
ar
X

iv
:1

90
7.

09
54

8v
1

 [
cs

.A
I]

 2
2

Ju
l 2

01
9

Under consideration for publication in Theory and Practice of Logic Programming 1

On the Equivalence Between Abstract Dialectical

Frameworks and Logic Programs

J. ALCÂNTARA and S. SÁ

Federal University of Ceará, Brazil

(e-mail: jnando@lia.ufc.br and samy@ufc.br)

J. ACOSTA-GUADARRAMA

Autonomous University of Juarez, Mexico

(e-mail: juan.acosta@uacj.mx)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Abstract Dialectical Frameworks (ADFs) are argumentation frameworks where each node is as-
sociated with an acceptance condition. This allows us to model different types of dependencies
as supports and attacks. Previous studies provided a translation from Normal Logic Programs
(NLPs) to ADF s and proved the stable models semantics for a normal logic program has an
equivalent semantics to that of the corresponding ADF . However, these studies failed in iden-
tifying a semantics for ADF s equivalent to a three-valued semantics (as partial stable models
and well-founded models) for NLPs. In this work, we focus on a fragment of ADF s, called
Attacking Dialectical Frameworks (ADF+s), and provide a translation from NLPs to ADF+s
robust enough to guarantee the equivalence between partial stable models, well-founded models,
regular models, stable models semantics for NLPs and respectively complete models, grounded
models, preferred models, stable models for ADF s. In addition, we define a new semantics for
ADF+s, called L-stable, and show it is equivalent to the L-stable semantics for NLPs. This
paper is under consideration for acceptance in TPLP.

1 Introduction

Logic Programming and Formal Argumentation Theory are two different formalisms

widely used for the representation of knowledge and reasoning. The connection between

them is especially clear when comparing the semantics proposed to each formalism. The

first questions were raised and answered in (Dung 1995), the work that originally in-

troduced Abstract Argumentation Frameworks (AAF): it was shown how to translate

a Normal Logic Program (NLP) to an AAF and proved the stable models (resp. the

well-founded model) of an NLP correspond to the stable extensions (resp. the grounded

extension) of its corresponding AAF. Other advances were made when (Wu et al. 2009)

pointed the equivalence between the complete semantics for AAF and the partial stable

semantics for NLPs. Those semantics generalize many others, wielding a plethora of re-

sults gathered in (Caminada et al. 2015a). One equivalence formerly expected to hold,

however, could not be achieved: the correspondence between the semi-stable semantics

for AAFs (Caminada 2006) and the L-stable semantics for NLPs (Eiter et al. 1997).

Despite their success, AAFs are not immune to criticisms. A contentious issue refers

to their alleged limited expressivity as they lack features which are common in almost

http://arxiv.org/abs/1907.09548v1

2 J. Alcântara and S. Sá and J. Acosta-Guadarrama

every form of argumentation found in practice (Brewka and Woltran 2010). Indeed, in

AAFs the only interaction between atomic arguments is given by the attack relation.

With such a motivation, in (Brewka and Woltran 2010, Brewka et al. 2013) they defined

Abstract Dialectical Frameworks (ADF s), a generalization of AAFs, to express arbitrary

relationships among arguments. In an ADF , besides the attack relation, arguments may

support each other, or a group of arguments may jointly attack another while each

argument in the group is not strong enough to do so. Such additional expressiveness

arises by associating to each node (argument) its two-valued acceptance conditions which

can get expressed as arbitrary propositional formulas. The intuition is that an argument

is accepted if its associated acceptance condition is true.

A translation from NLPs to ADF s is given in (Brewka and Woltran 2010), where

they showed Stable Models Semantics for NLPs has an equivalent semantics for ADF s.

However, they did not identify a semantics for ADF s equivalent to a 3-valued semantics

(such as Partial Stable Models) for NLPs (Brewka and Woltran 2010, Strass 2013).

In this work, we will not only identify such semantics, but we will also ascertain only

a fragment of ADF s, called Attacking Dialectical Frameworks (ADF+s), is needed. In

fact, we will adapt the translation from NLPs to Abstract Argumentation proposed in

(Wu et al. 2009, Caminada et al. 2015a) to provide a translation from NLPs to ADF+s

to account for various equivalences between their semantics. That includes to prove the

equivalence between partial stable models, well-founded models, regular models, stable

models semantics for NLPs and respectively complete models, grounded models, pre-

ferred models, stable models for ADF s. Also, we define a new semantics for ADF+s,

called L-stable (for least-stable), and show it is equivalent to the L-stable semantics for

NLPs (Eiter et al. 1997). Hence, our results allow us to apply proof procedures and

implementations for ADF s to NLPs and vice-versa.

The paper proceeds as follows. Firstly we recall the basic definition of ADF s and NLPs

as well as some of their well-established semantics. Next, we consider the Attacking Ab-

stract Dialectical Frameworks (ADF+s), a fragment of ADF s in which the unique relation

involving arguments is the attack relation. In Section 4, we show a translation from NLPs

to ADF+s and prove the equivalence between partial stable models (NLPs) and com-

plete models (ADF+s), well-founded models (NLPs) and grounded models (ADF+s),

regular models (NLPs) and preferred models (ADF+s), stable models (NLPs) and stable

models ADF+s, L-stable models (NLPs) and L-stable models (ADF+s). In Section 5,

we compare our results with previous attempts to translate NLPs into ADF s and ADF s

into NLPs and we present a brief account on the main connections between NLPs and

Abstract Argumentation Frameworks (Dung 1995)/Assumption-Based Argumentation

(Dung et al. 2009) as well as a comparison between ADF+ and SETAF (Nielsen and

Parsons 2006), an extension of AAFs to allow joint attacks on arguments. Finally, we

round off with a discussion of the obtained results and pointer for future works.

2 Background

2.1 Abstract Dialectical Frameworks

Abstract Dialectical Frameworks (ADF s) have been designed in (Brewka and Woltran

2010, Brewka et al. 2013) to treat arguments (called statements there) as abstract and

On the Equivalence Between ADFs and Logic Programs 3

atomic entities. One can see it as a directed graph whose nodes represent statements,

which can get accepted or not. Besides, the links between nodes represent dependencies:

the status (accepted/not accepted) of a node s only depends on the status of its parents

(par(s)), i.e., the nodes with a direct link to s. We will restrict ourselves to finite ADF s:

Definition 1 (Abstract Dialectical Frameworks (Brewka and Woltran 2010))

An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a finite set of statements (positions, nodes);

• L ⊆ S × S is a set of links, and ∀s ∈ S, par(s) = {t ∈ S | (t, s) ∈ L};

• C = {Cs | s ∈ S} is a set of total functions Cs : 2par(s) → {t, f}, one for each

statement s. Cs is called the acceptance condition of s.

The function Cs is intended to determine the acceptance status of a statement s, which

only depends on the status of its parent nodes par (s). Intuitively, s will be accepted if

there exists R ⊆ par (s) such that Cs(R) = t, which means every statement in R is

accepted while each statement in par(s)−R is not accepted. The acceptance conditions

in C of an ADF D = (S,L,C) can as well be represented in two alternative ways:

• Any function Cs ∈ C can be represented by the set of subsets of par(s) leading to

acceptance, i.e., Ct =
{

Ct

s | s ∈ S
}

, where Ct

s = {R ⊆ par (s) | Cs(R) = t}. We

will indicate this alternative by denoting an ADF as (S,L,Ct).

• Any function Cs ∈ C can also be represented as a classical two-valued propositional

formula ϕs over the vocabulary par(s) as follows:

ϕs ≡
∨

R∈Ct
s





∧

a∈R

a ∧
∧

b∈par(s)−R

¬b



 . (1)

If Cs(∅) = t and par (s) = ∅, we obtain ϕs ≡ t. If there is no R ⊂ par (s) such

that Cs(R) = t, then ϕs ≡ f . By Cϕ we mean the set {ϕs | s ∈ S}. We will

indicate this alternative by denoting an ADF as (S,L,Cϕ). We also emphasize

any propositional formula ϕs equivalent (in the classical two-valued sense) to the

formula in Equation (1) can be employed to represent Cs.

When referring to an ADF as (S,L,Cϕ), we will assume the acceptance formulas im-

plicitly specify the parents a node depends on. Then, the set L of links between statements

can be ignored, and the ADF can be represented as (S,Cϕ), where L gets recovered by

(t, s) ∈ L iff t appears in ϕs. In order to define the different semantics for ADF s over the

set of statements S, we will resort to the notion of (3-valued) interpretations:

Definition 2 (Interpretations and Models (Brewka and Woltran 2010))

Let D = (S,Cϕ) be an ADF . A 3-valued interpretation (or simply interpretation) over

S is a mapping v : S → {t, f ,u} that assigns one of the truth values true (t), false (f)

or unknown (u), to each statement. Interpretations will be extended to assign values to

formulas over statements according to Kleene’s strong 3-valued logic (Kleene et al. 1952):

negation switches t and f , and leaves u unchanged; a conjunction is t if both conjuncts

are t, it is f if some conjunct is f and it is u otherwise; disjunction is dual. A 3-valued

interpretation v is a model of D if for all s ∈ S we have v(s) 6= u implies v(s) = v(ϕs).

4 J. Alcântara and S. Sá and J. Acosta-Guadarrama

Sometimes we will refer to an interpretation v over S as a set V = {s | s ∈ S and v(s) =

t} ∪ {¬s | s ∈ S and v(s) = f}. Obviously, if neither s ∈ V nor ¬s ∈ V , then v(s) = u.

Furthermore, the three truth values are partially ordered by ≤i according to their

information content: u <i t and u <i f and no other pair is in <i. The pair ({t, f ,u} ,≤i)

forms a complete meet-semilattice1 with the meet operation ⊓. This meet can be read

as consensus and assigns t ⊓ t = t, f ⊓ f = f , and returns u otherwise.

The information ordering ≤i extends as usual to interpretations v1, v2 over S such

that v1 ≤i v2 iff v1(s) ≤i v2(s) for all s ∈ S. The set of all 3-valued interpretations over S

forms a complete meet-semilattice with respect to ≤i. The consensus meet operation ⊓

of this semilattice is given by (v1 ⊓ v2)(s) = v1(s)⊓ v2(s) for all s ∈ S. The least element

of this semilattice is the interpretation v such that v(s) = u for each s ∈ S.

In (Brewka et al. 2013), the semantics for ADF s were defined via an operator ΓD:

Definition 3 (ΓD Operator (Brewka et al. 2013))
Let D = (S,L,Cϕ) be an ADF and v be a 3-valued interpretation over S. We have

ΓD(v)(s) =
l
{w(ϕs) | w ∈ [v]2} ,

in which [v]2 = {w | v ≤i w and for each s ∈ S,w(s) ∈ {t, f}}.

Each element in [v]2 is a 2-valued interpretation extending v. The elements of [v]2
form an ≤i-antichain with greatest lower bound v =

d
[v]2. For each s ∈ S, ΓD returns

the consensus truth value for ϕs, where the consensus takes into account all possible

2-valued interpretations w extending v. If v is 2-valued, we get [v]2 = {v}. In this case,

ΓD(v)(s) = v(ϕs) and v is a 2-valued model for D iff ΓD(v) = v. As [v]2 has only 2-valued

interpretations, if ϕ1
s is equivalent to ϕ2

s in the classical two-valued sense, it is clear
l
{

w(ϕ1
s) | w ∈ [v]2

}

=
l
{

w(ϕ2
s) | w ∈ [v]2

}

.

That means when defining ΓD operator, it does not matter the acceptance formula we

choose as far as it is equivalent in the classical 2-valued sense. In addition, ΓD operator

can be employed to characterize also complete interpretations:

Definition 4 (Complete Interpretations (Brewka et al. 2013))
Let D = (S,L,Cϕ) be an ADF and v be a 3-valued interpretation over S. We state v is

a complete interpretation of D iff v = ΓD(v).

As shown in (Brewka and Woltran 2010), ΓD operator is ≤i-monotonic. Then a ≤-

least fixpoint of ΓD is always guaranteed to exists for every ADF D. Note complete

interpretations of D are also models of D. For this reason, they are also called complete

models. The notion of reduct borrowed from logic programming (Gelfond and Lifschitz

1988) is reformulated to deal with ADF s:

Definition 5 (Reduct (Brewka et al. 2013))
Let D = (S,L,Cϕ) be an ADF and v be a 2-valued model of D. The reduct of D

with v is given by the ADF , Dv = (Ev, L
v, Cv), in which Ev = {s ∈ S | v(s) = t},

Lv = L ∩ (Ev × Ev), and Cv = {ϕv
s | s ∈ Ev and ϕv

s = ϕs[b/f : v(b) = f]}; i.e., in each

acceptance formula, ϕv
s , we replace in ϕs every statement b ∈ S by f if v(b) = f .

1 A complete meet-semilattice is such that every non-empty finite subset has a greatest lower bound,
the meet; and every nonempty directed subset has a least upper bound. A subset is directed if any
two of its elements have an upper bound in the set.

On the Equivalence Between ADFs and Logic Programs 5

We can now define some of the main semantics for an ADF as follows:

Definition 6 (Semantics (Brewka et al. 2013))

Let D = (S,L,Cϕ) be an ADF , and v a model of D. We state that

• v is a grounded model of D iff v is the ≤i-least complete model of D.

• v is a preferred model of D iff v is a ≤i-maximal complete model of D.

• v is a stable model of D iff v is a 2-valued model of D such that v is the grounded

model of Dv = (Ev, L
v, Cv).

We proceed by displaying an example to illustrate these semantics:

Example 7

Consider the ADF ,D = (S,Cϕ), given by a[¬b] b[¬a] c[¬b∧e] d[¬c] e[¬d],

where S = {a, b, c, d, e}, and the acceptance formula of each s ∈ S is written in square

brackets on the right of s. As for the semantics forD, we have a) {a,¬b}, {b, d,¬a,¬c,¬e}

and ∅ are its complete models; b) ∅ is its grounded model; c) {a,¬b}, {b, d,¬a,¬c,¬e}

are its preferred models; d) {b, d,¬a,¬c,¬e} is its unique stable model.

Notice some ADF s have no stable models. For instance, in an ADF whose unique

statement is a[¬a], there is no stable model. Furthermore, an ADF can have more than

one stable model as the ADF represented by a[¬b] and b[¬a], in which {a,¬b} and {b,¬a}

are the stable models of D. In contrast, the grounded model is unique for each ADF (see

(Brewka and Woltran 2010, Brewka et al. 2013)).

2.2 Normal Logic Programs

Now we will focus on propositional normal logic programs. We assume the reader is

familiar with the Stable Model Semantics (Gelfond and Lifschitz 1988).

Definition 8

A Normal Logic Program (NLP), P , is a set of rules of the form a← a1, . . . , am, not b1,

. . . , not bn (m,n ∈ N), where a, ai (1 ≤ i ≤ m) and bj (1 ≤ j ≤ n) are atoms; not

represents default negation, and not bj is a default literal. We say a is the head of the

rule, and a1, . . . , am, not b1, . . . , not bn is its body. The Herbrand Base of P is the set

HBP of all atoms occurring in P .

A wide range of logic programming semantics can be defined based on the 3-valued

interpretations (for short, interpretations) of programs:

Definition 9 (Interpretation and Models (Przymusinski 1990))

A 3-valued interpretation, I, of an NLP, P , is a total function I : HBP → {t, f ,u}.

We say I is a model of P iff for each rule a ← a1, . . . , am, not b1, . . . , not bn ∈ P ,

min {I(a1), . . . , I(am),¬I(b1), . . . ,¬I(bn)} ≤t I(a), where ¬t = f , ¬f = t and ¬u = u.

When convenient, we will refer to an interpretation I of P as a set I = {a | HBP and

I(a) = t} ∪ {¬a | a ∈ HBP and I(a) = f}. If neither a ∈ I nor ¬a ∈ I, then I(a) = u.

Besides the information ordering ≤i, it is worth mentioning here the truth ordering ≤t

given by f <t u <t t. The truth ordering ≤t extends as usual to interpretations I1, I2
over HBP such that I1 ≤t I2 iff I1(a) ≤t I2(a) for all a ∈ HBP . We also emphasize the

6 J. Alcântara and S. Sá and J. Acosta-Guadarrama

notions of model of a logic program and model of an ADF follow distinct motivations:

the models of a logic program are settled on ≤t whereas the models of an ADF are settled

on ≤i. In order to avoid confusions, we will let it explicit when referring to one of them.

Now we will consider the main semantics for NLPs. Let I be a 3-valued interpretation

of a program P ; take P/I to be the program built by the execution of the following steps:

1. Remove any a← a1, . . . , am, not b1, . . . , not bn ∈ P such that I(bi) = t for some i

(1 ≤ i ≤ n);

2. Afterwards, remove any occurrence of not bi from P such that I(bi) = f .
3. Then, replace any occurrence of not bi left by a special atom u (u 6∈ HBP).

Note u is assumed to be unknown in each interpretation of P . As shown in (Przy-

musinski 1990), P/I has a unique ≤t-least 3-valued model, obtained by the Ψ operator:

Definition 10 (ΨP

I

Operator (Przymusinski 1990))
Let P be an NLP, I and J be interpretations of P and a ∈ HBP an atom in P . Define

ΨP

I

(J) to be the interpretation given by

• ΨP

I

(J)(a) = t if a← a1, . . . , am ∈ P/I and for all i, 1 ≤ i ≤ m, J(ai) = t;

• ΨP

I

(J)(a) = f if for every a ← a1, . . . , am ∈ P/I, there exists i, 1 ≤ i ≤ m, such

that J(ai) = f ;
• ΨP

I

(J)(a) = u otherwise.

Indeed, the ≤t-least model of P
I
, denoted by ΩP (I), is given by the least fixed point

of ΨP

I

iteratively obtained as follows for finite logic programs:

Ψ↑ 0
P

I

=⊥

Ψ↑ i+1
P

I

=ΨP

I

(Ψ↑ i
P

I

)

in which ⊥ is an interpretation such that for each a ∈ HBP , ⊥(a) = f . According to

(Przymusinski 1990), there exists n ∈ N such that ΩP (I) = Ψ↑ n+1
P

I

= Ψ↑ n
P

I

. We now

specify the logic programming semantics to be examined in this paper.

Definition 11

Let P be an NLP and I be an interpretation:

• I is a partial stable model (PSM) of P iff I = ΩP (I) (Przymusinski 1990).
• I is a well-founded model of P iff I is the ≤i-least PSM of P (Przymusinski 1990).

• I is a regular model of P iff I is a ≤i-maximal PSM of P (Eiter et al. 1997).
• I is a stable model of P iff I is a PSM of P where for each a ∈ HBP , I(a) ∈ {t, f}

(Przymusinski 1990).

• I is an L-stable model of P iff I is a PSM of P with minimal {a ∈ HBP | I(a) = u}

(w.r.t. set inclusion) among all partial stable models of P (Eiter et al. 1997).

Example 12

Consider the NLP P :

b← c, not a a← not b c← d p← c, d, not p p← not a d←

Concerning the semantics of P , we have a) Partial stable models: {c, d}, {b, c, d, p,¬a}

and {a, c, d,¬b}; b) Well-founded model: {c, d}; c) Regular models: {b, c, d, p,¬a} and

{a, c, d,¬b}; d) Stable model and L-Stable model: {b, c, d, p,¬a}.

On the Equivalence Between ADFs and Logic Programs 7

In the next section, we will focus on a fragment of ADF s, dubbed Attacking Abstract

Dialectical Frameworks (ADF+s), and in the sequel we will show that ADF+s are enough

to capture any semantics based on partial stable models as those above mentioned.

3 Attacking Abstract Dialectical Frameworks

Now we consider the Attacking Abstract Dialectical Frameworks (ADF+s), a fragment

of ADF s in which the unique relation involving statements is the attack relation. We may

note parenthetically some definitions related to ADF s become simpler when restricted

to ADF+s. We proceed by recalling the notions of supporting and attacking links:

Definition 13 (Supporting and Attacking Links (Brewka and Woltran 2010))

Let D = (S,L,C) be an ADF . A link (r, s) ∈ L is

supporting in D iff for no R ⊆ par(s) we have Cs(R) = t and Cs(R ∪ {r}) = f .

attacking in D iff for no R ⊆ par (s) we have Cs(R) = f and Cs(R ∪ {r}) = t.

Formally, a link (r, s) is redundant if it is both attacking and supporting. Redundant

links can be deleted from an ADF as they mean no real dependencies (Brewka and

Woltran 2010). Again in (Brewka and Woltran 2010), the authors introduced the Bipo-

lar Abstract Dialectical Frameworks (BADF), a subclass of ADF s in which every link

is either supporting or attacking. Now we regard a subclass of BADFs in which only

attacking links are admitted:

Definition 14 (ADF+)

An Attacking Abstract Dialectical Framework, denoted by ADF+, is an ADF (S,L,C)

such that every (r, s) ∈ L is an attacking link. This means that for every s ∈ S, if

Cs(M) = t, then for every M ′ ⊆M , we have Cs(M
′) = t.

In an ADF+ (S,L,C), for each s ∈ S, its acceptance formula ϕs can be simplified as

follows:

Theorem 15

LetD = (S,L,Ct) be anADF+ and, for every s ∈ S, we define Cmax
s =

{

R ∈ Ct

s | there is

no R′ ∈ Ct

s such that R ⊂ R′
}

. Then, for every s ∈ S,

ϕs ≡
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b.

Hence, in ADF+s, every acceptance formula corresponds to a propositional formula

in the disjunctive normal form, where each disjunct is a conjunction of negative atoms.

Notice replacing an acceptance formula by a two-valued equivalent one does not change

the complete semantics, and we are not interested in the three-valued models of the

ADF+. The importance of these formulas will be evident below. Before, however, note

ADF+ does not prohibit redundant links. For instance, consider the ADF D = (S,L,C),

in which S = {a, b, c}, L = {(b, a), (c, a)} and Ct

a = {{b} , ∅} and Ct

b = Ct

c = {∅}. We

know D is an ADF+ as both (b, a) and (c, a) are attacking links. In addition, (b, a) is

a redundant link as it is also supporting. Redundant links can be easily identified in

ADF+s:

8 J. Alcântara and S. Sá and J. Acosta-Guadarrama

Theorem 16

Let D = (S,L,Ct) be an ADF+. A link (r, s) ∈ L is redundant iff r ∈ R for every

R ∈ Cmax
s .

A straightforward consequence from Theorem 16 is that in ADF+s, every acceptance

formula ϕs in the disjunctive normal form as in Theorem 15, where each disjunct is a

conjunction of negative atoms, disregards redundant links:

Corollary 17

Let D = (S,L,Ct) be an ADF+. For each s ∈ S, if ϕs is
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b and

L′ = {(r, s) | ¬r appears in ϕs}, then L′ has no redundant link.

Example 18

Let us recall the ADF+ D = (S,L,C) above in which S = {a, b, c}, L = {(b, a), (c, a)}

and Ct

a = {{b} , ∅} and Ct

b = Ct

c = {∅}. With the general representation for ϕs in

ADF s, in which for every s ∈ S, ϕs ≡
∨

R∈Ct
s





∧

a∈R

a ∧
∧

b∈par(s)−R

¬b



, we get a[(b ∧

¬c)∨ (¬b∧¬c)] b[t] c[t]. With the simpler representation for acceptance formulas

given by Theorem 15, in which ϕs ≡
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b, we get a[¬c] b[t] c[t].

As expected, the redundant link (b, a) is not taken into account to define ϕa as ¬c.

Alternatively, redundant links in ADF+s have the following property:

Theorem 19

Let D = (S,L,Ct) be an ADF+, s ∈ S; r ∈ par (s) and Ct

s(r) =
{

R ∈ Ct

s | r ∈ R
}

. A

link (r, s) ∈ L is redundant iff |Ct

s(r)| =
|Ct

s |

2
.

Thus, identifying redundant links in an ADF+ has a sub-quadratic time complexity

on |Ct

s |:

Corollary 20

Let D = (S,L,Ct) be an ADF+. Deciding if a link (r, s) ∈ L is redundant can be solved

in sub-quadratic time on |Ct

s |.

In contrast, identifying redundant links in ADF s is coNP-hard (Ellmauthaler 2012).

In Subsection 2.1, ΓD operator is employed to define the semantics for ADF . When

restricted to ADF+s, it assumes a simpler version:

Theorem 21

Let D = (S,L,Cϕ) be an ADF+, v be a 3-valued interpretation over S, and for each

s ∈ S, ϕs is the formula
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b depicted in Theorem 15. It holds for every

s ∈ S, ΓD(v)(s) = v(ϕs).

Besides being noticeably simpler when restricted to ADF+, this new characterization

of ΓD might mean lower complexity of reasoning. In (Brewka et al. 2013), the problem

of verifying whether a given interpretation is complete is proved to be DP-complete. In

On the Equivalence Between ADFs and Logic Programs 9

our case, owing to our definition of ΓD, this problem can get solved by assigning values

to formulas over statements according to Kleene’s strong 3-valued logic. This evaluation

procedure is similar to (and has the same complexity as) that for Boolean formulas, which

takes polynomial time (Buss 1987). We run this procedure for each statement in a given

ADF . Then, the overall algorithm runs in polynomial time. It is a promising result as

the complexity of many reasoning tasks on ADF+s may likely have the same complexity

as standard Dung’s AAFs (Dung 1995). A consequence from Theorem 21 is the stable

models of an ADF+ D can get characterized as the two-valued complete models of D:

Theorem 22

Let D = (S,L,Cϕ) be an ADF+. Then v is a stable model of D iff v is a 2-valued

complete model of D.

The main objective of this work is to show each semantics for NLPs presented in

Subsection 2.2 has an equivalent one for ADF+. Then we need to define a new semantics

for ADF+, which will be proved in the next section to be equivalent to the L-stable

models semantics for NLPs:

Definition 23 (L-stable)

Let D = (S,L,Cϕ) be an ADF+, and v be a 3-valued interpretation of D. We say v is an

L-stable model of D iff v is a complete model with minimal unk(v) = {s ∈ S | v(s) = u}

(w.r.t. set inclusion) among all complete models of D.

Note L-stable models semantics is defined for every ADF+ and the L-stable models

of an ADF+ D will coincide with its stable models whenever D has at least one stable

model. Indeed we can see a stable model v as an L-stable model in which unk(v) = ∅.

Example 24

Consider the ADF+ D = (S,Cϕ) given by

a[¬b] b[¬a] c[(¬c ∧ ¬a) ∨ (¬c ∧ ¬d)] d[¬d] e[¬e ∧ ¬b],

where S = {a, b, c, d, e}, and the acceptance formula of each statement s ∈ S is written

in square brackets on the right of s. As for the semantics of D, a) {a,¬b}, {b,¬a,¬e} and

∅ are its complete models; b) ∅ is its grounded model; c) {a,¬b} and {b,¬a,¬e} are its

preferred models; d) D has no stable model; e) {b,¬a,¬e} is its unique L-stable model.

Thus none of these semantics for ADF+ are equivalent to each other. However, in the

sequel, we will show some equivalences between NLPs semantics and ADF+ semantics.

4 Equivalence Between ADF and Logic Programs

We will show one particular translation from NLP to ADF+ is able to account for a

whole range of equivalences between their semantics. This includes to prove the equiva-

lence between NLP partial stable models and ADF+ complete models, NLP well-founded

models and ADF+ grounded models, NLP regular models and ADF+ preferred models,

NLP stable models and ADF+ stable models, NLP L-stable models and ADF+ L-stable

models. Our treatment is based on a translation from NLP to Abstract Argumentation

proposed in (Wu et al. 2009, Caminada et al. 2015a), where each NLP rule is directly

translated into an argument. In contradistinction, we will adapt it to deal with ADF by

10 J. Alcântara and S. Sá and J. Acosta-Guadarrama

translating each rule into a substatement, and then, substatements corresponding to rules

with the same head are gathered to constitute a unique statement. Taking a particular

NLP P , one can start to construct substatements recursively as follows:

Definition 25 (Substatement)
Let P be an NLP.

• If a is a rule (fact) in P , then it is also a substatement (say r) in P with ConcP (r) =

a, RulesP (r) = {a} and SupP (r) = {}.
• If a ← not b1, . . . , not bn is a rule in P , then it is also a substatement (say r)

in P with ConcP (r) = a, RulesP (r) = {a ← not b1, . . . , not bn} and SupP (r) =

{¬b1, . . . ,¬bn}.
• If a← a1, . . . , am, not b1, . . . , not bn is a rule in P and for each ai (1 ≤ i ≤ m) there

exists a substatement ri in P with ConcP (ri) = ai and a← a1, . . . , am, not b1, . . . ,

not bn is not contained in RulesP (ri), then a ← r1, . . . , rm, not b1, . . . , not bn
is a substatement (say r) in P with ConcP (r) = a, RulesP (r) = RulesP (r1) ∪

. . . ∪ RulesP (rm) ∪ {a← a1, . . . , am, not b1, . . . , not bn} and SupP (r) = SupP (r1)

∪ . . .∪ SupP (rn) ∪ {¬b1, . . . ,¬bn}.
• Nothing more is a substatement in P .

For a substatement r in P , SupP (r) is referred to as the support of r in P . Besides, for

each substatement r in P , we can also define SupP (r) iteratively as follows:

Sup
↑ 0
P (r) = ∅

Sup
↑ i+1
P (r) = {¬b1, . . . ,¬bn} ∪ Sup

↑ i
P (r1) ∪ . . . ∪ Sup↑ i

P (rm)

such that r is a substatement a ← r1, . . . , rm, not b1, . . . , not bn in P , a ← a1, . . . , am,

not b1, . . . , not bn ∈ RulesP (r) and ∀ai (1 ≤ i ≤ m) there exists a substatement ri in P

with ConcP (ri) = ai. Note for each substatement r in P , ∃k ∈ N such that SupP (r) =

Sup
↑ k
P (r). This notion of support is generalized to obtain the support of an atom in P :

Definition 26 (Support)
Let P be an NLP over a set A of atoms. For each a ∈ A, we define the support of a in

P as SupP (a)={ SupP (r) | r is a substatement in P such that ConcP (r) = a }.

Example 27
Consider the normal logic program P from Example 12:

b← c, not a a← not b c← d p← c, d, not p p← not a d←

We can obtain the following substatements:

r1 : d← r3 : p← r2, r1, not p r5 : p← not a

r2 : c← r1 r4 : a← not b r6 : b← r2, not a.

Thus

SupP (r1) = { } SupP (r3) = {¬p} SupP (r5) = {¬a}

SupP (r2) = { } SupP (r4) = {¬b} SupP (r6) = {¬a} .

and

SupP (a) = {{¬b}} SupP (b) = {{¬a}} SupP (p) = {{¬p} , {¬a}}

SupP (c) = {∅} SupP (d) = {∅} .

After that, we can construct the corresponding ADF as follows:

On the Equivalence Between ADFs and Logic Programs 11

Definition 28

Let P be an NLP over a set A of atoms. Define an ADF Ξ(P) = (A,L,Ct), in which

• L = {(b, a) | B ∈ SupP (a) and ¬b ∈ B};

• For each a ∈ A, Ct

a =
{

B′ ⊆ {b ∈ par(a) | ¬b 6∈ B}
∣

∣

∣
B ∈ SupP (a)

}

.

We can prove the resulting ADF Ξ(P) is indeed an ADF+:

Proposition 29

Let P be an NLP. The corresponding Ξ(P) is an ADF+.

Hence, the acceptance condition for each statement in Ξ(P) can be retrieved as follows:

Proposition 30

Let P be an NLP and Ξ(P) = (A,L,Ct) the corresponding ADF+. The acceptance

condition ϕa for each a ∈ A is given by

ϕa ≡
∨

B∈Sup
P
(a)

(

∧

¬b∈B

¬b

)

.

In particular, if SupP (a) = {∅}, then ϕa ≡ t and if SupP (a) = ∅, then ϕa ≡ f .

Example 31

Recalling the NLP P in Example 27, we obtain ADF+ Ξ(P) = (A,L,Ct), in which

A = {a, b, c, d, p}; L = {(b, a), (a, b), (p, p), (a, p)}; Ct

a = Ct

b = Ct

c = Ct

d = {∅} and

Ct

p = {{a} , {p} , ∅}. The acceptance condition for each statement in Ξ(P) is given below:

a[¬b] b[¬a] c[t] d[t] p[¬p ∨ ¬a].

Concerning the semantics of Ξ(P), we have

• Complete models: {c, d}, {b, c, d, p,¬a} and {a, c, d,¬b};

• Grounded model: {c, d};

• Preferred models: {b, c, d, p,¬a} and {a, c, d,¬b};

• Stable model and L-stable model: {b, c, d, p,¬a}.

Now we can prove one of the main results of this paper: Partial Stable Models are

equivalent to Complete Models.

Theorem 32

Let P be an NLP and Ξ(P) be the corresponding ADF+. v is a partial stable model of

P iff v is a complete model of Ξ(P).

With this equivalence showed in Theorem 32, the following results are immediate:

Theorem 33

Let P be an NLP and Ξ(P) = (A,L,Ct) the corresponding ADF+. We have

• v is a well-founded model of P iff v is a grounded model of Ξ(P).

• v is a regular model of P iff v is a preferred model of Ξ(P).

• v is a stable model of P iff v is a stable model of Ξ(P).

• v is an L-stable model of P iff v is an L-stable model of Ξ(P).

12 J. Alcântara and S. Sá and J. Acosta-Guadarrama

From Theorems 32 and 33, we see the NLP P from Example 12 and the corresponding

ADF+ Ξ(P) from Example 31 produce the same semantics. This result sheds light on the

connections between ADF s and NLPs. Until now, it was unclear if any ADF semantics

could capture a 3-valued one for NLPs. Theorem 33 ensures the translation from NLP to

ADF in Definition 28 is robust enough to guarantee at least the equivalence between any

semantics based on partial stable models (at the NLP side) with any semantics based on

complete models (at the ADF side).

5 Related Works

The relation betweenNLP and formal argumentation goes back to works such as (Prakken

and Sartor 1997, Simari and Loui 1992, Dung 1995). In the sequel, we will describe previ-

ous attempts to translateADF s toNLPs (Subsection 5.1) andNLPs to ADF s (Subsection

5.2) and the main connections between NLPs and other argument-based frameworks such

as Abstract Argumentation Frameworks (AAFs) (Dung 1995) and Assumption-Based Ar-

gumentation (ABA) (Dung et al. 2009) in Subsection 5.3. Afterwards, we compare an

extension of AAF, called SETAF (Nielsen and Parsons 2006), with ADF+.

5.1 From ADF to Logic Programming

As pointed out by (Strass 2013), there is a direct translation from ADF s to NLPs:

Definition 34 ((Strass 2013))

Let Ξ = (S,L,Ct) be an ADF . Define the corresponding NLP P (Ξ) = {s← a1, . . . am,

not b1, . . . , not bn | s ∈ S, {a1, . . . am} ∈ Ct

s and {b1, . . . , bn} = par(s)− {a1, . . . , am}
}

.

Note the body of a rule for s is satisfied by an interpretation I whenever for some

R ⊆ Ct

s , the statements in R are t in I and the remaining parents of s are f in I.

Example 35

The NLP P (Ξ) corresponding to the ADF Ξ of Example 7 is given by

P (Ξ) =
{

a← not b d← not c c← e, not b b← not a e← not d
}

.

An ADF Ξ and the corresponding NLP P (Ξ) are equivalent under various well-known

semantics (Strass 2013). Indeed, the complete models, grounded models, preferred models

and stable models of Ξ correspond respectively to the partial stable models, grounded

models, regular models and stable models of P (Ξ). This result allows us to say ADF s are

as expressive as NLPs. From an NLP P , we obtain an ADF Ξ(P) via Definition 28, and

then again an NLP P (Ξ(P)) via Definition 34. Although P and P (Ξ(P)) are equivalent

according to the aforementioned semantics, it is not guaranteed P = P (Ξ(P)):

Recall the NLP P in Example 12 and the corresponding ADF+ Ξ(P) in Example 31.

From Ξ(P) via Definition 34, we obtain the NLP P (Ξ(P)) (note P 6= P (Ξ(P))):

b← not a a← not b c← p← not p p← not a d← .

Similarly, from an ADF Ξ, we can obtain the NLP P (Ξ) (Definition 34), and then

again an ADF Ξ(P (Ξ)) (Definition 28). As above, they will be equivalent according to

the aforementioned semantics, however, it does not guarantee Ξ = Ξ(P (Ξ)).

On the Equivalence Between ADFs and Logic Programs 13

Recall the ADF Ξ in Example 7 and the corresponding NLP P (Ξ) in Example 35.

From P (Ξ) via Definition 28, we obtain the ADF Ξ(P (Ξ)) (note Ξ 6= Ξ(P (Ξ))):

a[¬b] b[¬a] c[¬b ∧ ¬d] d[¬c] e[¬d].

5.2 From Logic Programming to ADF

As we have mentioned, previous attempts to identify a semantics for ADF s equivalent

to a 3-valued semantics for NLPs have failed (Brewka and Woltran 2010, Strass 2013).

Definition 36 ((Brewka and Woltran 2010))

Let P be an NLP over a set A of atoms. Define an ADF , Ξ2(P) = (A,L,Ct), in which

• L={(c, a)|a← a1, . . . , am, not b1, . . . , not bn∈ P and c ∈ {a1, . . . , am, b1, . . . , bn}};

• For each a ∈ A, Ct

a = {B ∈ par(a) | a ← a1, . . . , am, not b1, . . . , not bn ∈

P, {a1, . . . , am} ⊆ B, {b1, . . . , bn} ∩B = ∅}.

Alternatively, we could define the acceptance condition of each a ∈ A as

ϕa ≡
∨

a←a1,...,am,not b1,...,not bn∈P

(a1 ∧ · · · ∧ am ∧ ¬b1 ∧ · · · ∧ ¬bn) . (2)

As noted in (Strass 2013), by Definition 36, the NLPs, P1 = {c ←; b ← not b;

a ← b; a ← c} and P2 = {c←; b← not b; a← b, not c; a← c, not b; a← b, c} produce

the same ADF s: (Ξ2(P1) = Ξ2(P2)). For any s ∈ A, its corresponding acceptance con-

dition is c[t] b[¬b] a[b ∨ c]2. But the unique partial stable model (PSM) of P1 is

{a, c}, whereas {c} is the unique PSM of P2. Hence, this translation is inadequate to

distinguish these two non-equivalent programs, according to PSM s. In contradistinction,

our translation works accordingly and produces respectively the ADF s below, which

has the same semantics as their corresponding original programs: Ξ(P1) is given by

c[t] b[¬b] a[t∨¬b], and Ξ(P2) is given by c[t] b[¬b] a[(¬b∨¬c)∨¬b]. How-

ever, when restricting to the class of NLPs where each rule is as a← not b1, . . . , not bm,

m ≥ 0, the translation of Definition 36 coincides with the translation of Definition 28

and is robust enough to capture 3-valued semantics as PSM and well-founded models.

Proposition 37

Let P be an NLP, where each rule is either a fact or its body has only default literals as

in a← not b1, . . . , not bn. Let Ξ(P) be the ADF obtained from P via Definition 28 and

Ξ2(P) the ADF obtained from P via Definition 36. Then Ξ(P) = Ξ2(P).

This result shows how Definition 36 could be employed to capture 3-valued semantics

as PSM s: firstly, one could take an NLP P and apply any program transformation (pre-

serving PSM s) that transforms an NLP into one as that of Proposition 373. Then, one

could apply the translation in Definition 36 to the resulting program (say P ′) to obtain

Ξ2(P
′). From Proposition 37, it holds P and Ξ2(P

′) have the same PSM s.

2 By Equation 2, for Ξ2(P), we have ϕa ≡ (b ∧ ¬c) ∨ (¬b ∧ c) ∨ (b ∧ c) ≡ b ∨ c.
3 See (Brass and Dix 1995) for some program transformations.

14 J. Alcântara and S. Sá and J. Acosta-Guadarrama

5.3 On the connections between Logic Programming and Argumentation

Logic programming has long served as an inspiration for argumentation theory. Indeed,

one can see the seminal work of Dung (Dung 1995) on Abstract Argumentation Frame-

works (AAFs) as an abstraction of some aspects of logic programming. In (Caminada

et al. 2015a), the authors pointed out that the translation from logic programming to

these frameworks described in (Wu et al. 2009) is able to account for the equivalences

between Partial Stable Models, Well-Founded Models, Regular Models, Stable Models

Semantics for NLPs and respectively Complete Models, grounded models, Preferred Mod-

els, Stable Models for AAFs. However, unlike we have done for ADF s, they have showed

that, with their proposed translation from NLPs to AAFs, there cannot be a semantics

for AAFs equivalent to L-Stable Semantics for NLPs.

When translating AAFs to NLPs, the connection between their semantics is stronger

than when translating in the opposite direction as for any of the mentioned semantics

for AAFs; there exists an equivalent semantics for NLPs (Caminada et al. 2015a).

In (Caminada and Schulz 2017), the authors showed how to translate Assumption-

Based Argumentation (ABA) (Bondarenko et al. 1997, Dung et al. 2009, Toni 2014) to

NLPs and how this translation can be reapplied for a reverse translation from NLPs

to ABA. Curiously, the problematic direction here is from ABA to NLP. In (Caminada

and Schulz 2017), they have showed that with their proposed translation, there cannot

be a semantics for NLPs equivalent to the the semi-stable semantics (Caminada et al.

2015b, Schulz and Toni 2015) for ABA.

5.4 A Comparison between SETAF and ADF+

In (Nielsen and Parsons 2006), they proposed an extension of Dung’s Abstract Argumen-

tation Frameworks (AAFs) to allow joint attacks on arguments. The resulting framework,

called SETAF, is displayed below:

Definition 38 ((Nielsen and Parsons 2006))

A framework with sets of attacking arguments (SETAF) is a pair SF = (A,R), where A

is the set of arguments and R ⊆ (2A − ∅)×A is the attack relation.

In an AAF, the unique relation between arguments is given by the attack relation,

where an (individual) argument attacks another. In a SETAF (as well as in an ADF+),

the novelty is that a set of arguments can attack an argument. For a translation from

SETAF to ADF refer to (Polberg 2016):

Translation. Let SF = (A,R) be a SETAF. The ADF corresponding to SF is

DFSF = (A,L,C), where L = {(x, y) | ∃X ⊆ A such that x ∈ X and (X, y) ∈ R},

C = {Ca} , a ∈ A and every Ca gets constructed in the following way: for every B ⊆

par(a), if ∃(Xi, a) ∈ R such that Xi ⊆ B, then Ca(B) = f ; otherwise, Ca(B) = t.

The following result is immediate:

Proposition 39

Let SF = (A,R) be a SETAF and DFSF = (A,L,C) be the corresponding ADF . Then,

DFSF is an ADF+.

On the other hand, not every ADF+ will correspond to a SETAF according to the

On the Equivalence Between ADFs and Logic Programs 15

translation above. A noticeable difference between them is that for every argument a ∈ A

in a SETAF SF = (A,R), it holds (∅, a) 6∈ R. Then, for every statement s in the

corresponding DFSF , it holds Cs(∅) = t, while Cs(∅) = f is allowed in ADF+. Indeed,

when Cs(∅) = f in an ADF+, we have Cs(R) = f for every R ⊆ par(s), i.e., ϕs ≡ f .

6 Conclusions and Future Works

In this paper, we have investigated the connections between Abstract Dialectical Frame-

works (ADF s) and Normal Logic Programs (NLPs). Unlike previous works (Brewka and

Woltran 2010, Strass 2013), we have provided a translation from NLPs to ADF s robust

enough to capture the equivalence between several frameworks for these formalisms,

including 3-valued semantics. In particular, after resorting to our translation, we have

proved the equivalence between partial stable models, well-founded models, regular mod-

els, stable models semantics for NLPs and respectively complete models, grounded mod-

els, preferred models, stable models for ADF s.

Curiously, we have obtained these equivalence results by translating an NLP into a frag-

ment of ADF , called Attacking Dialectical Frameworks (ADF+), in which the unique

relation involving statements is the attack relation. A distinguishing aspect of our transla-

tion when compared with related works as (Caminada et al. 2015a, Strass 2013) is that it

is made in two steps: in the first step each NLP rule is translated into a substatement, and

then, substatements corresponding to rules with the same head are gathered to constitute

a unique statement. With this procedure, our intention is to simulate the semantics for

NLPs, where the truth-value of an atom b is the disjunction of the truth-values of the

bodies of the rules whose head is b. Besides, we have defined a new semantics for ADF+,

called L-Stable, and showed it is equivalent to the L-Stable Semantics (defined in (Eiter

et al. 1997)) for NLPs.

An essential element to define these semantics for ADF is ΓD, a kind of immediate

consequences operator. When restricted to ADF+, we have proved ΓD is equivalent

to a noticeably simpler version. Indeed, owing to this simplicity, verifying whether a

given labelling is complete is of complexity P , whereas this verification problem is DP-

complete for ADF (Brewka et al. 2013). This is a promising result as it might also mean

the complexity of many reasoning tasks on ADF+s may have the same complexity as

standard Dung’s Abstract Argumentation Frameworks (Dung 1995).

As future work, we intend to complete a thorough investigation of the connections

between ADF s and ADF+s. Regarding the equivalences between NLP and ADF+, one

can claim that ADF+s are as general as ADF s, and the attack relation suffices to express

these relations involving statements in ADF s. Given the results unveiled in the current

paper, we also envisage unfolding the connections between NLPs and SETAFs (Nielsen

and Parsons 2006), an extension of Dung’s Abstract Argumentation Frameworks to allow

joint attacks on arguments. We expect that there are various correspondences between

their semantics.

References

Bondarenko, A., Dung, P. M., Kowalski, R. A., and Toni, F. 1997. An abstract,
argumentation-theoretic approach to default reasoning. Art. Intelligence 93, 1-2, 63–101.

16 J. Alcântara and S. Sá and J. Acosta-Guadarrama

Brass, S. and Dix, J. 1995. Characterizations of the stable semantics by partial evaluation. In
International Conf. on Logic Programming and Nonmonotonic Reasoning. Springer, 85–98.

Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J. P., and Woltran, S. 2013.
Abstract dialectical frameworks revisited. In Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence. AAAI Press, 803–809.

Brewka, G. and Woltran, S. 2010. Abstract dialectical frameworks. In Twelfth International
Conf. on the Principles of Knowledge Representation and Reasoning. AAAI Press, 102–111.

Buss, S. R. 1987. The boolean formula value problem is in alogtime. In Proceedings of the
nineteenth annual ACM symposium on Theory of computing. ACM, 123–131.

Caminada, M. 2006. Semi-stable semantics. 1st International Conference on Computational
Models of Argument (COMMA) 144, 121–130.

Caminada, M., Sá, S., Alcântara, J., and Dvořák, W. 2015a. On the equivalence be-
tween logic programming semantics and argumentation semantics. International Journal of
Approximate Reasoning 58, 87–111.

Caminada, M. and Schulz, C. 2017. On the equivalence between assumption-based argumen-
tation and logic programming. Journal of Artificial Intelligence Research 60, 779–825.

Caminada, M. W. A., Sá, S., Alcântara, J., and Dvořák, W. 2015b. On the difference
between assumption-based argumentation and abstract argumentation. IfCoLog Journal of
Logics and their Applications.

Dung, P. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357.

Dung, P. M., Kowalski, R. A., and Toni, F. 2009. Assumption-based argumentation. In
Argumentation in artificial intelligence. Springer, 199–218.

Eiter, T., Leone, N., and Saccá, D. 1997. On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell. 19, 1-2, 59–96.

Ellmauthaler, S. 2012. Abstract Dialectical Frameworks: Properties, Complexity, and Im-
plementation. M.S. thesis, Technische Universität Wien, Institut für Informationssysteme.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Proc. of the 5th International Conference on Logic Programming (ICLP). Vol. 88. 1070–1080.

Kleene, S. C., de Bruijn, N., de Groot, J., and Zaanen, A. C. 1952. Introduction to
metamathematics. Vol. 483. van Nostrand New York.

Nielsen, S. H. and Parsons, S. 2006. A generalization of Dung’s abstract framework for
argumentation: Arguing with sets of attacking arguments. In International Workshop on
Argumentation in Multi-Agent Systems. Springer, 54–73.

Polberg, S. 2016. Understanding the abstract dialectical framework. In European Conference
on Logics in Artificial Intelligence. Springer, 430–446.

Prakken, H. and Sartor, G. 1997. Argument-based extended logic programming with de-
feasible priorities. Journal of applied non-classical logics 7, 1-2, 25–75.

Przymusinski, T. C. 1990. The well-founded semantics coincides with the three-valued stable
semantics. Fundamenta Informaticae 13, 4, 445–463.

Schulz, C. and Toni, F. 2015. Logic programming in assumption-based argumentation
revisited-semantics and graphical representation. In 29th AAAI Conf. on Art. Intelligence.

Simari, G. R. and Loui, R. P. 1992. A mathematical treatment of defeasible reasoning and
its implementation. Artificial intelligence 53, 2-3, 125–157.

Strass, H. 2013. Approximating operators and semantics for abstract dialectical frameworks.
Artificial Intelligence 205, 39–70.

Toni, F. 2014. A tutorial on assumption-based argumentation. Argument & Computation 5, 1,
89–117.

Wu, Y., Caminada, M., and Gabbay, D. M. 2009. Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Studia logica 93, 2-3, 383.

On the Equivalence Between ADFs and Logic Programs 17

Appendix A Proofs of Theorems

A.1 Theorems and Proofs from Section 3:

Theorem 15

LetD = (S,L,Ct) be anADF+ and, for every s ∈ S, we define Cmax
s =

{

R ∈ Ct

s | there is

no R′ ∈ Ct

s such that R ⊂ R′
}

. Then, for every s ∈ S,

ϕs ≡
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b.

Proof

According to Equation (1), ϕs ≡ ϕ1 =
∨

R∈Ct

s

(

∧

a∈R a ∧
∧

b∈par(s)−R ¬b
)

. Let ϕ2 =
∨

R∈Cmax
s

∧

b∈par(s)−R ¬b. We will show ϕ1 ≡ ϕ2, i.e., for any 2-valued interpretation v,

v(ϕ1) = v(ϕ2):

• If v(ϕ1) = t, then there exists R ∈ Ct

s such that for all a ∈ R, v(a) = t and for all

b ∈ par (s) − R, v(b) = f . As there exists R′ ∈ Cmax
s such that R ⊆ R′, we obtain

for all b ∈ par(s)−R′, v(b) = f . Thus, v(ϕ2) = t.

• If v(ϕ1) = f , then for each R ∈ Ct

s there exists a ∈ R such that v(a) = f or

there exists b ∈ par(s) − R such that v(b) = t. In particular, for each R ∈ Cmax
s

there exists a ∈ R such that v(a) = f or there exists b ∈ par(s) − R such that

v(b) = t, and4 there exists b ∈ par(s) − R′ such that v(b) = t, in which R′ =

R − {a ∈ R | v(a) = f}. But then for each R ∈ Cmax
s there exists b ∈ par (s) − R

such that v(b) = t. Thus, v(ϕ2) = f .

Theorem 16

Let D = (S,L,Ct) be an ADF+. A link (r, s) ∈ L is redundant iff r ∈ R for every

R ∈ Cmax
s .

Proof

(⇒)

If (r, s) ∈ L is a redundant link, then, in particular, it is a supporting link, i.e., for

every R ⊆ par (s), we have if R ∈ Ct

s , then (R ∪ {r}) ∈ Ct

s .

By absurd, suppose there exists R ∈ Cmax
s such that r 6∈ R. This means R ∈ Ct

s . But

then we obtain (R ∪ {r}) ∈ Ct

s . It is an absurd as R ∈ Cmax
s .

(⇐)

Assume for any R ∈ Cmax
s , we have r ∈ R. By absurd, suppose (r, s) ∈ L is not

redundant. Then there exists R′ ⊆ par (s) such that Cs(R
′) = t and Cs(R

′ ∪ {r}) = f .

As r ∈ R for any R ∈ Cmax
s , there exists R′′ ∈ Cmax

s such that R′ ∪ {r} ⊆ R′′ and

Cs(R
′′) = t. But then, as any link in L is attacking, we obtain Cs(R

′ ∪ {r}) = t. An

absurd.

4 As D is an ADF+, for each R ∈ Cmax
s

, for each R′ ⊆ R, we have R′ ∈ Ct

s
.

18 J. Alcântara and S. Sá and J. Acosta-Guadarrama

Corollary 17
Let D = (S,L,Ct) be an ADF+. For each s ∈ S, if ϕs is

∨

R∈Cmax
s

∧

b∈par(s)−R

¬b and

L′ = {(r, s) | ¬r appears in ϕs}, then L′ has no redundant link.

Proof
The result is straightforward: from Theorem 16, we know (r, s) ∈ L is a redundant link

iff for any R ∈ Cmax
s , we have r ∈ R iff ¬r does not appear in

∨

R∈Cmax
s

∧

b∈par(s)−R

¬b iff

(r, s) 6∈ L′.

Theorem 19
Let D = (S,L,Ct) be an ADF+, s ∈ S; r ∈ par (s) and Ct

s(r) =
{

R ∈ Ct

s | r ∈ R
}

. A

link (r, s) ∈ L is redundant iff |Ct

s(r)| =
|Ct

s |

2
.

Proof
The proof follows from the definition of ADF+, a property of Power Sets and the Principle

of Inclusion and Exclusion (PIE).

In D, for every s ∈ S and M ⊆ par(s), if Cs(M) = t, then Cs(M
′) = t for every

M ′ ⊆ M (Definition 14). Then Ct

s = {S ⊆ R | R ∈ Cmax
s } =

⋃
{

℘(R) | R ∈ Cmax
s

}

,

where Cmax
s =

{

R ∈ Ct

s | there is no R′ ∈ Ct

s such that R ⊂ R′
}

and ℘(R) denotes the

power set of R.

Given a set S, we have |℘(S)| = 2|S| and that, for each r ∈ S, r is an element of
2|S|

2 subsets of S, i.e., of precisely half the subsets of S. Then if r ∈ S ∩ T , we have

that r is an element of 2|S|

2 subsets of S, 2|T |

2 subsets of T and 2|S∩T |

2 subsets of S ∩ T .

PIE ensures that |℘(S) ∪ ℘(T)| = |℘(S)| + |℘(T)| − |℘(S) ∩ ℘(T)|, which, because
℘(S∩T) = ℘(S)∩℘(T), leads to |℘(S)∪℘(T)| = |℘(S)|+|℘(T)|−|℘(S∩T)|. That is,

if r ∈ S∩T , then |℘(S)∪℘(T)| = 2|S|+2|T |−2|S∩T | and r is an element of 2|S|

2 + 2|T |

2 −

2|S∩T |

2 = |℘(S)∪℘(T)|
2 sets in ℘(S) ∪℘(T). By extension of PIE, if r ∈

⋂

{S1, . . . , Sn},

then r is an element of
|
⋃

{

℘(S1),...,℘(Sn)
}

|

2 sets in
⋃
{

℘(S1), . . . ,℘(Sn)
}

.

Let (r, s) be a redundant link, then, for all R ∈ Cmax
s , we have r ∈ R (Theorem 16),

i.e., r ∈
⋂

Cmax
s . Then r is an element of

|
⋃

{

℘(R) | R∈Cmax
s

and r∈R
}

|

2 =
|Ct

s
|

2 sets in
⋃
{

℘(R) | R ∈ Cmax
s and r ∈ R

}

= Ct

s , i.e., |C
t

s(r)| =
|Ct

s
|

2 .

Corollary 20
Let D = (S,L,Ct) be an ADF+. Deciding if a link (r, s) ∈ L is redundant can be solved

in sub-quadratic time on |Ct

s |.

Proof

Because |Ct

s(r)| =
|Ct

s
|

2 , where Ct

s(r) =
{

R ∈ Ct

s | r ∈ R
}

, to find if (r, s) is a redundant

link, it suffices to check for each R ∈ Ct

s , if r ∈ R. For each R ∈ Ct

s , checking if r ∈ R

can be done by checking, for each s ∈ R, if s = r. Clearly, each R ∈ Ct

s has at most

k = max {|R| | R ∈
⋃

Cmax
s } elements. Because Cmax

s ⊂ Ct

s and Ct

s is subset-complete,

we have |Ct

s | ≥ 2k. Then k is O(ln|Ct

s |), which means that deciding if a link (r, s) ∈ L is

redundant is O(|Ct

s |.ln(|C
t

s |)).

On the Equivalence Between ADFs and Logic Programs 19

Theorem 21

Let D = (S,L,Cϕ) be an ADF+, v be a 3-valued interpretation over S, and for each

s ∈ S, ϕs is the formula
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b depicted in Theorem 15. It holds for every

s ∈ S, ΓD(v)(s) = v(ϕs).

Proof

For each s ∈ S, let ϕs be
∨

R∈Cmax
s

∧

b∈par(s)−R

¬b

It is enough to prove for each s ∈ S, v(ϕs) =
d
{w(ϕs) | w ∈ [v]2}, where [v]2 =

{w | w is two-valued and v ≤i w}. We have three possibilities:

• v(ϕs) = t iff there exists R ∈ Cmax
s such that for each b ∈ par(s) − R, v(b) = f

iff there exists R ∈ Cmax
s such that for each b ∈ par (s) − R, for each w ∈ [v]2,

w(b) = f iff for each w ∈ [v]2, w(ϕs) = t iff
d
{w(ϕs) | w ∈ [v]2} = t.

• v(ϕs) = f iff for each R ∈ Cmax
s , there exists b ∈ par(s) − R such that v(b) = t

iff for each w ∈ [v]2, for each R ∈ Cmax
s , there exists b ∈ par(s) − R such that

w(b) = t iff for every w ∈ [v]2, w(ϕs) = f iff
d
{w(ϕs) | w ∈ [v]2} = f .

• v(ϕs) = u, then for each R ∈ Cmax
s , there exists b ∈ par(s) − R such that v(b) ∈

{t,u} and there exists R ∈ Cmax
s such that for each b ∈ par(s) − R, it holds

v(b) ∈ {f ,u}. Hence,

— there exists w ∈ [v]2 such that for each R ∈ Cmax
s , there exists b ∈ par(s) − R

such that w(b) = t. This means there exists w ∈ [v]2 such that w(ϕs) = f ;

— there exists w′ ∈ [v]2, there exists R ∈ Cmax
s such that for each b ∈ par (s)−R,

it holds w′(b) = f . This means there exists w ∈ [v]2 such that w(ϕs) = t.

But then we have
d
{w(ϕs) | w ∈ [v]2} = u.

Theorem 22

Let D = (S,L,Cϕ) be an ADF+. Then v is a stable model of D iff v is a 2-valued

complete model of D.

Proof

(⇒) Let v be a stable model of D. It is trivial v is a complete model of D as every stable

model is a complete model.

(⇐)

Let v be a 2-valued complete model of D. We will show v is a stable model of D,

i.e., v is a grounded model of Dv = (Ev, L
v, Cv), in which Ev = {s ∈ S | v(s) = t},

Lv = L ∩ (Ev × Ev) and for every s ∈ Ev, we set ϕv
s = ϕs[b/f : v(b) = f].

As v is a complete model of D, if v(s) = t, then v(ϕs) = v(
∨

R∈Cmax
s

∧

b∈par(s)−R ¬b) =

t. This means there exists R ∈ Cmax
s such that for each b ∈ par (s)− R, v(b) = f . Thus,

for each s ∈ Ev, ϕ
v
s ≡ t. As consequence, Ev is the grounded extension of Dv, i.e., v is a

stable model of D.

20 J. Alcântara and S. Sá and J. Acosta-Guadarrama

A.2 Theorems and Proofs from Section 4:

Proposition 29

Let P be an NLP. The corresponding Ξ(P) is an ADF+.

Proof

Let Ξ(P) = (A,L,Ct) be the ADF corresponding to the NLP P over a set of atoms

A. By absurd, suppose Ξ(P) is not an ADF+. This means there exists a link (b, a) ∈ L

for which some R ⊆ par (a) we have Ca(R) = f and Ca(R ∪ {b}) = t (Definition 13).

As Ca(R ∪ {b}) = t, from Definition 28, we obtain there exists B ∈ SupP (a) such that

R ∪ {b} ⊆ {c ∈ par (a) | ¬c 6∈ B}. Then we can say there exists B ∈ SupP (a) such that

R ⊆ {c ∈ par(a) | ¬c 6∈ B}. But then Ca(R) = t. An absurd!

Proposition 30

Let P be an NLP and Ξ(P) = (A,L,Ct) the corresponding ADF+. The acceptance

condition ϕa for each a ∈ A is given by

ϕa ≡
∨

B∈Sup
P
(a)

(

∧

¬b∈B

¬b

)

.

In particular, if SupP (a) = {∅}, then ϕa ≡ t and if SupP (a) = ∅, then ϕa ≡ f .

Proof

As Ξ(P) is an ADF+, we obtain from Theorem 15 that for every a ∈ A,

ϕa ≡
∨

R∈Cmax
a





∧

b∈par(a)−R

¬b



 ,

where Cmax
a =

{

R ∈ Ct

a | there is no R′ ∈ Ct

a such that R ⊂ R′
}

. From Definition 28, we

know Cmax
a = {R ⊆ {b ∈ par (a) | ¬b 6∈ B} | B ∈ SupP (a) and there is no R′ ∈ Ct

a such

that R ⊂ R′} = {{b ∈ par (a) | ¬b 6∈ B} | B ∈ min {SupP (a)}}, in which min {SupP (a)}

returns the minimal sets (w.r.t. set inclusion) of SupP (a). Thus for every a ∈ A,

ϕa ≡
∨

R∈Cmax
a





∧

b∈par(a)−R

¬b



 ≡
∨

B∈min{Sup
P
(a)}

(

∧

¬b∈B

¬b

)

,

But then, we obtain

ϕa ≡
∨

B∈min{Sup
P
(a)}

(

∧

¬b∈B

¬b

)

≡
∨

B∈Sup
P
(a)

(

∧

¬b∈B

¬b

)

.

Theorem 32

Let P be an NLP and Ξ(P) be the corresponding ADF+. v is a partial stable model of

P iff v is a complete model of Ξ(P).

On the Equivalence Between ADFs and Logic Programs 21

Proof

Let P be an NLP and Ξ(P) = (A,L,Ct) be the corresponding ADF+. Let v be a 3-

valued interpretation. We will prove v is a partial stable model of P iff v is a complete

model of Ξ(P), i.e., ΩP (v) = v iff for each a ∈ A, v(a) = v(ϕa).

We will prove by induction on j that for each a ∈ A, Ψ↑ j
P

v

(a) = t iff there exists

SupP (r) ∈ SupP (a) such that for each x ∈ Sup
↑ j
P (r), v(x) = t.

Base Case: We know Ψ↑ 1
P

v

(a) = t iff a ∈ P
v
iff there is a rule a← not b1, . . . , not bn ∈

P (n ≥ 0) such that for each bi, (1 ≤ i ≤ n), v(bi) = f iff there exists SupP (r) ∈ SupP (a)

such that Sup↑ 1
P (r) = {¬b1, . . . ,¬bn} and for each ¬bi ∈ Sup

↑ 1
P (r), v(¬bi) = t.

Inductive Hypothesis: Assume for each a′ ∈ A, Ψ↑ n
P

v

(a′) = t iff there exists SupP (r) ∈

SupP (a
′) such that for each x ∈ Sup

↑ n
P (r), v(x) = t.

Inductive Step: We will prove Ψ↑ n+1
P

v

(a) = t iff there exists SupP (r) ∈ SupP (a) such

that for each x ∈ Sup
↑ n+1
P (r), v(x) = t:

We know Ψ↑ n+1
P

v

(a) = t iff there exists a← a1, . . . , am ∈
P
v
such that for each ai, 1 ≤

i ≤ m, Ψ↑ n
P

v

(ai) = t iff there exists a ← a1, . . . , am, not b1, . . . , not bn ∈ P such that

for each ai, 1 ≤ i ≤ m, Ψ↑ n
P

v

(ai) = t, and for each bj, 1 ≤ j ≤ n, v(bj) = f iff according

to the Inductive Hypothesis, there exists a← a1, . . . , am, not b1, . . . , not bn ∈ P such

that for each ai, 1 ≤ i ≤ m, there exists SupP (ri) ∈ SupP (ai) such that for each

x ∈ Sup
↑ n
P (ri), v(x) = t, and for each bj , 1 ≤ j ≤ n, v(bj) = f iff there exists

a← a1, . . . , am, not b1, . . . , not bn ∈ P and there are statements r, ri, (1 ≤ i ≤ m) in

P with ConcP (r) = a and ConcP (ri) = ai such that for each ri, for each x ∈ Sup
↑ n
P (ri),

v(x) = t, and for each bj, 1 ≤ j ≤ n, v(¬bj) = t iff there exists SupP (r) ∈ SupP (a)

such that for each x ∈ Sup
↑ n+1
P (r), v(x) = t.

The above result guarantees for a 3-valued interpretation v of P , ΩP (v)(a) = t iff there

exists B = SupP (r) ∈ SupP (a) such that for each x ∈ B, v(x) = t, i.e.,

ΩP (v)(a) = t iff v





∨

B∈Sup
P
(a)

(

∧

¬b∈B

¬b

)



 = t iff v(ϕa) = t. (A1)

Similarly now we will prove by induction on j that for each a ∈ A, Ψ↑ j
P

v

(a) 6= f iff

there exists SupP (r) ∈ SupP (a) such that for each x ∈ Sup
↑ j
P (r), v(x) 6= f .

Base Case: We know Ψ↑ 1
P

v

(a) 6= f iff either a ∈ P
v

or a ← u ∈ P
v

iff there exists a

rule a ← not b1, . . . , not bn ∈ P (n ≥ 0) such that for each bi, (1 ≤ i ≤ n), v(bi) 6= t

iff there exists SupP (r) ∈ SupP (a) such that Sup↑ 1
P (r) = {¬b1, . . . ,¬bn} and for each

bi, (1 ≤ i ≤ n), v(bi) 6= t iff there exists SupP (r) ∈ SupP (a) such that for each

¬bi ∈ Sup
↑ 1
P (r), v(¬bi) 6= f .

Inductive Hypothesis: Assume for each a′ ∈ A, Ψ↑ n
P

v

(a′) 6= f iff there exists SupP (r) ∈

SupP (a
′) such that for each x ∈ Sup

↑ n
P (r), v(x) 6= f .

Inductive Step: We will prove Ψ↑ n+1
P

v

(a) 6= f iff there exists SupP (r) ∈ SupP (a) such

that for each x ∈ Sup
↑ n+1
P (r), v(x) 6= f :

We know Ψ↑ n+1
P

v

(a) 6= f iff there exists a← a1, . . . , am ∈
P
v
such that for each ai, 1 ≤

22 J. Alcântara and S. Sá and J. Acosta-Guadarrama

i ≤ m, Ψ↑ n
P

v

(ai) 6= f iff there exists a ← a1, . . . , am, not b1, . . . , not bn ∈ P such that

for each ai, 1 ≤ i ≤ m, Ψ↑ n
P

v

(ai) 6= f , and for each bj , 1 ≤ j ≤ n, v(bj) 6= t iff according

to the Inductive Hypothesis, there exists a← a1, . . . , am, not b1, . . . , not bn ∈ P such

that for each ai, 1 ≤ i ≤ m, there exists SupP (ri) ∈ SupP (ai) such that for each

x ∈ Sup
↑ n
P (ri), v(x) 6= f , and for each bj, 1 ≤ j ≤ n, v(bj) 6= t iff there exists

a← a1, . . . , am, not b1, . . . , not bn ∈ P and there are statements r, ri, (1 ≤ i ≤ m) in

P with ConcP (r) = a and ConcP (ri) = ai such that for each ri, for each x ∈ Sup
↑ n
P (ri),

v(x) 6= f , and for each bj , 1 ≤ j ≤ n, v(¬bj) 6= f iff there exists SupP (r) ∈ SupP (a)

such that for each x ∈ Sup
↑ n+1
P (r), v(x) 6= f .

The above result guarantees for a 3-valued interpretation v of P , ΩP (v)(a) 6= f iff there

exists B = SupP (r) ∈ SupP (a) such that for each x ∈ B, v(x) 6= f , i.e.,

ΩP (v)(a) = f iff v





∨

B∈Sup
P
(a)

(

∧

¬b∈B

¬b

)



 = f iff v(ϕa) = f . (A2)

From (A1) and (A2), we conclude v is a partial stable model of P iff for all a ∈ A,

v(a) = ΩP (v)(a) = v
(

∨

B∈Sup
P
(a)

(∧

¬b∈B ¬b
)

)

= v(ϕa), i.e., v is a complete model of

Ξ(P).

Theorem 33

Let P be an NLP and Ξ(P) = (A,L,Ct) the corresponding ADF+. We have

• v is a well-founded model of P iff v is a grounded model of Ξ(P).

• v is a regular model of P iff v is a preferred model of Ξ(P).

• v is a stable model of P iff v is a stable model of Ξ(P).

• v is an L-stable model of P iff v is an L-stable model of Ξ(P).

Proof

This proof is a straightforward consequence from Theorem 32:

• v is a well-founded model of P iff v is the ≤i-least partial stable model of P iff

(according to Theorem 32) v is the ≤i-least complete model of Ξ(P) iff v is the

grounded model of Ξ(P).

• v is a regular model of P iff v is a≤i-maximal partial stable model of P iff (according

to Theorem 32) v is a ≤i-maximal complete model of Ξ(P) iff v is a preferred model

of Ξ(P).

• v is a stable model of P iff v is a partial stable model of P such that unk(v) =

{s ∈ S | v(s) = u} = ∅ iff (according to Theorem 32) v is a complete model of Ξ(P)

such that unk(v) = ∅ iff (based on Theorem 22) v is a stable model of Ξ(P).

• v is an L-stable model of P iff v is a partial stable model of P with minimal

unk(v) = {s ∈ S | v(s) = u} (w.r.t. set inclusion) among all partial stable models

of P iff (according to Theorem 32) v a complete model of Ξ(P) with minimal unk(v)

among all complete models of P iff v is an L-stable model of Ξ(P).

On the Equivalence Between ADFs and Logic Programs 23

A.3 Propositions and Proofs from Section 5:

Proposition 37

Let P be an NLP, where each rule is either a fact or its body has only default literals as

in a← not b1, . . . , not bn. Let Ξ(P) be the ADF obtained from P via Definition 28 and

Ξ2(P) the ADF obtained from P via Definition 36. Then Ξ(P) = Ξ2(P).

Proof

Firstly, let P be an NLP defined over a set A of atoms, where each rule is like a ←

not b1, . . . , not bn. We know from Definitions 25 and 26 SupP (a) = {{¬b1, . . . ,¬bn} |

a ← not b1, . . . , not bn ∈ P}. Then, according to Definition 28, we obtain the ADF

Ξ(P) = (A,L,Ct), where

• L = {(c, a) | a← not b1, . . . , not bn ∈ P and c ∈ {b1, . . . , bn}};

• For a ∈ A, Ct

a = {B
′ ⊆ {b ∈ par(a) | ¬b 6∈ {b1, . . . , bn} | a← not b1, . . . , not bn ∈ P}}

= {B′ ⊆ par (a) | a← not b1, . . . , not bn ∈ P and {b1, . . . , bn} ∩B′ = ∅}.

According to Definition 36, we obtain the ADF Ξ2(P) = (A,L2, C
t

2), where

• L2 = {(c, a) | a← not b1, . . . , not bn ∈ P and c ∈ {b1, . . . , bn}} = L;

• For each a ∈ A, Ct

2a = {B′ ∈ par (a) | a ← not b1, . . . , not bn ∈ P, {b1, . . . , bn} ∩

B′ = ∅} = Ct

a.

Hence, Ξ(P) = Ξ2(P).

Proposition 39

Let SF = (A,R) be a SETAF and DFSF = (A,L,C) be the corresponding ADF . Then,

DFSF is an ADF+.

Proof

In order to show DFSF = (A,L,C) is an ADF+, we will guarantee any (r, s) ∈ L is an

attacking link, i.e., for every B ⊆ par(s), if Cs(B ∪ {r}) = t, then Cs(B) = t:

Suppose Cs(B ∪ {r}) = t. Then according to the translation from SETAF to ADF ,

there is no (Xi, s) ∈ R such that Xi ⊆ B ∪ {r}. Thus there is no (Xi, s) ∈ R such that

Xi ⊆ B. This implies Cs(B) = t.

	1 Introduction
	2 Background
	2.1 Abstract Dialectical Frameworks
	2.2 Normal Logic Programs

	3 Attacking Abstract Dialectical Frameworks
	4 Equivalence Between ADF and Logic Programs
	5 Related Works
	5.1 From ADF to Logic Programming
	5.2 From Logic Programming to ADF
	5.3 On the connections between Logic Programming and Argumentation
	5.4 A Comparison between SETAF and ADF+

	6 Conclusions and Future Works
	References
	Appendix A Proofs of Theorems
	A.1 Theorems and Proofs from Section 3:
	A.2 Theorems and Proofs from Section 4:
	A.3 Propositions and Proofs from Section 5:

