
ar
X

iv
:1

90
7.

08
42

4v
1

 [
cs

.A
I]

 1
9

Ju
l 2

01
9

Under consideration for publication in Theory and Practice of Logic Programming 1

Enhancing magic sets with an application to

ontological reasoning

MARIO ALVIANO, NICOLA LEONE, PIERFRANCESCO VELTRI, JESSICA ZANGARI

Department of Mathematics and Computer Science, University of Calabria, Italy

(e-mail: {alviano,leone,veltri,zangari}@mat.unical.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Magic sets are a Datalog to Datalog rewriting technique to optimize query answering. The rewritten pro-

gram focuses on a portion of the stable model(s) of the input program which is sufficient to answer the

given query. However, the rewriting may introduce new recursive definitions, which can involve even nega-

tion and aggregations, and may slow down program evaluation. This paper enhances the magic set technique

by preventing the creation of (new) recursive definitions in the rewritten program. It turns out that the new

version of magic sets is closed for Datalog programs with stratified negation and aggregations, which is

very convenient to obtain efficient computation of the stable model of the rewritten program. Moreover, the

rewritten program is further optimized by the elimination of subsumed rules and by the efficient handling

of the cases where binding propagation is lost. The research was stimulated by a challenge on the exploita-

tion of Datalog/DLV for efficient reasoning on large ontologies. All proposed techniques have been hence

implemented in the DLV system, and tested for ontological reasoning, confirming their effectiveness.

Under consideration for publication in Theory and Practice of Logic Programming.

KEYWORDS: Datalog; query answering; magic sets; nonmonotonic reasoning; aggregations.

1 Introduction

Datalog is a rule based language for knowledge representation and reasoning suitable for a nat-

ural declaration of inductive definitions and ontological reasoning (Eiter et al. 2012). Several

extensions to the core language of Datalog exist, among them default negation (Gelder 1989;

Gelder et al. 1991; Gelfond and Lifschitz 1991) and aggregates (Simons et al. 2002; Pelov et al. 2007;

Liu et al. 2010; Bartholomew et al. 2011; Ferraris 2011; Gelfond and Zhang 2014). Restrictions

on the use of these linguistic constructs lead to preserve the existence and uniqueness of the

stable model associated with a knowledge base; specifically, such restrictions essentially enforce

a stratification on the definitions involving negation and aggregates (Faber et al. 2011). The se-

mantics of the resulting language reached a broad consensus in the knowledge representation

and reasoning community, as in fact the notions of perfect model, well-founded model, and sta-

ble model coincide for stratified programs (Przymusinski 1989; Gelder et al. 1991).

The stable model of a Datalog program can be constructed bottom-up, starting from facts in the

program, and deriving new atoms from rules whose bodies become true. Negation and aggregates

are handled by partitioning the input program into different strata, so that the lowest stratum

does not contain negation and aggregates, and each other stratum only negates and aggregates

over predicates of lower strata. Such a bottom-up procedure is very efficient for producing the

http://arxiv.org/abs/1907.08424v1

2 M. Alviano et al.

stable model, but it may be by itself inefficient for query answering. In fact, the stable model may

contain atoms that are not relevant to answer the given query, and therefore constitute a source

of inefficiency for query answering. In contrast, top-down procedures start from the query, and

consider bodies of the rules defining the query predicate as subqueries. Hence, the computation

focuses on a portion of the stable model that is relevant to answer the query.

The magic sets algorithm is a top-down rewriting of the input program that restricts the range

of the object variables so that only the portion of the stable model that is relevant to answer the

query is materialized by a bottom-up evaluation of the rewritten program (Bancilhon et al. 1986;

Beeri and Ramakrishnan 1991; Balbin et al. 1991; Stuckey and Sudarshan 1994; Alviano et al. 2012).

In a nutshell, magic sets introduce rules defining additional atoms, called magic atoms, whose

intent is to identify relevant atoms to answer the input query, and these magic atoms are added

in the bodies of the original rules to restrict the range of the object variables. Without going into

much details, consider a typical recursive definition such as the ancestor relation:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

and a query ancestor(mario,Y) asking for the ancestors of mario. The extension of the ancestor

relation is likely to contain several tuples that are not linked to mario, and are therefore irrel-

evant to answer the given query. To eliminate such a source of inefficiency, magic sets start

with m#ancestor#bf(mario), the query seed, which encodes the relevance of the instances of

ancestor(mario,Y); note that the first argument of ancestor is bound to constant mario, while

the second argument is associated with a free variable, hence the predicate m#ancestor#bf (first

argument bound, second argument free). After that, magic sets modify the rules defining the

intentional predicate ancestor, and introduce magic rules for every occurrence of intentional

predicates in the bodies of the modified rules. The rewritten program is the following:

m#ancestor#bf(mario).

ancestor(X,Y) :- m#ancestor#bf(X), parent(X,Y).

ancestor(X,Y) :- m#ancestor#bf(X), parent(X,Z), ancestor(Z,Y).

m#ancestor#bf(Z) :- m#ancestor#bf(X), parent(X,Z).

and limits the extension of ancestor/2 to the tuples that are relevant to answer the given query.

Magic sets are sound and complete for the language considered in this paper (actually, for

a broader language; Alviano et al. 2011). However, while on the one hand they are designed to

inhibit the source of inefficiency associated with irrelevant atoms, on the other hand they may

introduce different sources of inefficiencies, and also produce programs not satisfying the stratifi-

cation of negation and aggregates. This paper identifies three of such sources of inefficiency, and

propose strategies for their inhibition. Specifically, the major source of inefficiency is represented

by the possible introduction of recursive definitions in the rewritten program.

Example 1.1 (Magic sets may introduce recursive definitions)

Consider a query c(0,Y) for the following program Π1:

r1 : a(X,Y) :- edb(X,Y), b(X).

r2 : b(X) :- edb(X,Y).

r3 : c(X,Y) :- a(X,Y), b(Y).

and a possible outcome Π′
1 of the magic sets rewriting:

r4 : m#c#bf(0).

r5 : m#a#bf(X) :- m#c#bf(X).

Enhancing magic sets with an application to ontological reasoning 3

c a b

m#c#bf m#a#bf m#b#b

Fig. 1. Dependency graphs (defined in Section 2) of programs Π1,Π2,Π3 (solid arcs) and pro-

grams Π′
1,Π

′
2,Π

′
3 (solid and dashed arcs) from Example 1.1. All arcs have weight 0, possibly

with the exception of the arc connecting a and b, which has weight 1 for programs Π2,Π
′
2,Π3,

and Π′
3.

r6 : m#b#b (Y) :- m#c#bf(X), a(X,Y).

r7 : m#b#b (X) :- m#a#bf(X), edb(X,Y).

r8 : a(X,Y) :- m#a#bf(X), edb(X,Y), b(X).

r9 : b(X) :- m#b#b (X), edb(X,Y).

r10 : c(X,Y) :- m#c#bf(X), a(X,Y), b(Y).

In particular, rule r6 is produced while processing rule r3 with variable X bound from the head

atom, and considering variable Y bound by atom a(X,Y). This is a common strategy, as there is

no reason to consider an atom b(y) if no instance of a(X,y) is first computed. However, as shown

in Figure 1, while all definitions in Π1 are non-recursive, Π′
1 has recursive definitions for a/2 and

b/1, which may deteriorate the performance of the subsequent bottom-up evaluation. Following

the same strategy, for a program Π2 comprising r2,r3 and

r11 : a(X,Y) :- edb(X,Y), not b(X).

the outcome of the magic sets rewriting Π′
2 comprises rules in Π′

1 \{r8} and the following rule:

r12 : a(X,Y) :- m#a#bf(X), edb(X,Y), not b(X).

Note that Π′
2 is not stratified with respect to negation. Similarly, for Π3 comprising r2,r3 and

r13 : a(X,Y) :- edb(X,Y), #sum{1 : b(X)} = 0.

the magic sets rewriting Π′
3 comprises rules in Π′

1 \ {r8} and the following rule:

r14 : a(X,Y) :- m#a#bf(X), edb(X,Y), #sum{1 : b(X)} = 0.

Hence, Π′
3 is not stratified with respect to aggregations. �

A second source of inefficiency that magic sets may introduce is represented by multiple ver-

sions of the original rules when the range of variables cannot be eventually restricted. For exam-

ple, processing query a(0) and the following rule:

r15 : a(X) :- b(X), a(Y), not c(X,Y).

necessarily leads to the presence of the following rules in the outcome of magic sets:

r16 : m#a#b(0).

r17 : m#a#f :- m#a#b(X).

r18 : a(X) :- m#a#b(X), b(X), a(Y), not c(X,Y).

r19 : a(X) :- m#a#f, b(X), a(Y), not c(X,Y).

because variable Y is free when a(Y) is processed. Hence, in this case all instances of a/1 in

the stable model of the input program are relevant to answer the query in input. Nevertheless,

4 M. Alviano et al.

when such a situation occurs, magic sets already produced restricted versions of the original

rules, which are likely to decrease the performance of the subsequent bottom-up evaluation of

the rewritten program.

The third source of inefficiency identified in this paper is represented by the possible presence

of several copies of the same rule in the rewritten program, which is mainly due to different orders

of body literals considered during the application of magic sets. While this fact is peculiar of one

of the possible implementations of magic sets, it is also an opportunity to address a broader source

of inefficiency that may already affect the input program, that is, the presence of subsumed rules.

In a nutshell, a rule r subsumes another rule r′ if the ground instances of r′ are included or less

general than the ground instances of r. For example, q(X):- p(X,Y) subsumes q(X):- p(X,a),

whose ground instances are among those of the first rule, and also q(X):- p(X,Y), t(X), whose

ground instances are less general than those of the first rule.

Summarizing the contributions of this paper, the source of inefficiency associated with the

introduction of recursive definitions is inhibited by actively monitoring the dependency graph

of the rewritten program, so to avoid the creation of new cycles during the production of magic

rules (Section 3.1). The other two sources of inefficiency are instead addressed by processing

the outcome of magic sets before executing the bottom-up evaluation. Specifically, if a predi-

cate p is associated with different magic predicates, one of them with all arguments free, the

rewritten program is simplified by removing all (useless) rules defining p and whose body con-

tains a magic predicate restricting the range of object variables (Section 3.2). Concerning sub-

sumed rules, they are identified by means of a backtracking algorithm, whose execution is often

prevented by a more efficient but incomplete check based on hashed values and bitwise op-

erations (Section 3.3). All the proposed strategies are implemented in DLV (Alviano et al. 2017;

Adrian et al. 2018; Leone et al. 2019; Leone et al. 2019), whose magic sets algorithm can be now

applied also for programs with stratified aggregates, and assessed empirically on domains involv-

ing ontological reasoning (Section 4).

2 Background

Syntax. A term is either a constant or an (object) variable. An atom has the form p(t), where p is

a predicate of arity n ≥ 0, and t is a list of n terms. For a list t, let |t| denote the length of t, and ti

denote the i-th term of t. A literal is an atom possibly preceded by the (default) negation symbol

not; atoms are positive literals, while atoms preceded by not are negative literals. An aggregate

has the form #SUM{t′ : p(t)}⊙ t, where t, t′ are lists of terms, t is a term, and ⊙ is a comparator

in {<,≤,=, 6=,≥,>}. A rule has the form

α :– ℓ1, . . . , ℓn,A1, . . . ,Am,

where α is an atom, n ≥ 0, m ≥ 0, ℓ1, . . . , ℓn are literals, and A1, . . . ,Am are aggregates. For such

a rule r, define the following notation: H(r) := α , the head of r; B(r) := {ℓ1, . . . , ℓn,A1, . . . ,Am},

the body of r; B+(r) := {ℓi | i ∈ [1..n], ℓi is a positive literal}; B−(r) := {ℓi | i ∈ [1..n], ℓi is a

negative literal}; BA(r) := {Ai | i ∈ [1..m]}. Intuitively, B(r) is interpreted as a conjunction, and

we will use α :– S∧S′ to denote a rule r with H(r) =α and B(r) = S∪S′; abusing of notation, we

also permit S and S′ to be literals. If B(r) is empty, the symbol :– is usually omitted, and the rule

is called a fact. A program Π is a set of rules. A predicate p occurring in Π is said extensional if

all rules of Π with p in their heads are facts; otherwise, p is said intentional. For any expression

(atom, literal, aggregate, rule, program) E , let At(E) denote the set of atoms occurring in E . In

Enhancing magic sets with an application to ontological reasoning 5

the following, all programs are assumed to satisfy safety of rules and stratification of negation

and aggregates, defined next.

Safety of rules. A global variable of a rule r is a variable X occurring in H(r), B+(r), B−(r),

or in an aggregate of the form #SUM{t′ : p(t)}⊙X in BA(r). All other variables occurring in r

are local variables (to the aggregates where they occur). An assignment variable of a rule r is

a variable X such that BA(r) contains an aggregate of the form #SUM{t′ : p(t)} = X . A global

variable X of r is safe if X is an assignment variable, or if X occurs in B+(r). A local variable X

in an aggregate #SUM{t′ : p(t)}⊙ t of r is safe if X occurs in t. A rule is safe if all of its variables

are safe. A program Π satisfies safety of rules if all of its rules are safe. All rules so far are safe;

an unsafe rule is, for example, a(X,Y):- b(X), not c(X,Y), #sum{Z : d(X,Y)} > 0, as in fact

the global variable Y and the local variable Z are unsafe.

Stratification of negation and aggregates. The dependency graph GΠ of a program Π has nodes

for each predicate occurring in Π, and a weighted arc from p to q if there is a rule r of Π such

that p occurs in H(r), and q occurs in B(r); the arc has weight 1 if q occurs in B(r)\B+(r), and 0

otherwise. Π satisfies stratification of negation and aggregates if GΠ has no cycle involving arcs

of positive weight. Figure 1 shows the dependencies graphs of the programs in Example 1.1.

Semantics. The universe UΠ of Π is the set comprising all integers, and the constants occurring

in Π. The base BΠ of Π is the set of atoms constructible from predicates of Π with constants in

UΠ. A substitution σ is a mapping from variables to variables and UΠ; for an expression E , let

Eσ be the expression obtained from E by replacing each variable X by σ(X). An expression is

ground if it contains no global variables. Let ground(Π) be
⋃

r∈Π{rσ | σ is a substitution, and

rσ is ground}. An interpretation I is a subset of BΠ. Relation |= is defined as follows: for a

ground atom α , I |= α if α ∈ I, and I |= not α if I 6|= α; for an aggregate A := #SUM{t′ : p(t)}⊙ t

occurring in ground(Π), I |= A if ∑t′σ :p(t)σ∈I t′1σ ⊙ t; for a ground rule r, I |= B(r) if I |= ℓ for

all ℓ ∈ B(r), and I |= r if I |= H(r) whenever I |= B(r); finally, I |= ground(Π) if I |= r for all r ∈

ground(Π). The (FLP) reduct of Π with respect to I, denoted ΠI , is the program obtained from Π

by removing rules with false bodies, that is, ΠI := {r ∈ Π | I |= B(r)} (Faber et al. 2011). Given

a program Π, the stable model of Π is the unique interpretation I such that I |= ground(Π), and

there is no J ⊂ I such that J |= ground(Π)I; let SM(Π) denote the stable model of Π. (The stable

model of Π can be computed bottom-up as described in the introduction. A formal definition of

such a procedure is out of the scope of this paper.)

Example 2.1

Consider the following program in the context of an online shopping site:

order(o1). item(o1,i1,20). item(o1,i2,20).

order(o2). cancelled(o2).

total_cost(S) :- order(O), not cancelled(O), #sum{P,I : item(O,I,P)} = S.

The stable model of the above program contains facts and total_cost(40), as indeed the only

ground rule with true, nonempty body is the following:

total_cost(40) :- order(o1), not cancelled(o1), #sum{P,I : item(o1,I,P)} = 40.

In particular, note that for σ(O) /∈ {o1,o2} literal order(O)σ is false, for σ(O) = o2 literal not

cancelled(o2) is false, and for σ(O) = o1 and σ(S) 6= 40 the aggregate is false. �

6 M. Alviano et al.

Queries and magic sets. A query is an atom q(t). Let answer(q(t),Π) be {tσ | q(t)σ ∈ SM(Π)},

that is, the answer to the query q(t) over the program Π is the set of ground instances of q(t) in the

stable model of Π. The magic sets algorithm aims at transforming program Π into a program Π′

such that answer(q(t),Π) = answer(q(t),Π′), and SM(Π′)∩At(Π)⊆ SM(Π); in words, the two

programs have the same answer to the query q(t), but the stable model of Π′ only contains atoms

that link facts to the query. The algorithm relies on adornments and magic atoms to represent

binding information that a top-down evaluation of the query would produce.

Definition 2.1 (Adornments and magic atoms)

An adornment for a predicate p of arity k is any string s of length k over the alphabet {b, f}. The

i-th argument of p is bound with respect to s if si = b, and free otherwise, for all i ∈ [1..k]. For an

atom p(t), let ps(t) be the (magic) atom m#p#s(t′), where m#p#s is a predicate not occurring in

the input program, and t′ contains all terms in t associated with bound arguments according to s.

Definition 2.2 (Sideways information passing strategy; SIPS)

A SIPS for a rule r with respect to an adornment s for H(r) is a pair (≺,bnd), where ≺ is a strict

partial order over {H(r)}∪B(r), and bnd maps ℓ ∈ {H(r)}∪B(r) to the variables of ℓ that are

made bound after processing ℓ. Moreover, a SIPS satisfies the following conditions:

• H(r)≺ ℓ for all ℓ ∈ B(r) (binding information originates from head atoms);

• ℓ≺ ℓ′ and ℓ 6= H(r) implies that either ℓ∈ B+(r) or ℓ is an aggregate with assignment (new

bindings are created only by positive literals and assignments);

• bnd(H(r)) contains the variables of H(r) associated with bound arguments according to s;

• bnd(ℓ) = /0 if ℓ is a negative literal, or an aggregate without assignment variable;

• bnd(ℓ)⊆ {X} if ℓ is an aggregate with assignment variable X .

Example 2.2 (Magic atoms and SIPS)

According to Definition 2.1, cbf (0,Y) is the magic atom m#c#bf(0). Using the notation intro-

duced in Definition 2.2, the SIPS for r3 with respect to the adornment bf adopted in Example 1.1

is such that c(X ,Y)≺ a(X ,Y)≺ b(Y), bnd(c(X ,Y)) = {X}, {Y} ⊆ bnd(a(X ,Y))⊆ {X ,Y} (i.e.,

variable Y is bound after processing a(X,Y)), and /0 ⊆ bnd(b(Y))⊆ {Y} (i.e., whether Y is bound

after processing b(Y) is irrelevant). �

The magic sets procedure is reported as Algorithm 1. It starts by producing the magic seed,

obtained from the predicate and the constants in the query. After that, the algorithm processes

each produced adorned predicate: each rule defining the predicate is modified so to restrict the

range of the head variables to the tuples that are relevant to answer the query; such a relevance

is encoded by the magic rules, which are produced for all intentional predicates in the bodies of

the modified rules.

Proposition 2.1 (Theorem 5 of Alviano et al. 2011)

Let q(t) be a query for a program Π, and Π′ be the output of MS(q(t),Π). Thus, answer(q(t),Π)

and answer(q(t),Π′) are equal.

3 Improved strategies for the magic sets algorithm

The three sources of inefficiency of magic sets that have been identified in the introduction are

detailed and addressed in this section.

Enhancing magic sets with an application to ontological reasoning 7

Algorithm 1: MS(Q(T): a query atom, Π: a program)

1 Let s be such that |s|= |T|, and si = b if Ti is a constant, and f otherwise, for all i ∈ [1..|s|];

2 Π′ := {Qs(T).}; // rewritten program: start with the magic seed

3 S := {〈Q,s〉}; // set of produced adorned predicates

4 D := /0; // set of processed (or done) adorned predicates

5 while S 6= D do

6 〈q,s〉 := any element in S \D; // select an undone adorned predicate

7 foreach r ∈ Π such that H(r) = q(t) for some list t of terms do

8 Π′ := Π′∪{q(t) :– qs(t)∧B(r).}; // restrict range of variables

9 Let (≺,bnd) be the SIPS for r with respect to s;

10 foreach ℓ ∈ B(r) such that p(t′) ∈ At(ℓ) and p is an intentional predicate of Π do

11 Let s′ be such that |s′|= |t′|, and s′i = b if t′i is a constant or belongs to bnd(ℓ′)

for some ℓ′ ≺ ℓ, and f otherwise, for all i ∈ [1..|s′|];

12 Π′ := Π′∪{ps′(t′) :– qs(t)∧{ℓ′ ∈ B(r) | ℓ′ ≺ ℓ}.}; // add magic rule

13 S := S∪{〈p,s′〉}; // keep track of produced adorned predicates

14 D := D∪{〈q,s〉}; // flag the adorned predicate as done

15 return Π′;

3.1 Inhibit new cycles

Magic sets may introduce new cycles in the dependency graph of the processed program, as

shown in Example 1.1. Such new cycles are due to the binding information passed by body

literals to other body literals, and therefore strictly dependent from the adopted SIPS. In fact,

new cycles can be inhibited by a drastic restriction on all SIPS 〈≺,bnd〉 enforcing ℓ ⊀ ℓ’ for all

ℓ,ℓ′ in B(r): this way, all magic rules would contain only magic atoms, and therefore no arc from

magic predicates to original predicates would be introduced in the dependency graph. However,

the drastic restriction is likely to significantly reduce the benefit of magic sets, as the stronger the

restriction on SIPS is, the more atoms are considered relevant to answer a given query. Hence,

the goal of this section is to introduce a more relaxed restriction on SIPS, which just prevents the

creation of new cycles, but still admit the introduction of new dependencies.

For a graph G and a set of arcs E , let G∪E denote the graph obtained from G by adding

each arc in E . Moreover, let SCCs(G) be the set of strongly connected components (SCC) of G,

where a SCC of G is a maximal set C of nodes of G such that G contains a path from every

p ∈ C to every q ∈ C \ {p}. A revised version of magic sets enforcing a restriction on SIPS is

shown as Algorithm 2. Note that lines 5 and 12–16 implement a restriction of SIPS guaranteeing

that no strongly connected components of GΠ are merged during the application of magic sets.

Specifically, a graph G is initialized with the arcs of GΠ and arcs connecting each predicate

p with a representative magic predicate m#p (line 5). After that, before creating a new magic

rule, elements of B(r) that would cause a change in the strongly connected components of G

are discarded (lines 13–16). Graph G is updated with new arcs involving original predicates and

representative magic predicates, so that it represents a superset of the graph obtained from GΠ′

by merging all pairs of nodes of the form m#p#s, m#p#s′.

8 M. Alviano et al.

Algorithm 2: MS-RS(Q(T): a query atom, Π: a program)

1 Let s be such that |s|= |T|, and si = b if Ti is a constant, and f otherwise, for all i ∈ [1..|s|];

2 Π′ := {Qs(T).}; // rewritten program: start with the magic seed

3 S := {〈Q,s〉}; // set of produced adorned predicates

4 D := /0; // set of processed (or done) adorned predicates

5 G := GΠ ∪{〈p,m#p〉 | p is a predicate occurring in Π}; // monitor SCCs

6 while S 6= D do

7 〈q,s〉 := any element in S \D; // select an undone adorned predicate

8 foreach r ∈ Π such that H(r) = q(t) for some list t of terms do

9 Π′ := Π′∪{q(t) :– qs(t)∧B(r).}; // restrict range of variables

10 Let (≺,bnd) be the SIPS for r with respect to s;

11 foreach ℓ ∈ B(r) such that p(t′) ∈ At(ℓ) and p is an intentional predicate of Π do

12 G := G∪{〈m#p,m#q〉};

13 B := /0; // restrict SIPS to preserve strongly connected comp.

14 foreach ℓ′ ∈ B(r) such that ℓ′ ≺ ℓ and p′(t′′) ∈ At(ℓ′) do

15 if {C∩At(Π) |C ∈ SCCs(G∪{〈m#p, p′〉})}= SCCs(GΠ) then

16 B := B∪{ℓ′}; G := G∪{〈m#p, p′〉};

17 Let s′ be such that |s′|= |t′|, and s′i = b if t′i is a constant or belongs to bnd(ℓ′)

for some ℓ′ ∈ {H(r)}∪B such that ℓ′ ≺ ℓ, and f otherwise, for all i ∈ [1..|s′|];

18 Π′ := Π′∪{ps′(t′) :– qs(t)∧B.}; // add magic rule

19 S := S∪{〈p,s′〉}; // keep track of produced adorned predicates

20 D := D∪{〈q,s〉}; // flag the adorned predicate as done

21 return Π′;

Example 3.1

Consider Π1, query c(0,Y), and SIPS from Example 1.1. Algorithm 2 returns the following

program:

r20 : m#c#bf(0).

r21 : m#a#bf(X) :- m#c#bf(X).

r22 : m#b#f :- m#c#bf(X).

r23 : m#b#b (X) :- m#a#bf(X), edb(X,Y).

r24 : a(X,Y) :- m#a#bf(X), edb(X,Y),b(X).

r25 : b(X) :- m#b#f, edb(X,Y).

r26 : b(X) :- m#b#b(X), edb(X,Y).

r27 : c(X,Y) :- m#c#bf(X), a(X,Y), b(Y).

Note that rule r6 from Example 1.1 is replaced by rule r22, so to avoid the creation of a cycle

involving a and b. Note also that predicate b is now associated with two magic predicates, which

may reduce the performance of a bottom-up evaluation; this source of inefficiency is addressed

in the next section. �

Theorem 3.1

Let q(t) be a query for a program Π, and Π′ be the output of MS(q(t),Π) with restricted SIPS.

Thus, answer(q(t),Π) and answer(q(t),Π′) are equal. Moreover, if C′ ∈ SCCs(Π′), then there is

C ∈ SCCs(Π) such that C′∩At(Π)⊆C.

Enhancing magic sets with an application to ontological reasoning 9

Algorithm 3: FullFree(Π: a program obtained by executing magic sets)

1 foreach m#p# f · · · f occurring in Π do

2 foreach m#p#s occurring in Π such that s 6= f · · · f do

3 remove all rules of Π having m#p#s in their bodies;

4 replace m#p#s(t) by m#p# f · · · f in all rule heads of Π;

5 return Π;

Proof

Equality of answer(q(t),Π) and answer(q(t),Π) is a consequence of the correctness of magic

sets for any choice of SIPS (Proposition 2.1). In fact, the restriction on SIPS applied by algorithm

MS-RS still results into SIPS. For C′ ∈ SCCs(GΠ′), we shall show that there is C ∈ SCCs(GΠ)

such that C′ ∩At(Π) ⊆ C. Actually, there is C ∈ SCCs(G) such that C′ ∩At(Π) ⊆ C ∩At(Π).

Hence, the claim follows from the fact that C∩At(Π) ∈ SCCs(GΠ) is enforced by the condition

in line 15 of Algorithm 2.

An immediate consequence of the above theorem is that magic sets with restricted SIPS are a

closed rewriting for the class of programs with stratified negation and aggregations.

3.2 Handle full-free adornments

Adornments containing only f s are produced in presence of predicates whose arguments are all

free. In such cases, all of the extension of the predicate in the stable model of the input program

is relevant to answer the given query. It turns out that the range of the object variables of all rules

defining such predicates cannot be restricted, and indeed the magic sets rewriting includes a

copy of these rules with a magic atom obtained from the full-free adornment. Possibly, the magic

sets rewriting includes other copies of these rules obtained by different adornments, which can be

removed if magic rules are properly modified. Specifically, magic rules associated with predicates

for which a full-free adornment has been produced have to become definitions of the magic atom

obtained from the full-free adornment. The strategy is summarized in Algorithm 3, and can be

efficiently implemented in two steps: a first linear traversal of the program to identify predicates

of the form m#p# f · · · f and to flag predicate p; a second linear traversal of the program to remove

and rewrite rules with predicate m#p#s, for all flagged predicates p.

Example 3.2

Consider rule r15 from the introduction, a(X):- b(X), a(Y), not c(X,Y), and its magic sets

rewriting with respect to query a(0):

r16 : m#a#b(0).

r17 : m#a#f :- m#a#b(X).

r18 : a(X) :- m#a#b(X), b(X), a(Y), not c(X,Y).

r19 : a(X) :- m#a#f, b(X), a(Y), not c(X,Y).

Algorithm 3 removes rules r17 and r18 because of m#a#b(X) in their bodies, and replaces rule r16

with the fact m#a#f. �

Theorem 3.2

Let q(t) be a query for a program Π, and Π′ be the output of FullFree(MS(q(t),Π)). Thus,

answer(q(t),Π) and answer(q(t),Π′) are equal.

10 M. Alviano et al.

Algorithm 4: Subsumption(Π: a program)

1 foreach distinct r,r′ ∈ Π such that hash(r) & hash(r′) = hash(r) do

2 if subsumes(r,r′) then remove r′ from Π;

3 return Π;

Function Subsumes(r, r′)

1 S := [〈OneWayUnify(H(r), H(r′)), B(r)〉];

2 while S 6= /0 do

3 〈σ , B〉 := S.pop();

4 if σ is a function then

5 if B = /0 then return true;

6 foreach ℓ ∈ B and ℓ′ ∈ B(r′) do S.push(〈σ ∪OneWayUnify(ℓ, ℓ′), B\ {ℓ}〉);

7 return false;

Proof

Let I be SM(Π′′). The stable model of Π′ is obtained from I by performing the following opera-

tion for all m#p# f · · · f occurring in Π′′: replace all instances of m#p#s by m#p# f · · · f .

3.3 Efficiently detect subsumed rules

A rule r subsumes a rule r′, denoted r ⊑ r′, if there is a substitution σ such that H(r)σ = H(r′)

and B(r)σ ⊆ B(r′). Subsumed rules are redundant in the sense that any atom derivable from r′ is

also derived from r if r ⊑ r′; indeed, for any substitution θ and interpretation I such that B(r′)θ is

ground and I |= B(r′)θ , it holds that B(r)σθ is ground, I |= B(r)σθ (because B(r)σθ ⊆ B(r′)θ),

and H(r)σθ = H(r′)θ . Hence, r ⊑ r′ implies SM(Π) = SM(Π \ {r′}), and therefore all sub-

sumed rules can be removed from a program before starting its bottom-up evaluation. However,

checking subsumption is NP-complete in general, and therefore computationally expensive if ran

for all pairs of rules in a program.

The number of performed checks is significantly reduced by means of an hash function that

associates each rule with a bit string of fixed length and satisfying the following invariant:

if hash(r) & hash(r′) 6= hash(r), then r 6⊑ r′ (1)

where & is the bitwise AND operator. Specifically, the hash value associated with a rule is de-

signed to be a string of 64 bits computed as follows from the less significant bits of predicate ids

and constant ids occurring in the rule: 8 bits for the bitwise OR of predicate ids in H(r) (only one

predicate for the language considered in this paper); 8 bits for the bitwise OR of constants ids in

H(r); 16 bits for the bitwise OR of predicate ids in B+(r)∪BA(r); 16 bits for the bitwise OR of

constant ids in B+(r)∪BA(r); 8 bits for the bitwise OR of predicate ids in B−(r); 8 bits for the

bitwise OR of constants ids in B−(r).

The idea underlying the above hash function is that all constants and predicates occurring in

H(r), B+(r)∪BA(r) and B−(r) have to also occur in H(r′), B+(r′)∪BA(r′) and B−(r′) in order

to have r ⊑ r′. The invariant (1) eventually detects pairs of rules not satisfying this property,

so to avoid the more expensive backtracking procedure for them. Algorithm 4 summarizes the

Enhancing magic sets with an application to ontological reasoning 11

Function OneWayUnify(ℓ, ℓ′)

1 if ℓ and ℓ′ have different predicates, or are not both positive literals, negative literals, or

aggregates then return {X 7→ 0,X 7→ 1};

2 Let t and t′ be the terms in ℓ and ℓ′ (for aggregates, symbol : is considered as a constant);

3 if |t| 6= |t′|, or ∃i ∈ [1..|t|] s.t. ti is a constant and ti 6= t′i then return {X 7→ 0,X 7→ 1};

4 return {ti 7→ t′i | i ∈ [1..|t|], ti is a variable}; // possibly a function

strategy implemented for removing subsumed rules from programs: when the condition on the

hash values is satisfied, use backtracking to build a substitution σ .

Example 3.3

Consider the following rules from the introduction:

r : q(X) :- p(X,Y). r′ : q(X) :- p(X,a). r′′ : q(X) :- p(X,Y), t(X).

and the following predicate and constant ids: id(q) = 01, id(p) = 10, id(t) = 11, id(a) = 01,

where for simplicity only 2 bits are used. The hash values of the rules above (using only 2 bits

for each portion of the hash value) are the following:

• hash(r) = 010010000000;

• hash(r′) = 010010010000;

• hash(r′′) = 010011000000.

Note that hash(r′) & hash(r′′) = 010010000000 6= hash(r′), and in fact r′ 6⊑ r′′. On the other

hand, hash(r) & hash(r′) = 010010000000= hash(r), and r ⊑ r′. �

Theorem 3.3

Invariant (1) is satisfied by the proposed hash function.

Proof

Let hash(r) & hash(r′) 6= hash(r). Hence, there is i∈ [1..64] such that hash(r)= 1 and hash(r′)=

0. If i ∈ [1..8], then predicate ids of H(r) and H(r′) disagree on their less significant 8 bits, and

therefore they are necessarily different predicates; thus, r 6⊑ r′ holds. If i ∈ [9..16], then H(r)

contains a constant whose (i− 8)-th less significant bit is 1, while no constant in H(r′) has this

property; it turns out that H(r) has a constant not occurring in H(r′), and therefore r 6⊑ r′ holds

also in this case. The remaining cases are similar.

4 Experiment

The proposed enhancements are implemented in I-DLV 1.1.4, and compared against the perfor-

mance of the previous magic sets rewriting implemented in I-DLV 1.1.3. Binaries are available at

https://github.com/DeMaCS-UNICAL/I-DLV/releases. The experiment comprises syn-

thetic instances from Example 1.1 with facts edb(0..1000000*size), where size ranges in

[1..10], to show the potential impact of the prevention of new cycles. Additional instances are

obtained from LUBM (http://swat.cse.lehigh.edu/projects/lubm/) by generating in-

stances with 50*size universities, where size ranges in [1..20], with the aim to measure the

impact of the hashing technique to prevent subsumption checks. All tests were run on a Dell

https://github.com/DeMaCS-UNICAL/I-DLV/releases
http://swat.cse.lehigh.edu/projects/lubm/

12 M. Alviano et al.

NEW REWRITING PREVIOUS REWRITING

0 2 4 6 8 10
0

20

40

60

80

Instance size (millions of facts)

R
u
n
n
in

g
ti

m
e

(s
ec

o
n
d
s)

Positive cycle prevention - time

0 2 4 6 8 10
0

5

10

15

Instance size (millions of facts)

M
em

o
ry

co
n
su

m
p
ti

o
n

(G
B

)

Positive cycle prevention - memory

0 2 4 6 8 10
0

20

40

60

80

Instance size (millions of facts)

R
u
n
n
in

g
ti

m
e

(s
ec

o
n
d
s)

Negative cycle prevention - time

0 2 4 6 8 10
0

5

10

15

Instance size (millions of facts)

M
em

o
ry

co
n
su

m
p
ti

o
n

(G
B

)

Negative cycle prevention - memory

Fig. 2. Scalability results with respect to time (left) and memory (right)

server with 8 CPU Intel Xeon Gold 6140 2.30GHz, RAM 297GB, and HDD 3.29TB 7200rpm.

Each test was limited to 1200 seconds of execution time and 250GB of memory consumption.

Concerning the scalability tests, time and memory usage are plotted on Figure 2. For program

Π1, the execution time of the new rewriting is around 62% of the execution time of the previous

rewriting on average; similarly, the new rewriting only used around 68% of the memory required

by the previous rewriting. These results confirm that the proposed restriction to SIPS may lead

computational advantages also for positive programs. The advantage is much more evident for

program Π2, that is, the one for which negative cycles may be introduced by magic sets. Indeed,

in this case the new rewriting only needs around 12% of the execution time and around 16% of

the memory required by the previous rewriting on average. Finally, concerning program Π3, the

previous rewriting could not be tested because it introduced recursive aggregates, as expected;

the new rewriting, instead, performed as for Π2, with an average execution time of 4.5 seconds

and an average memory consumption of 1.4 GB.

As for LUBM, its Datalog encoding consists of 132 rules and 83 predicate names, which

become 382 rules and 216 predicate names after running magic sets as implemented in I-DLV

Enhancing magic sets with an application to ontological reasoning 13

1.1.3. Within I-DLV 1.1.4, instead, the magic sets rewriting comprises 210 rules and 118 predicate

names. In fact, several rules and predicate names are removed because of full-free adornments.

A few additional rules, precisely 17, are filtered out by the subsumption checks. Within this

respect, it is interesting to observe that the number of subsumption checks to perform without

the hashing technique presented in Section 3.3 is 37 600, in contrast to a significantly smaller

number of 1 159 checks actually performed; the hashing technique reduced by around 97% the

number of subsumption checks. Finally, concerning execution time, both versions scale almost

linearly, with a slight advantage of the new magic sets: I-DLV 1.1.3 reported an average execution

time of around 529 seconds, with a minimum of around 42 seconds and a maximum of around

1060; I-DLV 1.1.4 reported an average execution time of around 502 seconds, with a minimum

of around 40 seconds and a maximum of around 1027.

5 Related work

Magic sets were originally introduced for Datalog programs (Bancilhon et al. 1986), and ap-

plied among other contexts to bottom-up analysis of logic programs (Codish and Demoen 1995)

and BDD-Based Deductive DataBases (Whaley et al. 2005). Extending the technique to Datalog

programs with stratified negation was nontrivial, as the perfect model semantics is not applica-

ble to the rewritten program if recursive negation is introduced by magic sets. Several semantics

were considered in the literature to overcome the limitation of perfect model semantics. Among

them, some authors defined ad-hoc semantics for rewritten programs (Kerisit and Pugin 1988;

Balbin et al. 1991; Behrend 2003), while Kemp et al. (1995) and Ross (1994) considered well-

founded semantics, and showed that the well-founded model of any rewritten program obtained

from a Datalog program with stratified negation is two-valued.

A similar semantic issue arises for aggregations (Mumick et al. 1990; Furfaro et al. 2002), as

there is no general consensus for recursive aggregates (Alviano and Faber 2018). This fact ex-

plains why DLV did not support (dynamic) magic sets (Alviano et al. 2012) for programs with

aggregates, even if their correctness was shown also for programs with some form of aggrega-

tion (Alviano et al. 2011). In fact, even if techniques to process programs with recursive ag-

gregates are known (Gebser et al. 2009; Alviano et al. 2015; Alviano et al. 2016), they are in

general less efficient than those for stratified aggregates; for example, shared aggregate sets

(Alviano et al. 2018) are currently implemented in WASP (Dodaro et al. 2011; Alviano et al. 2019)

only in the stratified case.

Magic sets were applied to other extensions of Datalog, in particular to disjunctive Dat-

alog under stable model semantics (Greco 2003; Greco et al. 2005). For disjunctive Datalog,

dynamic magic sets push the optimization on all phases of the computation of stable models

(Alviano et al. 2012), and are shown to be correct for a semantic class known as super-coherent

programs (Alviano and Faber 2011; Alviano et al. 2014). The restriction on SIPS applied in Sec-

tion 3.1 necessarily limits the optimization of dynamic magic sets to the grounding phase, which

is anyhow the only computation phase for the language considered in this paper. On the other

hand, the restriction on SIPS presented in this paper does not inhibit the application of magic sets

to programs characterized by multiple stable models: magic sets would still optimize the ground-

ing of those programs, so that other highly optimized techniques for computing cautious conse-

quences of propositional programs can be employed (Alviano et al. 2014; Alviano et al. 2018),

among them those based on unsatisfiable core analysis (Alviano and Dodaro 2016; Alviano and Dodaro 2017).

14 M. Alviano et al.

6 Conclusion

Magic sets aim at optimizing query answering, but they may introduce recursive definitions that

possibly deteriorate the performance of a bottom-up evaluation of the rewritten program. Previ-

ous works in the literature noted the problem for programs with stratified negation, and proposed

several solutions to the associated semantic issue. By imposing some restriction on SIPS, this

paper provides a simple solution to semantic issues arising for programs with stratified negation

and aggregations, which also inhibits the creation of new positive recursive definitions (Sec-

tion 3.1). The role of magic atoms is to restrict the range of variables in the original rules of

the processed program. When all arguments of a predicate have to be considered free, a full-free

adornment is generated. Any other adornment associated with such a predicate only introduces

overhead in the evaluation of the rewritten program. This paper proposes a post-processing of

the rewritten program to purge full-free adornments, in contrast to more complex unroll proce-

dures (Section 3.2). Further overhead is associated with subsumed rules. Their identification is

nontrivial and addressed by a backtracking algorithm. Even if there are few branching points,

actually only if there are multiple occurrences of the same predicate in rule bodies, running the

backtracking algorithm for all pairs of rules in the rewritten program is expensive. The hashing

technique given in Section 3.3 provides a drastic reduction on the number of checks.

Acknowledgments

This work has been partially supported by MIUR under project “Declarative Reasoning over

Streams” (CUP H24I17000080001)– PRIN 2017, by MISE under project “S2BDW” (F/050389/01-

03/X32) – “Horizon2020” PON I&C2014-20, by Regione Calabria under project “DLV LargeScale”

(CUP J28C17000220006) – POR Calabria 2014-20, and by GNCS-INdAM.

References

ADRIAN, W. T., ALVIANO, M., CALIMERI, F., CUTERI, B., DODARO, C., FABER, W., FUSCÀ, D.,

LEONE, N., MANNA, M., PERRI, S., RICCA, F., VELTRI, P., AND ZANGARI, J. 2018. The ASP system

DLV: advancements and applications. KI 32, 2-3, 177–179.

ALVIANO, M., AMENDOLA, G., DODARO, C., LEONE, N., MARATEA, M., AND RICCA, F. 2019. Eval-

uation of disjunctive programs in WASP. In M. BALDUCCINI, Y. LIERLER, AND S. WOLTRAN (Eds.),

Logic Programming and Nonmonotonic Reasoning - 15th International Conference, LPNMR 2019,

Philadelphia, PA, USA, June 3-7, 2019, Proceedings, Volume 11481 of Lecture Notes in Computer Sci-

ence, pp. 241–255. Springer.

ALVIANO, M., CALIMERI, F., DODARO, C., FUSCÀ, D., LEONE, N., PERRI, S., RICCA, F., VELTRI, P.,

AND ZANGARI, J. 2017. The ASP system DLV2. In M. BALDUCCINI AND T. JANHUNEN (Eds.), Logic

Programming and Nonmonotonic Reasoning - 14th International Conference, LPNMR 2017, Espoo, Fin-

land, July 3-6, 2017, Proceedings, Volume 10377 of Lecture Notes in Computer Science, pp. 215–221.

Springer.

ALVIANO, M. AND DODARO, C. 2016. Anytime answer set optimization via unsatisfiable core shrinking.

Theory and Practice of Logic Programming 16, 5-6, 533–551.

ALVIANO, M. AND DODARO, C. 2017. Unsatisfiable core shrinking for anytime answer set optimiza-

tion. In C. SIERRA (Ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 4781–4785. ijcai.org.

ALVIANO, M., DODARO, C., JÄRVISALO, M., MARATEA, M., AND PREVITI, A. 2018. Cautious rea-

soning in ASP via minimal models and unsatisfiable cores. Theory and Practice of Logic Program-

ming 18, 3-4, 319–336.

Enhancing magic sets with an application to ontological reasoning 15

ALVIANO, M., DODARO, C., AND MARATEA, M. 2018. Shared aggregate sets in answer set programming.

Theory and Practice of Logic Programming 18, 3-4, 301–318.

ALVIANO, M., DODARO, C., AND RICCA, F. 2014. Anytime computation of cautious consequences in

answer set programming. Theory and Practice of Logic Programming 14, 4-5, 755–770.

ALVIANO, M. AND FABER, W. 2011. Dynamic magic sets and super-coherent answer set programs. AI

Commun. 24, 2, 125–145.

ALVIANO, M. AND FABER, W. 2018. Aggregates in answer set programming. KI 32, 2-3, 119–124.

ALVIANO, M., FABER, W., AND GEBSER, M. 2015. Rewriting recursive aggregates in answer set pro-

gramming: back to monotonicity. Theory and Practice of Logic Programming 15, 4-5, 559–573.

ALVIANO, M., FABER, W., AND GEBSER, M. 2016. From non-convex aggregates to monotone aggregates

in ASP. In S. KAMBHAMPATI (Ed.), Proceedings of the Twenty-Fifth International Joint Conference on

Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 4100–4194. IJCAI/AAAI

Press.

ALVIANO, M., FABER, W., GRECO, G., AND LEONE, N. 2012. Magic sets for disjunctive datalog pro-

grams. Artif. Intell. 187, 156–192.

ALVIANO, M., FABER, W., AND WOLTRAN, S. 2014. Complexity of super-coherence problems in ASP.

Theory and Practice of Logic Programming 14, 3, 339–361.

ALVIANO, M., GRECO, G., AND LEONE, N. 2011. Dynamic magic sets for programs with monotone

recursive aggregates. In J. P. DELGRANDE AND W. FABER (Eds.), Logic Programming and Nonmono-

tonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011.

Proceedings, Volume 6645 of Lecture Notes in Computer Science, pp. 148–160. Springer.

BALBIN, I., PORT, G. S., RAMAMOHANARAO, K., AND MEENAKSHI, K. 1991. Efficient bottom-up

computation of queries on stratified databases. J. Log. Program. 11, 3&4, 295–344.

BANCILHON, F., MAIER, D., SAGIV, Y., AND ULLMAN, J. D. 1986. Magic sets and other strange

ways to implement logic programs. In A. SILBERSCHATZ (Ed.), Proceedings of the Fifth ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems, March 24-26, 1986, Cambridge, Mas-

sachusetts, USA, pp. 1–15. ACM.

BARTHOLOMEW, M., LEE, J., AND MENG, Y. 2011. First-order semantics of aggregates in answer set

programming via modified circumscription. In Logical Formalizations of Commonsense Reasoning,

Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06, Stanford, California, USA,

March 21-23, 2011. AAAI.

BEERI, C. AND RAMAKRISHNAN, R. 1991. On the power of magic. J. Log. Program. 10, 3&4, 255–299.

BEHREND, A. 2003. Soft stratification for magic set based query evaluation in deductive databases. In

F. NEVEN, C. BEERI, AND T. MILO (Eds.), Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA, pp. 102–

110. ACM.

CODISH, M. AND DEMOEN, B. 1995. Analyzing logic programs using ”PROP”-ositional logic programs

and a magic wand. J. Log. Program. 25, 3, 249–274.

DODARO, C., ALVIANO, M., FABER, W., LEONE, N., RICCA, F., AND SIRIANNI, M. 2011. The birth

of a WASP: preliminary report on a new ASP solver. In F. FIORAVANTI (Ed.), Proceedings of the 26th

Italian Conference on Computational Logic, Pescara, Italy, August 31 - September 2, 2011, Volume 810

of CEUR Workshop Proceedings, pp. 99–113. CEUR-WS.org.

EITER, T., ORTIZ, M., SIMKUS, M., TRAN, T., AND XIAO, G. 2012. Query rewriting for horn-shiq plus

rules. In J. HOFFMANN AND B. SELMAN (Eds.), Proceedings of the Twenty-Sixth AAAI Conference on

Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press.

FABER, W., PFEIFER, G., AND LEONE, N. 2011. Semantics and complexity of recursive aggregates in

answer set programming. Artif. Intell. 175, 1, 278–298.

FERRARIS, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans. Comput.

Log. 12, 4, 25.

FURFARO, F., GRECO, S., GANGULY, S., AND ZANIOLO, C. 2002. Pushing extrema aggregates to opti-

mize logic queries. Inf. Syst. 27, 5, 321–343.

16 M. Alviano et al.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2009. On the implementation of weight

constraint rules in conflict-driven ASP solvers. In P. M. HILL AND D. S. WARREN (Eds.), Logic Pro-

gramming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceed-

ings, Volume 5649 of Lecture Notes in Computer Science, pp. 250–264. Springer.

GELDER, A. V. 1989. Negation as failure using tight derivations for general logic programs. J. Log.

Program. 6, 1&2, 109–133.

GELDER, A. V., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic

programs. J. ACM 38, 3, 620–650.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.

New Generation Comput. 9, 3/4, 365–386.

GELFOND, M. AND ZHANG, Y. 2014. Vicious circle principle and logic programs with aggregates. Theory

and Practice of Logic Programming 14, 4-5, 587–601.

GRECO, G., GRECO, S., TRUBITSYNA, I., AND ZUMPANO, E. 2005. Optimization of bound disjunctive

queries with constraints. Theory and Practice of Logic Programming 5, 6, 713–745.

GRECO, S. 2003. Binding propagation techniques for the optimization of bound disjunctive queries. IEEE

Trans. Knowl. Data Eng. 15, 2, 368–385.

KEMP, D. B., SRIVASTAVA, D., AND STUCKEY, P. J. 1995. Bottom-up evaluation and query optimization

of well-founded models. Theor. Comput. Sci. 146, 1&2, 145–184.

KERISIT, J. AND PUGIN, J. 1988. Efficient query answering on stratified databases. In FGCS, pp. 719–726.

LEONE, N., ALLOCCA, C., ALVIANO, M., CALIMERI, F., CIVILI, C., COSTABILE, R., CUTERI, B.,

FIORENTINO, A., FUSCÀ, D., GERMANO, S., LABOCCETTA, G., MANNA, M., PERRI, S., REALE,

K., RICCA, F., VELTRI, P., AND ZANGARI, J. 2019. Large scale DLV: preliminary results. In

A. CASAGRANDE AND E. G. OMODEO (Eds.), Proceedings of the 34th Italian Conference on Compu-

tational Logic, Trieste, Italy, June 19-21, 2019., Volume 2396 of CEUR Workshop Proceedings. CEUR-

WS.org.

LEONE, N., ALLOCCA, C., ALVIANO, M., CALIMERI, F., CIVILI, C., COSTABILE, R., FIORENTINO,

A., FUSCÀ, D., GERMANO, S., LABOCCETTA, G., CUTERI, B., MANNA, M., PERRI, S., REALE, K.,

RICCA, F., VELTRI, P., AND ZANGARI, J. 2019. Enhancing DLV for large-scale reasoning. In M. BAL-

DUCCINI, Y. LIERLER, AND S. WOLTRAN (Eds.), Logic Programming and Nonmonotonic Reasoning

- 15th International Conference, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings,

Volume 11481 of Lecture Notes in Computer Science, pp. 312–325. Springer.

LIU, L., PONTELLI, E., SON, T. C., AND TRUSZCZYNSKI, M. 2010. Logic programs with abstract

constraint atoms: The role of computations. Artif. Intell. 174, 3-4, 295–315.

MUMICK, I. S., PIRAHESH, H., AND RAMAKRISHNAN, R. 1990. The magic of duplicates and aggregates.

In D. MCLEOD, R. SACKS-DAVIS, AND H. SCHEK (Eds.), 16th International Conference on Very Large

Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings., pp. 264–277. Morgan

Kaufmann.

PELOV, N., DENECKER, M., AND BRUYNOOGHE, M. 2007. Well-founded and stable semantics of logic

programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

PRZYMUSINSKI, T. C. 1989. On the declarative and procedural semantics of logic programs. J. Autom.

Reasoning 5, 2, 167–205.

ROSS, K. A. 1994. Modular stratification and magic sets for datalog programs with negation. J. ACM 41, 6,

1216–1266.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model se-

mantics. Artif. Intell. 138, 1-2, 181–234.

STUCKEY, P. J. AND SUDARSHAN, S. 1994. Compiling query constraints. In V. VIANU (Ed.), Proceedings

of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May

24-26, 1994, Minneapolis, Minnesota, USA, pp. 56–67. ACM Press.

WHALEY, J., AVOTS, D., CARBIN, M., AND LAM, M. S. 2005. Using datalog with binary decision

diagrams for program analysis. In K. YI (Ed.), Programming Languages and Systems, Third Asian

Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, Volume 3780 of Lecture

Notes in Computer Science, pp. 97–118. Springer.

	1 Introduction
	2 Background
	3 Improved strategies for the magic sets algorithm
	3.1 Inhibit new cycles
	3.2 Handle full-free adornments
	3.3 Efficiently detect subsumed rules

	4 Experiment
	5 Related work
	6 Conclusion
	References

