
ar
X

iv
:1

90
7.

10
33

3v
1

 [
cs

.L
O

]
 2

4
Ju

l 2
01

9

Under consideration for publication in Theory and Practice of Logic Programming 1

Anti-unification in Constraint Logic Programming

GONZAGUE YERNAUX and WIM VANHOOF

University of Namur, Belgium

Namur Digital Institute

(e-mail: gonzague.yernaux@unamur.be)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Anti-unification refers to the process of generalizing two (or more) goals into a single, more general, goal

that captures some of the structure that is common to all initial goals. In general one is typically interested

in computing what is often called a most specific generalization, that is a generalization that captures a

maximal amount of shared structure. In this work we address the problem of anti-unification in CLP, where

goals can be seen as unordered sets of atoms and/or constraints. We show that while the concept of a most

specific generalization can easily be defined in this context, computing it becomes an NP-complete prob-

lem. We subsequently introduce a generalization algorithm that computes a well-defined abstraction whose

computation can be bound to a polynomial execution time. Initial experiments show that even a naive im-

plementation of our algorithm produces acceptable generalizations in an efficient way. Under consideration

for acceptance in TPLP.

KEYWORDS: Anti-unification, (most specific) generalization, CLP, program analysis

1 Introduction and motivation

Anti-unification refers to the process of computing for a given set of symbolic expressions S,

a so-called generalization of S, that is a single expression that captures some of the common

structure that is shared by all elements in S. For instance, in a logic programming context, the

atom p(a,Y, f (X)) can be seen as a generalization of the set of atoms

{p(a,a, f (a)), p(a,b, f (g(c))), p(a,A, f (a))}

as each of these atoms is an instance of p(a,Y, f (X). Often, one is interested in what is called

a most specific or, equivalently, a least general generalization. That is, a generalization that pre-

serves a maximal amount of common structure. In the example above, p(a,Y, f (X)) is a most

specific generalization of the three given atoms although other, less specific, generalizations ex-

ist such as p(a,Y,X) and p(Z,Y,X). Being able to compute such generalizations is a manda-

tory ingredient in a number of program analyses and transformations such as partial deduction

(e.g. (Gallagher 1993; De Schreye et al. 1999), supercompilation (e.g. (Sørensen and Glück 1999))

and fold/unfold (e.g. (Pettorossi and Proietti 1998)) transformations where it is typically used as

a mean to guarantee termination.

In this work we develop a theory of generalization (or anti-unification) in the context of con-

straint logic programming (CLP) where - in its most declarative form - clause bodies and goals

are conceptually represented by sets of constraints and atoms. While some works exist on gener-

alizing CLP, these typically focus on the underlying constraint domain and introduce widening

http://arxiv.org/abs/1907.10333v1

2 G. Yernaux and W. Vanhoof

operators (e.g. convex hull on R) in order to generalize the constraint set at the semantical level

(e.g. (Fioravanti et al. 2013)). Other existing works are targeted to a particular application such

as learning constraints by generalization of samples of facts (Gutiérrez-Naranjo et al. 2003). In

contrast, we take a fundamentally different approach and focus on generalizing the syntactical

representation of the program structures to be generalized (basically conjunctions represented

by sets of constraints and atoms), and this independent of the particular constraint or applica-

tion domain. Our main motivation for doing so is to obtain a generalization operator that com-

putes the maximal common syntactical structure shared by two goals or, by extension, clauses

and predicates. This is a basic operation needed in the work on clone detection and detection

of algorithmic equivalence (see e.g. (Mesnard et al. 2016)) where one needs to frequently and

rapidly compute such generalizations in order to compare how closely related two goals or

clauses are. Moreover, the generalization operator we propose being domain- and application-

independent, it could readily be integrated in other program manipulation approaches that need

to generalize CLP clauses (examples include conjunctive partial deduction or ILP-based learn-

ing). While other more involved generalization approaches exist, for example grammar-based

E-generalization (Burghardt 2014) and regular tree abstraction (Bouajjani et al. 2006), we focus

in this work on the most specific generalization (msg) as it suits best our particular context.

Computing a most specific generalization (msg) of two or more terms (and, by extension,

atoms) or other tree-like structures is straightforward and can be done in linear time. Existing

algorithms are typically based on the seminal algorithm of Plotkin (Plotkin 1970) in which two

tree-structures are generalized by computing their maximal common subtree and replacing non-

matching subbranches by new variables. However, when more involved computational structures

need to be generalized (such as conjunctions of atoms, goals and clauses), the literature is less

clear on what algorithms are available to automatically compute their most specific generaliza-

tion. The basic problem, of course, being that in this case one is not necessarily interested in

viewing the structures that need to be generalized as simple tree structures as that would be

too restrictive. Take for instance the conjunctions a∧ b∧ c and a∧ c; when these conjunctions

are considered as trees, computing the msg would result in a∧X missing the fact that also c is

common to both conjunctions. Dependent on the application at hand, usually an ad-hoc tech-

nique is introduced that most often boils down to applying the classical msg operation to (a

subset of) the atoms of both structures, usually preserving the order in which the atoms appear

in the structure for efficiency reasons. This is for example the case in conjunctive partial de-

duction (Leuschel et al. 1998) where conjunctions are treated as sequential structures and the

abstraction operation generalizes ordered subconjunctions. This is defensible when partially de-

ducing Prolog programs where the order of the atoms in a conjunction is important and usually

needs to be preserved, but it nevertheless limits the possible outcomes of the generalization op-

eration and makes it hard to transfer the approach towards other contexts where the order of the

individual atoms or other computational constituents might be less important.

While CLP is an important target in itself – especially given its aptitude as a universal interme-

diate language for analysis and transformation (Gange et al. 2015), our generalization operator,

basically manipulating sets of atoms, can also be beneficial in program transformation for clas-

sical (non-constraint) logic programming, as it allows to lift the restriction imposed by most of

the existing generalization operators to preserve the order of the atoms in the conjunctions that

are generalized.

The paper is structured as follows. In Section 2 we introduce some preliminary concepts and

Anti-unification in Constraint Logic Programming 3

notation, in Section 3 we introduce our main abstraction and algorithm, we evaluate our approach

by means of a prototype implementation discussed in Section 4 before concluding in Section 5.

2 Preliminaries

2.1 Constraint logic programming essentials

Let us first introduce some of the basic concepts and notations that will be used throughout

the paper. A CLP program is traditionally defined (Jaffar and Maher 1994) over a CLP context,

which is a 5-tuple 〈X ,V ,F ,L ,Q〉, where X is a non-empty set of constant values, V is a set of

variable names, F a set of function names, L is a set of constraint predicates over X and Q a set

of predicate symbols. The sets X ,V ,F ,L and Q are all supposed to be disjoint sets. Symbols

from F , L , and Q have an associated arity and as usual we write f/n to represent a symbol f

having arity n. Given a CLP context C = 〈X ,V ,F ,L ,Q〉, we can define the set of terms over

C as TC = X ∪V ∪ { f (t1, t2, ..., tn)| f/n ∈F where ∀i ∈ 1..n : ti ∈ TC }. Likewise, the set of

constraints over C is defined as CC = {L(t1, t2, ..., tn) |L/n ∈L and ∀i ∈ 1..n : ti ∈ TC } and the

set of atoms as AC = {p(V1, . . . ,Vn) | p/n ∈ Q and ∀i : Vi ∈ V }. A goal G ⊆ (CC ∪AC) is a

set of atoms and/or constraints. We will sometimes use the notion of a literal to refer to either a

constraint or an atom. A program P is then defined over a context C = 〈X ,V ,F ,L ,Q〉 as a set

of constraint Horn Clause definitions where each clause definition is of the form p(V1, . . . ,Vn)←

G where p(V1, . . . ,Vn) is an atom called the head of the clause with {V1, . . . ,Vn} all distinct

variables, and G a goal called the body of the clause. We will sometimes refer to a clause by

p(V1, . . . ,Vn)← C,B if we want to distinguish the set of constraints C and the set of atoms B

in its body. A fact is a clause with only constraints in its body. For a predicate symbol p, we

use def (p) to denote the definition of p in the program at hand, i.e. the set of clauses having a

head atom using p as predicate symbol. Without loss of generality, we suppose that all clauses

defining a predicate have the same head (i.e. use the same variables to represent the arguments).

In what follows we will often consider the context to be implicit and talk simply about a

program and the predicates and clauses defined therein. Without loss of generality we assume

that the set of constraint predicates L contains at least an equality relation represented by =.

Note that in our definition of a clause, atoms contain only variables as arguments. This is by

no means a limitation, as arguments can be instantiated by means of equality constraints in the

clause body.

Different semantics have been defined for CLP. In our approach, we consider the declarative

semantics as in (Jaffar and Maher 1994). A constraint domain D is comprised of a set of values

and an interpretation for the relational symbols used in the underlying context. Given a constraint

domain D , a valuation is a mapping from variables to values and we say that a set of constraints

C is satisfiable, noted D � C if there exists a valuation v with dom(v) = vars(C) such that v(C)

evaluates to true. In this work we focus on the declarative semantics of a program which is

defined as a subset of BD , the latter defined as {p(v1, . . . ,vn) | p/n ∈ Q and vi ∈ D}. For a

program P and an underlying constraint domain D , the immediate consequence operator T D
P can

be defined as a continouous function on BD as follows (Jaffar et al. 1998):

T D
P (I) =







p(V1, . . . ,Vn)←C,B a renamed apart clause in P

p(v1, . . . ,vn) v a valuation on D such that D � v(C) and v(B)⊆ I

∀i ∈ {1, . . . ,n} : v1 = v(Vi)







The semantics of a program P, which we will represent by JPK can then be defined as the least

4 G. Yernaux and W. Vanhoof

fixed point of TD
P . In what follows, we will often simply refer to the semantics of a program

without specifying the underlying constraint domain or CLP context. The semantics of a goal G

with respect to a program P and a set of variables V = {V1, . . . ,Vk} occurring in G is then defined

as {qP(v1, . . . ,vk) ∈ JP′K} where P′ is the program P to which a clause qP(V1, . . . ,Vk)← G has

been added with qP a special predicate symbol not occurring in P. Slightly abusing notation, we

will use JGKP
V to denote the semantics of the goal G w.r.t. the program P and the set of variables

V , or simply JGKV if the program is clear from the context. While in practice CLP is typically

used over a concrete domain, we will make abstraction of the concrete domain over which the

constraints are expressed, as our generalization theory only considers the syntactical structure of

the constraints (and not their semantics).

2.2 Generalization principles

For any program expression e (be it a term, a constraint, an atom or a goal), we use vars(e) to

denote the set of variables that appear in e. As usual, a substitution is a mapping from variables to

terms and will be denoted by a Greek letter. For any mapping σ , dom(σ) represents its domain,

img(σ) its image, and for a program expression e and a substitution σ , eσ represents the result

of simultaneously replacing in e those variables V that are in dom(σ) by σ(V). A renaming is

a special kind of substitution, mapping variables to distinct variables (i.e. being injective). For a

renaming ρ , we use ρ−1 to denote its reverse. Two expressions e1 and e2 are variants if and only

if e1ρ = e2 and e1 = e2ρ−1 for some renaming ρ . For an expression e, a fresh renaming of e is

a variant of e where all variables have been renamed to new, previously unused variables. Given

the notion of a renaming, we can easily define a quasi-order relation between goals as follows.

Definition 1 (Generalization)

Let G and G′ be goals. We say that G is more general than (or, synonymously, is a generalization

of) G′, denoted G� G′, if and only if there exists a renaming ρ such that Gρ ⊆ G′.

Hence, a goal is more general than another goal if the former is a subset of the latter modulo

a variable renaming. While our notion of generalization is simple and purely of syntactic nature,

it is in line with what one could consider to be a generalization at the semantic level, since

generalizing a goal corresponds to removing computational units (constraints or atoms).

Example 1

Consider the goal G = {p(X ,Y),X = a,Y = b}. Then the goals {p(X ,Y),X = a}, {p(X ,Y)},

{p(A,B)} and {p(X ,Y),Y = b} are all generalizations of G.

In a more traditional logic programming context, an atom is typically defined as more gen-

eral than another atom if the latter can be obtained from the former by applying a substi-

tution (Benkerimi and W. Lloyd 1990; Sørensen and Glück 1995) and generalizing an atom is

done by replacing terms with new variables. Since in our context, atoms are represented in simple

form (i.e. all arguments being variables), the same effect can be obtained by removing constraints

from the goal. Note that our definition is, at the same time, more general, as it allows to gener-

alize a goal also by removing atoms. In a traditional logic programming context where goals are

conjunctions of atoms, one need to resolve to higher-order generalization techniques in order to

obtain the same effect. Also observe that in our generalization scheme, constants and functors are

impossible to generalize through variabilization, because renamings are mappings from variables

to variables only. This is a fundamental difference of relation � with the θ -subsumption relation

Anti-unification in Constraint Logic Programming 5

of (Plotkin 1970), the latter being defined by substitutions rather than renamings. Our relation is

a first-order generalization (higher-order terms as well as predicate names can’t be generalized)

with firm constants and functors.

Defining generalizations with injective mappings (i.e. renamings) rather than arbitrary map-

pings from V to V as in θ -subsumption ensures that some variable V cannot be generalized by

two (or more) distinct variables in the computed generalization. If renamings weren’t injective,

a generalization could have many more variables than the goals it generalizes; in that case, the

generalization could contain variables that are no longer linked on the semantic level such as new

variables occurring only once. For many domains, the injective property makes more sense, not

allowing variables to lose their semantics once generalized.

Example 2

Let us consider G = {X > 2,X < 10}where we suppose the constraints are over some numerical

domain. In our framework, the three following generalizations are correct: {A > 2,A < 10},

{A > 2}, {A < 10}. Without the restriction to injective renamings, {A > 2,B < 10} would also

be a valid generalization.

In practice, some domain-specific constraint predicates and functional operators could be char-

acterized as commutative (such as = and + for numeric instances), which would affect their gen-

eralizations. The approach presented in this paper could easily be extended to take this property

into account, but for the sake of clarity we will keep the approach purely syntactic on that point

of view, only considering non-commutative symbols in textual representations of constraints.

Despite their differences, our generalization relation shares the following property with the usual

θ -subsumption order from (Khardon and Arias 2006).

Proposition 1

The generalization relation � is a quasi-order.

Proof

We need to prove that � is transitive and reflexive. Reflexity is immediate since for any goal

G ⊆ G and, thus, G � G. For transitivity, consider three arbitrary goals G1, G2 and G3 such

that G1 � G2 and G2 � G3. Then by definition 1, there exist ∆1,∆2,ρ1 and ρ2 such that G2 =

G1ρ1∪∆1 and G3 = G2ρ2∪∆2. Or, equivalently,

G3 = (G1ρ1∪∆1)ρ2∪∆2 = G1ρ1ρ2∪ (∆1ρ2∪∆2)

Since the composition of two renamings is a renaming, and the union of two sets a set, it follows

that G1 � G3.

Generalized goals are linked by their semantics as stated in Proposition 2 below.

Proposition 2

Let P be a program and G and G′ goals. If G�G′ such that Gρ ⊆ G′ for some renaming ρ , then

for any set of variables V ⊆ vars(Gρ), we have that JGρKV ⊇ JG′KV .

Proof

The proof is trivial given that Gρ ⊆G′. Indeed, suppose that G′ is composed of a set of constraints

C′ and a set of atoms B′. Then, if v is a valuation on the underlying domain D such that D �

v(C′) and v(B′) ⊆ JPK, then there exist some predicate symbol q such that q(v(V1), . . . ,v(Vk)) ∈

6 G. Yernaux and W. Vanhoof

JG′K. Now, since G′ = Gρ ∪ ∆ for some set of constraints and/or atoms ∆, it holds that D �

v(C) for the constraints C ⊆ Gρ and v(B) ⊆ JPK for the set of atoms B ⊆ Gρ . Consequently,

q(v(V1), . . . ,v(Vk)) ∈ JGρK.

We can now define the computational structure that is shared by a set of goals through the

concept of common generalization.

Definition 2 (Common generalization)

Let {G1,G2, ...,Gk} be a set of goals. Then a goal G is a common generalization of {G1,G2, ...,Gk}

if and only if ∀i ∈ 1..k : G� Gi.

In what follows we will mostly consider common generalizations of two goals. Note that at

least one common generalization exists for any two goals: the empty set which can be seen as

the most general generalization, i.e. the minimal element in the quasi-order �. But obviously

the empty set is not an interesting generalization to express similarities in groups of literals. In

what follows, we are interested in computing what we call a most specific generalization, that is

a maximal element with respect to �. A most specific generalization is also sometimes called a

least general generalization.

Definition 3 (msg)

Let G be a common generalization of S = {G1,G2, ...,Gn}. Then G is a most specific general-

ization (msg) of S if there does not exist another common generalization of S, say G′, such that

G� G′ and G′ � G.

Note that, by definition, a common generalization of two goals G1 and G2 is a variant of both

a subset from G1 and of a subset from G2. Without loss of generality, we will often consider a

common generalization to be a subset of one of the goals, as in the following example.

Example 3

Let us consider the goals

G1 = { f (X),g(X),g(Y)} G2 = { f (R),g(T)}

G = { f (X),g(Y)} ⊆ G1 is a common generalization of {G1,G2}, as there exists ρ = [X ←

R,Y ← T] such that G2 = Gρ , so G � G2; it also holds that G ⊂ G1, so G � G1. Moreover,

G is an msg of {G1,G2} as no strictly less general common generalization exists, G having

generalized all literals in G2. Note that G2 is also an msg of {G1,G2}, which can as easily be

proved. In fact, by Definition 1, any variant of G is also an msg for G1 and G2.

Contrary to the case of traditional logic programming, where the most specific generalization

of two goals is unique (modulo a variable renaming) (Benkerimi and W. Lloyd 1990), in our

context two goals may typically have several most specific generalizations.

Example 4

Let us consider the goals

G1 = { f (X),g(Y),h(X ,Y)} G2 = { f (R),g(U),h(T,S)}

{ f (X),g(Y)} and {h(X ,Y)} are both msgs of {G1,G2}. Indeed, each of these generalizations

doesn’t allow the addition of any more literals while remaining a valid common generalization

of G1 and G2, due to the injectivity of the generalization renamings. The two msgs are thus

incomparable,�-wise.

Anti-unification in Constraint Logic Programming 7

Amongst the msgs of a set of goals, some generalizations could only have a few literals,

thereby capturing less common structure than others. Ideally, we are interested in those most

specific generalizations that are of maximal cardinality.

Definition 4 (mcg)

Let G be a common generalization of S = {G1,G2, ...,Gn}. Then G is a maximal common gen-

eralization (mcg) of S if there does not exist another common generalization of S, say G′, such

that |G′|> |G|.

It is trivial to show that a maximal generalization G of a set of goals S is also a most specific

generalization of S. Indeed, if it weren’t the case, it would, by Definition 3, be possible to add

some literal to G and get a more specific generalization. But the latter generalization would have

strictly greater cardinality than G, so G cannot be maximal. However, computing a maximal

common generalization is an intractable problem. The reason is, of course, due to the fact that we

need to match unordered sets of literals rather than sequences, whereas the classical subsumption-

based formulation from (Plotkin 1970) is computable in polynomial time.

In order to show this formally, we define a decision problem variant which we name MCGP

(Maximal Common Generalization Problem) that we show to be NP-complete. The decision

problem variant MCGP boils down to verifying whether there exist a renaming ρ such that the

smallest of two goals is in itself a maximal common generalization of both. Formally: given two

goals G1 and G2 with |G1| ≤ |G2| and vars(G1)∩ vars(G2) = /0, verify whether there exists ρ

such that G1ρ is a subset of G2.

Theorem 1

The MCGP problem is NP-complete.

Proof

It is easy to see that MCGP is in NP: given renamed apart goals G1 and G2 as well as a renaming

ρ , the application of ρ on all the literals in G1 will either yield a subset of G2 or not, which can

be verified in polynomial time.

We will now perform a reduction from the Induced Subgraph Isomorphism Problem (ISIP)

which is stated as follows (Sysło 1982). Given two unoriented and unweighted graphs, (V1,E1)

and (V2,E2), where for each graph (Vi,Ei), Vi denotes the set of vertices and Ei the set of edges

between vertices from Vi. Assuming, moreover, that |V1| ≤ |V2|, then ISIP is the problem of

deciding whether (V1,E1) is isomorphic to an induced subgraph of (V2,E2) meaning there exists

a (total) injective function f : V1 7→V2 such that ∀x,y ∈V1, there is an edge (x,y) ∈ E1 if and only

if there is an edge (f (x), f (y)) ∈ E2. The problem is known to be NP-complete (Sysło 1982).

We can transform any instance of ISIP into an instance of MCGP as follows. Given the graphs

(V1,E1) and (V2,E2) (with |V1| ≤ |V2|), we define goals

G1 = {node(Vx) | x ∈V1}∪{edge(Vx,Vy) | (x,y) ∈ E1}

G2 = {node(Vx) | x ∈V2}∪{edge(Vx,Vy) | (x,y) ∈ E2}

In these goals, we suppose that node is a unary predicate representing nodes and edge a binary

predicate representing edges between nodes. Given a node x we use a variable named Vx to

represent this node in the goal. If G1 and G2 have at least one variable’s name in common,

considering a renamed apart version of G1 rather than G1 itself will ensure that the obtained

instance of MCGP is valid. Using this scheme, the transformation from graphs into goals can

8 G. Yernaux and W. Vanhoof

obviously be done in polynomial time. We will now prove that this transformation preserves the

positive and negative instances of ISIP, that is (V1,E1) is isomorphic to an induced subgraph of

(V2,E2) if and only if G1 is an mcg of {G1,G2}.

(⇒) Let us suppose that (V1,E1) is isomorphic to an induced subgraph of (V2,E2). In other words

there exists an injective function f : V1 7→ V2 such that ∀x,y ∈ V1, there is an edge (x,y) ∈ E1

if and only if there is an edge (f (x), f (y)) ∈ E2. We have to show that G1 is an mcg of G1 and

G2. Obviously the existence of f implies the existence of a renaming ρ : vars(G1) 7→ vars(G2)

defined as ρ = {(Vx,Vy) | (x,y) ∈ f}. Since f is a total injective function, we have that for each

node(Vx) ∈ G1 there is node(Vxρ) ∈ G2 and, by definition of f , for each edge(Vx,Vy) ∈ E1 there

is edge(Vxρ ,Vyρ) ∈ G2. In other words G1ρ is a subset of G2 and, hence, G1 is a generalization

of G2 and, consequently, a maximal common generalization of {G1,G2}.

(⇐) The other way round, suppose that G1 is an mcg for {G1,G2}, implying there exists a renaming

ρ such that G1ρ ⊆ G2. Given that dom(ρ) = vars(G1) and that ρ is injective by definition,

we can define a function f : V1 7→ V2 as f = {(x,y) | (Vx,Vy) ∈ ρ} that is injective as well. Now,

dom(f) =V1 (i.e. f is total) since there is a node(Vx)∈G1 for each vertex x∈V1. Moreover, since

G1ρ ⊆G2, we have that for each edge(Vx,Vy)∈G1 there exists edge(Vxρ ,Vyρ) and, consequently,

we have that ∀x,y∈V1, there is an edge (x,y)∈E1 if and only if there is an edge (f (x), f (y)) ∈E2

concluding the proof that G1 is isomorphic to an induced subset of G2.

3 Anti-unification algorithm

In the following we restrict ourselves to generalizations of two renamed apart goals - each of them

being a set of literals. To construct a generalization of goals G1 and G2 our algorithm basically

needs to search for a subset of G1 that is also a subset of G2 (modulo a variable renaming) and

vice versa. To represent these matching subsets, the algorithm will use an injective mapping

φ ⊆ G1×G2 that associates literals from G1 to matching literals of G2. For such φ to represent

a generalization, there must exist a renaming ρ such that dom(φ)ρ = img(φ) and, likewise,

img(φ)ρ−1 = dom(φ). In what follows we will use the word generalization to refer to such a

mapping φ as well as to the goal(s) it represents.

Example 5

Let us consider the goals

G1 = { f (X), f (Z),g(X ,Y),h(Y,Z)} G2 = { f (R),g(R,T),h(T,U), f (U)}.

Then the mapping φ = {(f (X), f (R)),(g(X ,Y),g(R,T))} (mapping f (X) from G1 to f (R) from

G2 and g(X ,Y) from G1 to g(R,T) from G2) is a generalization of G1 and G2. Indeed, dom(φ) =

{ f (X),g(X ,Y)} ⊆ G1 and is a variant of img(φ) = { f (R),g(R,T)} ⊆ G2.

Since computing maximal common generalizations is an NP-complete problem, we will rather

focus on computing common generalizations φ that are not necessarily maximal, but whose size

is stable in the sense that replacing a limited number of elements in φ does not give rise to a

larger generalization. Let us first define the notion of a k-swap, being a replacement of at most k

elements in a generalization.

Definition 5 (k-swap)

Let G1 and G2 be two renamed apart goals, and φ ,φ ′ ⊆ G1×G2 generalizations. We say that φ ′

is a k-swap of φ if and only if |φ |= |φ ′| and |φ ∩φ ′| ≥ |φ |− k for some k ∈ N.

Anti-unification in Constraint Logic Programming 9

Intuitively, a k-swap of a generalization φ is obtained from φ by changing at most k elements

such that the result is still a generalization.

Example 6

Let us reconsider the generalization φ from Example 5. Then the generalization

φ ′ = {(g(Y,X),g(R,T)),(h(Y,Z),h(T,U))}

is a 1-swap of φ , since effectively one element has been replaced in φ to get φ ′. In a similar way,

φ ′′ = {(f (Z), f (U)),(h(Y,Z),h(T,U))} is a 2-swap of φ (but is not a 1-swap, as two elements

have been replaced to get φ ′′).

Central to our approach to get a workable anti-unification algorithm is the notion of k-swap

stability. We call a generalization φ of goals G1 and G2 k-swap stable if any larger generalization

of these goals differs from φ in at least k+ 1 elements.

Definition 6 (k-swap stability)

Let G1 and G2 be two renamed apart goals and φ ⊆G1×G2 a generalization of G1 and G2. Then

the generalization φ is k-swap stable if and only if there does not exist a larger generalization

φ̂ ⊃ φ ′ where φ ′ is a k-swap of φ . Such a φ̂ is called a k-swap extension of φ .

A k-swap stable generalization, even though not necessarily maximal, is at least stable in

the sense that there is no obvious way (i.e. by replacing k or less elements) in which a larger

generalization could be obtained. Put differently, when a generalization is constructed by a search

algorithm, k-swap stability implies that in order to find a larger generalization, the algorithm

would need to reconsider at least k+ 1 choices that were made during construction.

Example 7

Consider G1 = {a(X ,Y,Z),b(X),c(Z),d(Z)} and G2 = {a(A,B,C),a(C,B,A),b(C),c(A),d(C)}.

Then, when φ is constructed by mapping a(X ,Y,Z) to a(A,B,C), the largest generalization map-

ping that φ can grow to is {(a(X ,Y,Z),a(A,B,C)),(d(Z),d(C))} or, equivalently, the generaliza-

tion {a(X ,Y,Z),d(Z)}. However φ is not 1-swap stable. Indeed, mapping a(X ,Y,Z) to a(C,B,A)

instead would give rise to {(a(X ,Y,Z),a(C,B,A)),(b(X),b(C)),(c(Z),c(A))} or, equivalently,

the larger generalization {a(X ,Y,Z),b(X),c(Z)}.

Obviously, if a generalization φ between goals G1 and G2 is k-swap stable for all k ∈ N, then

φ is a maximal and thus most-specific generalization. This is in line with the intuition that as k

grows, any k-swap-stable generalization has increased stability and thus increased accuracy (in

number of generalized literals).

One more concept needs to be introduced before we can define our algorithm for computing

k-swap stable generalizations, namely an operator that allows to combine two generalizations

into a single generalization.

Definition 7 (Enforcement operator)

Let G1 and G2 be two renamed apart goals. The enforcement operator is defined as the function

⊳ : (G1×G2)
2 7→ (G1×G2) such that for two generalizations φ and φ ′ for G1 and G2, φ ⊳φ ′ =

φ ′∪M where M is the largest subset of φ such that φ ′∪M is a generalization of G1 and G2.

In other words, φ ⊳φ ′ is the mapping obtained from φ ∪φ ′ by eliminating those pairs of literals

(A,A′) from φ that are incompatible with some (B,B′) ∈ φ ′ either because it concerns the same

literal(s) or because the involved renamings cannot be combined into a single renaming.

10 G. Yernaux and W. Vanhoof

Example 8

Consider φ = {(a(X ,Y),a(A,B)),(b(X),b(A))}, a generalization of two goals G1 and G2. Sup-

pose φ ′ = {(c(Y),c(C))} is also a generalization of G1 and G2. Enforcing φ ′ gives φ ⊳ φ ′ =

{(b(X),b(A)),(c(Y),c(C))}. Indeed, this can be seen as forcing Y to be mapped on C; therefore

the resulting generalization can no longer contain (a(X ,Y),a(A,B)) as the latter maps Y on B.

Algorithm 1 represents the high-level construction of a k-swap stable generalization of goals

G1 and G2. In the algorithm, we use gen(G1,G2) to represent those literals from G1 and G2

that are variants of each other, formally gen(G1,G2) = {(A,A
′) | A ∈ G1,A

′ ∈ G2 and Aρ =

A′ for some renaming ρ}. In each round, the algorithm tries to transform the current general-

ization φ (which initially is empty) into a larger generalization by forcing a new pair of literals

(A,A′) from gen(G1,G2) in φ , which is only accepted if doing so requires to swap no more

than k elements in φ . More precisely, the algorithm selects a subset of φ (namely φs) that can be

swapped with a subset φG of the remaining mappings from gen(G1,G2) that are not yet used such

that the result of replacing φs by φG in φ and adding (A,A′) constitutes a generalization. Note

how condition 1 in the algorithm expresses that φs must include at least those elements from φ

that are not compatible with (A,A′). The search continues until no such (A,A′) can be added.

Algorithm 1 Computing a k-swap stable generalization φ for goals G1 and G2

φ ← /0

repeat

select (A,A′) ∈ gen(G1,G2)\φ ,φs ⊆ φ ,φG ⊆ (G1×G2)\ (φ ∪{(A,A
′)}) such that:

(1) φs ⊇ φ \φ ⊳ {(A,A′)}

(2) |φs| ≤ k

(3) |φG|= |φs|

(4) φ \φs∪φG∪{A,A
′} is a generalization of G1 and G2

if such (A,A′),φG,φs are found then

φ ← φ \φs∪φG∪{(A,A
′)}

until no such (A,A′),φG,φs are found

Even if the algorithm as formulated is non-deterministic and does not specify how (A,A′),

φs or φG are computed (we will come back to this), it can easily be seen that it computes a

generalization that is k-swap stable.

Theorem 2

Given renamed apart goals G1, G2 and a constant k ∈ N, the generalization computed by Algo-

rithm 1 is k-swap stable.

Proof

Given goals G1, G2 and constant k ∈ N, Algorithm 1 can be seen as computing a sequence of

generalizations φ0, . . . ,φn where each (φ i) represents the value of φ at the end of the i-th loop

iteration. The generalization φ is then the final value in this sequence, i.e. φ = φn.

The proof is by contradiction. Suppose that φ = φn is not k-swap stable. By definition, this

means that there exists a k-swap extension φk of φ such that |φk| > |φ | and φk ⊃ φ ′, with φ ′ a

k-swap of φ . Consequently, there exist generalizations φs, φ ′s and φr such that φ ′ = (φ \φs)∪φ ′s
and φ ′ = φk \φr, with |φs|= |φ

′
s| ≤ k and |φr| ≥ 1. Then, by taking φG = φ ′s and (A,A′) ∈ φr the

Anti-unification in Constraint Logic Programming 11

conditions of in the algorithm are satisfied, contradicting the fact that the algorithm’s execution

would end with φn.

For a given value of k, Algorithm 1 computes thus a k-swap stable generalization, at least

if an exhaustive search is performed in each round of the repeat loop in order to find a couple

(φs,φG) that allows to transform φ into a strictly larger generalization (φ \ φs)∪φG ∪{(A,A
′)}.

Even if this exhaustive search is implemented, it is not hard to see that for a given and constant

value of k, the algorithm executes in time O(Mck), where c is a constant and M proportional to

|gen(G1,G2)|. Note how the exponent depends on k, which is a constant parameter unrelated to

the size of the goals to generalize (the input). Therefore the execution time of the algorithm is

polynomially bounded.

By aiming to improve some initial solution at each iteration, Algorithm 1 is an anytime algo-

rithm: as such, in concrete implementations one could retrieve the n-th generalization computed

by Algorithm 1 when it is interrupted at iteration (n+ 1). The n-th generalization may not be

k-swap stable, but it is assured to be a generalization of size n. Also note that being inherently

non-deterministic, the algorithm is by no means guaranteed to find the largest, or most conve-

nient, k-swap stable generalization. In order to somewhat steer the search towards a promising

generalization, we introduce the concept of a quality estimator, i.e. a function that associates a

value in R to any couple of matching literals (A,A′) ∈ gen(G1,G2). The general idea behind this

function being that the higher the value associated to a couple (A,A′), the higher the probability

that (A,A′) is an element of a maximal common generalization.

Definition 8 (Quality estimator)

Given goals G1 and G2, a quality estimator is a function ΩG1,G2 : gen(G1,G2) 7→R. When goals

G1 and G2 are unambiguously identified, we will simply write Ω.

A typical implementation of Algorithm 1 will thus loop through the potential couples (A,A′)∈

gen(G1,G2) in descending order of their Ω-values. If Ω is a perfect oracle – in the sense that it

associates maximal values to those couples that constitute an mcg – then, obviously, Algorithm 1

computes this mcg. In practice, however, Ω will be a heuristic. In our implementation, which we

elaborate on in Section 4, we use the following heuristic Ω-function.

Example 9

An intuitive yet efficient quality estimator is the function that maps a couple (A,A′) to the mul-

tiplicative inverse of the number of conflicts the couple has with other couples (i.e. the in-

volved renamings being incompatible). Let c denote the set
{

(B,B′) ∈ gen(G1,G2)|(B,B
′) 6=

(A,A′)∧{(A,A′),(B,B′)} is not a generalization
}

. We then define ΩG1,G2(A,A′) as (|c|+ 1)−1.

The ”+1” term is only meant to avoid division by zero.

A quality estimator acts as an indicator of the interest of having a couple (A,A′) into the

generalization φ under construction. It will naturally segment the couples in gen(G1,G2) into

subsets with different quality (Ω) values, guiding our algorithm as to which couples should or

should not be part of the generalization. Now, inside the main loop of Algorithm 1, the same

estimator function can be used to guide the search for the k-swap - in particular the mappings φs

and φG - rather than computing these by exhaustive search. Algorithm 2 provides such a concrete

search procedure based on Ω. Given a couple of atoms (A,A′) and a generalization φ under

construction, the algorithm searches for a suitable φs and φG that could be used as a k-swap to

continue the construction of the generalization by Algorithm 1.

12 G. Yernaux and W. Vanhoof

Algorithm 2 Selecting φs and φG for a given (A,A′)

GS← {}

BS←{}

φG←{}

φs← φ \φ ⊳ {(A,A′)}

S← gen(G1,G2)\φ ⊳ {(A,A′)}

while |φG|< |φs| and |φs| ≤ k do

while |φG|< |φs| and ¬(compφ\φs∪φG
(S) = {} and GS = {}) do

For all p ∈maxW
Ω (compφ\φs∪φG

(S)) : push(GS,(φG∪ p,S \ {p}))

(φG,S)← pop(GS)

if |φG|< |φs| then

For all p ∈minW
Ω (φ \φs) : enter(BS,φs∪{p})

if BS 6= {} then

φs← exit(BS)

φG← {}

S← gen(G1,G2)\ (φ ∪{(A,A
′)})

else

return ⊥

if |φG|= |φs| then

return φs,φG

else

return ⊥

The search process of Algorithm 2 is conceptually analogous to an A* search. The mapping

φs is initialized with the part of φ that is incompatible with the pair of atoms (A,A′) we wish

to enforce into the generalization. Its replacement mapping φG is initially empty and the algo-

rithm subsequently searches to construct a sufficiently large φG (the inner while loop). During

this search, S represents the set of candidates, i.e. couples from gen(G1,G2) that are not (yet)

associated to the generalization, and compφ\φs∪φG
(S) represents the subset of S of which each

element could be added to φ \ φs ∪ φG such that the result is a generalization (i.e. there is no

conflict in the associated renamings). In order to explore different possibilities by backtracking,

the while loop manipulates a stack GS that records alternatives for φG with the corresponding set

S for further exploration.

Now, in order to steer the search process, only candidate couples having an Ω-value within the

best W are considered for further exploration. We therefore define maxW
Ω (U) (resp. minW

Ω (U)) as

denoting the subset of U composed of those couples that have an associated Ω-value among the

W highest (resp. lowest) qualities of elements in U . In this, W is a parameter of the algorithm that

can be used to control the degree of backtracking. If W = ∞ backtracking is performed over all

possible alternatives (exhaustive search), whereas when W = 1 only the couples with the best (or

worst) Ω-value are considered for use. Note that even when exhaustive search is used (W = ∞),

the algorithm considers the most promising couples (those with the highest Ω-values) first.

If the search for φG was without a satisfying result (i.e. no φG is found equal in size to φs), the

algorithm continues by removing another couple from φ (thereby effectively enlarging φs). The

rationale behind this action is that there might be a couple in φ that is “blocking” the couples in

S from addition to φ . In order to steer the removal of such potentially blocking couples, a couple

Anti-unification in Constraint Logic Programming 13

from minW
Ω (φ \φs) is selected, and alternatives (those having an Ω-value among the W worst) are

recorded in a queue (BS). Note the use of a queue (and its associated operations enter and exit)

as opposed to the stack GS.

The process is repeated until either |φG|= |φs| in what case we have found a suitable k-swap,

or until |φs|> k in what case we have not, and the algorithm returns⊥.

4 Prototype evaluation

In order to experimentally evaluate both the result and performance of our approach, we have

made a prototype implementation of Algorithms 1 and 2 in Prolog1. The implementation uses

the quality function Ω defined in Example 9. Our evaluation consist in computing k-swap stable

generalizations for a considerable set of test cases (pairs of goals) that have been generated

randomly according to certain criteria. In particular, we have defined 6 problem classes, the

characteristics of which are represented in Table 1.

Table 1. Classes of randomly generated anti-unification problems

class Variables Literals Variable combinations Literal matchings

1 5-10 5-15 ≤ 60,000 ≤ 40,000

2 6-10 10-15 60,001-360,000 40,001-210,000

3 9-10 15-20 360,001-3,600,000 210,001-9,000,000

4 10-12 15-20 3,600,001-17,000,000 9,000,001-17,000,000

5 10-15 15-20 17,000,001-175,000,000 17,000,001-175,000,000

6 10-18 15-22 175,000,001-1,750,000,000 175,000,001-1,750,000,000

Table 1 provides, for each problem class, a row containing the admissible (ranges of) values

that were used when generating a test case (G1,G2) belonging to that class. The columns ’Vari-

ables’ and ’Literals’ denote, respectively, the number of variables and literals that are allowed in

the generated goals. The column ’Variable combinations’ denotes the total number of mappings

that must exist between the variables of G1 and the variables of G2. In a similar vein, the column

’Literal matchings’ denotes the number of subsets of gen(G1,G2) (excluding those mapping a

single literal more than once), as such representing an upper bound on the number of potential

generalizations of G1 and G2. Note that these parameters (in particular the latter two) guaran-

tee that each test case exhibits a certain complexity for the anti-unification algorithm and the

parameter values of each class are chosen in such a way to have ascending complexities both

with respect to the number variable combinations and literal matching possibilities that could

potentially need to be explored by the algorithm. The generated literals are all atoms that are

built using three test predicates f/1,g/2 and h/3. Real-life applications would typically harbor

a higher number of literal symbols, but less symbols tend to increase the anti-unification com-

plexity of the generated goals, making them more of a challenge for our algorithm. Also note

that although being built on a CLP formalism, the test instances are by no means intended to

depict real-life Constraint Satisfaction Problems (CSP). They rather represent batches of anti-

unification instances as could arise in semantic clones detection (Mesnard et al. 2016) where one

1 Source code is available at https://github.com/Gounzy/CLPGeneralization .

https://github.com/Gounzy/CLPGeneralization

14 G. Yernaux and W. Vanhoof

typically needs a fast and efficient anti-unification algorithm capable of handling a multitude of

goals in a reasonable time.

Example 10

The following is an example of a generated test case, verifying the constraints of class 2 in Ta-

ble 1. It presents 72,000 anti-unification possibilities and 181,440 possible variable combinations.

G1 = { f (A), f (C), f (F),g(C,G),g(I,E),g(I,F),h(A,A,C),h(B,F,D),h(C,A,A),h(D,E,C),

h(F,A,C),h(F,E,H),h(G,G,B),h(G, I, I)}

G2 = { f (J), f (K), f (P),g(N,L),g(N,N),g(O,J),h(K,M,J),h(K,P,M)}

Table 2 summarizes the results of our experimental evaluation. Four incarnations of our algo-

rithm were tested, computing k-swap stable generalizations for k = 0, k = 2, k = 4 and k = ∞.

Each incarnation is represented in the table by, respectively, Ω0, Ω2, Ω4 and Ω∞. For each in-

carnation, we have fixed W = 1 in order to severely limit backtracking to alternatives having the

same Ω-value. While minimal backtracking is of course advantageous for the execution time, it

is at the same time the most demanding setting when testing the accuracy and relevance of the

k-swap stability concept. To compare the execution times, we have also implemented two naive

brute-force algorithms, denoted in the table by mcgER and mcgEG, that compute an mcg either

by exhaustively enumerating all possible renamings (mcgER) or all possible literal matchings

(mcgEG) and retaining the largest generalization that was thus found.

For each of the 6 problem classes, one thousand examples were generated verifying the con-

straints of the class. Each algorithm was executed over all 1000 examples and Table 2 displays

their average execution time (in milliseconds). As expected, the execution time is higher for

larger values of k, and grows with the complexity of the problems that are dealt with. However,

for all classes but the simplest, the execution time of our algorithm (even in the case where k =∞)

stays well below the execution time of the brute-force algorithms. For the more complex problem

classes, the difference amounts to several orders of magnitude and remains more than manage-

able (in the millisecond range), even with k = ∞. Only for the simplest of test cases (problem

class 1) our algorithm shows an overhead caused by trying out some k-swaps more than once. As

a side note, between the two brute-force algorithms mcgER is in general the slowest because it

has in general an enormous amount of variable mappings to explore, while mcgER is more often

able to cut exploration paths when encountering incompatible literal matchings during its mcg

construction process.

In order to test the accuracy of our abstraction, for each example we compared the size of the

computed k-swap stable generalization with the size of computed by the naive algorithms. For

each problem class and algorithm incarnation, Table 2 displays the average size of the computed

k-swap stable generalization expressed as a percentage of the size of the corresponding mcg. As

can be expected, the accuracy grows for larger values of k but is, on average, never below 80%

of the mcg even for the most simple and greedy incarnation of our algorithm (Ω0). Note that in

the case of Ω∞, the average accuracy is below 100% while in theory Ω∞ should compute an mcg.

This is of course due to the fact that W = 1, meaning that not enough backtracking is performed

in order to compute an mcg in all cases. These are nevertheless quite promising results.

While the use of average times and accuracy might be criticized, it is noteworthy that for all

problem classes and algorithms the standard deviation between the execution times was less than

20% of the average value and less than 10% in the case of the accuracy.

In conclusion, these simple experiments show that our abstraction performs quite well: al-

though it will in general not compute the maximal common generalization, it will find relatively

Anti-unification in Constraint Logic Programming 15

Table 2. Average execution times (in milliseconds) and average size relative to an mcg (in %)

class mcgER mcgEG Ω0 Ω2 Ω4 Ω∞

1 4.66 1.11 0.48 97.4% 1.39 99.4% 2.05 99.9% 3.13 99.9%

2 639.15 154.56 7.76 84,8% 28.31 96.2% 56.55 98.3% 63.81 98.6%

3 4240 701.57 10.88 83,8% 43.55 95.3% 91.39 98.0% 104.06 98.2%

4 11800 2890 18.38 81,6% 71.26 93.9% 156.73 97.3% 206.22 97.4%

5 26150 7640 24.72 84.1% 91.07 94,2% 196.56 96.5% 249.33 97.5%

6 431260 37930 46.84 80.4% 127.14 93.4% 271.94 95.7% 377.2 96.9%

large generalizations in a tractable time (generally even impressively fast when compared to a

brute-force approach), even when the overall anti-unification complexity is high.

5 Conclusions and future work

In this work, we have established a theory of anti-unification (or generalization) in the context of

Constraint Logic Programming. When goals are considered as sets of atoms and constraints, the

problem of computing their maximal common generalization becomes an intractable problem, a

result that we have formally proved. We have introduced an abstraction of the maximal common

generalization, namely a k-swap stable generalization, that can be computed in polynomial time.

We have defined a skeleton algorithm that is parametric by k and that allows to steer the general-

ization by a heuristic function Ω. We have shown our algorithm to provide promising results on a

set of randomly created test cases. Its parameters should be tuned to achieve the best trade-off be-

tween output mcg size (by increasing k and/or W) and time performance (by decreasing k and/or

W), depending on the application at hand. Future work should investigate the exact interaction

between parameters k and W : when not able to find an mcg, the responsible parameter is, in our

current prototype, not clearly identified. While the heuristic function Ω we have used in our pro-

totype implementation seems to perform quite well and results in overall large generalizations,

other heuristic functions can be envisioned, possibly in function of the application at hand.

In further work, we also aim at integrating the notions developed in this paper into a framework

for clone detection or algorithmic equivalence recognition such as (Mesnard et al. 2016) that uses

CLP clauses as an intermediate program representation. Having an efficient generalization algo-

rithm is a necessary ingredient that allows to compute the similarity between program fragments.

We expect that our generalization concept and algorithm can be integrated in such a framework

such that it would allow to steer the underlying transformation process. In that context, we intend

to conduct a more in-depth empirical study of the two algorithms presented in Section 3. We will

in particular investigate the complexity of Algorithm 2 that in practice depends on the branching

factor induced by the quality estimator at hand.

Direct applications of our generalization algorithm include other transformational approaches

on CLP programs, in particular those where computing generalizations is a means to obtain

finiteness of the transformation, an example being partial deduction of CLP programs. Our anti-

unification theory is a general and domain-independent framework. As such, it can likely be

incarnated and enforced by incorporating and integrating domain-specific widening operators,

which is another topic for future work. Moreover, depending on the context, generalizations can

be considered maximal or most-specific based on other criteria than just cardinality, a simple

16 G. Yernaux and W. Vanhoof

example being the amount of literal arguments captured in the common generalization. This is

especially relevant when arities can widely vary from one literal to another, and constitutes a

topic for future research on other generalization strategies.

Acknowledgments

We thank anonymous reviewers for their constructive input and remarks.

References

BENKERIMI, K. AND W. LLOYD, J. 1990. A partial evaluation procedure for logic programs. 343–358.

BOUAJJANI, A., HABERMEHL, P., ROGALEWICZ, A., AND VOJNAR, T. 2006. Abstract regular tree model

checking. Electronic Notes in Theoretical Computer Science 149, 1, 37 – 48. Proceedings of the 7th

International Workshop on Verification of Infinite-State Systems (INFINITY 2005).

BURGHARDT, J. 2014. E-generalization using grammars. CoRR abs/1403.8118.

DE SCHREYE, D., GLÜCK, R., JØRGENSEN, J., LEUSCHEL, M., MARTENS, B., AND SØRENSEN, M. H.

1999. Conjunctive partial deduction: foundations, control, algorithms, and experiments. The Journal of

Logic Programming 41, 2, 231 – 277.

FIORAVANTI, F., PETTOROSSI, A., PROIETTI, M., AND SENNI, V. 2013. Controlling polyvariance for

specialization-based verification. Fundam. Inform. 124, 4, 483–502.

GALLAGHER, J. P. 1993. Tutorial on specialisation of logic programs. In Proceedings of the 1993 ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation. PEPM ’93.

ACM, New York, NY, USA, 88–98.

GANGE, G., NAVAS, J. A., SCHACHTE, P., SØNDERGAARD, H., AND STUCKEY, P. J. 2015. Horn clauses

as an intermediate representation for program analysis and transformation. TPLP 15, 4-5, 526–542.

GUTIÉRREZ-NARANJO, M. A., ALONSO-JIMÉNEZ, J. A., AND BORREGO-D ÍAZ, J. 2003. Generalizing

programs via subsumption. In Computer Aided Systems Theory - EUROCAST 2003, R. Moreno-Dı́az

and F. Pichler, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 115–126.

JAFFAR, J., MAHER, M., MARRIOTT, K., AND STUCKEY, P. 1998. The semantics of constraint logic

programs. The Journal of Logic Programming 37, 1, 1 – 46.

JAFFAR, J. AND MAHER, M. J. 1994. Constraint logic programming: a survey. The Journal of Logic

Programming 19-20, 503 – 581. Special Issue: Ten Years of Logic Programming.

KHARDON, R. AND ARIAS, M. 2006. The subsumption lattice and query learning. Journal of Computer

and System Sciences 72, 1, 72 – 94.

LEUSCHEL, M., MARTENS, B., AND SCHREYE, D. D. 1998. Controlling generalization amd polyvariance

in partial deduction of normal logic programs. ACM Trans. Program. Lang. Syst. 20, 1, 208–258.

MESNARD, F., PAYET, É., AND VANHOOF, W. 2016. Towards a framework for algorithm recognition

in binary code. In Proceedings of the 18th International Symposium on Principles and Practice of

Declarative Programming, Edinburgh, United Kingdom, September 5-7, 2016, J. Cheney and G. Vidal,

Eds. ACM, 202–213.

PETTOROSSI, A. AND PROIETTI, M. 1998. Program specialization via algorithmic unfold/fold transfor-

mations. ACM Comput. Surv. 30, 3es, 6.

PLOTKIN, G. D. 1970. A note on inductive generalization. Machine Intelligence 5, 153–163.

SØRENSEN, M. H. AND GLÜCK, R. 1999. Introduction to supercompilation. In Partial Evaluation -

Practice and Theory, DIKU 1998 International Summer School. Springer-Verlag, Berlin, Heidelberg,

246–270.

SØRENSEN, M. H. AND GLÜCK, R. 1995. An algorithm of generalization in positive supercompilation.

In Proceedings of ILPS’95, the International Logic Programming Symposium. MIT Press, 465–479.

SYSŁO, M. M. 1982. The subgraph isomorphism problem for outerplanar graphs. Theoretical Computer

Science 17, 1, 91 – 97.

	1 Introduction and motivation
	2 Preliminaries
	2.1 Constraint logic programming essentials
	2.2 Generalization principles

	3 Anti-unification algorithm
	4 Prototype evaluation
	5 Conclusions and future work
	References

