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Abstract

When programs feature a complex control flow, existing techniques for resource analysis produce cost
relation systems (CRS) whose cost functions retain the complex flow of the program and, consequently,
might not be solvable into closed-form upper bounds. This paper presents a novel approach to resource
analysis that is driven by the result of a termination analysis. The fundamental idea is that the termination
proof encapsulates the flows of the program which are relevant for the cost computation so that, by driving
the generation of the CRS using the termination proof, we produce a linearly-bounded CRS (LB-CRS).
A LB-CRS is composed of cost functions that are guaranteed to be locally bounded by linear ranking
functions and thus greatly simplify the process of CRS solving. We have built a new resource analysis
tool, named MaxCore, that is guided by the VeryMax termination analyzer and uses CoFloCo and PUBS
as CRS solvers. Our experimental results on the set of benchmarks from the Complexity and Termination
Competition 2019 for C Integer programs show that MaxCore outperforms all other resource analysis tools.
Under consideration for acceptance in TPLP.
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1 Motivation and Related Work

The classical approach to resource analysis by Wegbreit consists of two steps: (1) the gener-
ation of a cost relation system (CRS) from the program that defines by means of recursive
cost functions its resource consumption, (2) solving the CRS into a closed-form expression
that bounds its cost. This approach is generic w.r.t. the cost model that defines the type of re-
source that is being measured, e.g., it has been applied to estimate number of execution steps,
memory, energy (Liqat et al. 2015; Grech et al. 2015), user-defined cost models (Navas et al.
2007). W.l.o.g., we use the cost model adopted in the Complexity and Termination competition
http://termination-portal.org/wiki/Termination_Competition_2019 (abbreviated
as TermComp) which simply estimates the asymptotic complexity order (e.g., by accumulating
constant values in cost functions). This classical resource analysis approach has been applied to
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UE projects TIN2015-69175-C4-3-R and TIN2015-66293-R, and by the CM project S2018/TCS-4314.
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1 i n t aaron3 ( i n t x , i n t y ,
2 i n t z , i n t t x ) {
3 whi le ( x >= y ) {
4 i f ( nondet ( ) > 0) {
5 z = z − 1 ;
6 t x = x ;
7 x = nondet ( ) ;
8 i f ( x > t x+z ) re tu rn 0 ;
9 }

10 e l s e {
11 y = y + 1 ;
12 }
13 }
14 re tu rn 0 ;
15 }

l0 l1 l2
τ0 : true

τ1 : x≥ y

undf1 > 0

undf2 < x+ z

x′ = undf2

z′ = z−1

τ2 : x≥ y

undf1≤ 0

y′ = y+1

τ3 : x≥ y

undf1 > 0

undf2≥ x+ z

x′ = undf2

z′ = z−1

τ4 : x < y

cl0(X ,Y,Z,Co) :- τ0,cl1(X ,Y,Z,Co′),Co #= Co′+1.
cl1(X ,Y,Z,Co) :- τ1,cl1(X

′,Y,Z′,Co′),Co #= Co′+1.
cl1(X ,Y,Z,Co) :- τ2,cl1(X ,Y ′,Z,Co′),Co #= Co′+1.
cl1(X ,Y,Z,Co) :- τ3,cl2(X

′,Y,Z′,Co′),Co #= Co′+1.
cl1(X ,Y,Z,Co) :- τ4,cl2(X ,Y,Z,Co′),Co #= Co′+1.
cl2(X ,Y,Z,Co) :- Co #= 1.

Fig. 1. Motivating example (left). Direct TS (upper-right). Non-solvable CRS (bottom-right)

a wide variety of declarative and imperative programming languages: earlier work applied it to
functional (Wegbreit 1975) and logic languages (Debray and Lin 1993; Debray et al. 1994), later
work to imperative languages such as Java and Java bytecode (Albert et al. 2007), concurrent
programs (Garcia et al. 2015; Albert et al. 2018), LLVM (Grech et al. 2015; Liqat et al. 2015),
among others. In most cases, the program written in any imperative/declarative, source/bytecode
language is first transformed into a simpler intermediate representation (IR) that works only on
Integer data, which is the starting point of our work. For this, a size abstraction is applied on the
program to transform all data into their sizes (e.g., by using the well-known term-size/term-depth
abstractions, or the path-length norm by Spoto et al. (2010) for heap-allocated data structures,
etc). This step is followed by a size analysis (Cousot and Halbwachs 1978) that infers size rela-
tions among the program variables. Therefore, step (1) above can be conceptually split into two
parts: (1a) the transformation of the program into an Integer IR using a language-specific size
abstraction, and (1b) the generation of a CRS from the IR using the gathered size relations. The
IR we adopt in the paper are Integer Transition Systems (abbreviated as TS) which are an official
input language for TermComp. For the sake of generality, our work assumes that the input pro-
gram (written in any language) has been already transformed into a TS and a language-specific
size analysis has been applied, and focuses on (1b).

An important limitation of this classical approach to resource analysis is that CRS inherit
the structure of the input program from which they are generated or, equivalently, of its IR.
When the program features a complex control flow, this might lead to CRS that cannot be solved
in step (2). Our motivating example is aaron3, borrowed from the set of benchmarks used in
TermComp’19. Fig. 1 shows the C implementation for this program (left) and the TS directly
obtained from it (up-right). The TS will be explained in further detail later, by now, we only
want to emphasize that it comprises the different paths in the execution flow and that its arrows
are labeled with the constraints that are gathered along each path (undef variables are fresh
variables used to represent the unknown result of function nondet). For instance, the upper arrow
from l1 represents the iteration of the loop that executes the then branch of the first if statement
and it accumulates the constraints gathered from those instructions in τ1 (the guard contains
undef < x+ z instead of undef ≤ x+ z because the condition in line 8 is evaluated after the 3
assignments, so the variable z refers to the original value minus one). Note that, regardless of the
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programming language used to implement aaron3, a similar TS would be produced. The CRS,
written as a CLP(Z) program, that has been obtained by a standard cost analysis from this TS
is shown in the figure (down-right). We can observe that the structure of the cost functions (i.e.,
the predicates) corresponds directly to the flow in the original TS, with one cost function per
location in the TS and the constraints guarding the cost equations (i.e., the clauses). The cost
accumulated by each function is calculated in the last parameter of the predicates. While one
could execute this CLP(Z) program for concrete input values, our purpose is to obtain an upper
bound for Co that is sound for any possible execution, i.e., solve the CRS into a closed-form
upper bound. However, this CRS is not solvable by existing systems (e.g., CoFloCo, PUBS)
due to two reasons: (1) they rely on linear ranking functions to bound the number of iterations
that loops (i.e., the recursive predicates) perform, while cl1 requires the lexicographic ranking
function 〈z,x− y〉, and (2) they cannot find the phases in the execution flow for the different
increase/decrease of variables. Concretely, the loop presents two phases. In the first phase (when
z > 0), at each iteration either z decreases and x takes an arbitrary value smaller than or equal to
x+ z, or y increases by one. In the worst case x increases, and after every increment of x there
may be x−y increments of y followed by a new update of x. However, these potential increments
in x can only happen z times, and then the loop enters the second phase where z≤ 0. In this other
phase, x decreases or y increases, therefore reducing the difference x− y at each iteration.

The problem of the non-solvability of the CRS obtained from complex flow programs was ob-
served in (Flores-Montoya and Hähnle 2014), which proposes to partition all possible executions
of the program into a finite set of execution patterns, named chains, so that more precise con-
straints can be inferred for each of the chains, that results in simpler ranking functions and more
upper bounds being found. However, the computation of the chains is not guided by semantic cri-
teria, rather a full partitioning is carried out, that might lead to inaccuracy as our example shows.
Indeed, CoFloCo (Flores-Montoya 2017) —implementing the chains— is not able to infer an
upper bound: it detects 5 different chains for the loop in aaron3 but can only infer a bound for
2. One of those detected chains is the loop formed by the transitions with constraints τ1 and then
τ2. This chain is detected for the precondition x≥ y, which is not strong enough to obtain a linear
ranking function. Since the chain detection was not able to extract the finer phases above depend-
ing on the value of z, CoFloCo cannot find an upper bound. Further related work based on finding
phases includes (Gulwani et al. 2009; Sharma et al. 2011). The former is based on size-change
constraints that are less expressive than the general linear constraints used by (Flores-Montoya
and Hähnle 2014) and us. The latter computes rather sophisticated phases but its main target is
on proving safety properties, and it is unclear how effectively it would perform for cost.

The main idea of our approach that differs from such previous work is to use, as seman-
tic criterion to guide the CRS generation, the termination proofs inferred by a powerful termi-
nation analyzer as they comprise the actual phases needed to compute resource bounds. This
idea is materialized in our analysis by transforming the TS into a hierarchically loop-nested TS
that witnesses all components in the termination proof (e.g., the one for aaron3 appears later in
Fig. 7). The benefit of hierarchically loop-nested TS is that they allow us to produce CRS that are
Linearly-Bounded (LB), as shown later in Fig. 8. Cost functions in the LB-CRS are guaranteed to
have linear ranking functions. Thus, the solving process is greatly simplified, e.g., we indeed find
an upper bound of O(n3) for aaron3, where n is the maximum of the parameters x, y, z, and tx.
Interestingly, we rely on a conditional termination analysis (Borralleras et al. 2017) that, when
it cannot prove termination unconditionally, tries to infer preconditions under which termination
is guaranteed. Conditional termination proofs allow us to generalize our results to conditional
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upper bounds. Finally, another work related to ours is (Sinn et al. 2014). The similarity with our
approach is that both can use lexicographic ranking functions to bound the cost but our technique
is more general as it allows more powerful termination arguments, besides not being limited to
difference constraints as (Sinn et al. 2014). According to our experimental results, the precision
of our system significantly outperforms their system Loopus.

Summary of contributions. Briefly, the main contributions of our work are: (i) We define the
concept of lexicographic phase-level termination proof, Proof , to store information on the phases
which have been considered during the conditional termination proof and unfold the TS accord-
ingly. (ii) We present a transformation which takes the unfolded TS together with the Proof s of
its phases and produces a hierarchically loop-nested TSh which explicitly represents the different
components of the termination proof. The CRS generated from TSh is locally LB, although still
needs to be globally bounded in the solving step. (iii) We propose extensions of the basic frame-
work: to embed the ranking functions into the CRS; and to embed the preconditions inferred
by the termination analysis so that conditional upper bounds can be generated. (iv) We imple-
ment MaxCore (standing for Max-SMT based termination analyzer + COst Recurrence Equation
solver), that makes use of VeryMax (Borralleras et al. 2017) to generate the conditional termina-
tion proofs from which our implementation produces CRS, and uses both CoFloCo and PUBS as
backend solvers. (v) We prove experimentally on the benchmarks from TermComp’19 for C In-
teger programs that MaxCore outperforms all existing resource analyzers in number of: problems
solved, unique problems solved, more accurate solutions, and overall score.

2 Lexicographic Phase-Level Termination Proofs and Unfolded TS

In this section we present an overview of (Borralleras et al. 2017) and propose how to adapt
the results of this analysis to guide the generation of the CRS. Essentially, Borralleras et al.
(2017) describe a template-based method for proving conditional termination, and then show
how to use conditional proofs to advance towards an (unconditional) termination proof. The key
idea is that conditional termination proofs show termination for a subset of states which can be
excluded in the rest of the termination analysis, i.e., the rest of the proof can concentrate on the
complementary states. This way, the method allows generating not only a termination proof, but
also a characterization of the execution phases in a program. An execution phase characterizes a
subset of states in which termination follows from a different conditional invariant.

We assume programs are given as (Linear) Integer Transition Systems (TSs). A TS is a control-
flow graph with transitions τ of the form (ls,ρ, lt), where ls and lt are locations and ρ is a
conjunction of linear inequalities describing the transition relation (by abuse of notation we
sometimes use τ to express only its associated ρ). When the input program contains non-linear
instructions that are not handled by our analysis, they are translated into undefined variables
within the inequalities to express the loss of information. For instance, if the condition in the if
statement in line 4 was x*y, this is transformed into a call to function nondet that has led to
the introduction of the undefined variable undef1 (representing the unknown value x*y) in the
constraints τ1, τ2 and τ3. The formula ρ can contain primed variables v′, which represent the
value of a variable v after the transition (equalities v′ = v are omitted). A program component C
of a program P is the set of transitions of a strongly connected component (SCC) of the CFG of
P. For example, in the TS of Fig. 1 there are two trivial (i.e., single node) SCCs; the transitions
τ1 and τ2 form a non-trivial program component.

Termination of a program is proven component-by-component, and termination of a program
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component is proven iteratively by removing transitions that can only be finitely executed. A
ranking function for a component C and a transition τ = (ls,ρ, lt) ∈C is a function R : Zn→ Z
such that it is bounded from below ρ |= R ≥ 0, it strictly decreases ρ |= R > R′ and, for every
(l̂s, ρ̂, l̂t)∈C, it is non-increasing ρ̂ |=R≥R′, where R′ is the version of R using primed variables.
The key property of ranking functions is that if one transition admits one, then it cannot be
executed infinitely. In our setting, proving termination of a component C is based on finding a
linear ranking function together with some supporting invariants that ensure the conditions for
being a ranking function. Invariants are described by a function Q : L (C)→F (V ), where L (C)

is the set of locations of C and F (V ) are conjunctions of linear inequalities over the variables V
of the program. Then, strictly decreasing transitions w.r.t. this ranking function can be removed
and the process is iterated over the remaining SCCs. However, although all supporting invariants
are inductive in (Borralleras et al. 2017), they are not necessarily initiated in all computations.
In this case, those invariants are called conditional invariants as they yield a precondition for
termination, i.e., they prove termination for a subset of initial states. Therefore, the rest of the
proof can be restricted to the remaining states. This makes the proof method more powerful and,
as a by-product, loops with different execution phases can be handled naturally.

In this paper, we propose to store information on the phases which have been considered
during the termination proof, together with the lexicographic termination proof of each phase.
This information will capture all the possible execution flows in the execution of the program
and will be used for guiding the generation of the CRS.

Definition 1 (lexicographic phase-level termination proof, Proof )
Let C be a component and R a ranking function for C with a supporting conditional invariant Q.
Then C can be split into C>]CsubSCC ]CnoSCC where:

• C> contains the strictly-decreasing transitions in C w.r.t. R assuming Q,
• CsubSCC contains the transitions that belong to an SCC in C \C>, and
• CnoSCC = C \ (C> ]CsubSCC) contains the transitions that after removing the strictly de-

creasing transitions do not belong to any SCC.
We denote by CR the set of transitions C> ]CnoSCC. A lexicographic phase-level termination
proof for (a phase of) C can be represented by a tree-like structure Proof (C) = 〈R,Q,CR, 〈Proof
(C1), . . . ,Proof (Ck)〉〉 where C1, . . . ,Ck are the new SCCs in CsubSCC.

The information kept for the termination proof of (a phase of) a component in the definition above
is (i) the ranking function used; (ii) its supporting conditional invariants; (iii) the set of transitions
removed, either because they strictly decrease wrt. the ranking function or they do not belong
to any SCC after removing the strictly decreasing ones; and, recursively, (iv) the information
corresponding to the termination proof of the remaining SCCs after transition removal.

Example 1
Let us consider the non-trivially terminating component C = {τ1,τ2} of Fig. 1, where τ1 =

(l1,ρ1, l1), τ2 = (l1,ρ2, l1), ρ1 = x ≥ y∧undf1 > 0∧undf2 < x+ z∧ x′ = undf2∧ z′ = z−1 and
ρ2 = x≥ y∧undf1≤ 0∧y′ = y+1. In this case a possible ranking function is x−y, with support-
ing conditional invariant z≤ 0. In particular, we have x−y≥ 0 both in τ1 and τ2, and x−y strictly
decreases in τ2, as well as in τ1 assuming z ≤ 0. Therefore we have C> = {τ1,τ2}, CsubSCC = /0
and CnoSCC = /0, giving us CR = {τ1,τ2} and Proof (C) = 〈x− y,Q,{τ1,τ2},〈〉〉 where Q(l1) =
z ≤ 0. This is a conditional termination proof for C with supporting conditional invariant z ≤ 0.
To complete the termination proof, we have to analyze the rest of the states where z≥ 1. For this,
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l0C0

l1

l2 C1

τ1

τ2

τ3

τ4τ5

τ6

τ7

Fig. 3. First split without h

l0C0

l1

l2

τ1

τ2

τ3

τ4τ5

τ6

τ7

Fig. 4. Final split

l0C′0

l1

l2

n′1 = 1
τ1∧n1 > 0

τ2∧n1 > 0

τ ′7∧n′1 = 0
τ3∧n1 > 0

τ4∧n1 > 0

τ ′7∧n′1 = 0

τ5∧n1 > 0

τ6∧n1 > 0
τ7∧n1 = 0∧n′1 = 1

Fig. 5. Move source of τ7

we will assume an entry transition of the form (l0,z ≥ 1, l1) instead of the original (l0, true, l1),
and a strengthened version of C defined by C′ = {τ ′1,τ ′2}, with τ ′1 = (l1,ρ ′1, l1), τ ′2 = (l1,ρ ′2, l1),
ρ ′1 = ρ1 ∧ z ≥ 1 and ρ ′2 = ρ2 ∧ z ≥ 1. In this new phase, z− 1 is a ranking function for C′ and
τ ′1 without the need of any additional supporting invariant, since z− 1 ≥ 0 in τ ′1, z− 1 strictly
decreases in τ ′1 and it is non-increasing in τ ′2. Therefore, we have C

′> = {τ ′1}, C
′subSCC = {τ ′2}

and C
′noSCC = /0 and Proof (C′) = 〈z−1,Q′,{τ ′1},Proof ({τ ′2})〉, with Q′(l1) = true. Finally, x−y

is a ranking function for τ ′2, giving Proof ({τ ′2}) = 〈x− y,Q′,{τ ′2},〈〉〉.

l0

l1

l2

l̂1

τ 0
∧ z
′ ≥

1

τ0 ∧
z ′≤

0

τ3

τ
4

τ 3

τ 4

τ1∧ z≥ 1 τ2∧ z≥ 1

τ1∧ z≤ 0 τ2∧ z≤ 0

z≤
0

Fig. 2. Unfolded
TS

Lexicographic phase-level termination proofs can be considered to use a
semantically equivalent unfolded version of the TS. The unfolding goes as
follows. For each transition (ls,ρ, lt) of a component C, on the one hand
(ls,ρ, lt) is strengthened with the negation of the conditional invariant Q
for C; more precisely, the transition is replaced by (ls,ρ ∧¬Q(ls), lt), or a
set of transitions if ¬Q(ls) has disjunctions. On the other hand, a transition
(l̂s,ρ ∧Q(ls), l̂t) is added between two fresh locations l̂s and l̂t . Transitions
strengthened with the negation of the conditional invariant correspond to a
phase for which termination has not yet been proven, whereas transitions
strengthened with the conditional invariant correspond to a phase for which
termination has already been proven. Under this assumption, the remaining
proof can be restricted to transitions strengthened with the negated invari-

ant. A single transition (ls,Q(ls), l̂s) is added to connect the two phases, i.e., to allow switching
to a phase for which termination has already been proven. Finally, to preserve semantic equiv-
alence of the unfolded transition system, the entry transitions (ls,ρ, lt) of C are unfolded into
(ls,ρ ∧¬Q(lt)′, lt) and (ls,ρ ∧Q(lt)′, l̂t), while exit transitions are unfolded into (ls,ρ, lt) and
(l̂s,ρ, lt). It is worth noticing that this unfolding is equivalent to the one described in (Borralleras
et al. 2017) but in general leads to a simpler TS. In what follows, we assume the original TS
has been unfolded as described above, and denote it TSu. Fig. 2 shows the unfolded TS corre-
sponding to the termination proof of the program in Fig. 1 with: τ0 : true; τ1 : x ≥ y, undf1 > 0,
undf2 < x+ z, x′ = undf2, z′ = z− 1; τ2 : x ≥ y, undf1 ≤ 0, y′ = y+ 1; τ3 : x ≥ y, undf1 > 0,
undf2 ≥ x+ z, x′ = undf2, z′ = z−1; τ4 : x < y. Note that we have also strengthened the transi-
tions looping in l̂1 with its conditional invariant z ≤ 0. This graph visualizes the loop phases in
the program, which have been described in Sec. 1.

3 Linearly-Bounded Hierarchically-Loop-Nested Integer Transition Systems

The goal of this section is to soundly transform each phase of an unfolded transition system TSu,
which is given as an SCC C with its corresponding Proof (C) using linear ranking functions (see
Sec. 2) into a TS composed of linearly-bounded hierarchically loop-nested SCCs as defined be-
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l′0C′′0

l′1

l′2

f0

n′1 = 1∧n′2 = 1
τ1∧n1 > 0∧n2 > 0

τ2∧n1 > 0∧n2 > 0

τ ′7∧n′1 = 0∧n2 > 0

τ3∧n1 > 0

∧ n2 > 0

τ4∧n1 > 0

∧ n2 > 0

τ
′
7∧n′1 = 0

∧ n2 > 0

τ ′7∧n1 = 0∧n′2 = 0

τ5∧n1 > 0

∧ n2 > 0

τ6∧n1 > 0

∧ n2 > 0

τ ′7∧n1 = 0∧n2 = 0

l0C′0

l1

l2
τ1∧n1 > 0

τ2∧n1 > 0

τ ′7∧n′1 = 0
τ3∧n1 > 0

τ4∧n1 > 0

τ ′7∧n′1 = 0

τ5∧n1 > 0

τ6∧n1 > 0

τ7∧n1 = 0∧n′1 = 1

τ ′7∧n1 = 0

Fig. 6. Example of complex transformation

low. Let us introduce some notation. By entryT (C), we denote all entry transitions to C, i.e. with
target location in C and source location out of C, and by exitT (C) we denote all exit transitions
from C, i.e. with source location in C and target location out of C. A location l in C is said to be
an entry location if there is a transition in entryT (C) with l as target. A location l in C is said to
be an exit location if there is a transition in exitT (C) with l as source. In what follows we assume
that when we are given a component C we also have entryT (C) and exitT (C).

Definition 2 (linearly-bounded hierarchically-loop-nested SCC/TS)
An SCC C is said to be hierarchically loop-nested if (i) it has a single entry and exit location
e; (ii) there is a set of locations l0, . . . , ln with e = l0 s.t. if li is connected (with one or more
transitions) to another l j then j > i or j = 0 and (iii) for all li with i ≥ 0, either li has no more
connections than these or it is the entry location of a sub-SCC that is also a hierarchically loop-
nested TS. A TS is hierarchically loop-nested if all its subSCCs also are. In addition, it is said to
be linearly bounded if the loop (with all transitions between locations in) l0, . . . , ln is bounded by
a linear ranking function and all sub-SCCs are linearly bounded.

Therefore, from C and Proof (C), we aim at generating a transformed TS that has a representation
of nested loops, where every loop has a single location that is both the entry and the exit location.
W.l.o.g., we assume that the component C has a single entry location (if there are several we
simply clone C for every entry location, by renaming locations). Every cloned component Ci for
the entry location i will have as entries those of C that have i as target. Regarding exit transitions,
it is easy to transform any component C with exit locations that are different from the entry
location into one TS that has only exits from the entry location. Furthermore, this transformation
can be done introducing only transitions from li to l j if a transition from li to l j already exists.
This transformation, that we call in what follows exitToentry can be, in general, done to change
the source location of a set of transitions from one location to another (and in particular from
one exit to an entry). This more general construction, that we call moveSourceLocation, takes
a component C (including entries), a set of transitions T with the same source location l and a
location e, and introduces a fresh variable to encode the move from l to the new location e when
the transitions in T can be applied, and then changes T to have e as source. The transition system
in Fig. 5 is the result of applying moveSourceLocation to C0, T = {τ7} and e = l1 in Fig. 4.

Now, we describe how to transform any SCC C and Proof (C) into a LB hierarchically-loop-
nested one. As it is a general transformation procedure for any possible component C, its formal
description is quite involved. However, in practice, in most cases the transformation is not that
complex, as we show later in Ex. 2 for our running example. We will also provide some examples
of the application of the more involved steps. We first define the following auxiliary function
split on C which roughly uses Proof (C) to extract a set of sub-SCCs (maybe including a single
location without transitions) which represent the inner loops and a subset of CR (the removed
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transitions in the first step of Proof (C)) that are the transitions performed to go from one inner
loop to another and that form the outer loop. It is important to note that if we remove any of
these selected transitions, the only SCCs of the remaining graph are the ones we have extracted.
The splitting has a DAG-like shape of components whose leaves return to the unique initial
component C0, and C0 has the same target location for all returning transitions.

Definition 3
Let C be a terminating SCC with Proof (C). Procedure split(C) extracts subcomponents C0, . . . ,Cn

and disjoint non-empty sets of transitions T0, . . . ,Tn with n≥ 0, such that
a. the transitions in C0, . . . ,Cn union T0, . . . ,Tn coincide with C; when Ci has no transition, we

say it includes the single source location of all transitions in Ti,
b. every Ci is included in C′j1 ∪ . . .∪C′jm ∪CR for some m≥ 0, where Proof (C′jk) is a subproof

of Proof (C) for k ∈ {1 . . .m},
c. every Ti is included in CR,
d. C0 includes the entry location,
e. every Ci is an SCC and no location is shared between Ci components,
f. the source location of all transitions in Ti for i ∈ {0 . . .n} belongs to Ci,
g. the target location of every transition in Ti belongs to some C j with j > i or to C0,
h. all transitions in T0∪ . . .∪Tn having target location in C0 have the same target location.

As a simple example, the split of the phase where z≥ 1 in our running example (see Fig. 1) has
one sub-SCC C0 = {τ2∧ z≥ 1} and T0 = {τ1∧ z≥ 1}. On the other hand, the split of the phase
where z≤ 0 has C0 as the trivial SCC containing l̂1 and T0 = {τ1∧ z≤ 0,τ2∧ z≤ 0}.

Given a terminating SCC C with Proof (C), the result of split(C) can always be built. As a
possible way to obtain split(C), we can make a first selection of C0, . . . ,Cn and T0, . . . ,Tn as
follows: (i) we take a set of transitions in CR having the same source and target location and
remove them from the SCC; (ii) then we recompute the (maximal) SCCs of the remaining graph,
obtaining C0, . . . ,Cn; (iii) transitions that are not in any of the obtained subSCCs (included those
initially removed) must be in T as they could be removed in the termination proof, and are the
selected set of transitions that belong to the corresponding Ti depending on where is the source
location. Fig. 3 shows a first split if we start removing τ1, as we obtain C0 and C1 and T0 = {τ1}
and T1 = {τ2,τ7}. After this, it is easy to see that we have conditions a–g. However it may happen
that condition h does not hold, as it is the case in the example since τ2 and τ7 have different target
locations in C0. Then, as shown in Fig. 4 we can join some components until the condition holds
again. In this case we join C0 and C1 into a single component C0 and T0 contains only τ7.

In what follows, if C0, . . . ,Cn and T0, . . . ,Tn is split(C) then we define split-exits(Ci) = Ti

and split-entries(Ci) to all transitions in T0, . . . ,Tn with target location in Ci. We call split-entry
locations of Ci to the set of target locations of split-entries(Ci) and split-exit locations of Ci to the
set of source locations of split-exits(Ci). The following recursive procedure soundly transforms
a given component with a termination proof only containing linear ranking functions into a non-
cycling set (forming a tree-like structure) of hierarchically connected loop-nested SCCs (with
the same single entry and exit location) all of them being bounded by a linear ranking function.

Definition 4 (transformation to linearly-bounded hierarchically loop-nested SCCs)
Let C be a terminating SCC with Proof (C) and single entry and exit location e. Procedure
nestedLoopTrans(C) transforms C by first computing C0, . . . ,Cn and T0, . . . ,Tn with split(C). If
n = 0 and C0 is a single location, then return C. Otherwise we perform the following steps:
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1. Build all Proof (Ci) from Proof (C) following Def. 1 for all non-trivial SCC Ci. Note that
some Ci can include more than one component in Proof (C) and some transitions in CR.

2. Clone all Ci (and Ti and Proof (Ci)) with i > 0 such that Ci has more than one split-
entry location. After this, all components have a single split-entry location. Then apply
moveSourceLocation to the resulting components (including the cloned ones) and to C0 to
move all transitions in Ti (maybe cloned) with source different from the single split-entry
location of Ci. After this, we have components C′0, . . . ,C

′
m and T ′0 , . . . ,T

′
m, with all C′i with

i ≥ 0 having a single location as both split-entry and split-exit. Let s be such location of
C′0, which may be different from e.

3. Let fi be a fresh location if C′i is a non-trivial SCC or the single location in C′i otherwise.
4. If C′0 is a trivial SCC only including e, add all entries of C to the transformation. Oth-

erwise clone C′0 obtaining C′′0 with a mapping µ (from old locations to fresh locations)
and Proof (C′′0 ). For every entry transition 〈o,ρ,e〉 in C add an entry transition 〈o,ρ,µ(e)〉
to C′′0 and if e = s a transition 〈o,ρ, f0〉 to the transformation. Then, for every transition
〈s,ρ, t〉 in T ′0 , add a transition 〈µ(s),ρ ′, f0〉 as exit in C′′0 and for every exit 〈e,ρ,o〉 of C
add as exit in C′′0 a transition 〈µ(e),ρ ′, f0〉 if e = s and 〈µ(e),ρ,o〉 otherwise (where, in all
cases, ρ ′ does not include any of the conjuncts with primed variables of ρ). If e 6= s then
apply exitToentry to the resulting C′′0 considering that µ(e) is the entry location. Finally,
compute nestedLoopTrans(C′′0 ).

5. Replace every transition in T ′i of the form 〈s,ρ, t〉 by 〈 fi,ρ, t〉 and 〈s,ρ ′, fi〉, where ρ ′ does
not include any of the conjuncts with primed variables. Note that these transitions are new
entries and exits of C′0, . . . ,C

′
m.

6. Add all exits 〈e,ρ,o〉 of C to C′0 as exit transitions. If e 6= s then apply exitToentry to the
resulting C′0. Then, replace every new exit transition 〈s,ρ,o〉 of C′0 by 〈s,ρ ′, f0〉 and add
〈 f0,ρ,o〉 as exit of the transformation of C, where, again, ρ ′ is ρ without primed variables.

7. Compute nestedLoopTrans(C′i) on the resulting C′i for all i ≥ 0, and add the result to the
transformation of C.

Intuitively, the steps of the transformation can be understood as follows. After computing the
split(C), step 1 builds the termination proofs associated to the chosen sub-components and tran-
sitions. Then, in step 2 we turn the components into components with a single split-entry and
split-exit location. For instance, Fig. 5 shows the result of applying this step to the split given
in Fig. 4. In this case, we do not need to clone any component but, as can be seen, we apply
moveSourceLocation to C0, {τ7} and the split-entry location l1 (in Fig. 4) since the split-entry of
C0 is l1 and the split-exit of C0 is l2. After the step the split-entry and the split-exit s of C′0 is l1,
which is different from the entry location e which is l0. Note also that moveSourceLocation has
changed the entry transition to C′0 adding n′1 = 1 (which is now the new version of the entry to
C). Fig. 6, shows the result of applying the transformation steps to the C′0 and T ′0 in Fig. 5 but
without applying nestedLoopTrans recursively. In step 3, we define the locations that are used
to express the outer loop (i.e. the loop of all sub-SCCs C′i) of the transformation. This is f0 in
Fig. 6. In step 4 we connect the loop with the entries of the component. This step is crucial as it
includes an initial use of the first sub-SCC C′0, before entering the outer loop. The reason for that
is that there must be paths in the original C that run some transitions in C′0 before running any of
the transitions in T ′0 , which are used as soon as we enter the main loop. In Fig. 6, we can see the
resulting C′′0 , which is the result of first cloning C′0, and then, since l′0 = e 6= s = l′1, we add a tran-
sition from l′1 to f0 and apply exitToentry to move this transition to l′0. In step 5, we connect the
sub-SCCs using the locations fi to create the outer loop (which is represented by the connections
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l0 f0

l2

l̂1

l′1

l′′1
τ ′2 : z≥ 1

τ ′3 : z≥ 1

τ ′1 : z≤ 0

τ ′16 : x≥ y,z≥ 1,undf1≤ 0,y′ = y+1

τ
′
15 : x≥ y,z≥ 1,undf1 > 0

undf2 < x+ z

τ
′
14 :

z≤ 0

τ
′
12 : x≥ y,undf1 > 0

undf2≥ x+ z
τ
′
13 :

x < y

τ
′
7 : x≥ y,z≥ 1,undf1 > 0

undf2 < x+ z

x′ = undf2

z′ = z−1

τ
′
21 : x≥ y

z≥ 1

undf1≤ 0

y′ = y+1
τ
′
20 : x≥ y,z≥ 1,undf1 > 0

undf2 < x+ z

τ ′18 : z≤ 0

τ
′
17 : x≥ y,undf1 > 0

undf2≥ x+ z

τ ′19 : x < y

τ ′4 : z≤ 0

τ
′
6 : x≥ y,undf1 > 0

undf2≥ x+ z

x′ = undf2

z′ = z−1
τ ′5 : x < y

τ
′
8 : x≥ y

z≤ 0

undf1 > 0

undf2 < x+ z

x′ = undf2

z′ = z−1

τ
′
9 : x≥ y

z≤ 0

undf1≤ 0

y′ = y+1

τ
′
10 : x≥ y,undf1 > 0

undf2≥ x+ z

x′ = undf2

z′ = z−1

τ ′11 : x < y

Fig. 7. Transformed CRS

of C′0 to f0 in the right-hand-side of Fig. 6), and in 6 we introduce the needed exit transitions. For
simplicity, Fig. 6 does not include the exits, but they would be leaving from l0 = e 6= s = l1, and
hence exitToentry is applied to move them to l1 and then connected to f0. Finally, in the last step
we apply the transformation recursively. To further illustrate how the transformation works, the
following example shows the complete application of the transformation to our running example.

Example 2
Let us show how it works starting from the transformed graph in Fig. 2 and with the termination
proofs for each phase given in Ex. 1. The resulting transition system is shown in Fig. 7. Its key
feature is that it is ready to generate a linearly-bounded CRS in next section. There are two
SCCs in Fig. 2. The SCC that cycles in the location l̂1 is proved with a single ranking function
where all transitions are removed, and hence our transformation does not change anything, since
C0 is the location l̂1 and T ′0 = T0 contains both transitions. The SCC that cycles in location l1,
needs a lexicographic combination of two ranking functions, with each component removing one
transition, firstly removing τ1∧ z≥ 1 and secondly τ2∧ z≥ 1. Then split gives T0 = {τ1∧ z≥ 1}
and C0 is the SCC including location l1 and transition τ2∧z≥ 1. Therefore, first of all we compute
Proof (C0) according to step 1 of Def. 4. Step 2 does not change anything, since we have a single
component C′0 =C0 with a single location. Step 3 delivers a fresh location f0. Next, since C′0 =C0

is a non-trivial SCC, we clone it to C′′0 in step 4. This new SCC corresponds to location l′1 and
transition τ ′16 = τ2∧z≥ 1 in Fig. 7. Transition τ ′3 is the entry added to C′′0 . A transition τ ′2 = z≥ 1
entering f0 is also added since in this case e= s. Transitions τ ′12, τ ′13, τ ′14 and τ ′15 are the transitions
added as exits. Note that τ ′3 expresses the same transition relation as the entry τ0 ∧ z′ ≥ 1 of l1,
since τ0 = true. Transition τ ′15 is the same as the transition τ1∧z≥ 1 in T0 without conjuncts with
primed variables, while τ ′12, τ ′13 and τ ′14 express the same transition relation as the original exits
of l1 with τ3, τ4 and z ≤ 0, respectively, except for the conjuncts with primed variables again.
In step 5, the only transition in T0 is unfolded into the transitions τ ′7 and τ ′20 of Fig. 7. Step 6
adds transitions τ ′17, τ ′18 and τ ′19, corresponding to the exit transitions of l1 but without conjuncts
with primed variables, as well as transitions τ ′4, τ ′5 and τ ′6 as exits of the transformation of C.
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1© cl0(x,y,z) = 1+ c f0(x,y,z) {z≥ 1}
2© cl0(x,y,z) = 1+ cl′1(x,y,z) {z≥ 1}
3© cl0(x,y,z) = 1+ cl̂1

(x,y,z) {z≤ 0}
4© cl2(x,y,z) = 1 {}
5© c f0(x,y,z) = 1+ cl′′1 (x1,y1,z1)+ c f0(x2,y2,z2)

{x1 = x2,y2 ≥ y1,z1 = z2,x≥ y,z≥ 1,u1 > 0,
u2 < x+ z,x1 = u2,y1 = y,z1 = z−1}

6© c f0(x,y,z) = 1+ cl̂1
(x,y,z) {z≤ 0}

7© c f0(x,y,z) = 1+ cl2(x,y,z) {x < y}

8© c f0(x,y,z) = 1+ cl2(x
′,y′,z′) {x≥ y,u1 > 0,

u2 ≥ x+ z,x′ = u2,y′ = y,z′ = z−1}
9© cl′′1 (x,y,z) = 1+ cl′′1 (x

′,y′,z′) {x≥ y,z≥ 1,
u1 ≤ 0,x′ = x,y′ = y+1,z′ = z}

10© cl′′1 (x,y,z) = 1 {x≥ y,u1 > 0,u2 ≥ x+ z}
11© cl′′1 (x,y,z) = 1 {z≤ 0}
12© cl′′1 (x,y,z) = 1 {x < y}
13© cl′′1 (x,y,z) = 1 {x≥ y,z≥ 1,u1 > 0,u2 < x+ z}

....

Fig. 8. Fragment of Linearly-bounded CRS obtained from transformed TS

Finally, notice that l1 has been renamed to l′′1 to avoid confusion with the original location, and
τ ′21 corresponds to τ2∧ z≥ 1. Note that all recursive calls to nestedLoopTrans trivially terminate
in this example.

The transformation provided in this section is sound for resource analysis.

Theorem 1 (soundness and linearly-bounded)
Given a component C with Proof (C), then every SCC in nestedLoopTrans(C) is a linearly-
bounded hierarchically loop-nested transition system, and for every path π from an initial lo-
cation s to a final location t in C, there is a path π ′ from s to t in nestedLoopTrans(C) with
#(π ′)≥ #(π), where #(π) is the number of operations involved in π .

4 Linearly-Bounded Cost Relation Systems

A CRS is a set of cost equations of the form c(x) = 1+ c1(x1)+ . . .+ cn(xn){Ct}, where the
constraints Ct define the applicability conditions for the equation and state size relations among
x, x1, . . . ,xn. As stated in Sec. 1, w.l.o.g., we always accumulate a constant unitary cost. The set
of cost equations for c(x) defines the (possibly non-deterministic) cost function c. Even if the
input language from which the CRS are produced is deterministic, due to the loss of information
implicit to static analysis (e.g., when undef variables appear), the associated CRS will typically
be non-deterministic. CRS can be considered as constraint logic programs over integers that accu-
mulate costs, e.g., the above equation can be written as the clause c(X ,Co) :- Ct, c1(X1,Co1), . . . ,

cn(Xn,Con), Co #= 1+Co1 + . . .+Con (see also the CRS in Fig. 1).
The following definition presents the generation of a CRS from a TS with possible multi-

ple nested loops. As explained in Sec. 1, we assume that a language-specific size analysis has
been already applied such that entry locations of SCC/sub-SCC in the TS are annotated with
size(l,〈x〉,〈x′〉): the size relations between the values of the variables when reaching (x) and
leaving (x′) a location l. For example, for the TS in Fig. 7, the size analysis of location l′′1 will
infer the relations size(l′′1 ,〈x,y,z〉,〈x′,y′,z′〉) = {x = x′,y′ ≥ y,z = z′} as any path l′′1 →∗ l′′1 using
τ ′21 will not modify x and z, and y can only increase. Size analyses for various languages can be
found e.g. at (Albert et al. 2007; Serrano et al. 2013; Brockschmidt et al. 2016).

Definition 5 (linearly-bounded CRS)
Given a linearly-bounded hierarchically-loop-nested TS ts, let G be the set of locations in ts, x
be the variables involved in ts and scc(L) the list of the SCCs in ts considering only the locations
in the set L. Let entry loc(L) denote the entry location of a set of locations L (i.e., the only
location receiving transitions from outside L). The LB-CRS for ts is made up of the cost equations
generated by eqs(G) that, for every SCC L ∈ scc(G), proceeds as follows:
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• If L = {lo}, i.e., the SCC contains only one location lo, then every transition lo
τ→ ld gener-

ates one cost equation clo(x) = 1+cld (x
′) {τ}. If there are no transitions from lo, a dummy

equation clo(x) = 1{} is generated for uniformity.
• If |L| > 1 and entry loc(L) = lo, as the entry location is part of the principal loop in L,

we remove it to detect and, transitively, translate the remaining components. Every Di ∈
scc(L\{lo}) is translated by eqsC(Di)—defined below—and every cycle in the component
graph (each SCC Di is condensed into a single vertex di) starting from lo, i.e., cycles paths
of the form lo

τ→ d1→ d2 . . .→ d j→ lo, generates an equation (where ni = entry loc(Di)):

clo(x) = 1+ cn1(x′)+ cn2(x(2))+ . . .+ cn j(x( j))+ clo(x( j+1))

{τ}∪ size(ln1 ,〈x′〉,〈x(2)〉)∪ . . .∪ size(ln j ,〈x( j)〉,〈x( j+1)〉)

Every outgoing transition lo
τ→ lk (lk /∈ L) generates an equation clo(x) = 1+ clk(x

′){τ}.

eqsC proceeds as eqs with one difference: in both cases (L = {lo} and |L| > 1) the outgoing
transitions lo

τ→ lk generate cost equations cl0(x) = 1{τ}, i.e., without any call.

Let us give the intuition behind the above definition. For each location l in the TS, we produce a
corresponding cost function cl that captures its cost, and every transition produces an equation.
The labels of the transitions become the constraints of the CRS. The equation for the cycle
in the component graph collects the costs of all the sequential components and finishes with a
recursive call to express the loop. The size analysis allows us to track the changes in the variables
after every function call in order to express the cost in terms of the initial parameter values.
Note that the constraints of the transitions di→ di+1 and d j → lo are not needed in the equation
because they have been already used when generating the equations for every SCC Di recursively.
Finally, as eqsC is applied to components in an inner loop, the flow represented by these outgoing
transitions is incorporated in the cost equation of the outer loop and no function call is needed.

Example 3
In the transformed TS from Fig. 7 there are 5 SCCs: {l0}, {l2}, {l′1}, {l̂1} and { f0, l′′1}. The first
four are unitary, thus they generate equations directly. For example in l0, the transitions l0→ f0,
l0→ l′1, and l0→ l̂1 generate equations with calls to the corresponding cost function (see equa-
tions #1–3 in Fig. 8). On the other hand, l2 has no outgoing transition hence it creates a dummy
equation for cl2 (#4). Considering the non-unitary { f0, l′′1}, the only SCC after removing the en-
try location f0 is {l′′1}, thus eqsC({l′′1}) generates 5 equations for cl′′1

: τ ′21 creates the recursive
equation (#9) and τ ′17, τ ′18, τ ′19, and τ ′20 generate 4 equations without any call (#10–13). As f0 is
the entry location, its outgoing transitions generate the non-recursive equations of c f0 that invoke
cl̂1

and cl2 (#6–8). In the component graph l′′1 is condensed into dl′′1
by removing the transition

τ ′22, hence there is only one cycle f0→ dl′′1
→ f0 that generates the recursive equation of c f0 (#5).

The size analysis relates the input and output values after invoking function cl′′1
in this equation

(x1 = x2,y2 ≥ y1,z1 = z2), which allows tracking the changes from the initial values x,y,z to the
ones used in the recursive call x2,y2,z2 when solving the CRS. This CRS is solvable because,
thanks to the transformation of the TS, all cost functions have now a linear ranking function that
bounds the number of calls. The solver can hence use that information to generate the overall
cost. Concretely, cl̂1

, cl′1
, and cl′′1

are invoked x− y times; c f0 is invoked z times; and cl0 and cl2
are invoked only once. This contrasts with the original CRS in Fig. 1, where the lexicographic
ranking function 〈z,x− y〉 cannot be used by the backend solvers to compute a loop bound.

The next corollary easily follows from the soundness of the TS transformation in Th. 1.
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Corollary 1 (soundness of linearly-bounded CRS)
Let N = nestedLoopTrans(C) be the hierarchically loop-nested transition system obtained from
a component C with Proof (C). The CRS obtained from N applying Def. 5 soundly overapproxi-
mates the cost of C (for the considered cost model), and all its functions are linearly bounded.

4.1 Embedding the Ranking Functions from Termination Proofs within CRS

CRS solving —step (2) of resource analysis— requires finding ranking functions for all recursive
cost functions (i.e. cycles) to bound the number of iterations they might perform. As the termi-
nation analyzer must have already found ranking functions for all cycles, it is desirable to pass
this information to the CRS solver (e.g., the resource analyzer might implement less powerful
algorithms to find ranking functions). However, existing solvers are not prepared to receive this
information. Our proposal does not require implementing any extension to the existing solvers.
We can embed the constraints that define the ranking functions within the CRS as follows.

Definition 6 (CRS with ranking functions)
We assume that every location l in the TS is annotated with the linear ranking function contained
in the termination proof. The main idea is to add a new parameter to the cost function cl repre-
senting the ranking function, which is bound in the initial call and decreases in every recursive
call. Therefore, the generation of the cost equations is as in Def. 5 with the following differences:

• Cost functions cl (except those for the initial location l0) are extended with one additional
parameter r representing the ranking function: cl(x,r).

• Cost equations invoking a cost function with ranking function rf bound the extra parame-
ter: {r = rf}.

• Cost equations with recursive calls are extended to express that the extra parameter con-
taining the ranking function is positive and strictly decreasing: {r ≥ 0,r′ < r}.

Example 4
Let us explain the above definition using our running example. In the transformed TS of Fig. 7,
the termination analyzer detects that f0, l′′1 , and ll̂1 have ranking functions z, x−y, and x−y resp.
Then, the cost equations of l0, f0, and l′′1 will be modified as follows (we show only a fragment):

1’© cl0(x,y,z) = 1+ c f0(x,y,z,r) {z≥ 1,r = z}
. . .

5’© c f0(x,y,z,r) = 1+ cl′′1 (x1,y1,z1,r1)+ c f0(x2,y2,z2,r2) {x1 = x2,y2 ≥ y1,z1 = z2,x≥ y,z≥ 1,
u1 > 0,u2 < x+ z,x1 = u2,y1 = y,z1 = z−1,r≥ 0,r1 = x1−y1,r2 < r}

6’© c f0(x,y,z,r) = 1+ cl̂1
(x,y,z,r′) {z≤ 1,r′ = x−y}

. . .
9’© cl′′1 (x,y,z,r) = 1+ cl′′1 (x1,y1,z1,r1) {x≥ y,z≥ 1,u1 ≤ 0,x′ = x,y′ = y+1,z′ = z,r≥ 0,r1 < r}
13’© cl′′1 (x,y,z,r) = 1 {x≥ y,z≥ 1,u1 > 0,u2 < x+ z}

. . .

The remarked constraints in the equations represent the changes. In equations 1′ and 6′ the rank-
ing functions of f0 (z) and ll̂1 (x− y) are bound. In the recursive equations 5′ and 9′, the extra
parameter is set to positive and decreasing. Additionally, in 5′ the extra parameter r1 of l′′1 is
bound to x1− y1. Finally, cost equations without invocations (as equation 13′) are not modified.
Note that cl0 (equation 1′) is not extended with any parameter because it is the entry location of
the program.

4.2 Extension to Conditional Upper Bounds

The termination analysis we use (Borralleras et al. 2017) is able to infer preconditions Pre under
which the program terminates when it cannot prove termination for all inputs. Such preconditions
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PUBSC MaxCore(P) CoFloCoC MaxCore(C) AProVE CoFloCoC Loopus MaxCore(C)

Solved
158 280 288 311 278 288 239 311

(32.6%) (57.9%) (59.5%) (64.3%) (57.4%) (59.5%) (49.4%) (64.3%)
Only 6 128 21 44 2 5 3 33
Best 20 128 32 47 2 7 9 38
Score 316 546 573 611 1075 1147 946 1228

Time(s) 836.8 gen: 837.5 1175.6 gen: 838.6 2350.9 1175.6 9.38 gen: 838.6
sol: 1574.4 sol: 1272.3 sol: 1272.3

Table 1. Experimental results on C programs from TermComp’19 complexity competition

Pre may also be valid for the upper bounds. As in Sec. 4.1, the idea is to embed Pre into the CRS
(and enable a flag cond=on) so that an unconditional solver can be used and, as preconditions
are assumed, a conditional upper bound U can now be found. Then, when reporting the results,
if cond=on, we output that U is an upper bound if preconditions Pre hold.

Definition 7 (conditional CRS)
Let G be the set of locations in the TS and l0 be its entry location. Then the cost equations of the
conditional CRS are eqs(G) plus the additional equation ce

l0
(x) = 1+ cl0(x){Pre}. In this case,

the upper bound obtained for ce
l0

is the valid upper bound for cl0 under the conditions in Pre.

5 Implementation and Experimental Evaluation

Our implementation, MaxCore(X) where X instantiates the CRS solver, achieves the cooperation
of three advanced tools for complexity and termination analysis: VeryMax (winner of Term-
Comp’19 for C programs) produces the termination proofs, our implementation generates from
them LB-CRS that are fed: (X=C) to CoFloCo (Flores-Montoya 2017) or (X=P) to PUBS (Al-
bert et al. 2008) to produce the upper bounds. MaxCore can be used online from a web interface
https://costa.fdi.ucm.es/maxcore, where the benchmarks used for our experiments can
also be found. This section evaluates the effectiveness and efficiency of MaxCore by analyzing
all C programs from the TermComp’19 complexity competition, that in total are 484 benchmarks
containing also non-terminating programs. Experiments have been performed on an Intel Core
i7-4790 at 3.6GHz x 8 and 16GB of memory, running Ubuntu 18.04. The row Solved in Ta-
ble 1 shows the number of benchmarks that each system is able to bound. The row Only shows
the number of benchmarks that only the corresponding system can solve and no other system
can. The row Best counts the times that a system has obtained the best upper bound, and the
remaining systems have larger bounds. The Score represents the points obtained by the sys-
tems following the competition rules http://cbr.uibk.ac.at/competition/rules.php.
Finally, we show the overall time in seconds in the row Time(s). As in TermComp’19, sys-
tems only have 300 seconds to analyze every program. For MaxCore’s instantiations we show
2 values: the time needed to generate the CRS (gen) and the time required to obtain a closed
upper bound (sol). Detailed results for every system and benchmark can be found at https:
//costa.fdi.ucm.es/maxcore/benchmarks/.

The left part of Table 1 compares PUBSC and MaxCore(P). PUBS and CoFloCo are CRS
solvers. To avoid confusion, we use PUBSC and CoFloCoC for the systems that translate C pro-
grams to CRS using clang (http://clang.llvm.org/) and llvm2KITTeL (https://github.
com/s-falke/llvm2kittel), and then use the respective CRS solver to obtain an upper bound.
Unlike CoFloCo, PUBS only works with linear size relations, but it is able to obtain logarithmic
upper bounds. As TermComp’19 only supports polynomial bounds, in the comparisons we have

https://costa.fdi.ucm.es/maxcore
http://cbr.uibk.ac.at/competition/rules.php
https://costa.fdi.ucm.es/maxcore/benchmarks/
https://costa.fdi.ucm.es/maxcore/benchmarks/
http://clang.llvm.org/
https://github.com/s-falke/llvm2kittel
https://github.com/s-falke/llvm2kittel
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considered O(nk× logp(n)) equal to O(nk+1) in Best and Score. Since PUBS is a solver that does
not perform any additional analysis on the CRS (unlike CoFloCo, which tries to detect chains),
this comparison plainly shows the large improvement that can be only attributed to the proposed
generation of our LB-CRS. Concretely, MaxCore(P) almost doubles the number of programs
solved (280 vs. 158), and there are 128 programs that MaxCore(P) solves that PUBSC cannot,
while only 6 programs are uniquely solved by PUBSC. Regarding time, MaxCore(P) is about
three times slower than PUBSC but the gains clearly justify the additional analysis time.

The central part of Table 1 shows the comparison between CoFloCoC and MaxCore(C). Here
the difference is not as large as with PUBS, but it is still important: MaxCore(C) solves 23 pro-
grams more than CoFloCoC (311 vs. 288), 44 of them that CoFloCoC cannot handle. However,
CoFloCoC solves 21 programs that MaxCore(C) cannot and obtains better upper bounds in 32
programs. Since MaxCore(C) uses VeryMax to build the termination proof that guides the gen-
eration of the LB-CRS, the system returns ∞ if VeryMax cannot find that proof. This happens
in 6 of these 21 unsolved programs. Moreover, other 5 programs are not solved because their
termination proof presents some features not yet integrated in the system, but are planned to be
integrated soon. For the remaining 10 unsolved programs, the termination proofs found by Very-

Max are too involved, thus leading to (unnecessarily) more complex CRS that CoFloCo cannot
handle. Note that VeryMax can find different proofs for a program, and currently we simply use
the first one. In the future, we plan to investigate on finding the best suited proofs for the solv-
ing step. MaxCore(C) has a running time 1.8 larger than CoFloCoC, so the difference is smaller
than with PUBS, and clearly it pays off as well. Comparing MaxCore(P) and MaxCore(C), the
latter is about 300 seconds faster and obtains better results in all metrics. Indeed, all programs
that can be bound with MaxCore(P) can be bound with equal or smaller bounds by MaxCore(C)

except for one program. Therefore, we have selected MaxCore(C) to compare to the two systems
participating in TermComp’19: CoFloCoC, winner of TermComp’19 for complexity of ITS and
C programs, and AProVE (Giesl et al. 2004), a system that implements an alternative approach
which alternates between finding runtime bounds and finding size bounds (Brockschmidt et al.
2016). Additionally, we have also considered the Loopus system (Sinn et al. 2014) described
in Sec. 1. The results of this comparison appear in the right part of Table 1, where it can be
seen that MaxCore(C) outperforms the other systems in all metrics: besides number of problems
solved, more importantly MaxCore(C) solves 33 programs that no other system can bound, gen-
erates better bounds in 38 programs, and obtains 81 more points than CoFloCoC, 153 more than
AProVE, and 282 more than Loopus. Moreover, it is slightly faster than AProVE, requiring 0.9
times its running time. Finally, note that Loopus is extremely fast compared to the rest of systems
(it requires 0.008 times the running time of CoFloCoC, the second fastest system). The reason
is that Loopus relies on difference logic, a more limited domain for obtaining bounds than the
linear integer arithmetic used in the rest of systems, for which very efficient algorithms exist.

6 Conclusions

This paper brings the important advances achieved in the field of termination analysis, where
programs featuring complex control flow can be automatically proven to terminate, to the field of
resource analysis, where there is more limited support for such kind of complex-flow programs.
The success of our approach is the use of termination proofs as semantic guidance to generate
linearly-bounded CRS that can be fed to an off-the-shelf CRS solver. Our experimental results
on the TermComp’19 benchmarks show that our tool, MaxCore, outperforms the standalone
resource analyzers CoFloCo, AProVE, and Loopus significantly both in accuracy, number of



16 E. Albert, M. Bofill, C. Borralleras, E. Martin-Martin and A. Rubio

problems solved, and uniquely solved. As future work, we plan to apply precondition inference
techniques (Kafle et al. 2018) to improve the precision of the termination proof when assertions
are provided.
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