
Under consideration for publication in Theory and Practice of Logic Programming 1

A Case for Stale Synchronous Distributed Model for
Declarative Recursive Computation

ARIYAM DAS and CARLO ZANIOLO
Department of Computer Science, University of California, Los Angeles, USA

(e-mail: {ariyam, zaniolo}@cs.ucla.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

A large class of traditional graph and data mining algorithms can be concisely expressed in Datalog, and
other Logic-based languages, once aggregates are allowed in recursion. In fact, for most BigData algo-
rithms, the difficult semantic issues raised by the use of non-monotonic aggregates in recursion are solved
by Pre-Mappability (PreM), a property that assures that for a program with aggregates in recursion there
is an equivalent aggregate-stratified program. In this paper we show that, by bringing together the for-
mal abstract semantics of stratified programs with the efficient operational one of unstratified programs,
PreM can also facilitate and improve their parallel execution. We prove that PreM-optimized lock-free
and decomposable parallel semi-naive evaluations produce the same results as the single executor programs.
Therefore, PreM can be assimilated into the data-parallel computation plans of different distributed sys-
tems, irrespective of whether these follow bulk synchronous parallel (BSP) or asynchronous computing
models. In addition, we show that non-linear recursive queries can be evaluated using a hybrid stale syn-
chronous parallel (SSP) model on distributed environments. After providing a formal correctness proof for
the recursive query evaluation with PreM under this relaxed synchronization model, we present experi-
mental evidence of its benefits. This paper is under consideration for acceptance in Theory and Practice of
Logic Programming (TPLP).

KEYWORDS: Datalog, Deductive Databases, Recursive Query, Stale Synchronous Parallel Model, Bulk
Synchronous Parallel Model, Parallel and Distributed Computing

1 Introduction

The growing interest in Datalog-based declarative systems like LogicBlox [Aref et al. 2015], Big-
Datalog [Shkapsky et al. 2016], SociaLite [Seo et al. 2013], BigDatalog-MC [Yang et al. 2017]
and Myria [Wang et al. 2015] has brought together important advances on two fronts: (i) Firstly,
Datalog, with support for aggregates in recursion [Mazuran et al. 2013], has sufficient power to
express succinctly declarative applications ranging from complex graph queries to advanced data
mining tasks, such as frequent pattern mining and decision tree induction [Condie et al. 2018].
(ii) Secondly, modern architectures supporting in-memory parallel and distributed computing can
deliver scalability and performance for this new generation of Datalog systems.

For example BigDatalog (bulk synchronous parallel processing on shared-nothing architec-
ture), BigDatalog-MC (lock-free parallel processing on shared-memory multicore architecture),
Myria (asynchronous processing on shared-nothing architecture) spearheaded the system-level
scheduling, planning and optimization for different parallel computing models. This line of work
was quite successful for Datalog, and also for recursive SQL queries that have borrowed this

ar
X

iv
:1

90
7.

10
27

8v
1

 [
cs

.P
L

]
 2

4
Ju

l 2
01

9

2 A. Das and C. Zaniolo

technology [Gu et al. 2019]). Indeed, our recent general-purpose Datalog systems surpassed
commercial graph systems like GraphX on many classical graph queries in terms of performance
and scalability [Shkapsky et al. 2016].

Much of the theoretical groundwork contributing to the success of these parallel Datalog sys-
tems was laid out in the 90s. For example, in their foundation work [Ganguly et al. 1992] in-
vestigated parallel coordination-free (asynchronous) bottom-up evaluations of simple linear re-
cursive programs (without any aggregates). In fact, many recent works have pushed this idea
forward under the broader umbrella of CALM conjecture (Consistency And Logical Monotonic-
ity) [Ameloot et al. 2013] which establishes that monotonic Datalog (Datalog without negation
or aggregates) programs can be computed in an eventually consistent, coordination-free man-
ner [Ameloot 2014], [Ameloot et al. 2015]. This line of work led to the asynchronous data-
parallel (for Myria) and lock-free evaluation plans for many of the aforementioned systems (e.g.
BigDatalog-MC). Simultaneously, another branch of research about ‘parallel correctness’ for
simple non-recursive conjunctive queries [Ameloot et al. 2017] focused on optimal data distribu-
tion policies for re-partitioning the initial data under Massively Parallel Communication model
(MPC). However, notably, this theoretical groundwork left out programs using aggregates in
recursion, for which the existence of a formal semantics could not be guaranteed. But, this situa-
tion has changed recently because of the introduction of the notion of Pre-Mappability1 (PreM)
[Zaniolo et al. 2017] that has made possible the use of aggregates in recursion to express ef-
ficiently a large range of applications [Condie et al. 2018]. A key aspect of this line of work
has been the use of non-monotonic aggregates and pre-mappable constraints inside recursion,
while preserving the formal declarative semantics of aggregate-stratified programs, thanks to the
notion of PreM that guarantees their equivalence. Unlike more complex non-monotonic seman-
tics, stratification is a syntactic condition that is easily checked by users (and compilers), who
know that the presence of a formal declarative semantics guarantees the portability of their ap-
plications over multiple platforms. Furthermore, evidence is mounting that a higher potential for
parallelism is also gained under PreM. Naturally, we would like to examine the applicability
of PreM under a parallel and distributed setting and analyze its potential gains using the rich
models of parallelism previously proposed for Datalog and other logic systems.

In this paper, therefore, we begin by examining how PreM interacts under a parallel setting,
and address the question of whether it can be incorporated into the parallel evaluation plans
on shared-memory and shared-nothing architectures. Furthermore, the current crop of Data-
log systems supporting aggregates in recursion have only explored Bulk Synchronous Parallel
(BSP) and asynchronous distributed computing models. However, the new emerging paradigm
of Stale Synchronous Parallel (SSP) processing model [Cui et al. 2014] has shown to speed up
big data analytics and machine learning algorithm execution on distributed environments [Lee
et al. 2014], [Ho et al. 2013] with bounded staleness. SSP processing allows each worker in a
distributed setting to see and use another worker’s obsolete (stale) intermediate solution, which
is out-of-date only by a limited (bounded) number of epochs. On the contrary, in a BSP model
every worker coordinates at the end of each round of computation and sees each others’ current
intermediate results. This relaxation of the synchronization barrier in a SSP model can reduce
idle waiting of the workers (time spent waiting to synchronize), particularly when one or more

1 In our initial work [Zaniolo et al. 2017], we interchangeably used the term Pre-Applicability. However, in our follow-
up works [Condie et al. 2018], [Zaniolo et al. 2018], we consistently used the term Pre-Mappability since the latter
was deemed more appropriate in the context of ‘pre-mapping’ aggregates and constraints to recursive rules.

A Stale Synchronous Model for Recursive Computation 3

workers (stragglers) lag behind others in terms of computation. Thus, in this paper, we also ex-
plore if declarative recursive computation can be executed under the loose consistency model of
SSP processing and if it has the same convergence as that under a BSP processing framework.
To our surprise, we find PreM dovetails excellently with SSP model for a class of non-linear
recursive queries with aggregates, which are not embarrassingly parallel and still require some
coordination between the workers to reach eventual consistency [Interlandi and Tanca 2018].
Thus, the contributions of this paper can be summarized as follows:

• We show that PreM is applicable to parallel bottom-up semi-naive evaluation plan, termi-
nating at the same minimal fixpoint as the corresponding single executor based sequential
execution.

• We further show how recursive query evaluation with PreM can operate effectively under
a SSP distributed model.

• Finally, we discuss the merits and demerits of a SSP model with initial empirical results
on some recursive query examples, thus opening up an interesting direction for future
research.

2 An Overview of PreM

This section provides a brief overview about PreM and some of its properties [Zaniolo et al.
2016], [Zaniolo et al. 2018]. Consider the Datalog query in Example 1 that computes the shortest
path between all pairs of vertices in a graph, given by the relation arc(X, Y, D), where D is
the distance between source node X and destination node Y. The min〈D〉 syntax in our example
indicates min aggregate on the cost variable D, while (X, Y) refer to the group-by arguments.
This head notation for aggregates directly follows from SQL-2 syntax, where cost argument for
the aggregate consists of one variable and group-by arguments can have zero or more variables.
Rules r1.3 in the example shows that the aggregate min is computed at a stratum higher than the
recursive rule (r1.2).

Example 1. All Pairs Shortest Path

r1.1 : path(X,Y,D) <- arc(X,Y,D).

r1.2 : path(X,Y,D) <- path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r1.3 : shortestpath(X,Y,min〈D〉) <- path(X,Y,D).

Incidentally, r1.3 can also be expressed with stratified negation as shown in rules r1.4 and r1.5.
This guarantees that the program has a perfect-model semantics, although an iterated fixpoint
computation of it can be very inefficient and even non-terminating in presence of cycles.

r1.4 : shortestpath(X,Y,D) <- path(X,Y,D),¬betterpath(X,Y,D).
r1.5 : betterpath(X,Y,D) <- path(X,Y,D),path(X,Y,Dxy),Dxy< D.

PreM Application. The aforementioned inefficiency can be mitigated with PreM, if the min
aggregate can be pushed inside the fixpoint computation, as shown in rules r2.1 and r2.2. The fol-
lowing program under PreM has a stable model semantics and [Condie et al. 2018] showed that
this transformation is indeed equivalence-preserving with an assured convergence to a minimal
fixpoint within a finite number of iterations. In other words, without PreM the shortest path in
our example (according to rule r1.3) is given by the subset of the minimal model (computed from
rules r1.1,r1.2) obtained after removing path atoms that did not satisfy the min cost constraint

4 A. Das and C. Zaniolo

for a given source-destination pair. However, with PreM, the transfer of min cost constraint
inside recursion results in an optimized program, where the fixpoint computation is performed
more efficiently, eventually achieving the same shortest path values (as those produced in the
perfect model of the earlier program) by simply copying the atoms from path under the name
shortestpath (rule r2.3) after the least fixpoint computation terminates.

r2.1 : path(X,Y,min〈D〉) <- arc(X,Y,D).
r2.2 : path(X,Y,min〈D〉) <- path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

r2.3 : shortestpath(X,Y,D) <- path(X,Y,D).

Formal Definition of PreM. For a given Datalog program, let P be the rules defining a (set of
mutually) recursive predicate(s) and T be the corresponding Immediate Consequence Operator
(ICO) defined over P. Then, a constraint γ is said to be PreM to T (and to P) when, for every
interpretation I of the program, we have γ(T (I)) = γ(T (γ(I))).

In Example 1, the final rule r1.3 imposes the constraint γ = (X,Y,min〈D〉) on I = path(X,Y,D)

(representing all possible paths) to eventually yield the shortest path between all pairs of nodes.
Thus, the aggregate-stratified program defined by rules r1.1− r1.3 is equivalent to γ(T (I)) in the
definition of PreM. On the other hand, with min aggregate pushed inside recursion, recursive
rules r2.1− r2.2 represent γ(T (γ(I))).

PreM Properties. We now discuss some important results about PreM from [Zaniolo et al.
2017]. We refer interested readers to our paper [Zaniolo et al. 2017] for the detailed proofs.
Let Tγ denote the constrained immediate consequence operator, where constraint γ is applied
after the ICO T , i.e., Tγ(I) = γ(T (I)). The following results hold when γ is PreM to a positive
program P with ICO T :

(i). If I = T (I) is a fixpoint for T , then I′ = γ(I) is a fixpoint for Tγ(I), i.e., I′ = Tγ(I′).
(ii). For some integer n, if T ↑nγ (/0) = T ↑n+1

γ (/0), then T ↑nγ (/0) = T ↑n+1
γ (/0) is a minimal fixpoint

for Tγ and T ↑nγ (/0) = γ(T ↑ω(/0)), where T ↑ω =
⋃

n≥1
T ↑n

PreM Provability. We can verify if PreM holds for a recursive rule by explicitly validating
γ(T (I)) = γ(T (γ(I))), i.e., Tγ(I) = Tγ(γ(I)) at every iteration of the fixpoint computation. To
simplify, this would indicate that we can verify if the min constraint can be pushed inside recur-
sion in rule r2.2 by inserting an additional goal is_min in the body of the rule as follows:

r′2.2 : path(X,Y,min〈D〉) <- path(X,Z,Dxz), is_min((X,Z),Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy.

This additional goal in the body pre-applies the constraint γ on I, followed by the application of
Tγ operator, i.e., it expresses Tγ(γ(I)). Note, the is_min constraint is satisfied by Dxz, if it is the
minimum value seen yet in the fixpoint computation for the source-destination pair (X, Z). It is
also evident that any other distance value between (X, Z), which violates the is_min constraint,
will also not satisfy the min aggregate at the head of the rule, since the additional goal minimizes
the sum D for each Dzy. Thus, this new goal in the body does not alter the ICO mapping de-
fined by the original recursive rule, thereby proving γ is PreM in this example program. More
broadly speaking, these additional goals can be formally defined as “half functional dependen-
cies”, borrowing the terminology from classical database theory of Functional and Multi-Valued
Dependencies (FDs and MVDs). We next present the formal definition of half FD from [Zaniolo
et al. 2018], which will be used later for our proofs.

A Stale Synchronous Model for Recursive Computation 5

Definition 1. (Half Functional Dependency). Let R(Ω) be a relation on a set of attributes Ω,
X ⊂ Ω and A ∈ Ω− X. Considering the domain of A to be totally ordered, a tuple t ∈ R is
said to satisfy the min-constraint is_min((X),A) (denoted as X min

⇀ A), when R contains no tuple
with the same X-value and a smaller A-value. Similarly, a tuple t ∈ R satisfies a max-constraint
is_max((X),A) (denoted as X max

⇁ A) if R has no tuple with the same X-value and a larger A-
value.

For any min or max constraint to be PreM to a positive program P, the corresponding half FD
should hold for the relational view of the relevant recursive predicate across every interpretation
I of P, where a relational view for predicate q is defined as Rq = {(x1, ...,xn)|q(x1, ...,xn)∈ I} for
a given I. [Zaniolo et al. 2018] provides generic templates, based on Functional and Multi-valued
Dependencies, for identifying constraints that satisfy PreM.

PreM with Semi-Naive Evaluation. A naive fixpoint computation trivially generates new atoms
from the entire set of atoms available at the end of the last fixpoint iteration. Semi-naive evalua-
tion improves over this naive fixpoint computation with the aid of the following enhancements:

1. At every iteration, track only the new atoms produced.
2. Rules are re-written into their differential versions, so that only new atoms are produced

and old atoms are never generated redundantly.
3. Ensure step (2) does not generate any duplicate atoms.

For programs where PreM can be applied, steps (1) and (2) remain identical. However, step
(3) is extended so that (i) new atoms produced may not be retained, if they do not satisfy the
constraint γ and (ii) existing atoms may get updated and thereafter tracked for the next iteration.
For example, new atoms produced from rule r2.2 are added to the working set and tracked only if
a new source-destination (X,Y) path is discovered. On the other hand, if the new path atom, thus
produced, has a smaller distance than the one in the working set, then the distance of the existing
path atom is updated to satisfy the min-constraint. However, if new path atoms are generated,
which have larger distances, then they are simply ignored. This understanding of PreM for semi-
naive evaluation leads to a case for SSP model, where significant communication can be saved
by condensing multiple updates into one. This is discussed in detail later in Section 5.

3 An Overview of Parallel Bottom-Up Evaluation

One of the early foundational works that established a standard technique to parallelize bottom-
up evaluation of linear recursive queries was presented in [Ganguly et al. 1992]. The authors
proposed a substitution partitioned parallelization scheme, where the set of possible ground sub-
stitutions, i.e., the base (extensional database) and derived relation (intensional database) atoms
in the Datalog program are disjointedly partitioned, using a hash-based discriminating function,
so that each partition of possible ground substitutions is mapped to exactly one of the parallel
workers. The entire computation is then divided among all the workers, operating in parallel,
where each worker only processes the partition of ground substitutions mapped to it during the
bottom-up semi-naive evaluation. Since, each worker operates on a distinct non-overlapping par-
tition of ground substitutions, no two workers perform the same or redundant computation, i.e.,
this scheme is non-redundant. Formally, if v(r) is a non-repetitive sequence of variables appear-
ing in the body of rule r and W denotes a finite set of parallel workers, then h : v(r)−→W is a

6 A. Das and C. Zaniolo

discriminating hash function that divides the workload by assigning the ground substitution and
corresponding processing to exactly one worker. The workers can send and receive information
(ground instances from partially computed derived relations) to and from other workers to finish
the assigned computation tasks. Ganguly et al. summarized the correctness of this parallelization
scheme with the following result:

Correctness of Partitioned Parallelization Scheme. Let P be a recursive Datalog program to
be executed over W workers. Under the partitioned parallelization scheme, let Qi be the program
to be executed at worker i and let Q =

⋃
1≤i≤W

Qi. Then, for every interpretation, the least model of

the recursive relation in Q is identical to the least model obtained from the sequential execution
of P.

Note, the above parallelization strategy did not involve aggregates in recursion. But, neverthe-
less it was of significant consequence, since the scheme has been extended to derive lock-free
parallel plans for shared-memory architectures as well as sharded data parallel decomposable
plans for shared-nothing distributed architectures to parallelize bottom-up semi-naive evaluation
of Datalog programs. We discuss them next with examples.

Shared-Memory Architecture. A trivial hash-based partitioning, as described above, can of-
ten lead to conflicts between different workers on a shared-memory architecture2. This can be
prevented with the implementation of classical locks to resolve read-write conflicts. However,
recently, [Yang et al. 2015] proposed a hash partitioning strategy based on discriminating sets
that allows lock-free parallel evaluation of a broad class of generic queries including non-linear
queries. We illustrate this with our running all pairs shortest path example.

Assume the relations arc, path and shortestpath from example 1 (rules r1.1− r1.3) are
partitioned by the first column3 (i.e., the source vertex), using a hash function h that maps the
source vertex to an integer between 1 to W , latter denoting the number of workers. Now, a worker
i can execute the following program in parallel:

r3.1 : path(X,Y,D) <- arc(X,Y,D),h(X) = i.

r3.2 : path(X,Y,D) <- path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy,h(X) = i.

r3.3 : shortestpath(X,Y,min〈D〉) <- path(X,Y,D),h(X) = i.

1. The ith worker executes rule r3.1 by reading from the ith partition of arc.
2. Once all the workers finish step (1), the ith worker begins semi-naive evaluation with rule

r3.2, where it reads from the ith partition of path, joins with the corresponding atoms from
the arc relation, which is shared across all the workers, and then writes new atoms into
the same ith partition of path.

3. Once all the workers finish step (2), the semi-naive evaluation proceeds to the next iteration
and repeats step (2) till the least fixpoint is reached.

4. In the final step, the ith worker computes the shortestpath for the ith partition.
5. All the shortestpath data pooled across the workers produce the final query result.

It is easy to observe that the above parallel execution does not require any locks, since each

2 For example, two distinct workers may update a path atom for the same (X,Y) pair in rule r1.2, if the hashing is done
based on the ground instances of the sequence {X,Z,Dxz,Z,Y,Dzy} or even on the sequence {X,Z,Y}.

3 The first attribute forms a discriminating set that is used for partitioning.

A Stale Synchronous Model for Recursive Computation 7

worker is writing to exactly one partition and no two workers are writing to the same partition.
We formally define the lock-free parallel bottom-up evaluation scheme next.

Definition 2. (Lock-free Parallel Bottom-up Evaluation). Let P be a recursive Datalog program
to be executed over W workers and let T be the corresponding ICO for the sequential execu-
tion of P. Under the lock-free parallel plan executed over W workers, let Qi be the program to
be executed at worker i, producing an interpretation Ii of the recursive predicate with the cor-
responding ICO Ti. Then, for every input of base relations, we have, T ↑ωi (/0)

⋂
T ↑ωj (/0) = /0 for

1≤ i, j≤W , i 6= j. It also follows from the correctness of partitioned parallelization scheme that⋃
1≤i≤W

T ↑ωi (/0) = T ↑ω(/0).

The underlying strategy of a lock-free parallel plan to use disjointed data partitions have also
been adopted to execute data-parallel distributed bottom-up evaluations, as explained next.

Shared-Nothing Architecture. Distributed systems like BigDatalog [Shkapsky et al. 2016] also
divide the entire dataset into disjointed data shards in an identical manner as the lock-free par-
titioning technique described above. Each data shard resides in the memory of a worker and
this partitioning scheme reduces the data shuffling required across different workers [Shkapsky
et al. 2016]. In the context of shared-nothing architecture, this sharding scheme and subsequent
distributed bottom-up evaluation is termed as a decomposable plan [Shkapsky et al. 2016], [Gu
et al. 2019]. In the rest of this paper, we will use the term ‘lock-free parallel plan’ in the context
of shared-memory architecture and ‘parallel decomposable plan’ in the context of distributed
environment for clarity.

Distributed systems like BigDatalog and SociaLite [Seo et al. 2013] perform the fixpoint com-
putation under BSP model with synchronized iterations. However, note that, if each node caches
the arc relation, then each node can operate independently without any co-ordination or syn-
chronization with other nodes (i.e., step 3 listed before in the lock-free evaluation plan becomes
unnecessary). The Myria system follows this asynchronous computing model for the query evalu-
ation. Interestingly, [Ganguly et al. 1992] showed that only a subclass of linear recursive queries4

can be executed in a co-ordination free manner or asynchronously. Thus, for a large class of non-
linear and even many linear recursive queries (e.g. same generation query [Ganguly et al. 1992]),
BSP computing model has been the only viable option.

4 Parallel Evaluation with PreM

In this section, we now examine if PreM can be easily integrated into the lock-free parallel and
parallel decomposable bottom-up evaluation plans that have been widely adopted across shared-
memory and shared-nothing architectures for a broad range of generic queries. We next provide
some interesting theoretical results.

Lemma 1. Let R(Ω) be a relation defined over a set of attributes Ω, where X ⊂Ω and A∈Ω−X .
For a subset S of X (S ⊆ X), if R is divided into k disjoint subsets R1,R2, ...,Rk using a hash
function h : S→ k such that Ri is defined as Ri = {e|e ∈ R∧ h(e [S]) = i}, then a tuple t ∈ R
satisfying X min

⇀ A (or, X max
⇁ A) will also satisfy X min

⇀ A (or, X max
⇁ A respectively) over Ri and vice

versa, where h(t [S]) = i.

4 The dataflow graph corresponding to the linear recursive query must have a cycle.

8 A. Das and C. Zaniolo

Proof. This follows directly from the fact that since S ⊆ X , for any two tuples t1, t2 ∈ R, if
t1 [X] = t2 [X], then t1 [S] = t2 [S], i.e., any two tuples with the same X-value will be mapped into
the same partition, decided by their common S-value. Since, all tuples with the same X-value
belong to a single partition, any tuple t ∈ Ri will satisfy X min

⇀ A (or, X max
⇁ A) over both R and Ri.

Theorem 1. Let P be a recursive Datalog program, T be its corresponding ICO and let the
constraint γ be PreM to T and P, resulting in the constrained ICO Tγ . Let P be executed over
W workers under a lock-free parallel (or parallel decomposable) bottom-up evaluation plan,
where Qi is the program executed at worker i and Ti be the corresponding ICO defined over Qi.
If the group-by arguments used for the γ constraint also contain the discriminating set used for
partitioning in the lock-free parallel (or parallel decomposable) plan, then:

(i). γ is also PreM to Ti and Qi, for 1≤ i≤W .
(ii). For some integer n, if T ↑nγ (/0) is the minimal fixpoint for Tγ , then T ↑nγ (/0) =

⋃
1≤i≤W

T ↑niγ (/0),

where Tiγ denotes the constrained ICO with respect to Ti.

Proof. The proof for (i) follows trivially from lemma 1 and the PreM provability technique
discussed earlier in Section 2.

Since, γ is PreM to T and P, T ↑nγ (/0) = γ(T ↑ω(/0)) according to the properties of PreM.
Similarly, since for 1 ≤ i ≤ W , γi is PreM to Ti and Qi (from (i) of theorem 1), T ↑ni

iγ (/0) =

γ(T ↑ωi (/0)), for some integer ni, where T ↑ni
iγ (/0) = T ↑(ni+1)

iγ (/0) is the minimal fixpoint for Tiγ . Thus,⋃
1≤i≤W

T ↑ni
iγ (/0) =

⋃
1≤i≤W

γ(T ↑ωi (/0)). Now, γ constraints are also trivially PreM to union over

disjoint sets [Zaniolo et al. 2017], i.e., γ(
⋃

1≤i≤W
T ↑ωi (/0)) =

⋃
1≤i≤W

γ(T ↑ωi (/0)). Also recall from

the definition of lock-free parallel (or parallel decomposable) plan that
⋃

1≤i≤W
T ↑ωi (/0) = T ↑ω(/0).

Combining these aforementioned equalities, we get,
T ↑nγ (/0) = γ(T ↑ω(/0)) = γ(

⋃
1≤i≤W

T ↑ωi (/0)) =
⋃

1≤i≤W
γ(T ↑ωi (/0)) =

⋃
1≤i≤W

T ↑ni
iγ (/0).

Since, T ↑ni
iγ (/0) is the minimal fixpoint with respect to Tiγ , for n > ni, T ↑niγ (/0) = T ↑ni

iγ (/0). Therefore,

T ↑nγ (/0) =
⋃

1≤i≤W
T ↑niγ (/0).

Thus, following theorem 1, we can push the min constraint within the parallel recursive plan
expressed by rules r3.1− r3.3 and rewrite them for worker i as follows:

r4.1 : path(X,Y,min〈D〉) <- arc(X,Y,D),h(X) = i.

r4.2 : path(X,Y,min〈D〉) <- path(X,Z,Dxz),arc(Z,Y,Dzy),D= Dxz+Dzy,h(X) = i.

r4.3 : shortestpath(X,Y,D) <- path(X,Y,D),h(X) = i.

Thus, we observe that pre-mappable constraints can be also easily pushed inside parallel lock-
free (or parallel decomposable) evaluation plans of recursive queries to yield the same minimal
fixpoint, yet making them computationally more efficient and safe. Thus, PreM can be easily in-
corporated into the parallel computation plans (equivalent to rules r4.1−r4.3) of different systems
like BigDatalog-MC, BigDatalog and Myria, irrespective of whether they use (1) shared-memory
or shared-nothing architecture, or (2) they follow BSP or asynchronous computing models.

A Stale Synchronous Model for Recursive Computation 9

5 A Case for Relaxed Synchronization

We now consider a non-linear query, which is equivalent to the linear all pairs shortest path
program with the application of PreM (rules r2.1− r2.3). Since this is a non-linear query (rules
r5.1− r5.3), this program cannot be executed in a coordination-free manner or asynchronously
following the technique described in [Ganguly et al. 1992].

r5.1 : path(X,Y,min〈D〉) <- arc(X,Y,D).
r5.2 : path(X,Y,min〈D〉) <- path(X,Z,Dxz),path(Z,Y,Dzy),D= Dxz+Dzy.

r5.3 : shortestpath(X,Y,D) <- path(X,Y,D).

However, as shown in [Yang et al. 2015], a simple query rewriting technique can produce
an equivalent parallel decomposable evaluation plan for this non-linear query. Rules r6.1− r6.4

show the equivalent decomposable program, which can be executed by worker i on a distributed
system following a bulk synchronous parallel model. In this following decomposable evaluation
plan, there is a mandatory synchronization step (rule r6.3), where each worker i (operating on the
ith partition) copies the new atoms or updates in path produced during the semi-naive evaluation
from rule r6.2 to path(1) and the new path(1) is then sent to other workers so that they can use it
in the evaluation of rule r6.2 in the next iteration.

r6.1 : path(X,Y,min〈D〉) <- arc(X,Y,D),h(X) = i.

r6.2 : path(X,Y,min〈D〉) <- path(X,Z,Dxz),path(1)(Z,Y,Dzy),D= Dxz+Dzy,h(X) = i.

r6.3 : path(1)(X,Y,min〈D〉) <- path(X,Y,D),h(X) = i.

r6.4 : shortestpath(X,Y,D) <- path(X,Y,D),h(X) = i.

In a bulk synchronous distributed computing model, the communication between the workers
in each iteration can be considerably more expensive than the local computation performed by
each worker due to the bottleneck of network bandwidth. We now investigate if we can relax this
synchronization constraint at every iteration.

Under a stale synchronous parallel (SSP) model, a worker i can use an obsolete or stale version
of path(1) that omits some recent updates, produced by other workers, for its local computation.
In particular, a worker using path(1) at iteration c will be able to use all the atoms and updates
generated from iteration 0 to c− s−1, s≥ 0 is a user-specified threshold for controlling the stal-
eness. In addition, the worker’s stale path(1) may have atoms or updates from iteration beyond
c− s−1, i.e., from iteration c− s to c−1 (although this is not guaranteed). The intuition behind
this is that in a SSP model, a worker for its local computation should be able to see and use its
own updates at every iteration, in addition to seeing and using as many updates as possible from
other workers, with the constraint that any updates older than a given age are not missed. This is
the bounded staleness constraint [Cipar et al. 2013]. This leads to two advantages:

1. Workers spend more time performing actual computation, rather than idle waiting for other
workers to finish. This can be very helpful, when there are straggling workers present,
which lag behind others in an iteration. In fact in distributed computing, stragglers present
an acute problem since they can occur for several reasons like hardware differences [Krevat
et al. 2011], system failures [Ananthanarayanan et al. 2010], skewed data distribution or

10 A. Das and C. Zaniolo

24

1 5

3 6

10 1

22

5

8

7

1

2

3

7

5

10

20

14Worker 0 Worker 1

Fig. 1. A toy graph distributed across two workers.

even from software management issues and program interruptions caused from garbage
collections or operating system noise, etc. [Beckman et al. 2006].

2. Secondly, workers can end up communicating less than under a BSP model. This is pri-
marily because under PreM, each worker can condense several updates computed from
different local iterations into a single update before eventually sending it to other workers.

We illustrate the above advantages through an example. Figure 1 shows a toy graph which is
distributed across two workers: (i) all edges incident on nodes 1-4 are available on worker 0, (ii)
and the rest of the edges reside on worker 1. Now consider the shortest path between nodes 4 and
8, given by the path 4-3-2-1-5-6-7-8, which spans across 7 hops. The parallel program defined
by rules r6.1− r6.4 with BSP processing would require at least three synchronized iterations to
reach to the least fixpoint by semi-naive evaluation. Now consider worker 1 to be a straggling
node that lags behind worker 0 during the computation because of hardware differences. Thus,
worker 0 spends significant time idle waiting for worker 1 to complete, as shown in Figure 2a.
But in this example, the shortest path between nodes 4 and 8 changes because of two aspects: (1)
the shortest path between nodes 4 and 1 changes and (2) the shortest path between nodes 5 and 8
changes. Both of these computations can be done independently on the two workers and worker
0 needs to know the eventual shortest path between nodes 5 and 8 calculated by worker 1 and
vice versa. It is important to note that this will only work if each worker can use the most recent
local updates (newest atoms) generated by itself. In other words, worker 0 should be able to see
the changes of the shortest path between node 4 and node 1 in every iteration (which is generated
locally) and use a stale (obsolete) knowledge about the shortest path between nodes 5 and 8 (as
sent by worker 1 earlier). This stale synchronization model is summarized in Figure 2b.

Worker 0

Worker 1

Worker 0

Worker 1

iter 0 iter 1

CPU intensive computation Network intensive broadcastIdle waiting

(a) BSP processing with synchronized
iterations.

(b) SSP processing with relaxed
synchronization.

Fig. 2. BSP vs. SSP model for evaluating all pairs shortest path query on two workers.

In this same example, note how the minimum cost for the path between node 1 and node 4
(computed by worker 0) changes in every iteration: (i) in the first iteration, the minimum cost
was 10 given by the edge between node 1 and node 4, (ii) in the next iteration, the minimum
cost drops to 7 given by the path 1-3-4 and (iii) in the third iteration the final minimum cost

A Stale Synchronous Model for Recursive Computation 11

of 5 is given by the sequence 1-2-3-4. In a BSP model, each of this update generated in every
iteration needs to be communicated to all the remaining workers. However, in a SSP model due
to the advantage of this staleness, these multiple updates from different local iterations can be
condensed into one most recent update, which is then sent to other workers. In other words, SSP
with PreM may skip sending some updates to remote workers, thus saving communication time.

Figure 3 formally presents the SSP processing based bottom-up evaluation plan for the non-
linear all pairs shortest path example given by rules r6.1 − r6.4. If the evaluation is executed
over a distributed system of W workers, Figure 3 depicts the execution plan for a worker i.
A coordinator marks the completion of the overall evaluation process by individually tracking
the termination of each of the worker’s task. For simplicity and clarity, we have used the naive
fixpoint computation to describe the evaluation plan instead of using the optimized differential
fixpoint algorithm. The γ used in the Figure 3 denotes the min constraint. Step (3) in this evalu-
ation plan shows how worker i uses stale knowledge from other workers j (denoted by path

(r′)
j)

during the recursive rule evaluation, shown by step (4). It is also important to note that in step
(4), each worker i is also using the most recent atoms generated by itself (denoted by path

(r)
i)

for the evaluation. The condition in step (6) allows each local computation on worker i to reach
local fixpoint or move further by at least T iterations. Thus, each worker i can condense multiple
updates generated within these T iterations due to PreM into a single update. Finally, step (9)
ensures that if any worker falls beyond the user-defined staleness bound, then other workers wait
for it to catch up within the desired staleness level before starting their local computations again.
We next present some theoretical and empirical results about the SSP model based bottom-up
evaluation.

6 Bottom-up Evaluation with SSP Processing

Under the SSP model, a recursive query evaluation with PreM constraints has the following
theoretical guarantees:

Theorem 2. Let P be a recursive Datalog program with ICO T and let the constraint γ be PreM
to T and P. Let P have a parallel decomposable evaluation plan that can be executed over W

workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined
over Qi. If γ is also PreM to Ti and Qi for 1≤ i≤W , then:

(i). The SSP processing yields the same minimal fixpoint of γ(T ↑ω(/0)), as would have been
obtained with BSP processing.

(ii). If any worker i under BSP processing requires r rounds of synchronization, then under
SSP processing i would require ≤ r rounds to reach the minimal fixpoint, where r rounds
of synchronization in SSP model means every worker has sent at least r updates.

Proof. The proof is provided in Appendix A.

6.1 SSP Evaluation of Queries without PreM Constraint

We now consider the parallel decomposable plan of a transitive closure query, which does not
contain any aggregates in recursion. We use the same non-linear recursive example from [Yang
et al. 2017], given by rules r7.1− r7.3, which shows the program executed by worker i. Note, in
this example every worker i eventually has to compute and send to other workers all tc atoms of

12 A. Das and C. Zaniolo

1: path
(0)
i (X,Y,D) := {(X,Y,D)|arc(X,Y,D)}, path(0)j (X,Y,D) := /0 ∀i 6= j, r= 0, s= 0

2: repeat
3: path

(r′)
j (X,Y,D) :=Last received pathj by worker i,∀i 6= j.

4: path
(r+1)
i (X,Y,D) := γ

((⋃
i 6= j

path
(r)
i (X,Z,Dxz) ./ path

(r′)
j (Z,Y,Dzy)

)⋃
(
path

(r)
i (X,Z,Dxz) ./ path

(r)
i (Z,Y,Dzy)

))
5: r := r+1, s := s+1

6: until s < T and path
(r)
i 6= path

(r−1)
i

7: s := 0
8: Send path

(r)
i to other workers.

9: if for any worker j,r− r′ > staleness bound then
10: Wait for a new update from worker j before continuing
11: end if
12: if path(r)i 6= path

(r−1)
i or a new update has been received from worker j then

13: repeat from Step (2)
14: else
15: Send a finish message to coordinator.
16: if any new update is received from worker j then
17: Send a resume message to coordinator.
18: Repeat from step (2).
19: end if
20: end if

Fig. 3. SSP based bottom-up evaluation plan executed by worker i for computing all pairs short-
est path.

the form (X, Y), where h(X) = i. Without PreM, a worker i does not update its existing tc
atoms. In fact, during semi-naive evaluation of this query, at any time, only new unique atoms
are appended to tc. Thus, a SSP evaluation for the transitive closure query (without PreM)
does not save any communication cost as compared to a BSP model. However, as shown in our
experimental results next, the SSP model can still mitigate the influence of stragglers.

r7.1 : tc(X,Y) <- arc(X,Y),h(X) = i.

r7.2 : tc(X,Y) <- tc(X,Z),tc(1)(Z,Y),h(X) = i.

r7.3 : tc(1)(X,Y) <- tc(X,Y),h(X) = i.

6.2 Experimental Results

Setup. We conduct our experiments on a 12 node cluster, where each node, running on Ubuntu
14.04 LTS, has an Intel i7-4770 CPU (3.40GHz, 4 cores) with 32GB memory and a 1 TB 7200
RPM hard drive. The compute nodes are connected with 1Gbit network. Following the standard
practices established in [Shkapsky et al. 2016], [Yang et al. 2017], we execute the distributed
bottom-up semi-naive evaluation using an AND/OR tree based implementation in Java on each
node. Each node executes one application thread per core. We evaluate both the non-linear all

A Stale Synchronous Model for Recursive Computation 13

pairs shortest path and transitive closure queries on a subset of the real world orkut social network
data5.

Inducing Stragglers. In order to study the influence of straggling nodes in a declarative recursive
computation, we induce stragglers in our implementation following the strategy described in [Cui
et al. 2014]. In particular, each of the nodes in our setup can be disrupted independently by a
CPU-intensive background process that kicks in following a Poisson distribution and consumes
at least half of the CPU resources.

Analysis. In this section, we empirically analyze the merits and demerits of a SSP model over
a BSP model, by examining the following questions: (1) How does a SSP model compare to a
BSP model when queries contain PreM constraints and aggregates in recursion? (2) How do
these two processing paradigms compare when PreM cannot be applied? (3) And, how do the
overall performances in the above scenarios change in presence and absence of stragglers? Table
1 captures the first case with the all pairs shortest path query (where PreM is applicable), while
Table 2 presents the second case with the transitive closure query, which do not contain any
aggregates or PreM constraints in recursion. For each of these two cases, as shown in the tables,
we experimented with two different staleness values for a SSP model, both under the presence
and absence of induced stragglers. Notably, a SSP model with bounded staleness (alternatively
also called ‘slack’ and indicated by s in the tables) set as zero reduces to a BSP model. Tables
1 and 2 capture the average execution time for the query at hand under different configurations
over five runs. This run time can be divided into two components— (1) average computation
time, which is the average time spent by the workers performing semi-naive evaluation for the
recursive computation, and (2) average waiting time, which is the average time spent by the
workers waiting to receive a new update to resume computation. Tables 1 and 2 show the run
time break down for the two aforementioned cases (with and without PreM respectively).

From Tables 1 and 2, it is evident that BSP processing requires the least compute time irre-
spective of straggling nodes. This is also intuitively true because the total recursive computation
involved in a BSP based distributed semi-naive evaluation is similar to that of a single executor
based sequential execution and as such a BSP model should require the least computational effort
to reach the minimal fixpoint. On the other hand, a SSP model may perform many local computa-
tions optimistically with obsolete data using relaxed synchronization barriers, which can become
redundant later on. As shown in the tables, average compute time indeed increases with higher
slack indicating that a substantial amount of the work becomes unnecessary. However, as seen
from both the tables, SSP plays a major rule in reducing the average wait time. This is trivially
true, since in SSP processing, any worker can move ahead with local computations using stale
knowledge, instead of waiting for global synchronization as required in BSP. However, note the
reduction in average wait time under SSP model in Table 1 (with PreM) is more significant than
in Table 2 (without PreM). This can be attributed to the fact that PreM with semi-naive eval-
uation (Section 2) under SSP model can batch multiple updates together before sending them,
thereby saving communication cost. However, for the transitive closure query (without PreM),
the overall updates sent in BSP and SSP models are similar (since no aggregates are used, semi-
naive evaluation only produces new atoms, never updates existing ones). Thus, in the latter case
(Table 2), the wait times between BSP and SSP models are comparable when there are no in-

5 http://snap.stanford.edu/data/com-Orkut.html

http://snap.stanford.edu/data/com-Orkut.html

14 A. Das and C. Zaniolo

duced stragglers, whereas the wait time in SSP is marginally better than BSP when stragglers are
present. Notably, inducing stragglers obviously increases the average wait time all throughout as
compared to a no straggler situation. The compute time also increases marginally in presence of
stragglers, primarily because the straggling nodes take longer time to finish its computations.

Thus, to summarize based on the run times in the two tables, we see that in absence of strag-
glers, the SSP model can reduce the run time of the shortest path query (with PreM constraint)
by nearly 30%. However, the same is not true for the transitive closure query, which do not have
any PreM constraint. Hence, a BSP model would suffice if there are no stragglers and the query
does not contain any PreM constraint. However, in presence of stragglers or PreM constraints,
SSP model turns out to be a better alternative than BSP model, as it can lead to a execution time
reduction of as high as 40% for the shortest path query and nearly 7% for the transitive closure
query. Finally, it is also worth noting from the results that too much of a slack can also increase
the query latency. Thus, a moderate amount of slack should be used in practice.

Time consumption
No stragglers (time in sec) With stragglers (time in sec)

BSP (s=0) SSP (s=3) SSP (s=6) BSP (s=0) SSP (s=3) SSP (s=6)

Avg. compute time 2224 2443 3038 2664 2749 3435
Avg. wait time 1679 302 408 2786 485 704

Run time 3903 2745 3446 5450 3234 4139

Table 1. Comparing BSP vs. SSP model for all pairs shortest path query containing aggregates
in recursion (with PreM).

Time consumption
No stragglers (time in sec) With stragglers (time in sec)

BSP (s=0) SSP (s=3) SSP (s=6) BSP (s=0) SSP (s=3) SSP (s=6)

Avg. compute time 682 762 879 754 827 921
Avg. wait time 367 345 334 618 456 412

Run time 1049 1107 1213 1372 1283 1431

Table 2. Comparing BSP vs. SSP model for transitive closure query containing no aggregates in
recursion (without PreM).

7 Conclusion

PreM facilitates and extends the use of aggregates in recursion, and this enables a wide spec-
trum of graph and data mining algorithms to be expressed efficiently in declarative languages. In
this paper, we explored various improvements to scalability via paralled execution with PreM.
In fact, PreM can be easily integrated with most of the current generation Datalog engines like
BigDatalog, Myria, BigDatalog-MC, SociaLite, LogicBlox, irrespective of their architecture dif-
ferences and varying synchronization constraints. Moreover, in this paper, we have shown that

A Stale Synchronous Model for Recursive Computation 15

PreM brings additional benefits to the parallel evaluation of recursive queries. For that, we es-
tablished the necessary theoretical framework that allows bottom-up recursive computations to
be carried out over stale synchronous parallel model—in addition to the synchronous or com-
pletely asynchronous computing models studied in the past. These theoretical developments lead
us to the conclusion, confirmed by initial experiments, that the parallel execution of non-linear
queries with PreM constraints can be expedited with a stale synchronous parallel (SSP) model.
This model is also useful in the absence of PreM constraints, where bounded staleness may not
reduce communications, but it nevertheless mitigates the impact of stragglers. Initial experiments
performed on a real-world dataset confirm the theoretical results, and are quite promising, paving
the way toward future research in many interesting areas, where declarative recursive computa-
tion under SSP processing can be quite advantageous. For example, declarative advanced stream
reasoning systems [Das et al. 2018], supporting aggregates in recursion, can adopt distributed
SSP model to query evolving graph data, especially when one portion of the network changes
more rapidly as compared to others. SSP models under such scenario offer the flexibility to batch
multiple network updates together, thereby reducing the communication costs effectively.

Finally, it is important to note that the methodologies developed here can also be applied to
other declarative logic based systems beyond Datalog, like in SQL-based query engines [Gu
et al. 2019], which also use semi-naive evaluation for recursive computation. In addition, the
SSP processing paradigm can also be adopted in many state-of-the-art graph-centric platforms
such as Pregel [Malewicz et al. 2010] and GraphLab [Low et al. 2012]. These modern graph
engines use a vertex-centric computing model [Yan et al. 2015], which enforces a strong con-
sistency requirement among its model variables under the “Gather-Apply-Scatter” abstraction.
Consequently, this makes the synchronization cost for these graph frameworks similar to that of
standard BSP systems. Thus, for many distributed graph computation problems involving aggre-
gators (like shortest path queries), SSP model, as demonstrated in this paper, can be quite useful
for these graph based platforms.

References

AMELOOT, T. J. 2014. Declarative networking: Recent theoretical work on coordination, correctness, and
declarative semantics. SIGMOD Rec. 43, 2 (Dec.), 5–16.

AMELOOT, T. J., GECK, G., KETSMAN, B., NEVEN, F., AND SCHWENTICK, T. 2017. Parallel-correctness
and transferability for conjunctive queries. J. ACM 64, 5 (Sept.), 36:1–36:38.

AMELOOT, T. J., KETSMAN, B., NEVEN, F., AND ZINN, D. 2015. Weaker forms of monotonicity for
declarative networking: A more fine-grained answer to the calm-conjecture. ACM Trans. Database
Syst. 40, 4 (Dec.), 21:1–21:45.

AMELOOT, T. J., NEVEN, F., AND VAN DEN BUSSCHE, J. 2013. Relational transducers for declarative
networking. J. ACM 60, 2 (May), 15:1–15:38.

ANANTHANARAYANAN, G., KANDULA, S., GREENBERG, A., STOICA, I., LU, Y., SAHA, B., AND HAR-
RIS, E. 2010. Reining in the outliers in map-reduce clusters using mantri. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation. OSDI’10. 265–278.

AREF, M., TEN CATE, B., GREEN, T. J., KIMELFELD, B., OLTEANU, D., PASALIC, E., VELDHUIZEN,
T. L., AND WASHBURN, G. 2015. Design and implementation of the logicblox system. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data. 1371–1382.

BECKMAN, P., ISKRA, K., YOSHII, K., AND COGHLAN, S. 2006. The influence of operating systems on
the performance of collective operations at extreme scale. In 2006 IEEE International Conference on
Cluster Computing. 1–12.

16 A. Das and C. Zaniolo

CIPAR, J., HO, Q., KIM, J. K., LEE, S., GANGER, G. R., GIBSON, G., KEETON, K., AND XING, E. 2013.
Solving the straggler problem with bounded staleness. In Proceedings of the 14th USENIX Conference
on Hot Topics in Operating Systems. HotOS’13. 22–22.

CONDIE, T., DAS, A., INTERLANDI, M., SHKAPSKY, A., YANG, M., AND ZANIOLO, C. 2018. Scaling-
up reasoning and advanced analytics on bigdata. TPLP 18, 5-6, 806–845.

CUI, H., CIPAR, J., HO, Q., KIM, J. K., LEE, S., KUMAR, A., WEI, J., DAI, W., GANGER, G. R.,
GIBBONS, P. B., GIBSON, G. A., AND XING, E. P. 2014. Exploiting bounded staleness to speed up big
data analytics. In USENIX ATC. 37–48.

DAS, A., GANDHI, S. M., AND ZANIOLO, C. 2018. Astro: A datalog system for advanced stream reason-
ing. In Proceedings of the 27th ACM International Conference on Information and Knowledge Manage-
ment. CIKM ’18. 1863–1866.

GANGULY, S., SILBERSCHATZ, A., AND TSUR, S. 1992. Parallel bottom-up processing of datalog queries.
J. Log. Program. 14, 1-2 (Oct.), 101–126.

GU, J., WATANABE, Y., MAZZA, W., SHKAPSKY, A., YANG, M., DING, L., AND ZANIOLO, C. 2019.
Rasql: Greater power and performance for big data analytics with recursive-aggregate-sql on spark. In
SIGMOD’19.

HO, Q., CIPAR, J., CUI, H., KIM, J. K., LEE, S., GIBBONS, P. B., GIBSON, G. A., GANGER, G. R.,
AND XING, E. P. 2013. More effective distributed ml via a stale synchronous parallel parameter server.
In NIPS. 1223–1231.

INTERLANDI, M. AND TANCA, L. 2018. A datalog-based computational model for coordination-free,
data-parallel systems. Theory and Practice of Logic Programming 18, 5-6, 874–927.

KREVAT, E., TUCEK, J., AND GANGER, G. R. 2011. Disks are like snowflakes: No two are alike. In
Proceedings of the 13th USENIX Conference on Hot Topics in Operating Systems. HotOS’13. 14–14.

LEE, S., KIM, J. K., ZHENG, X., HO, Q., GIBSON, G. A., AND XING, E. P. 2014. On model paralleliza-
tion and scheduling strategies for distributed machine learning. In Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’14. 2834–2842.

LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KYROLA, A., AND HELLERSTEIN, J. M. 2012.
Distributed graphlab: A framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5, 8, 716–727.

MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT, J. C., HORN, I., LEISER, N., AND CZA-
JKOWSKI, G. 2010. Pregel: A system for large-scale graph processing. In SIGMOD’10. 135–146.

MAZURAN, M., SERRA, E., AND ZANIOLO, C. 2013. Extending the power of datalog recursion. The
VLDB Journal 22, 4 (Aug.), 471–493.

SEO, J., PARK, J., SHIN, J., AND LAM, M. S. 2013. Distributed socialite: A datalog-based language for
large-scale graph analysis. Proc. VLDB Endow. 6, 14 (Sept.), 1906–1917.

SHKAPSKY, A., YANG, M., INTERLANDI, M., CHIU, H., CONDIE, T., AND ZANIOLO, C. 2016. Big data
analytics with datalog queries on spark. In SIGMOD. ACM, New York, NY, USA, 1135–1149.

WANG, J., BALAZINSKA, M., AND HALPERIN, D. 2015. Asynchronous and fault-tolerant recursive data-
log evaluation in shared-nothing engines. Proc. VLDB Endow. 8, 12 (Aug.), 1542–1553.

YAN, D., CHENG, J., LU, Y., AND NG, W. 2015. Effective techniques for message reduction and load
balancing in distributed graph computation. In WWW. 1307–1317.

YANG, M., SHKAPSKY, A., AND ZANIOLO, C. 2015. Parallel bottom-up evaluation of logic programs:
DeALS on shared-memory multicore machines. In Technical Communications of ICLP.

YANG, M., SHKAPSKY, A., AND ZANIOLO, C. 2017. Scaling up the performance of more powerful
datalog systems on multicore machines. VLDB J. 26, 2, 229–248.

ZANIOLO, C., YANG, M., DAS, A., AND INTERLANDI, M. 2016. The magic of pushing extrema into
recursion: Simple, powerful datalog programs. In AMW.

ZANIOLO, C., YANG, M., INTERLANDI, M., DAS, A., SHKAPSKY, A., AND CONDIE, T. 2017. Fixpoint
semantics and optimization of recursive Datalog programs with aggregates. TPLP 17, 5-6, 1048–1065.

ZANIOLO, C., YANG, M., INTERLANDI, M., DAS, A., SHKAPSKY, A., AND CONDIE, T. 2018. Declara-
tive bigdata algorithms via aggregates and relational database dependencies. In AMW.

A Stale Synchronous Model for Recursive Computation 17

Appendix A SSP processing based recursive computation with PreM

Definition 3. (γ-Cover). Let P be a positive recursive Datalog program with T as its corre-
sponding ICO. Let a constraint γ be defined over the recursive predicate on a set of k group-
by arguments, denoted by G1,G2, ...,Gk with the cost-argument denoted as C. Let γ be also
PreM to T and P. Let there be two sets S1 and S2, both of which contain tuples of the form
{(g1,g2, ...,gk,c)|gi ∈Gi∀1≤ i≤ k,c ∈R}, where R represents the set of real numbers. Now, S1

is defined as the γ-cover for S2, if for every tuple t ∈ S2, there exists only one tuple t ′ ∈ S1 such
that (i) t ′[G] = t[G] and (ii) γ(t ′[C], t[C]) = t ′[C].

It is important to note from the above definition that if S1 is the γ-cover for S2, then there can
exist a tuple t ∈ S1, such that t[G] 6= t ′[G] ∀t ′ ∈ S2 but the converse is never true.

Lemma 2. Let P be a recursive Datalog program, T be its corresponding ICO and let the con-
straint γ be PreM to T and P, resulting in the constrained ICO Tγ . Now, for any pair of positive
integers m,n, where m≥ n, T ↑mγ (/0) is a γ-cover for T ↑nγ (/0).

Proof. This directly follows from the fact that any atom in T ↑nγ (/0) with cost c can only exist in
T ↑mγ (/0) with updated cost c′, if c = c′ or γ(c,c′) = c′. Note if c = c′, then γ(c,c′) = c′ is trivially
true.

Lemma 3. Let P be a recursive Datalog program with ICO T and let the constraint γ be PreM
to T and P. Let P also have a parallel decomposable evaluation plan that can be executed over W

workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined
over Qi. Let γ be also PreM to Ti and Qi, for 1 ≤ i ≤ W . After r rounds of synchronization (r
rounds of synchronization in SSP model means every worker has sent at least r updates), if Ib and
Is denote the interpretation of the recursive predicate under BSP and SSP models respectively for
any worker i, then Is is a γ-cover for Ib.

Proof. In a SSP based fixpoint computation, any worker i can produce an atom in three ways:

(1) From local computation not involving any of the updates sent by other workers.
(2) From a join with a new atom or an update sent by another worker j.
(3) From both cases (1) and (2) together.

Now, consider the base case, where before the first round of synchronization (i.e., at the 0th

round) each worker performs only local computation, since it has not received/sent any update
from/to any other worker. Since, in a SSP model, each local computation may involve multiple
iterations (as shown in step (6) in Figure 3), Is is trivially a γ-cover for Ib (from lemma 2).

We next assume this hypothesis (lemma 3) to be true for some r ≥ 0. Under this assump-
tion, we find that each worker i in SSP model for its fixpoint computation operates based on
the information from its own Is and from the ones sent by other workers after the rth round of
synchronization. And since each of this Is involved is a γ-cover for the corresponding Ib (when
compared against the BSP model), the aforementioned cases (1)-(3) will also produce a γ-cover
for the (r+1)th synchronization round.

Hence, by principle of mathematical induction, the lemma holds for all r ≥ 0.

18 A. Das and C. Zaniolo

Theorem 2. Let P be a recursive Datalog program with ICO T and let the constraint γ be PreM
to T and P. Let P have a parallel decomposable evaluation plan that can be executed over W

workers, where Qi is the program executed at worker i and Ti is the corresponding ICO defined
over Qi. If γ is also PreM to Ti and Qi, for 1≤ i≤W , then:

(i). The SSP processing yields the same minimal fixpoint of γ(T ↑ω(/0)), as would have been
obtained with BSP processing.

(ii). If any worker i under BSP processing requires r rounds of synchronization, then under
SSP processing i would require ≤ r rounds to reach the minimal fixpoint, where r rounds
of synchronization in SSP model means every worker has sent at least r updates.

Proof. Theorem 1 guarantees that the BSP evaluation of the datalog program with PreM will
yield the minimal fixpoint of γ(T ↑ω(/0)). Note that in the SSP evaluation, for every tuple t pro-
duced by a worker i from the program Qi, t ∈ T ↑ω(/0). In other words, if I represents the final
interpretation of the recursive predicate under SSP evaluation, then I ⊆ T ↑ω(/0) i.e. I is bounded.
It also follows from lemma 3, that I is a γ-cover for the final interpretation of the recursive predi-
cate under BSP evaluation i.e. I is a γ-cover for γ(T ↑ω(/0)). Since, γ(T ↑ω(/0)) is the least fixpoint
under the γ constraint, we also get γ(T ↑ω(/0)) ⊆ I, as atoms in γ(T ↑ω(/0)) must have identical
cost in I.

Thus, we can write the following equation based on the above discussion,

γ(T ↑ω(/0))⊆ I ⊆ T ↑ω(/0) (A1)

Also recall, since γ is PreM to each Ti and Qi, under the SSP evaluation, each worker i also
applies γ in every iteration in its fixpoint computation (step (4) in Figure 3). Thus, we have,

I ⊆ γ(T ↑ω(/0)) (A2)

Combining equations (A1) and (A2), we get I = γ(T ↑ω(/0). Thus, the SSP evaluation also
yields the same minimal fixpoint as the BSP model.

Since, the interpretation of the recursive predicate in the least model obtained from BSP evalu-
ation is identical to that in the least model obtained from SSP processing, it directly follows from
lemma 3, that the number of synchronization rounds required by worker i in SSP evaluation will
be at most r, where r is the number of rounds i takes under BSP model.

	1 Introduction
	2 An Overview of PreM
	3 An Overview of Parallel Bottom-Up Evaluation
	4 Parallel Evaluation with PreM
	5 A Case for Relaxed Synchronization
	6 Bottom-up Evaluation with SSP Processing
	6.1 SSP Evaluation of Queries without PreM Constraint
	6.2 Experimental Results

	7 Conclusion
	References
	Appendix A SSP processing based recursive computation with PreM

