

In
cr

em
en

ta
lS

ch
ed

ul
in

g
13

90
.6

2
11

39
.1

6
14

12
8.

81
8

15
5.

20
5

13
7.

74
6

12
4.

89
K

ni
gh

tT
ou

rW
ith

H
ol

es
11

55
.7

6
10

26
.9

0
11

56
.0

4
10

35
.5

0
8

63
.9

7
10

35
.6

7
L

ab
yr

in
th

12
63

.1
9

11
12

0.
09

12
67

.2
5

11
10

4.
73

10
16

8.
65

11
10

6.
71

M
ax

im
al

C
liq

ue
0

TO
0

TO
0

TO
9

35
3.

03
9

35
3.

63
9

35
2.

56
M

ax
SA

T
7

39
.6

7
7

46
.8

1
7

39
.7

7
19

91
.0

1
19

95
.8

2
19

91
.4

9
M

in
im

al
D

ia
gn

os
is

20
8.

90
20

8.
46

20
8.

32
20

30
.7

7
20

29
.3

8
20

25
.9

5
N

om
ys

te
ry

8
13

8.
64

9
10

3.
16

7
20

3.
32

8
37

.3
2

9
33

.3
4

7
16

7.
59

Pa
rt

ne
rU

ni
ts

14
19

.8
1

14
20

.2
9

14
20

.2
6

5
11

6.
99

10
16

8.
07

10
16

8.
24

Pe
rm

ut
at

io
n

Pa
tte

rn
M

at
ch

in
g

11
16

4.
63

17
15

2.
47

20
15

.6
2

20
18

2.
53

10
27

9.
70

20
23

.3
6

Q
ua

lit
at

iv
e

Sp
at

ia
lR

ea
so

ni
ng

20
12

5.
13

20
12

5.
75

20
12

4.
97

13
14

5.
50

13
14

5.
23

13
14

5.
67

R
ea

ch
ab

ili
ty

20
13

7.
55

0
U

S
20

13
7.

53
6

13
8.

40
0

U
S

6
13

9.
17

R
ic

oc
he

tR
ob

ot
s

9
67

.8
4

12
10

9.
32

12
18

8.
07

7
20

6.
86

8
87

.9
5

9
13

4.
22

So
ko

ba
n

8
73

.9
5

9
82

.4
5

8
76

.9
0

8
86

.0
0

9
64

.5
9

8
88

.2
5

St
ab

le
M

ar
ri

ag
e

5
38

9.
26

7
34

1.
43

5
38

7.
85

7
41

0.
46

7
42

7.
66

7
43

1.
15

St
ei

ne
rT

re
e

3
24

3.
89

3
24

4.
89

3
24

2.
45

1
13

1.
66

1
13

1.
75

1
13

1.
80

St
ra

te
gi

c
C

om
pa

ni
es

17
11

9.
63

0
U

S
17

12
2.

24
7

31
.3

8
0

U
S

7
30

.9
5

Sy
st

em
Sy

nt
he

si
s

0
TO

0
TO

0
TO

0
TO

0
TO

0
TO

V
al

ve
s

L
oc

at
io

n
Pr

ob
le

m
16

43
.0

9
16

26
.0

9
16

43
.0

5
15

40
.9

3
15

39
.2

7
15

41
.3

2
V

id
eo

St
re

am
in

g
13

61
.8

4
10

75
.7

0
13

61
.6

3
9

9.
15

0
TO

9
9.

03
V

is
it-

al
l

8
16

.9
0

8
15

.2
2

8
15

.2
1

8
62

.1
1

8
61

.2
8

8
60

.0
6

To
ta

lS
ol

ve
d

In
st

an
ce

s
31

8/
56

0
26

9/
56

0
33

2/
56

0
27

2/
56

0
21

9/
56

0
27

5/
56

0

22 F. Calimeri, S. Perri and J. Zangari

shows a general positive impact on both mainstream solvers, could be further fine-tuned once
a specific solver to be coupled to I -DLVSD is chosen, by taking into account also its specific
characteristics.

6 Conclusion

We introduced SMARTDECOMPOSITION, a novel technique for automatically optimizing ASP
programs by means of decomposition-guided rewritings. The algorithm is designed to be adapted
to different ASP implementations; furthermore, it can be customized with heuristics of choice for
discerning among possible decompositions for each input rule, and determining whether applying
the selected decomposition appears to be actually a “smart” choice.

In addition, we embedded a version of SMARTDECOMPOSITION in the ASP system DLV ,
and in particular in its grounding module I -DLV . We introduced heuristics criteria for selecting
decompositions that consider not only the non-ground structure of the program at hand, but
also the instance it is coupled to. We experimentally tested our approach, and results are very
promising: the proposed technique improves grounding performance, and highlights a positive
impact, in general, also on the solving side. This is confirmed also by the results of the 7th ASP
Competition (Gebser et al. 2017): here the winner was a system combining the version of I -
DLV implementing the preliminary decomposition rewriting described in (Calimeri et al. 2017a)
with an automatic solver selector (Fuscà et al. 2017), that inductively chooses the best solver
depending on some inherent features of the instantiation produced.

The I -DLV system incorporating the technique herein described can be downloaded from
https://github.com/DeMaCS-UNICAL/I-DLV/wiki, where a user guide is also reported ad-
dressing, among others, the options related to the techniques described in the present work.

As future work, we plan to investigate on further strategies for generating decompositions,
starting from a more fine-grained analysis along existing ones. For instance, we note that current
decompositions tend to split up a rule as much as possible, and in some cases this might re-
quire fresh predicates featuring significantly large extensions that could have a noticeable impact
on performance; hence, given a set of bags composing a tree decomposition, one could check
whether collapsing some bags produces some benefits with this respect. In addition, we also plan
to take advantage from automatic and more advanced methods, such as machine learning mech-
anisms, in order to better tailor decomposition criteria and threshold values to the scenario at
hand. Furthermore, we want to design a version of SMARTDECOMPOSITION specifically geared
towards solvers, with the aim of further automatically optimizing the whole ASP computational
process. A starting point to this direction can be the recent work of (Bliem et al. 2017), where
it emerged that the performance of modern solvers are highly influenced by the tree-width of the
input program; thus, this represents a starting point to explore the potential of our technique on
the solving step.

Acknowledgements

This work has been partially supported by the Italian region Calabria under project “DLV Large
Scale” (CUP J28C17000220006) POR Calabria FESR 2014–2020 and by both the European
Union and the Italian Ministry of Economic Development under the project EU H2020 PON I&C
2014–2020 “Smarter Solutions in the Big Data World – S2BDW” (CUP B28I17000250008).

https://github.com/DeMaCS-UNICAL/I-DLV/wiki

Optimizing Answer Set Computation via Heuristic-Based Decomposition 23

References

ABSEHER, M., MUSLIU, N., AND WOLTRAN, S. 2017. htd - A free, open-source framework for (cus-
tomized) tree decompositions and beyond. In Integration of AI and OR Techniques in Constraint Pro-
gramming - 14th International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings,
D. Salvagnin and M. Lombardi, Eds. Lecture Notes in Computer Science, vol. 10335. Springer, 376–
386.

ALVIANO, M., CALIMERI, F., DODARO, C., FUSCÀ, D., LEONE, N., PERRI, S., RICCA, F., VELTRI, P.,
AND ZANGARI, J. 2017. The ASP system DLV2. In Logic Programming and Nonmonotonic Reasoning
- 14th International Conference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, M. Balduc-
cini and T. Janhunen, Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 215–221.

ALVIANO, M., DODARO, C., LEONE, N., AND RICCA, F. 2015. Advances in WASP. In Logic Program-
ming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA,
September 27-30, 2015. Proceedings, F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in
Computer Science, vol. 9345. Springer, 40–54.

ALVIANO, M., FABER, W., GRECO, G., AND LEONE, N. 2012. Magic sets for disjunctive datalog pro-
grams. Artificial Intelligence 187, 156–192.

BEN-ELIYAHU, R. AND DECHTER, R. 1994. Propositional semantics for disjunctive logic programs. Ann.
Math. Artif. Intell. 12, 1-2, 53–87.

BEN-ELIYAHU-ZOHARY, R. AND PALOPOLI, L. 1997. Reasoning with minimal models: Efficient algo-
rithms and applications. Artif. Intell. 96, 2, 421–449.

BICHLER, M., MORAK, M., AND WOLTRAN, S. 2016a. lpopt: A rule optimization tool for answer set
programming. In Logic-Based Program Synthesis and Transformation - 26th International Symposium,
LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Revised Selected Papers, M. V. Hermenegildo and
P. López-Garcı́a, Eds. Lecture Notes in Computer Science, vol. 10184. Springer, 114–130.

BICHLER, M., MORAK, M., AND WOLTRAN, S. 2016b. The power of non-ground rules in answer set
programming. Theory and Practice of Logic Programming 16, 5-6, 552–569.

BLIEM, B., MOLDOVAN, M., MORAK, M., AND WOLTRAN, S. 2017. The impact of treewidth on ASP
grounding and solving. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, C. Sierra, Ed. ijcai.org, 852–858.

BREWKA, G., EITER, T., AND TRUSZCZYNSKI, M. 2011. Answer set programming at a glance. Commu-
nications of the ACM 54, 12, 92–103.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE, N.,
RICCA, F., AND SCHAUB, T. 2013. ASP-Core-2: 4th ASP Competition Official Input Language Format.
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf.

CALIMERI, F., FUSCÀ, D., PERRI, S., AND ZANGARI, J. 2017a. The ASP instantiator I-DLV:. In PAoASP.
Espoo, Finland.

CALIMERI, F., FUSCÀ, D., PERRI, S., AND ZANGARI, J. 2017b. I-DLV: the new intelligent grounder of
DLV. Intelligenza Artificiale 11, 1, 5–20.

CALIMERI, F., GEBSER, M., MARATEA, M., AND RICCA, F. 2016. Design and results of the fifth answer
set programming competition. Artificial Intelligence 231, 151–181.

CALIMERI, F., PERRI, S., AND RICCA, F. 2008. Experimenting with parallelism for the instantiation of
ASP programs. J. Algorithms 63, 1-3, 34–54.

DANTSIN, E., EITER, T., GOTTLOB, G., AND VORONKOV, A. 2001. Complexity and expressive power of
logic programming. ACM Computing Surveys 33, 3, 374–425.

DAO-TRAN, M., EITER, T., FINK, M., WEIDINGER, G., AND WEINZIERL, A. 2012. Omiga : An open
minded grounding on-the-fly answer set solver. In Logics in Artificial Intelligence - 13th European Con-
ference, JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings, L. F. del Cerro, A. Herzig,
and J. Mengin, Eds. Lecture Notes in Computer Science, vol. 7519. Springer, 480–483.

EITER, T., GOTTLOB, G., AND MANNILA, H. 1997. Disjunctive datalog. ACM Transactions on Database
Systems 22, 3, 364–418.

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

24 F. Calimeri, S. Perri and J. Zangari

EITER, T., KAMINSKI, T., AND WEINZIERL, A. 2017. Lazy-grounding for answer set programs with
external source access. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, C. Sierra, Ed. ijcai.org, 1015–1022.

FABER, W., LEONE, N., AND PERRI, S. 2012. The intelligent grounder of DLV. In Correct Reasoning -
Essays on Logic-Based AI in Honour of Vladimir Lifschitz. 247–264.

FUSCÀ, D., CALIMERI, F., ZANGARI, J., AND PERRI, S. 2017. I-DLV+MS: preliminary report on an au-
tomatic ASP solver selector. In Proceedings of the 24th RCRA International Workshop on Experimental
Evaluation of Algorithms for Solving Problems with Combinatorial Explosion 2017 co-located with the
16th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017), Bari,
Italy, November 14-15, 2017., M. Maratea and I. Serina, Eds. CEUR Workshop Proceedings, vol. 2011.
CEUR-WS.org, 26–32.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., ROMERO, J., AND SCHAUB, T. 2015. Progress in clasp
series 3. In Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR
2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, F. Calimeri, G. Ianni, and M. Truszczyn-
ski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 368–383.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + control: Prelim-
inary report. CoRR abs/1405.3694.

GEBSER, M., KAMINSKI, R., KÖNIG, A., AND SCHAUB, T. 2011. Advances in gringo series 3. In Logic
Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver,
Canada, May 16-19, 2011. Proceedings, J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer
Science, vol. 6645. Springer, 345–351.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence 187, 52–89.

GEBSER, M., MARATEA, M., AND RICCA, F. 2015. The design of the sixth answer set programming
competition - - report -. In Logic Programming and Nonmonotonic Reasoning - 13th International Con-
ference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, F. Calimeri, G. Ianni,
and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 531–544.

GEBSER, M., MARATEA, M., AND RICCA, F. 2016. What’s hot in the answer set programming competi-
tion. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA., D. Schuurmans and M. P. Wellman, Eds. AAAI Press, 4327–4329.

GEBSER, M., MARATEA, M., AND RICCA, F. 2017. The design of the seventh answer set programming
competition. In Logic Programming and Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, M. Balduccini and T. Janhunen, Eds. Lecture
Notes in Computer Science, vol. 10377. Springer, 3–9.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 3/4, 365–386.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning 36, 4, 345–377.

GOTTLOB, G., GRECO, G., LEONE, N., AND SCARCELLO, F. 2016. Hypertree decompositions: Questions
and answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, T. Milo and W. Tan,
Eds. ACM, 57–74.

GOTTLOB, G., GROHE, M., MUSLIU, N., SAMER, M., AND SCARCELLO, F. 2005. Hypertree decompo-
sitions: Structure, algorithms, and applications. In Graph-Theoretic Concepts in Computer Science, 31st
International Workshop, WG 2005, Metz, France, June 23-25, 2005, Revised Selected Papers, D. Kratsch,
Ed. Lecture Notes in Computer Science, vol. 3787. Springer, 1–15.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2001. Hypertree decompositions: A survey. In Mathe-
matical Foundations of Computer Science 2001, 26th International Symposium, MFCS 2001 Marianske
Lazne, Czech Republic, August 27-31, 2001, Proceedings, J. Sgall, A. Pultr, and P. Kolman, Eds. Lecture
Notes in Computer Science, vol. 2136. Springer, 37–57.

JANHUNEN, T., NIEMELÄ, I., SEIPEL, D., SIMONS, P., AND YOU, J. 2006. Unfolding partiality and
disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1, 1–37.

Optimizing Answer Set Computation via Heuristic-Based Decomposition 25

KAUFMANN, B., LEONE, N., PERRI, S., AND SCHAUB, T. 2016. Grounding and solving in answer set
programming. AI Magazine 37, 3, 25–32.

LEFÈVRE, C., BÉATRIX, C., STÉPHAN, I., AND GARCIA, L. 2017. Asperix, a first-order forward chaining
approach for answer set computing. Theory and Practice of Logic Programming 17, 3, 266–310.

LEONE, N., PERRI, S., AND SCARCELLO, F. 2001. Improving ASP instantiators by join-ordering meth-
ods. In Logic Programming and Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001,
Vienna, Austria, September 17-19, 2001, Proceedings, T. Eiter, W. Faber, and M. Truszczynski, Eds.
Lecture Notes in Computer Science, vol. 2173. Springer, 280–294.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.
The DLV system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7, 3, 499–562.

LIFSCHITZ, V. 1999. Answer set planning. In Logic Programming: The 1999 International Conference,
Las Cruces, New Mexico, USA, November 29 - December 4, 1999, D. D. Schreye, Ed. MIT Press, 23–37.

MORAK, M. AND WOLTRAN, S. 2012. Preprocessing of complex non-ground rules in answer set pro-
gramming. In Technical Communications of the 28th International Conference on Logic Programming,
ICLP 2012, September 4-8, 2012, Budapest, Hungary, A. Dovier and V. S. Costa, Eds. LIPIcs, vol. 17.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 247–258.

PALÙ, A. D., DOVIER, A., PONTELLI, E., AND ROSSI, G. 2009. GASP: answer set programming with
lazy grounding. Fundamenta Informaticae 96, 3, 297–322.

PERRI, S., RICCA, F., AND SIRIANNI, M. 2013. Parallel instantiation of ASP programs: techniques and
experiments. TPLP 13, 2, 253–278.

PERRI, S., SCARCELLO, F., CATALANO, G., AND LEONE, N. 2007. Enhancing DLV instantiator by
backjumping techniques. Ann. Math. Artif. Intell. 51, 2-4, 195–228.

ROBERTSON, N. AND SEYMOUR, P. D. 1986. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms 7, 3, 309–322.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model se-
mantics. Artificial Intelligence 138, 1-2, 181–234.

SYRJÄNEN, T. 2001. Omega-restricted logic programs. In Logic Programming and Nonmonotonic Reason-
ing, 6th International Conference, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings,
T. Eiter, W. Faber, and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 2173. Springer,
267–279.

ULLMAN, J. D. 1988. Principles of Database and Knowledge-Base Systems, Volume I. Principles of com-
puter science series, vol. 14. Computer Science Press.

WARD, J. AND SCHLIPF, J. S. 2004. Answer set programming with clause learning. In Logic Programming
and Nonmonotonic Reasoning, 7th International Conference, LPNMR 2004, Fort Lauderdale, FL, USA,
January 6-8, 2004, Proceedings, V. Lifschitz and I. Niemelä, Eds. Lecture Notes in Computer Science,
vol. 2923. Springer, 302–313.

WEINZIERL, A. 2017. Blending lazy-grounding and CDNL search for answer-set solving. In Logic Pro-
gramming and Nonmonotonic Reasoning - 14th International Conference, LPNMR 2017, Espoo, Finland,
July 3-6, 2017, Proceedings, M. Balduccini and T. Janhunen, Eds. Lecture Notes in Computer Science,
vol. 10377. Springer, 191–204.

Appendix A Experiments on Automatic Optimization

In Section 5 we discussed the results of tests over the benchmark suite from the 6th ASP Compe-
tition. It is worth noting that many domains have been included in several subsequent editions of
the ASP Competition series; over the years, the participant teams have iteratively fine-tuned the
encodings with the aim of maximizing performance of competing ASP systems. This led, in the
case of 6th Competition, to a bunch of programs that are already optimized for ASP computation,
thus limiting the room for further improvements.

26 F. Calimeri, S. Perri and J. Zangari

Table A 1: 4th Competition – Grounding Benchmarks: number of grounded instances and average running
times (in seconds). US indicates that corresponding configurations do not support the adopted syntax.

Problem #inst.
I -DLV lpopt | I -DLV I -DLVSD

#grounded time #grounded time #grounded time

Abstract Dialectical Frameworks 30 30 0.13 30 0.13 30 0.13
Bottle Filling Problem 30 30 4.12 30 6.86 30 4.39
Chemical Classification 30 30 87.81 30 403.38 30 88.22
Complex Optimization * 29 29 36.28 29 38.39 29 36.07
Connected Still Life * 10 10 0.12 10 0.13 10 0.15
Crossing Minimization * 30 30 0.10 30 0.10 30 0.10
Graceful Graphs 30 30 0.37 30 0.39 30 0.37
Graph Colouring * 30 30 0.10 30 0.10 30 0.10
Hanoi Tower 30 30 0.22 30 0.23 30 0.30
Incremental Scheduling * 30 12 297.95 17 229.49 21 221.17
Knight Tour with Holes * 30 20 176.99 20 181.16 20 178.59
Labyrinth 30 30 1.49 30 1.40 30 1.51
Maximal Clique * 30 30 0.34 30 1.11 30 0.34
Minimal Diagnosis * 30 30 2.54 30 2.20 30 2.57
Nomystery * 30 30 34.91 21 100.14 30 35.28
Permut. Pattern Matching * 30 28 57.71 30 3.64 30 62.32
Qualitative Spatial Reasoning * 30 30 2.85 30 2.87 30 2.84
Reachability 30 30 101.93 0 US 30 102.04
Ricochet Robots 30 30 0.27 30 0.31 30 0.31
Sokoban 30 30 2.65 30 2.68 30 2.69
Solitaire 27 27 0.13 27 0.18 27 0.20
Stable Marriage * 30 30 28.35 30 2.65 30 2.46
Strategic Companies 30 30 0.19 0 US 30 0.19
Valves Location 30 30 3.97 30 3.98 30 3.93
Visit-all * 30 30 0.13 30 0.14 30 0.13
Weighted-Sequence Problem * 30 30 2.87 30 9.61 30 2.95

Total Grounded Instances 726/756 664/756 737/756

On the one hand, such considerations strengthen the positive results reported in Section 5;
on the other hand, one might wonder about what is the impact of the SMARTDECOMPOSITION

algorithm when dealing with less refined encodings. We find such inquiry of interest, as it should
be in the spirit of the declarative nature of ASP to allow developers to concentrate on knowledge
representation rather than on low-level performance issues, that also lead, in some cases, to the
production of encodings rather involved and less “human readable”. This is why, in addition to
the experiments reported in Section 5, we tested our approach also on benchmarks coming from
older editions of the ASP Competition series. In particular, we considered the 4th Competition, as
it is the farthest in time in which encodings comply to the ASP-Core-2 input language standard.

In this set of experiments we measured grounding times of the same three versions of I -DLV
already taken into account in Section 5, within the same experimental environment (hardware,
software, memory and time limits). Table A 1 shows the results; problem names reported in
italic denotes domains which are in common between the 4th and the 6th Competition, while

Optimizing Answer Set Computation via Heuristic-Based Decomposition 27

Table A 2: Variation of the encodings – Grounding Benchmarks: number of grounded instances and aver-
age running times (in seconds).

Problem #inst. I -DLV I -DLVSD

#grounded time #grounded time #grounded time #grounded time

4th Competition Instances

4th Comp. Enc. 6th Comp. Enc. 4th Comp. Enc. 6th Comp. Enc.

Incr. Scheduling 30 12 297.95 30 54.65 21 221.17 30 1.93
Maximal Clique 30 30 0.34 30 2.96 30 0.34 30 3.11
Minimal Diagnosis 30 30 2.54 30 1.76 30 2.57 30 1.76
Nomystery 30 30 34.91 30 47.24 30 35.28 30 47.11
Perm. Pattern Match. 30 28 57.71 30 0.27 30 62.32 30 0.27
Stable Marriage 30 30 28.35 30 3.16 30 2.46 30 2.86

6th Competition Instances

4th Comp. Enc. 6th Comp. Enc. 4th Comp. Enc. 6th Comp. Enc.

Incr. Scheduling 20 11 336.77 20 16.07 19 211.61 20 16.21
Maximal Clique 20 20 6.63 20 4.93 20 6.58 20 4.96
Minimal Diagnosis 20 20 4.12 20 5.09 20 4.14 20 4.22
Nomystery 20 20 55.11 20 3.45 20 43.74 20 3.63
Perm. Pattern Match. 20 16 168.93 20 130.47 20 150.99 20 4.21
Stable Marriage 20 0 TO 20 118.55 20 172.68 20 119.53

those marked with a ’∗’ symbol feature more optimized encodings in the 6th. As expected, in
this scenario the positive impact of SMARTDECOMPOSITION is even more evident: I -DLVSD

grounds a larger number of instances in a significant smaller average time. Intuitively, the less an
encoding is fine-tuned, the highest are likely to be the benefits stemming from a careful automatic
rewriting of input rules.

Furthermore, for all problems in common between the two ASP competitions herein consid-
ered, we tested the systems over the programs obtained by coupling the encodings featured by
the 4th with the instances featured by the 6th, and vice-versa. This should provide us with further
information about a the impact of both “manual” optimizations and the ones coming from our au-
tomatic method. Intuitively, an encoding may be optimized in different ways, and not necessarily
by means of a syntactic modification of rules; for instance, one can push additional information
about the domain at hand into the encoding, possibly with constraints, in order to reduce the
search space. The results are reported in Table A 2. It is clear that, as one can expect, the best
combination is given by I -DLVSD fed with optimized encoding coming from 6th Competition.
However, some interesting considerations can be made: indeed, in several cases (for instance,
Permutation Pattern Marching, both over instances from the 4th, and, even more, over instances
from the 6th, that appear to be harder), the smart decomposition guarantees similar or better
performance improvements in grounding times that are obtained by the manual tuning.

28 F. Calimeri, S. Perri and J. Zangari

Table B 1: Additional Grounding Benchmarks: number of grounded instances and average running times
(in seconds).

Problem #inst.
I -DLV lpopt | I -DLV I -DLVSD

#grounded time #grounded time #grounded time

Cutedge 130 130 34.38 130 1.64 130 1.08
Graph 5col 180 180 0.12 180 0.14 180 0.12
Ground Explosion 2 17 7 73.33 7 73.02 7 72.87
Reach 50 50 0.29 50 0.76 50 0.30
TimeTabling 27 27 85.57 27 63.67 27 57.67

Total Solved Instances 367/377 367/377 367/377

Appendix B Additional Experiments

We report next the results of an additional experimental evaluation over a further set of bench-
mark. We take into account problem domains that have been already used for assessing perfor-
mance of ASP systems in other works; in particular, we considered the domains Cutedge, Graph
5col, Ground Explosion 2, Reach (Weinzierl 2017) and TimeTabling (Perri et al. 2007; Calimeri
et al. 2008; Perri et al. 2013).

Table B 1 reports grounding times of the same three versions of I -DLV already taken into ac-
count in Section 5, within the same experimental environment (hardware, software, memory and
time limits). We first note that, regarding Reach, even if the problem domain is the same as Reach-
ability of Section 5, both encoding and instances are different, as they are taken from (Weinzierl
2017), and do not feature queries. In this case, where decomposition is not applicable because
of the rule structure, results show that the use of SMARTDECOMPOSITION, as previously noted,
allows us to avoid the overhead due to the invocation of lpopt. On the overall, again, one can
observe the positive impact of SMARTDECOMPOSITION over grounding times, that allows sig-
nificant performance improvements in case of Cutedge and TimeTabling, where I -DLVSD times
are 97% and 33% lower, respectively, w.r.t. I -DLV .

	1 Introduction
	2 Preliminaries
	2.1 Answer Set Programming
	2.2 ASP Computation
	2.3 Tree-Decompositions for Rewriting ASP Rules

	3 A Heuristic-guided Decomposition Algorithm
	4 Integrating the SmartDecomposition Algorithm into a Real System: the DLV Case
	4.1 The Estimate Function
	4.2 The EstimateDecomposition Function
	4.3 The ChooseBestDecomposition and DecompositionIsPreferable Functions
	4.4 Fine-Tuning and Further Implementation Issues

	5 Experimental Evaluation
	5.1 Benchmarks and Results
	5.2 On the Effectiveness of the Heuristics
	5.3 Impact of I-DLVSD on ASP Solvers

	6 Conclusion
	References
	Appendix A Experiments on Automatic Optimization
	Appendix B Additional Experiments

