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Abstract

With the more and more growing demand for semantic Web services over large databases, an efficient
evaluation of Datalog queries is arousing a renewed interest among researchers and industry experts. In this
scenario, to reduce memory consumption and possibly optimize execution times, the paper proposes novel
techniques to determine an optimal indexing schema for the underlying database together with suitable
body-orderings for the Datalog rules. The new approach is compared with the standard execution plans
implemented in DLV over widely used ontological benchmarks. The results confirm that the memory usage
can be significantly reduced without paying any cost in efficiency. This paper is under consideration in
Theory and Practice of Logic Programming (TPLP).
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1 Introduction

Ontological reasoning services represent fundamental features in the development of the Seman-
tic Web. Among them, scientists are focusing their attention on the so-called ontology-based
query answering (OBQA), where a Boolean query has to be evaluated against a logical theory
(knowledge base) consisting of an extensional database paired with an ontology (Calı̀ et al. 2009;
Ortiz 2013; Amendola et al. 2018). A number of effective practical approaches proposed in the
literature rewrite the query and the ontology into an equivalent Datalog program (Carral et al.
2018; Eiter et al. 2012; Kontchakov et al. 2011; Stefanoni et al. 2012; Xiao et al. 2018).

With the more and more growing availability of large databases, however, an efficient yet
memory-saving evaluation of Datalog queries is arousing a renewed interest among researchers
and industry experts. Typically, classical Datalog reasoners adopt sophisticated internal policies
to speed-up the computation trying to limit the memory consumption. However, when the amount
of data exceeds a certain size, these policies may result inadequate. This happens, for instance, for
the full-fledged Datalog system I-DLV (Calimeri et al. 2017; Calimeri et al. 2019) — originally
conceived as grounding engine in DLV2 (Alviano et al. 2017). Recently, to cope with large-
scale scenarios, I-DLV has been further optimized and partially re-engineered by implementing
novel techniques and heuristics to reduce memory consumption and possibly optimize execution
times. This process gave rise to even two branches of the system called DLV2-SERVER (Leone
et al. 2019) and OWL2DLV (Allocca et al. 2019). In this paper, we present and evaluate one of
the key approaches that is at the basis of the aforementioned improvements: the precomputation
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via Answer Set Programming (ASP) (Gelfond and Lifschitz 1991a) of an “evaluation plan” for a
given Datalog program.

To understand the principles underlying the new technique, let us first recall that I-DLV his-
torically uses strategies for join orderings and indexing that are applied rule-by-rule at runtime
and that are based on local statistics over data that become available during the computation.
As a result, for databases up to a few millions tuples, these stategies ensure fast evaluation at
the expense of a reasonable amount of extra memory. Conversely, for databases with billions of
tuples, both the time and the space used for implementing these strategies are too high. To regain
usability, the idea is to precompute a global indexing schema for the underlying database asso-
ciated with suitable body-orderings for all the program rules. On the one hand, this approach is
less informed since, being implemented as a preprocessing phase, it cannot rely on any relevant
information known during the computation, possibly leading to worsening in time. On the other
hand, this allows to save both the time and space needed for computing/storing this information.
Moreover, the global view on the program allows for a more parsimonious choice of the indices.
To make up for the lack of local statistics, our approach is based on the natural assumption that,
when dealing with very large databases, some information and statistics about the user domain
are known in advance since they do not vary as fast as the actual data. This is the case, for exam-
ple, for primary keys, foreign keys, small relations or selectivity of attributes. Our contribution
can be therefore summarized as follows:

• Given a Datalog program P , a database D and some domain properties, we define the
notion of evaluation plan, which consists of an indexing schema for D together with a
suitable body-ordering for each rule of P . Moreover, to target “optimal” plans among all
admissible ones, we identify a number of additional options, the combination of which
induces different preference orderings among all plans.

• We encode the problem of finding an optimal Datalog evaluation plan in ASP, by making
use of choice-rules, strong constraints, weak constraints, aggregates and negation.

• We implement optimal plans by adding annotations (Calimeri et al. 2017) to the original
Datalog program P . The annotated program will be the actual input for I-DLV. In this way,
I-DLV execution is forced to follow the plan without the need for any internal change to
the system. Nonetheless, optimal plans are sufficiently general to be implemented natively
also in different Datalog engines that do not benefit from features like annotations.

• We design a well-behaved setting in the context of ontological reasoning with the aim of
minimizing the memory consumption without paying in efficiency.

• We conduct an experimental evaluation over popular ontological benchmarks widely used
for testing both capabilities and performance of OBQA systems. In particular, we compare
performance in terms of time and memory usage of DLV when the classical computation
is performed, and when the computation is driven by the planner. The results confirm that
our plans improve the computation with a general gain in both time and space.

As a final remark, in case of reasoners with a server-like behavior, such as DLV2-SERVER and
OWL2DLV, evaluation plans play an extremely important role, and the advantage of precomputing
an evaluation plan is even more evident. Indeed, when the ontology is known in advance, it is
possible to determine “offline” the optimal plan, and therefore further improve the reasoning
phase with respect to both time and memory.

The present work builds on top of the extended abstract presented at JELIA 2019 (Allocca et al.
2019). In particular, apart from providing a comprehensive description of the approach, in this
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paper we also enrich the planner from both the formal and practical side. Indeed, we improve
the notion of admissible ordering, we introduce and implement the notion of preferences, we
introduce extra preferences, we identify and exploit extra info in the ontological context, and we
enriched the experimental evaluation.

In the following, after recalling ASP syntax and semantics, we formalize the concept of eval-
uation plan for Datalog and we illustrate the modelling of such plans via ASP; eventually, we
report about our experiments before drawing some conclusions.

2 Preliminaries

The standard input language for ASP systems is referred to as ASP-Core-2 (Calimeri et al. 2012).
For the sake of simplicity, we focus next on the basic aspects of the language; for a complete
reference to the ASP-Core-2 standard, and further details about advanced ASP features, we refer
the reader to (Calimeri et al. 2012) and the vast literature.

A term is either a constant or a variable. If t1, . . . , tk are terms and p is a predicate symbol of
arity k, then p(t1, . . . , tk) is an atom. A literal l is of the form a or not a, where a is an atom;
in the former case l is positive, otherwise negative. A rule r is of the form α1 | · · · | αk :-
β1, . . . ,βn, not βn+1, . . . ,not βm. where m ≥ 0, k ≥ 0; α1, . . . ,αk and β1, . . . ,βm are atoms. We
define H(r) = {α1, . . . , αk} (the head of r) and B(r) = B+(r)∪B−(r) (the body of r), where
B+(r) = {β1, . . . , βn} (the positive body) and B−(r) = {not βn+1, . . . , not βm} (the negative
body). If H(r) = /0 then r is a (strong) constraint; if B(r) = /0 and |H(r)| = 1 then r is a fact. A
rule r is safe if each variable of r has an occurrence in B+(r)1. An ASP program is a finite set P
of safe rules. A program (a rule, a literal) is ground if it contains no variables. In the following, a
Datalog program is referred to as a finite set P of safe rules stratified with respect to negation and
without disjunction in the heads. A program (a rule, a literal) is ground if it contains no variables.
A predicate is defined by a rule r if it occurs in H(r). A predicate defined only by facts is an EDB
predicate, the remaining are IDB predicates. The set of all facts in P is denoted by Facts(P); the
set of instances of all EDB predicates in P is denoted by EDB(P).

Given a program P, the Herbrand universe of P, denoted by UP, consists of all ground terms
that can be built combining constants and function symbols appearing in P. The Herbrand base
of P, denoted by BP, is the set of all ground atoms obtainable from the atoms of P by replacing
variables with elements from UP. A substitution for a rule r ∈ P is a mapping from the set of
variables of r to the set UP of ground terms. A ground instance of a rule r is obtained applying
a substitution to r. The full instantiation Ground(P) of P is defined as the set of all ground
instances of its rules over UP. An interpretation I for P is a subset of BP. A positive literal a
(resp., a negative literal not a) is true w.r.t. I if a ∈ I (resp., a /∈ I); it is false otherwise. Given a
ground rule r, we say that r is satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or
some literal appearing in B(r) is false w.r.t. I. Given a program P, we say that I is a model of P,
iff all rules in Ground(P) are satisfied w.r.t. I. A model M is minimal if there is no model N for
P such that N ⊂ M. The Gelfond-Lifschitz reduct (Gelfond and Lifschitz 1991b) of P, w.r.t. an
interpretation I, is the positive ground program PI obtained from Ground(P) by: (i) deleting all
rules having a negative literal false w.r.t. I; (ii) deleting all negative literals from the remaining

1 We remark that this definition of safety is specific for the syntax considered herein. For a complete definition we refer
the reader to (Calimeri et al. 2012).



4 Fiorentino et al.

rules. I ⊆ BP is an answer set for a program P iff I is a minimal model for PI . The set of all
answer sets for P is denoted by AS(P).

3 Datalog Evaluation Plans

In its default computational process, for optimizing the evaluation of each rule, I-DLV deter-
mines body orderings and indices on demand, according to strategies taking into account only
local information for the rule at hand. In more detail, before instantiating some Datalog rule,
I-DLV reorders the body literals on the basis of some join-ordering heuristics (Calimeri et al.
2017); then, according to the chosen ordering, it determines and creates needed indices. How-
ever, when memory consumption must be limited, an approach based on a global view over all
rules, allowing for a more parsimonious creation of indices, is preferable.

In this section, we describe our approach for computing optimal evaluation plans for a set P

of positive Datalog rules to be evaluated over an extensional database D . We define an evaluation
plan of P as an indexing schema over P ∪D together with a suitable body-ordering for each
rule of P . An indexing schema consists of the set of indices adopted to instantiate all rules in P

over D . Our approach makes use of an ASP program for computing an optimal evaluation plan E

of P in a preprocessing phase; then P is annotated with directions that force DLV computation
to follow E when evaluating P .

In the following, after a formal definition of an evaluation plan, we introduce the notion of
strategy and then we specify the concept of optimal evaluation plan w.r.t. a certain strategy.

3.1 Admissible Plans

Let P be a set of positive Datalog rules with non-empty body and let D be a database, i.e. a set
of facts. We indicate with pred(P ∪D) the set of all predicates occurring in P ∪D and with
rel(p) the set {α ∈ D : pred(α) = p} of the elements of D sharing the predicate name p. We
write p[i] to indicate the i-th argument of the predicate p. In the following, after formalizing the
standard notions of ordering of a rule and indexing schema of a Datalog program, we introduce
the novel notion of evaluation plan along with some preliminary definitions.

Definition 3.1
Let r be a rule in P and B(r) be the set of the atoms appearing in the body of r. Let Fa be
a (possibly empty) subset of atoms in B(r) and Fp be a subset of {1, · · · , |B(r)|}. A position
assignment on r is a one-to-one map pr : Fa→ Fp. A pair (α, p) such that pr(α) = p is called a
fixed position w.r.t. pr. An ordering on r is a bijective function pos(r, ·) : B(r)→{1, · · · , |B(r)|}.
Having fixed a position assignment pr on r, we define a pr-ordering on r as an ordering on r such
that pos(r,α) = pr(α) for each α ∈ Fa.

The definition above presents a body ordering as a rearrangement of the literals in the body,
but notably, allows for having a certain number of atoms in the body in some fixed positions. This
is because, according to the knowledge of the domain at hand, if one is aware that a particular
choice for the orderings is convenient, the planner can be driven so that only plans complying
with this choice are identified.

Definition 3.2
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Let U := {p[i] : p∈ pred(P∪D), 1≤ i≤ a(p)}, where a(p) represents the arity of the predicate
p. An indexing schema S over P ∪D is a subset of U . Given a subset I ⊆U , we say that S

fixes I if I ⊆S .

Intuitively, an indexing schema is a subset of the arguments of all predicates in pred(P ∪D).
Furthermore, similarly to the definition of ordering that may allow for fixed positions, we give
the possibility to fix also a set of indices.

Example 3.1
As a running example in this section, consider the following positive Datalog rule r :

h(X,Z,W) :- a(X,Z), b(V,W), c(Z), d(V), e(Y,Z).

Let’s consider the position assignment pr which fixes the atom b(V,W ) in first position. A possi-
ble pr-ordering may be:

pos(r,a(X ,Z)) = 3, pos(r,b(V,W )) = 1, pos(r,c(Z)) = 5,

pos(r,d(V )) = 2, pos(r,e(Y,Z)) = 4.

By means of such ordering the body atoms of r are rearranged as follows:
h(X,Z,W) :- b(V,W), d(V), a(X,Z), e(Y,Z), c(Z).

The set S := {a[2],c[1],d[1],e[2]} is an example of indexing schema over the predicates appear-
ing in r.

With a rule r ∈P we can associate a hypergraph H(r) = (V,E) whose vertex set V is the set of
all terms appearing in B(r) and the edges in E are the term sets of each atom in B(r). Given a rule
r of P , a connected component of r is a set of atoms in B(r) that define a connected component
in H(r).

Example 3.2
Let r be the rule of Example 3.1. The hypergraph H(r) associated to r has V = {X ,Y,Z,V,W}
and E = {{X ,Z},{V,W},{Z},{V},{Y,Z}}. The connected components of r are C1 = {a(X ,Z),
c(Z),e(Y,Z)} and C2 = {b(V,W ),d(V )}.

Let us introduce now the notions of separation between two connected components and well
ordering of a component of a rule.

Definition 3.3
Let r be a rule of P and pos(r, ·) be an ordering on r. Two connected components C1 and C2 of r
are separated w.r.t. pos(r, ·) if max{pos(r,α) : α ∈C1}< min{pos(r,β ) : β ∈C2} or vice versa.

An argument of an atom appearing in the body of a rule r, is said to be bound, w.r.t. an
ordering on r, if it is either a constant or a variable appearing in a previous atom, and is said to be
indexBound, w.r.t. an ordering on r and an indexing schema S , if it is bound and it belongs to the
schema S . The definition below provides the notion of well ordering of a connected component
in a rule.

Definition 3.4
Let r be a rule of P , S be an indexing schema and pos(r, ·) be an ordering on r. A connected
component C of r is well-ordered w.r.t. S and pos(r, ·) if, assuming m = min{pos(r,α) : α ∈C},
for each β ∈C with pos(r,β ) = j and j > m, it holds that: (i) β has at least an argument which is
indexBound, and (ii) either all the arguments of β are bound or there is no other atom in a later
position (in the same component) that, placed in place of β , would have all the arguments bound.



6 Fiorentino et al.

Example 3.3
Let’s consider the rule r with the ordering pos(r, ·) and the indexing schema S as in our run-
ning example. The two connected components of r are clearly separated w.r.t. pos(r, ·). The
indexBound arguments w.r.t. pos(r, ·) and S are c[1], d[1] and e[2]. It can be easily seen that the
connected component C2 is well-ordered w.r.t. S and pos(r, ·). The same cannot be said for the
component C1; in fact, not all the arguments of the atom e(Y,Z) are bound and the atom c(Z),
positioned in place of e(Y,Z), would have all the arguments bound.

The notion of separation among connected components is needed for identifying, within rule
bodies, clusters of literals that do not share variables. The idea is that the ordering computed
by the planner should keep separated these clusters in order to avoid, as much as possible, the
computation of Cartesian products during the instantiation; at the same time, literals within the
clusters are properly rearranged in order to comply with the selected indexing schema, thus
avoiding the creation of further indices.

Next, we provide the admissibility property which, in turn, characterizes the evaluation plans.

Definition 3.5
Given a rule r ∈P and an indexing schema S , we say that an ordering pos(r, ·) is admissible
w.r.t. S if the connected components of r are mutually separated (w.r.t. pos(r, ·)) and well-
ordered (w.r.t. pos(r, ·) and S ).

We define below an evaluation plan for a Datalog program.

Definition 3.6
Let (i) {pr ; r ∈P} be a given set of position assignments, and (ii) I be a given subset of {p[i] :
p ∈ pred(P∪D), 1≤ i≤ a(p)}. An evaluation plan E of P consists of an indexing schema S

that fixes I together with a pr-orderings for each r ∈P being admissible w.r.t. S . We say that
P enjoys an efficient evaluation if it is associated to an evaluation plan.

Example 3.4
In our running example, the ordering ord(r, ·) is not admissible w.r.t. the schema S . Thus, S and
ord(r, ·) do not represent an evaluation plan of the program P = {r}. However, an evaluation
plan of P could be obtained by exchanging the assignments of the atoms c(Z) and e(Y,Z)
in ord(r, ·). It would be appropriate to note that, in the latter case, we would obtain a further
evaluation plan by excluding the argument a[2] from the indexing schema (and thus saving an
index). Starting from this consideration, we introduce the concepts of preference and evaluation
strategy in the next section.

3.2 Preferences

Let P be a positive Datalog program, EP be the set of all the evaluation plans of P and w :
EP → N be a function that we call cost function on EP . Given two evaluation plans E1,E2 ∈
EP , we say that E1 is preferable to E2 w.r.t. the function cost w if w(E1) < w(E2), while we
say that E1 is equivalent to E2 w.r.t. w if w(E1) = w(E2). Moreover, consider a finite set W =

{w1, . . . ,wn} of cost functions on EP , we define an evaluation strategy for P as a finite sequence
Σ = (wδ1 , . . . ,wδk

) of distinct elements in W . We say that E1 ∈ EP is preferable to E2 ∈ EP w.r.t.
the strategy Σ = (w1, . . . ,wk) if either:

• E1 is preferable to E2 w.r.t. w1, or



Precomputing Datalog evaluation plans in large-scale scenarios 7

• there exists j ∈ {2, . . . ,k} such that E1 is equivalent to E2 w.r.t. wi for each i = 1, . . . , j−1,
and E1 is preferable to E2 w.r.t. w j.

According to the notion of preference of an evaluation plan over another w.r.t. a strategy, we can
now introduce the definition of “optimal” plans w.r.t. that strategy.

Definition 3.7
Let EP be the set of all the evaluation plans for a positive Datalog program P and Σ be an
evaluation strategy for P . An evaluation plan E0 is said to be optimal w.r.t. Σ if it is either
preferable or equivalent to each E ∈ EP w.r.t. Σ.

Intuitively, finding the optimal evaluation plans against a strategy Σ= (w1, . . . ,wk) means finding
those that minimize the cost function w1, then, among these, find those that minimize the function
w2, and so on. We report next four functions used for defining our evaluation strategies. From
now on when we talk about the functions w1, w2, w3 and w4 we will refer to the following:

• w1(E ) := ∑p[i]∈S c(p, i), where c(p, i) is the cost of building an index over p[i] in the
indexing schema S . Note that we presuppose the knowledge of c(p, i) values. Such costs
can be estimated via heuristics or actually computed, depending on the application domain
at hand. As said in the introduction, the novel approach is based on the natural assumption
that, when dealing with very large databases, some information and statistics about the
user domain are known in advance since they do not vary as fast as the actual data. Apart
from primary keys and foreign keys, which in OBQA are related to the ontological schema,
some statistics on the data can be also taken into account. This is the case, for example,
of the estimation of the selectivity of an attribute, which gives an indication of the average
number of times that a constant (or individual) occurs in the relation in correspondence
of the given attribute (note that, the special case of estimation of the selection equal to 1
indicates that the given attribute is actually a key). This value can be taken into account for
estimating the size (and thus, the cost) of an index for the given attribute.

• w2(E ) is defined as the sum of the positions of atoms involved in recursion. We prefer that
atoms involved in recursion are placed as soon as possible. The extension of such atoms
might considerably grow and change during computation; placing them before other atoms
in the body could avoid the creation of expensive indices.

• w3(E ) is the number of indices set on arguments that are not primary keys. In other words
we prefer indices set on arguments representing primary keys.

• w4(E ) := ∑r∈P ∑α∈B(r)[maxArity− u(α,r)] ∗ pos(r,α), where maxArity represents the
maximum arity of the atoms appearing in P and u(α,r) is the number of unbound argu-
ments of the atom α in the rule r. We prefer that atoms having large number of unbound
arguments (that is, those that minimize the first factor in the above summation) are placed
as soon as possible as they possibly will lead to have new completely bound atoms to be
placed in successive positions.

4 ASP-based Implementation

In the following we describe the ASP code devised in order to compute optimal evaluation plans.
For the sake of simplicity, as the program is rather long and involved, we report here only some
key parts; the full ASP code is available online.2

2 See https://www.mat.unical.it/perri/iclp2019.zip.

https://www.mat.unical.it/perri/iclp2019.zip
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The program is based on the classical “Guess/Check/Optimize” paradigm and combines: (i)
choice and disjunctive rules to guess an indexing schema S over P ∪D and, for each rule r in
P , an ordering ord(r, ·); (ii) strong constraints to guarantee, for each rule r, the admissibility of
ord(r, ·) w.r.t. S ; (iii) weak constraints to find out the optimal evaluation plans of P w.r.t. the
chosen strategy.

4.1 Data Model

The planner consists of an ASP program taking as input a set of facts representing P and the
database D ; each rule of P is represented by means of facts of the form:

rule(Rule ,Description ,NumberOfBodyAtoms).
headAtom(Rule ,Atom ,Predicate).
bodyAtom(Rule ,Atom ,Predicate).
sameVariable(Rule ,Atom1 ,Arg1 ,Atom2 ,Arg2).
constant(Rule ,Atom ,Arg).

Facts over the predicate rule associate each rule r to an identifier and provide the number of its
body atoms. Atoms in the body and in the head of each rule r are represented by bodyAtom and
headAtom predicates respectively. The predicate sameVariable provides the common variables
related to every pair of atoms appearing in r, whereas constant states that a constant term occurs
in the argument of an atom of r. An example of the basic input concepts described above is the
following:

Example 4.1
The following program P :

h1(X) :- a(X,Y),b(Y).
h2(Y) :- a(Y,X).

is represented by means of the facts:
rule(0,"h1(X):-a(X,Y),b(Y)." ,2).
headAtom(0,"h1(X)","h1/1").
bodyAtom(0,"a(X,Y)","a/2").
bodyAtom(0,"b(Y)","b/1").
sameVariable (0,"h1(X)",1,"a(X,Y)" ,1).
sameVariable (0,"a(X,Y)",2,"b(Y)" ,1).

rule(1,"h2(Y):-a(Y,X)." ,1).
headAtom(1,"h2(Y)","h2/1").
bodyAtom(1,"a(Y,X)","a/2").
sameVariable (1,"h2(Y)",1,"a(Y,X)" ,1).

The database D is represented by means of facts over predicate relation, while the costs of
building indices over arguments are given by facts over predicate index.

relation(Predicate ,Arity).
index(Predicate ,Arg ,Cost).

Furthermore, the planner allows for having a certain number of atoms in the body in some
previously fixed positions and a set of indices fixed in S . This is because, according to the
knowledge of the domain at hand, if one is aware that a particular choice for the orderings and
the indexing policy is convenient, the planner can be driven so that only plans complying with
this choice are identified. The planner can also exploit the presence of arguments representing
primary keys for predicates in P ∪D . Such information, if available, can be given in input to
the ASP planner by means of facts of the form:
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fixedPosition(Rule ,Atom ,Pos).
fixedIndex(Predicate ,Arg).
key(Predicate ,Arg).

4.2 Guess Part

The following choice rule (Calimeri et al. 2012) guesses a subset of the arguments of all pred-
icates, namely an indexing schema S , over P ∪D . Notably, the arguments to be indexed are
chosen among a restricted set of arguments, called indexable, in order to keep the search space
smaller. For instance, arguments that are not involved in joins are not indexable.

{setIndex(Predicate ,Arg)} :- indexable(Predicate ,Arg).

Beside this choice rule, the guess part contains also the following rule for guessing a body-
ordering for each rule r in P . In particular, the choice guesses a position in the body for each
atom whose position has not been previously fixed (fixedAtomRule). Clearly, only positions
not already occupied by another body atom in the same rule (fixedPositionRule) are guess-
able. The predicates fixedAtomRule and fixedPositionRule are computed according to the
predicate fixedPosition described above.

{pos(Atom ,Rule ,Pos):position(Pos),Pos >=1,Pos <=Size ,
not fixedPositionRule(Rule ,Pos)}=1 :- rule(Rule ,Size),
bodyAtom(Rule ,Atom ,_),not fixedAtomRule(Rule ,Atom).

4.3 Check Part

This part discards, by means of strong constraints, solutions that do not satisfy (according to
the definitions in Section 3.1) the conditions to be considered admissible evaluation plans. In
particular, conditions that have to be necessarily satisfied are the following:

1. The connected components of each rule of P must be kept separate. According to the
definition 3.3, this is ensured by the following constraint.

:- pos(Atom1 ,Rule ,Pos1),pos(Atom2 ,Rule ,Pos2),
sameComponent(Rule ,Atom1 ,Atom2),pos(Atom3 ,Rule ,Pos3),
not sameComponent(Rule ,Atom1 ,Atom3),Pos1 <Pos3 ,Pos3 <Pos2.

2. According to the first point of the definition 3.4, to guarantee that each connected com-
ponent is well-ordered, each atom, except those in the first position of each component,
must have at least an argument indexBound. This condition is guaranteed by the constraint
below, where predicates firstPosition and indexBound suggest, respectively, the first
positions of the components in each rule, and the indexBound arguments of each atom in
a rule.

:- pos(Atom ,Rule ,Pos),firstPosition(Rule ,FirstPos),
Pos >FirstPos ,# count{Arg:indexBound(Arg ,Atom ,Rule)}=0.

3. The second condition of the definition 3.4 is modeled by means of the following constraint.
Here the predicate atomVars indicates the number of variables occurring in every atom.

:- pos(Atom ,Rule ,Pos),not boundAtom(Atom ,Rule ,Pos),
pos(Atom1 ,Rule ,Pos1),not boundAtom(Atom1 ,Rule ,Pos1),
Pos1 >Pos ,Pos2 >Pos1 ,boundAtom(Atom2 ,Rule ,Pos2),
atomVars(Atom2 ,Rule ,N),
#count{Arg2:sameVariable(Rule ,Atom2 ,Arg2 ,Atom ,_)}=N.
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The checking part contains also an additional constraint encoding the following basic check for
guaranteeing the correctness of the plans. In particular, this basic check ensures that two different
atoms do not occupy the same position in any rule:

:- pos(Atom1 ,Rule ,Pos),pos(Atom2 ,Rule ,Pos),Atom1!=Atom2.

4.4 Optimize Part

Eventually, in this section we describe the part for identifying the optimal evaluation plan ac-
cording to the evaluation strategy that one decides to apply. Remember that a strategy is a finite
combination of cost functions. Currently, the planner is equipped with the four cost functions
described in Section 3.2, each of which is represented by a specific weak constraint. Note that,
weak constraints allow for expressing preferences possibly having different importance levels.
The planner allows to fix these priority levels according to the chosen strategy by providing in
input facts which indicate that the cost function wN has priority level P.

priorityCostFunction(N,P).

For instance, suppose we want to represent the strategy Σ = (w1,w3,w2), then we need the
following input facts to indicate that the cost function w1 has priority level 3, w3 has priority
level 2 and w2 has priority level 1. Note that in this case the cost function w4 is not activated.

priorityCostFunction (1,3).
priorityCostFunction (3,2).
priorityCostFunction (2,1).

This means that the planner is customizable. Indeed, depending on the knowledge of the do-
main at hand, one can choose to adapt the strategy to his own needs simply by exchanging the
priority levels of the cost functions among those already present in the planner, or even by inte-
grating new cost functions (with the addition of new constraints in the encoding). In the following
we illustrate the weak constraints representing the cost functions defined in Section 3.2.

1. The rule below aims to minimize index occupation. To this end, we presuppose the knowl-
edge of the costs (or their estimation) of building indices over arguments and we represent
them by facts of form index(Predicate,Arg,Cost).

:∼ setIndex(Predicate ,Arg),index(Predicate ,Arg ,Cost),
priorityCostFunction (1,P). [Cost@P ,Predicate ,Arg ,Cost]

2. We prefer that atoms involved in recursion are placed as soon as possible. The weak con-
straint makes uses of the auxiliary predicate recursivePredicate providing information
about which predicates of the program are recursive. We do not report its definition for the
sake of readability.

:∼ pos(Atom ,Rule ,Pos),bodyAtom(Rule ,Atom ,Predicate),
recursivePredicate(Predicate),priorityCostFunction (2,P).
[Pos@P ,Rule ,Pos]

3. Indices set on arguments representing primary keys are possibly preferred:
:∼ setIndex(Predicate ,Arg),not key(Predicate ,Arg),

priorityCostFunction (3,P). [1@P ,Predicate ,Arg]

4. Atoms having large number of unbound arguments should be placed as soon as possible in
the body. Also in this case we make use of an auxiliary predicate: numBoundArgs provides
the number of bound arguments of an atom in a rule.
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:∼ numBoundArgs(Atom ,Rule ,Pos ,B),maxArity(N),
bodyAtom(Rule ,Atom ,Predicate),relation(Predicate ,Arity),
priorityCostFunction (4,P). [(N-Arity+B)*Pos@P ,Rule ,Pos]

5 Experimental Evaluation

Hereafter we report the results of an experimental activity carried out to assess the effectiveness
of the ASP-based evaluation planner.

5.1 Benchmarks

Our experimental analysis relies on four benchmarks: LUBM (Lehigh University BenchMark),
LUBM-LUTZ, Stock Exchange and Vicodi.

LUBM. It is one of the most popular ontologies for testing both capabilities and performance
of OBQA systems; indeed, it has been specifically developed to facilitate the evaluation of
Semantic Web reasoners in a standard and systematic way. In particular, the benchmark is in-
tended to evaluate performance of those reasoners with respect to extensional queries over large
databases that refer to a single realistic ontology. The LUBM benchmark consists of a university
domain OWL 2 ontology along with customizable and repeatable synthetic data and a set of 14
SPARQL queries3. Queries 2, 6, 9 and 14 involve constants, while the other queries are constant-
free. In our experiments, the original LUBM ontology and the official 14 queries have been
translated into Datalog via the CLIPPER system (Eiter et al. 2012). The official LUBM genera-
tor has been adopted to generate four databases of increasing sizes: LUBM-500, LUBM-1,000,
LUBM-2,000 and LUBM-4,000, where the number associated to each database name indicates
the number of universities composing it. The number of facts in the databases ranges from about
67,000,000 to about half a billion facts.

LUBM-LUTZ. It is a variant of LUBM designed by Lutz et al. (2013). This benchmark con-
sists of an OWL2 ontology and 11 queries (both different from those of LUBM) along with a
modified version of the LUBM official generator allowing to set the level of incompleteness in
the database. As done for LUBM, the ontology and the queries have been translated into Data-
log via the CLIPPER system (Eiter et al. 2012). All queries are without constants. We generated
five databases of increasing sizes and having an incompleteness percentage of 10%: LUTZ-500,
LUTZ-1,000, LUTZ-2,000, LUTZ-4,000 and LUTZ-8,000. Again, the number associated to each
database name indicates the number of universities composing it.

Stock Exchange and Vicodi. These are two real world ontologies widely used in literature
for the evaluation of query rewriting systems (Mora and Corcho 2013). For each of these two
ontologies, we selected 5 queries featuring constants and we used the SyGENiA generator (Grau
et al. 2012) to produce five databases having from 1,000 to 40,000 tuples and a number of
individuals varying from 100 to 4,000. These are the maximum sizes that can be generated using
SyGENiA.

5.2 Setting

Experiments on LUBM-LUTZ have been performed on a Dell Linux server with an Intel Xeon
Gold 6140 CPU composed of 8 physical CPUs clocked at 2.30 GHz, with 297GB of RAM.

3 LUBM is available at http://swat.cse.lehigh.edu/projects/lubm/.

http://swat.cse.lehigh.edu/projects/lubm/
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Experiments on LUBM, Vicodi and Stock Exchange have been performed on a NUMA Linux
machine equipped with two 2.8 GHz AMD Opteron 6320 processors and 128GB RAM. Unlim-
ited time and memory were granted to running processes. Benchmarks and executables used for
the experiments are available at https://www.mat.unical.it/perri/iclp2019.zip.

Two different executions have been compared: (i) a classical execution of I-DLV which, given
as input the so generated encodings, chooses body orderings and indexing strategies with its
default policies, and (ii) an execution driven by the planner in which I-DLV is forced to follow the
precomputed evaluation plan that decided body orderings and indices in order to reduce memory
consumption. These constraints have been defined via annotations, that represent specific means
to express preferences over its internal computational process (Calimeri et al. 2017).

5.3 Planner customization

In the context of OBQA, where the objective is to answer a query, the rewritten Datalog pro-
gram typically benefits from the application of the so-called Magic Sets technique (Alviano et al.
2012). This produces a new equivalent program containing extra intensional predicates that could
have very small extensions during the computation. These predicates, in a setting where mem-
ory consumption should be limited, could be moved towards the end of the body so that it is
more likely saving space for needed indices. Hence, to instantiate our planner, we consider this
additional domain information and use facts of the form fixedPosition(Rule,Atom,Pos) to
specify it. It is worth remarking that in I-DLV this customization has an impact only in case of
queries featuring constants since magic atoms are not generated for queries without constants.
Furthermore, for all attributes involved in extensional relations, we provide, via facts of the form
index(Predicate,Arg,Cost), an estimation of the size of an index for that attribute. In par-
ticular, in our experiments, to have available this information we generate and analyze a “small”
database for each benchmark.

In our experiments, we considered different planner customizations depending on the domain
at hand. In particular, for LUBM, Vicodi and Stock Exchange, consisting mainly of queries
featuring constants, we adopted the strategy Σ1 = (w2,w4). The idea underlying this choice is
that, in such domains, I-DLV can benefit from the Magic Sets technique and fixing the positions
of magic atoms as described above is already sufficient to drive the planner. On LUBM-LUTZ,
having instead constant-free queries, we adopted the strategy Σ2 = (w1,w2,w3,w4); indeed, since
Magic Sets are not active, no fixed positions can be provided and a richer strategy is necessary
for avoiding an almost blind plan computation.

5.4 Discussion

The results of our experiments are reported in Table 1 and in Figure 1 and 2.
Table 1 shows performance in terms of average running time and memory usage of I-DLV

(with and without planner) computed over all considered databases per each benchmark query.
Columns 2 and 3 refer to the classical computation, while columns 4 and 5 to the computation
driven by the planner. In the 6th column, we reported the time spent to compute the optimal plan,
in the 7th column, the memory saving per query computed as difference of the corresponding
fields in columns 3 and 5. Similarly, the 8th column reports the time saving per query computed
as difference of the corresponding fields in columns 2 and 4. The table reports also some ag-
gregated data per benchmark. In particular, it shows information on the average/maximum saved

https://www.mat.unical.it/perri/iclp2019.zip
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Fig. 1: Experiments on LUBM. Queries are ordered by increasing values w.r.t. the No-Planner
execution.
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Fig. 2: Experiments on LUBM-LUTZ. Queries are ordered by increasing values w.r.t. the No-
Planner execution.

memory/time, as well as the number of queries where an improvement in terms of saved memory
(resp. saved time) has been obtained. In addition, to provide a clearer picture of the behavior of
the two versions of I-DLV, we reported in Figures 1 and 2 plots of the average running time and
memory usage over all considered databases for the largest benchmarks: LUBM and LUBM-
LUTZ.

As it can be seen, we obtained a significant saving of memory on LUBM where, for instance,
the planner allows to save 11.4 GB on query q13 (about 40% less) w.r.t. the no-planner version,
and a gain both in terms of memory and time over almost all queries. Only on query q01 we
experimented a small worsening on memory. In general, no significant increase of computation
time is observable and, in several cases, the planner-driven approach leads also to improvements
in terms of time. This can be explained considering that indices selected by the planner, being on
the overall less memory expensive, are more efficiently computable.

Concerning LUBM-LUTZ, we first note that the benefits appear less evident. This is due to
the nature of the queries in the benchmark which are constant-free and require a different (less
informed) customization, as described in Section 5.3. Nonetheless, the execution of I-DLV driven



14 Fiorentino et al.

Time Memory Time Memory Planning Time Saved Memory Saved Time

q01 1949.24 17.27 1526.94 17.67 0.01 -0.4 422.3

q02 2292.53 19.22 1121.70 17.27 0.14 2.0 1170.8

q03 1643.14 17.89 1026.31 17.27 0.01 0.6 616.8

q04 2250.26 37.21 1241.08 33.28 0.3 3.9 1009.2

q05 1303.48 28.28 1087.97 17.27 0.17 11.0 215.5

q06 1485.75 23.74 1383.24 21.12 0.05 2.6 102.5

q07 1284.16 25.94 1124.31 21.23 0.18 4.7 159.9

q08 1349.36 32.47 1162.35 22.49 0.32 10.0 187.0

q09 1464.82 23.74 1326.15 21.32 0.22 2.4 138.7

q10 1271.19 24.94 1101.55 20.84 0.14 4.1 169.6

q11 1016.69 17.27 1014.10 17.27 0.01 0.0 2.6

q12 1275.24 27.13 1115.07 18.68 0.2 8.4 160.2

q13 1281.30 30.06 1129.73 18.66 0.17 11.4 151.6

q14 1122.83 17.27 1080.39 17.27 0 0.0 42.4

q01 353.88 8.17 328.94 8.15 0 0.0 24.9

q02 237.25 6.19 232.24 6.20 0.04 0.0 5.0

q03 268.90 6.63 274.70 6.20 0.26 0.4 -5.8

q04 249.86 6.67 240.43 6.63 0.02 0.0 9.4

q05 246.67 6.21 240.60 6.21 0.08 0.0 6.1

q06 273.83 6.88 258.81 6.63 0.28 0.2 15.0

q07 219.15 6.20 218.20 6.20 0.05 0.0 0.9

q08 293.97 7.59 284.52 6.80 0.11 0.8 9.5

q09 260.12 6.80 247.42 6.20 0.01 0.6 12.7

q10 289.85 7.19 283.63 7.22 0.04 0.0 6.2

q11 288.08 7.14 280.95 6.44 0.07 0.7 7.1

q01 0.83 11.98 0.83 12.16 0 -0.2 0.0

q02 1.10 23.48 1.15 21.10 0.02 2.4 -0.1

q03 2.06 39.64 2.41 36.60 0.03 3.0 -0.4

q04 1.31 29.04 1.32 25.28 0.04 3.8 0.0

q05 2.35 46.40 2.44 41.34 0.09 5.1 -0.1

q01 0.83 9.88 0.83 9.96 0.01 -0.1 0.0

q02 0.93 20.56 0.83 12.02 0.01 8.5 0.1

q03 0.82 11.38 0.78 10.72 0.02 0.7 0.0

q04 0.70 12.88 0.70 13.84 0.02 -1.0 0.0

q05 0.78 12.54 0.78 13.10 0.08 -0.6 0.0

LUBM (Memory in GB, Time in seconds)

LUTZ  (Memory in GB, Time in seconds)

Average: 4.34

Average: 324.94

Query
No Planner Planner

Maximum: 11.4

Maximum: 1170.83

Improvements: 13/14

Improvements: 14/14

Saved Memory

Saved Time

Improvements: 11/11

Improvements: 10/11

Average: 2.81

Average: -0.1

Maximum: 5.06

Maximum: 0

Stock Exchange  (Memory in MB, Time in seconds)

Saved Memory

Saved Time

Saved Memory

Saved Time

Average: 0.26

Average: 8.28

Maximum: 0.79

Maximum: 24.94

Saved Memory

Saved Time

Improvements: 4/5

Improvements: 2/5

Average: 1.52

Average: 0.03

Maximum: 8.54

Maximum: 0.11

Improvements: 2/5

Improvements: 5/5

Vicodi (Memory in MB, Time in seconds)

Table 1: Experiments on LUBM, LUBM-LUTZ, Stock Exchange and Vicodi. Time is in seconds,
memory is in GB for LUBM and LUBM-LUTZ and in MB for Stock Exchange and Vicodi.

by the planner performs generally better (both in time and memory) of the standard execution. On
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No Planner Planner Profit (%) No Planner Planner Profit (%)

LUBM 81439.90 72733.30 10.7% 83960.03 65763.48 21.7%

LUBM-LUTZ 21701.70 21634.20 0.3% 14907.74 14452.21 3.1%

Stock Exchange 77.40 68.90 11.0% 38.25 40.72 -6.5%

Vicodi 38.50 26.60 30.9% 20.32 19.58 3.7%

Domain
Peak of Memory Sum of Times

Table 2: Statistics on LUBM, LUBM-LUTZ, Stock Exchange and Vicodi: the maximum peak
of memory and the total sum of execution times computed over all databases and queries, along
with the corresponding profits. Time is in seconds, memory is in MB.

the queries q08, q09 and q11 we have a memory saving of 9-10% w.r.t. the no-planner version;
moreover, we observe no worsening in memory consumption and only one case in which there
is a negligible worsening in time.

As for Stock Exchange and Vicodi, although these are not data intensive domains, I-DLV can
benefit by the planner as well. Indeed, worsenings in terms of memory range from 1% to 7% in
a few queries which are somehow expected when measuring memory of the order of megabytes.

Further aggregated data and statistics on the results are given in Table 2. This shows, for both
the tested versions of I-DLV and for each benchmark, the maximum peak of memory and the total
sum of execution times computed over all databases and queries, along with the corresponding
profits. In all benchmarks, the peak of memory when the planner is used is less than the one
obtained using the standard version of I-DLV. Regarding times, although we experimented a
small worsening for Stock Exchange (6.5%), we observe a general improvement which is greater
than 20% in our large-scale benchmark.

6 Conclusion

In this work we introduced an evaluation planner for Datalog programs. The planner has been
conceived to be applied to ontology-based query answering contexts, where often, in case of
large databases, standard approaches are not convenient/applicable due to memory consumption.
It relies on an ASP program that computes the plan, intended as an indexing schema for the
database together with a body-ordering for each rule in the program. The computed plan mini-
mizes the overall cost (in term of memory consumption) of indices; moreover, the usage of the
plan with the DLV system allows to further reduce memory usage since some expensive internal
optimizations of DLV can be disabled. Results of the experiments conducted on popular ontolog-
ical benchmarks confirm the effectiveness of the approach. Eventually, precomputing offline an
evaluation plan plays an extremely important role in reasoners with a server-like behavior, since
this allows for further reducing the time required by the actual computation.
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