1908.00104v1 [cs.PL] 31 Jul 2019

arxXiv

Under consideration for publication in Theory and Practice of Logic Programming 1

Evaluation of the Implementation of an Abstract
Interpretation Algorithm using Tabled CLP x

JOAQUIN ARIAS and MANUEL CARRO

IMDEA Software Institute and Universidad Politécnica de Madrid
joaquin.arias@{imdea.org,alumnos.upm.es}, manuel.carro@{imdea.org,upm.es}

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

CiaoPP is an analyzer and optimizer for logic programs, part of the Ciao Prolog system. It includes PLAI, a
fixpoint algorithm for the abstract interpretation of logic programs which we adapt to use tabled constraint
logic programming. In this adaptation, the tabling engine drives the fixpoint computation, while the con-
straint solver handles the LUB of the abstract substitutions of different clauses. That simplifies the code and
improves performance, since termination, dependencies, and some crucial operations (e.g., branch switch-
ing and resumption) are directly handled by the tabling engine. Determining whether the fixpoint has been
reached uses semantic equivalence, which can decide that two syntactically different abstract substitutions
represent the same element in the abstract domain. Therefore, the tabling analyzer can reuse answers in
more cases than an analyzer using syntactical equality. This helps achieve better performance, even taking
into account the additional cost associated to these checks. Our implementation is based on the TCLP frame-
work available in Ciao Prolog and is one-third the size of the initial fixpoint implementation in CiaoPP. Its
performance has been evaluated by analyzing several programs using different abstract domains.

This paper is under consideration for publication in Theory and Practice of Logic Programming (TPLP).

KEYWORDS: Abstract Interpretation, Constraints, Tabling, Prolog, PLAIL

1 Introduction

Tabling (Tamaki and Sato 1986; Warren 1992) is an execution strategy for logic programs that
suspends repeated calls which could cause infinite loops. Answers from non-looping branches
are used to resume suspended calls which can, in turn, generate more answers and resume other
suspended calls. Only new answers are saved, and evaluation finishes when no new answers
can be generated. Tabled evaluation always terminates for calls/programs with the bounded term
depth property (i.e., they can only generate terms with a fixed finite depth) and can improve
efficiency for terminating programs which repeat computations, as it automatically implements a
variant of dynamic programming. Tabling has been successfully applied in a variety of contexts,
including deductive databases, program analysis, semantic Web reasoning, and model checking.

Constraint Logic Programming (CLP) (Jaffar and Maher 1994) extends Logic Programming
(LP) with variables that can belong to arbitrary constraint domains and the ability to incre-
mentally solve equations involving these variables. CLP brings additional expressive power

* Work partially supported by EIT Digital (https://eitdigital.eu), MINECO project TIN2015-67522-C3-1-R (TRACES),
and Comunidad de Madrid project S2018/TCS-4339 BLOQUES-CM co-funded by EIE Funds of the European Union.

2 J. Arias and M. Carro

to LP, since constraints can very concisely capture complex relationships. Also, shifting from
“generate-and-test” to “constraint-and-generate” patterns reduces the search tree and therefore
brings additional performance, even if constraint solving is in general more expensive than uni-
fication.

The integration of tabling and constraint solvers makes it possible to exploit their synergy in
several application fields: abstract interpretation (Swift and Warren 2010), reasoning on ontolo-
gies, and constraint-based verification (Gange et al. 2013). In this paper we use Mod TCLP (Arias
and Carro 2019a) to adapt PLAI, the fixpoint algorithm implemented in the program analysis,
optimization, and transformation tool CiaoPP (Hermenegildo et al. 2012; Hermenegildo et al.
2005). The re-implementation of PLAI uses tabling to reach the fixpoint (following ideas sim-
ilar to (Kanamori and Kawamura 1993; Janssens and Sagonas 1998)), incremental aggrega-
tion techniques (Guo and Gupta 2008; Zhou et al. 2010; Swift and Warren 2010; Arias and
Carro 2019b) to join the answers, by discarding the more particular ones, and call entailment
checks (Chico de Guzman et al. 2012; Arias and Carro 2019a) to detect repeated calls (in order
to suspend execution to reuse answers from previous calls), thereby speeding up convergence.
The resulting code space is reduced to one third and, consequently, increases the maintainability
of the abstract interpreter.

2 Related Work

Abstract interpretation has always been seen as one of the most clear applications of tabled
logic programming. It requires a fixpoint procedure, often implemented using memo tables and
dependency tracking, which play a role very similar to the internal data structures that tabling
engines need to detect repeated calls, store and reuse answers, and check for termination.

The relationship between abstract interpretation and tabling was recognized very early. Exten-
sion tables (Dietrich 1987) were proposed to record results from the execution of predicates and
turn intensional definitions into extensional definitions. Their applications included “improving
the termination and completeness characteristics of depth-first evaluation strategies in the pres-
ence of recursion”. The idea of extension tables were applied as the embryo of SLG resolution
and the XSB system. At the same time, abstract interpretation was then viewed as inefficient,
and as part of the efforts to make it a practical technique to implement analyzers, tables, but also
other ideas such as dependency tracking, were used (Warren et al. 1988), thus making it clear
that a common underlying technology could be used in both types of systems.

The next step was to use these components, independently available in tabling systems, to
explore how they could be used to build abstract interpreters. Earlier work (Kanamori and Kawa-
mura 1993) explored the possibilities offered by OLDT (Tamaki and Sato 1986) to implement
abstract interpretation. Using type inference as the guiding example, it suggests certain changes
to OLDT and concludes that it is feasible to do abstract interpretation with OLDT. The paper
neither describes an implementation nor reports performance, but it states that the abstract inter-
preter was implemented and was available. In (Warren 1999) an abstract interpreter written in
XSB is presented as one of the applications of tabled Prolog.

However, surprisingly few examples of abstract interpreters implemented using tabling have
been presented and evaluated w.r.t. implementations without tabling. One of them is a frame-
work (Janssens and Sagonas 1998) based on abstract compilation that executes the abstract
version of the program under analysis, together with domain-dependent abstract operations,
which is evaluated using the tabling system XSB and compared with the AMAI and PLAI sys-

Abstract Interpretation Fixpoint using TCLP 3

tems (Janssens et al. 1995; Muthukumar and Hermenegildo 1992). Both systems use abstract
interpreters written in Prolog without tabling, but they rely on very different underlying tech-
nologies, and with different representations for the abstract domains. From that evaluation, the
paper concludes that tabling is a viable infrastructure for abstract interpretation, but concedes
that the PLALI fixpoint algorithm was the most efficient abstract interpreter for logic program-
ming available at the moment. The very different underlying infrastructure makes it difficult to
use these results to draw meaningful conclusions.

On the other hand, abstract interpretation has been used as a benchmark to compare different
implementations and/or scheduling strategies of tabling (Demoen and Sagonas 1998; Freire et al.
2001). Advanced tabled systems and techniques have been proposed to implement more efficient
abstract interpreters by using the least upper bound operator (Schrijvers et al. 2008) to combine
answers, numeric constraint solvers (Chico de Guzman et al. 2012) to implement the Octagon
domain, and the partial order answer subsumption with abstraction (Swift and Warren 2010) for
cases where, e.g., the program computed does not have a finite model. However, none of them
reports performance evaluation against other frameworks.

In this paper we started with PLAI, the state-of-the-art abstract interpreter used by CiaoPP,
and re-implemented its fixpoint procedure in Tabled CLP preserving the interface with the rest
of the system. Therefore, we can compare some indicators of code complexity (e.g., comparing
lines of code, with the assumption that the tabled version is essentially a subset of the original
version) and performance on a completely equal footing. This is, to our best knowledge, the first
comparison that has these characteristics.

3 Background

In this section we briefly describe Mod TCLP (Arias and Carro 2019a), a generic inter-
face that facilitates the integration of constraint solvers with the tabling engine in Ciao,
Aggregate-TCLP (Arias and Carro 2019b), a framework implemented on top of Mod TCLP
to incrementally compute lattice-based aggregates, and PLAI, the fixpoint algorithm used by
CiaoPP.

3.1 The Mod TCLP framework

Tabled Logic Programming with Constraints (TCLP) (Arias and Carro 2019a; Schrijvers et al.
2008; Cui and Warren 2000) improves program expressiveness and, in many cases, efficiency
and termination properties. Let us consider a program to compute distances between nodes in a
graph written using tabling (Fig. 1, left). The query 7- dist(a,Y,D),D<K. would loop under
SLD due to the left-recursive rule, while it would terminate under tabling for acyclic graphs.
Tabling records the first occurrence of each call to a tabled predicate (the generator) and its
answers. In variant tabling (the most usual form of tabling), when a call is found to be equal,
modulo variable renaming, to a previous generator, the execution of the call is suspended and it
is flagged as a consumer of the generator. For example dist (a,Y,D) is a variant of dist (a,Z,D)
if Y and Z are free variables. Upon suspension, execution switches to evaluating another untried
branch. A branch which does not suspend can generate answers for the initial goal. When a gen-
erator finitely finishes exploring all the clauses and all answers are collected, the consumers that
depend on it are resumed and fed with the answers of the generator. This may make generators
produce new answers which can in turn resume more consumers. This process finishes when

4 J. Arias and M. Carro

:- table dist/3.
;- table dist/3. :- table dist(_,_,min).

dist(X,Y,D) :-

A2 wow =

1 1

2 2

3 dist(X,Y,D) :- D1#>0, D2#>0, 3 dist(X,Y,D) :-

4 dist(X,Z,D1), 5 D #=D1+D2, 4 dist(X,Z,D1),
5 edge(Z,Y,D2), 6 dist(X,Z,D1), 5 edge(Z,Y,D2),
6 D is D1+D2. 7 edge(Z,Y,D2). 6 D is D1+D2.

7 dist(X,Y,D) :- s dist(X,Y,D) :- 7 dist(X,Y,D) :-

8 edge(X,Y,D). 9 edge(X,Y,D). 8 edge(X,Y,D).

(a) Tabling (b) TCLP (c) Aggregate-TCLP

Fig. 1: Distance traversal in a graph. Note: The symbols #> and #= are (in)equalities in CLP.

no new answers can be generated — i.e., a fixpoint has been reached. Tabling is sound and,
for programs with a finite Herbrand model, complete (and, therefore, it always finishes in these
cases).

However, in a cyclic graph, dist/3 has an infinite Herbrand model: every cycle can be
traversed repeatedly and create paths of increasing length. Therefore, the previous query
?7-dist(a,Y,D), D<K will not terminate under variant tabling, although the query as a whole
has a finite model.

On the other hand, if the integration of tabling and CLP (Fig. 1, center) uses constraint en-
tailment (Chico de Guzman et al. 2012), calls to dist/3 will suspend if there are previous
similar calls that are more general, and only the most general answers will be kept. The query
7- D#<K, dist(a,Y,D) terminates under TCLP because by placing the constraint D #< K before
dist(a,Y,D), the search is pruned when the values in D are larger than or equal to K.

This illustrates the main idea underlying the use of entailment (C) in TCLP: more particu-
lar calls (consumers) can suspend and later reuse the answers collected by more general calls
(generators). In order to make this entailment relationship explicit, we will represent a TCLP
goal as (g, cg) where g is the call (a literal) and ¢, is the projection of the current constraint
store onto the variables of the call. For example, (dist(a,Y,D),D > 0 AD < 75) entails the goal
(dist(a,Y,D),D < 150) because (D > 0AD < 75) C D < 150. The latter is therefore more gen-
eral (i.e., it is a generator) than the former (a consumer). All the solutions of a consumer are
solutions for its generator, since the space of solutions of the consumer is a subset of that of the
generator. However, not all answers from a generator are valid for its consumers. For example
Y=bAD> 125AD < 135 is a solution for our generator, but not for our consumer, since the
consumer call was made under a constraint store more restrictive than the generator. Therefore,
the tabling engine has to filter, via the constraint solver, the answers from the generator that are
consistent w.r.t. the constraint store of the consumer.

Additionally, the Mod TCLP framework (Arias and Carro 2019a) has been used to imple-
ment in Ciao a framework, called Aggregate-TCLP (Arias and Carro 2019b), that incrementally
computes aggregates for elements in a lattice. The Aggregate-TCLP framework uses the entail-
ment and join relations in a lattice to define and compute aggregates, and to decide whether
some atom is compatible with (i.e., entails) the aggregate. For example, the directive : - table
dist(min) (Fig. 1, right), specifies the (aggregate) mode min for the third argument. The
query 7- dist(a,Y,D) will in this case terminate because only the shortest distance between

R

two nodes found at every moment is kept, and it will be returned in D as a result of the evalua-
tion of the initial call. Other tabling engines implement answer subsumption (Swift and Warren

Abstract Interpretation Fixpoint using TCLP 5

2010) or a restricted form of it via mode-directed tabling (Guo and Gupta 2008; Zhou et al. 2010;
Wielemaker et al. 2012; Santos Costa et al. 2012), that can be used to compute aggregates. How-
ever, answer subsumption, as implemented in XSB, assumes answers to be safe (i.e., ground)
and works on non-ground answers only in some cases, so it would in principle not be applicable
when answers are constraints. Answer subsumption also performs subsumption only on answers,
while Aggregate-TCLP can in addition check entailment for calls. In the case of the TCLP im-
plementation of the abstract interpreter, this makes it possible to reuse answers obtained from
calls semantically equivalent (i.e., calls whose associated abstract substitutions differ, but that
still represent the same object in the lattice) and/or more general (i.e., that represent an element
higher in the lattice hierarchy). Note that in our benchmarks we are using semantic equivalence,
since using entailment to detect more general calls would cause a loss of precision as the domains
we are using are non-relational. Last, answer subsumption does not provide the freedom to be
used with aggregates that cannot be expressed in terms of a lattice, such as sum/3, which (Arias
and Carro 2019b) can work around.

3.2 The PLAI algorithm

We assume that the reader is familiar with the basic principles of abstract interpretation (Cousot
and Cousot 1977; Bruynooghe 1991; Nielson et al. 2005). The PLAI algorithm used by the
abstract interpreter of CiaoPP for static analysis extends the fixpoint algorithms proposed
by (Bruynooghe 1991) with the optimizations described in (Muthukumar and Hermenegildo
1990). In logic programming, all possible concrete substitutions in the program (i.e., terms to
which the variables in that program will be bound at run-time for a given query) can be infi-
nite, which gives rise to an infinite execution tree. The core idea of PLAI is to represent this
infinite execution tree by an abstract and-or tree using abstract substitutions to finitely represent
the possibly infinite sets of substitutions in the concrete domain. The set of all possible abstract
substitutions that a variable can be bound to is the abstract domain which is usually a complete
lattice (or a complete partial order of finite height).

Domains in PLAI PLAI is domain-independent: new abstract domains can be easily imple-
mented and integrated by using a common interface. The operations required by the domain
interface are:

e A’ U A”, which gives the LUB of the abstract substitutions A’ and A”. The LUB opera-
tion is defined in terms of the C relation of the abstract domain.

e call_to_entry(p(ii),C,A), where C is a clause and p (i) is a call. It gives an abstract
substitution describing the effects on vars(C) of unifying p (i) with head(C) given an
abstract substitution A for the variables in i.

e exit_to_success(A, p(#), C, B) which returns an abstract substitution describing
the effect of execution p (i) against clause C. For this, the variables of the abstract substi-
tution 3 are renamed taking into account the unification with the terms in head (C) and
the variables in p (ii),, and a new abstract substitution is returned updating A with the new
information.

e extend(A,A’) which extends abstract substitution A to incorporate the information in A’
in a way that it is still consistent.

e project_in(if,A) which extends the abstract substitution A so that it refers to all the
variables in i.

6 J. Arias and M. Carro

Algorithm 1: entry_to_exit: Compute exit substitution from entry substitution.

Data: A clause C of the form h (i) : - p; (i]) ,...,pm () ; an entry substitution Bemy
Result: An exit substitution B,
M :=project_in(vars(C), Beniry) s
fori:=1tomdo
L Air1 :=call_to_success (p; (ii;) ,A;);

return project_out (i, A1 1);

Algorithm 2: call_to_success: Compute success substitution from call substitution.

Data: A goal p (ii); an abstract call substitution A.y;
Result: A success substitution Agccess
Aproj :=project_out (i, Acan);
Ai=1
for each clause C which unifies with p(ii) do
Bexir := entry_to_exit(C,call_to_entry (p (i) ,C,Apmj)):
L A=A Uexit_to_success(Appj,p) ,C,Lexit);

return extend (A.,A");

e project_out (ii,A) which restricts the abstract substitution A to refer only to the vari-
ables in i.

For additional examples of abstract domains integrated in CiaoPP, we refer the reader
to (Bueno et al. 2004; Muthukumar and Hermenegildo 1989; Vaucheret and Bueno 2002).

And-Or trees and substitutions In PLAI the abstract and-or tree is constructed using a top-down
driven strategy (instead of a bottom-up computation) so that the computation is restricted to what
is required for the given query. In the resulting and-or tree, an and-node is a clause head h whose
children are the literals in its body, py,...,p,, and an or-node is a literal, p;, whose children are
the heads hy,...,h,, of the clauses that unify with p;. Its construction starts with the abstract call
substitution for the query. Then, abstract substitutions at all points of the abstract and-or tree are
computed and finally, the success substitution for the query is computed.

Inside a clause, abstract substitutions at every point are denoted depending on their position
amonyg its literals. Given a clause h: - py,...,ps, let A; and A,y be the abstract substitutions to
the left and right of the subgoal p;, 1 <i < n. Then, A; and ;1 are, respectively, the abstract
call substitution and the abstract success substitution for the subgoal p;. The projection of A; on
vars(h) is the abstract entry substitution, ey, of the given clause, and, similarly, the projection
of A,+1 on vars(h) is its abstract exit substitution, [B,y;. The abstract substitutions for a clause
are computed as follows:

e EXxit substitution from the entry substitution (Algorithm 1): Given a clause h: - py,...,p,
and an entry substitution ﬁemry for the clause head h, the call substitution A; for p; is
computed by simply adding to B, an abstraction for the variables in the clause that
do not appear in the head. The success substitution for p; is A, and it is computed as
explained below (essentially, by repeating this same process for the clauses which unify

Abstract Interpretation Fixpoint using TCLP 7

with p1). A3, ..., Ay are computed similarly. The exit substitution f,.; for this clause is
the projection of 4,11 onto i, the variables in .

e Success substitution from the call substitution (Algorithm 2): Given a call substitution
Acanr for a subgoal p, let hy,..., h, be the heads of clauses that unify with p. Com-
pute the entry substitutions Blesry, ..., Biienr, for these clauses. Compute their exit
substitutions 1.y, ..., Bmey; as explained above. Compute the success substitutions
Alguccessy - - - » AMguccess from the exit substitutions corresponding to these clauses. At this
point, all different success substitutions can be considered for the rest of the analysis, or a
single success substitution Agyccess for subgoal p computed by means of an aggregation op-
eration for A 1gyceess, - - -y AMgyccess- This aggregate is the least upper bound (LUB), denoted
by LI, of the abstract domain.

Note that these two procedures are mutually recursive and would not finish in case of mutually
recursive calls. They merely describe how abstract substitutions are generated for the case of
literals in a body (by carrying success abstract substitutions to call abstract substitutions) and
how entry and exit substitutions of several clauses are composed together. For the general case of
recursive predicates, where repeated calls and termination have to be detected, PLAI implements
a fixpoint algorithm that we sketch below.

PLAD’s fix point algorithm The core idea of PLAI’s fixpoint algorithm (Muthukumar and
Hermenegildo 1990) is that the subtree corresponding to the abstract interpretation of a node
with a recursive predicate p should be finite. If the abstract domain is finite, a predicate p can
only have a finite number of distinct call substitutions and therefore the subtree can only have a
finite number of occurrences of nodes that have a variant of p and which themselves have sub-
trees. In addition to that, all other nodes in the subtree with the same predicate name p and with
the same call substitutions (modulo variable renaming) use the approximate value of the success
substitution computed previously for the root node of the subtree labeled with p, and hence they
do not have any descendent nodes.

Based on this idea, the fixpoint algorithm iteratively refines the approximate values of the
success substitution of the recursive predicate p as follows:

e First, it computes an approximate value of the projected success substitution using the
LUB of the projected success substitutions corresponding to the non-recursive clauses of
p. This provides an initial, hopefully non-empty, abstract substitution that is fast to com-
pute (it does not need to check for repeated calls or termination) and accelerates the con-
vergence of the fixpoint algorithm. In practice, it can be delegated to a specialized version
of Algorithms 1 and 2 restricted to non-recursive calls / clauses. These can be determined
beforehand by a reachability analysis based on strongly connected components.

e Then, it traverses the (finite) subtree corresponding to p in a depth-first fashion. When an
entry-exit combination is needed for a call to p having the same call substitution (modulo
variable renaming), the existing approximation is used. For a call to p with a different call
substitution, a new (nested) fixpoint computation is started. When the analysis returns to
the root of the subtree, the success substitution for p is updated as the LUB of the previous
value and the value just computed from the recursive clauses of p.

e If there is a change in the success substitution for p, the depth-first traversal is restarted
using the new success substitution, which is used for the subtree nodes corresponding to p
that have a compatible call substitution. These depth-first traversal iterations can take place

8 J. Arias and M. Carro

only a bounded number of times, since the LUB operation is monotonic and the abstract
substitutions form a lattice of finite height.! Therefore, a fixpoint will be reached in a finite
number of steps.

o If there is no change in the success substitution for the root node of the subtree of p for a
given call substitution, then the analysis of that subtree is complete (for that call substitu-
tion) and the fixpoint computation of the predicate p terminates.

For recursive predicates called from within recursive predicates, the dependencies between
nested calls have to be recorded to restart the traversal of the subtrees containing predicate calls
whose success substitution has been updated.

4 Implementations of the PLAI Algorithm: Prolog vs. Tabling

We will now describe more in depth how the PLAI algorithm is implemented in CiaoPP? and
highlight the differences w.r.t. the version that uses Tabled CLP.

4.1 PLAI in CiaoPP

The implementation of call_to_success is the entry point, as it relates the entry and exit sub-
stitutions of a call (in particular, of the top-level call). During the analysis of a goal p (i), and for
each clause that unifies with p (i), the predicate call_to_success invokes entry_to_exit
which, for each subgoal in the body of the clause, invokes again call_to_success. The ab-
stract interpreter is able to stop the evaluation of a part of the program and move to another part
to evaluate calls to other predicates. The implementation of PLAI is optimized to accelerate the
convergence of the fixpoint and reduce the computation by reusing previous results, among other
techniques.

The PLALI algorithm is based on the construction of an and-or tree, described in Section 3.2,
with the nodes representing the predicate calls visited during the analysis. To construct this tree,
call_to_success identifies each goal with its corresponding and/or node and with the special-
ized version of its father (i.e., the version of the literal that originated the call) and carries around
a list with the nodes on which the current goal depends. The analysis starts with a query (a goal)
and a call substitution. With this information, call_to_success creates the root node of the
tree and the list of clauses that unify with the goal. If the goal corresponds to a non-recursive
predicate, it computes the success substitution which is asserted in a memo-table to reuse the
result later on. Otherwise, the goal corresponds to a recursive predicate and it is dealt with by the
fixpoint algorithm: first, it evaluates the non-recursive clauses obtaining an approximation of the
success substitution and, after this, it starts the fixpoint computation.

During the fixpoint computation, for a goal with a given call substitution:

e If complete information has been already inferred and saved, call_to_success reuses
it, to avoid re-computations.

! While it is true that abstract domains can be infinite, if convergence is not reached after some time, a widening operation
changes the representation of the abstract substitutions to a coarser domain that has more chances to converge (or is
sure to converge, if it is finite).

2 The code is available at www . ciao-lang.org. For the reader convenience, we sketch it in Appendix B.

www.ciao-lang.org

Abstract Interpretation Fixpoint using TCLP 9

e If it is already inside a fixpoint computation (some parent started a fixpoint with the same
call), call_to_success reuses the approximation stored for this call, to avoid entering
loops.

o If an analyzed call depends on other nodes whose fixpoint are not completed yet, two cases
are treated:

— If the information on which the predicate depends is updated, a local fixpoint com-
putation is started.
— Otherwise, nothing is done.

To decide whether updated information for a node is available, the information inferred for
it has a version number:

— When the information on a node is updated, its version number is increased by one.
— When a node uses information from another node, it stores the version of that infor-
mation in the list of nodes on which it depends.

Version numbers are used to detect updates of the information on which a node analysis
depend. If the version number of the last information used from a node does not match its
current version number, there has been an update that needs to be propagated.

When the fixpoint computation finishes and the list of dependent nodes is empty, the current
information for this call is asserted. Otherwise, if this list is not empty, the information remains
flagged as an approximation and the fixpoint restarts. As it can easily be seen, while the algorithm
can be conceptually not too complex, its implementation is cumbersome and at points costly,
since many interactions are done through the database using identifiers for program points.

4.2 The PLAI Algorithm in TCLP

The PLAI code using tabling is a simplification of the corresponding Prolog implementation.
The main points that were changed are:

o The handling of dependencies among nodes and the detection of termination in the fixpoint
computation, that were explicit in the Prolog version, are now transferred to the underlying
fixpoint of the tabling engine.

e The calculation of the LUB of the abstract substitutions generated by different clauses
unifying with a call is done via lattice-based constraint aggregation (which is in turn built
upon tabling).

4.2.1 Internal Database and Dependencies

In the Prolog implementation, the information related to the abstract substitutions is kept in a
dynamic database relating code, program points, entry/exit substitutions, and dependencies. This
makes it globally accessible and allows it to survive across backtracking and calls, so that it does
not need to be carried around the program and be rebuilt every time there is a change in the
substitution at a program point.

However, making the abstract interpreter update that information, switch among calls, and
re-analyze calls needs accessing and updating this database, which is costly and mixes declara-
tive and imperative styles. On top of that, the CiaoPP implementation has been fine-tuned dur-
ing many years to avoid unnecessary (re-)analyses and minimize the overhead of accessing the

10 J. Arias and M. Carro

1 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ) :-

2 call_to_success_fixpoint(SgKey,Sg, st(Sv,Call,Proj,AbsInt,Prime)),
3 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ) .

4

s :- use_package(tclp_aggregate).

6 :- table call_to_success_fixpoint(_,_,abst_lub).

7 call_to_success_fixpoint(SgKey,Sg, st(Sv,Call,Proj,AbsInt,Prime)) :-

8 trans_clause(SgKey,_,Clause),

9 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Prime).

10 call_to_success_fixpoint(SgKey,Sg, st(Sv,_Call,Proj,AbsInt,Prime)) :-
I \+ trans_clause(SgKey,_,_),
12 apply_trusted0(Proj,SgKey,Sg,Sv,AbsInt,_ClId,Prime).

Fig. 2: Implementation of call_to_success/7 under the TCLP framework

database. All of these optimizations cause the code to have to deal with specific cases for the
sake of performance, hence adding to its complexity. But despite the involved implementation,
this machinery mimics, at Prolog level, an infrastructure similar to a tabling engine, but special-
ized for a given program —the abstract interpreter— and with optimizations specific for the task
at hand.

This bookkeeping becomes unnecessary when using a tabling-based implementation. An ab-
stract interpreter written using tabling and equipped with the capability to detect when two syn-
tactically different substitutions represent the same object, can automatically take care of termi-
nation, suspend analysis when repeated calls are detected, and resume them when new informa-
tion is available — all of it as part of the normal execution of a tabled program, without having
to explicitly update and check dependencies.

That makes the code much simpler (no dependencies, lists of pending goals, resuming, etc.
need to be explicitly coded) and shorter (we have obtained a threefold reduction in code size).
On the other hand, the tabling engine is generic and cannot decide which suspension and/or
resumption policy is better for a particular application. We on purpose chose to (a) keep the
TCLP code simple and not include any specific heuristic in the code, (b) not to reimplement
an analyzer from scratch, but simplify existing code, and (c) keep exactly the same interfaces
(both those offered to the rest of CiaoPP and those required by the fixpoint code) so that the
TCLP-based abstract interpreter can interoperate with the rest of the CiaoPP machinery as a
drop—in replacement with close to zero effort. For these and other reasons, our performance
figures (Section 5) are a lower bound of what could be achieved.

As an example, the implementation of call_to_success/13 in Prolog checks several
cases: if the call being analyzed is complete, under evaluation in a fixpoint, a call to a re-
cursive predicate, a call to a non-recursive predicate, etc. to update information accordingly.
It eventually invokes proj_to_prime_nr/9, which starts the fixpoint computation itself, and
which recursively calls call_to_success/13. call_to_success/13 has eight clauses and
proj_to_prime_nr/9 has six clauses (see Appendix B or the corresponding file at http:
//www.cliplab.org/papers/tclp-plai-iclp2019).

In the tabling implementation, the underlying engine and the calls to the abstract domain op-
erations through the constraint solver interface take care of these cases and dependencies. This
makes the implementation of call_to_success have just one clause (Fig. 2). The counterpart

http://www.cliplab.org/papers/tclp-plai-iclp2019
http://www.cliplab.org/papers/tclp-plai-iclp2019

Abstract Interpretation Fixpoint using TCLP 11

i call_entail(abst_lub, st(Sv,_,ProjA,AbsInt,_), st(Sv,_,ProjB,AbsInt,_)) :-

2 identical_abstract(AbsInt,ProjA,ProjB).

3 answer_entail(abst_lub, st(Sv,_,_,AbsInt,PrimeA), st(Sv,_,_,AbsInt,PrimeB)) :-

4 less_or_equal (AbsInt,PrimeA,PrimeB).

s answer_join(abst_lub,st(Sv,_,_,Abs, A), st(Sv,_,_,Abs, B), st(Sv,_,_,Abs,New)) :-
6 compute_lub(Abs, [A,B] ,New) .

7 apply_answer(abst_lub, st(Sv,_,_,AbsInt,Prime), st(Sv,_,_,AbsInt,Prime)).

Fig. 3: Code of the operator abst_lub under the TCLP framework

to proj_to_prime_nr/9 (which we renamed call_to_success_fixpoint/3 for clarity) has
just two clauses: one for user predicates and another one for library and builtin predicates.
Additionally, the use of tabling makes it unnecessary to save explicitly all the intermediate sub-
stitutions, database identifiers for calls and program points, dependencies among goals, etc. This
reduces the number of arguments, and call_to_success went from thirteen used in Prolog:

call_to_success(RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,C1Id,Succ,List,F,N,Id)
to seven in the tabling-based implementation:

call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ)

4.2.2 Deciding Termination and Computing the LUB

In the PLAI algorithm, the different exit substitutions obtained from the clauses that unify with
a given call are combined using the LUB operator of the abstract domain (Algorithm 2): exit
substitutions fB; .xir, for every clause C; are joined to return the success substitution Agccess-

The CiaoPP implementation uses bagof /3 to collect all the clauses in a list and then traverses
it and analyzes every clause to create another list of abstract substitutions that are joined with
the LUB. This processing is conceptually simple, but its implementation obscures the code with
low-level operations, does not match the idea of having an interpreter executing on an abstract
domain, and requires database accesses to retrieve the substitution applicable at that point.

In our implementation, the use of lattice-based aggregates with the tabling engine (Arias and
Carro 2019b) simplifies the code. The abst_lub identifier in line 6 of Fig. 2 is the name of
an interface that has several missions: determine suspension of calls, detect termination of the
fixpoint, and perform aggregation of abstract substitutions. In the same line, the underscores state
that the corresponding arguments are to be checked for equality (necessary to decide whether a
fixpoint has been reached) using the variant policy, i.e., syntactical equality modulo variable
renaming.

The implementation of the interface named abst_lub in Fig. 3 tells the tabling engine how to
treat the argument selected previously with this identifier. In particular, the tabling engine checks
the corresponding arguments for equality by calling call_entail/3. In our case, two abstract
substitutions are termed equal if the abstract domain implementation (identical_abstract/3)
decides so. This makes it possible to detect that two different representations correspond to the
same object in the lattice and, if so, suspend a call or retrieve saved answers for it.

The code in Fig. 3 also aggregates the results returned in the third argument (the abstract substi-
tutions) by joining them with the LUB of the lattice. The tabling engine calls answer_entail/3
to decide whether a new answer (a substitution) is or not more general than an existing an-

12 J. Arias and M. Carro

swer (less_or_equal/3). If its not comparable, answer_join/4 (which in turn invokes
compute_lub/3) is called to compute the LUB of a previous answer and the new one. With
these definitions, lines 7 to 12 in Fig. 2 contain all the code necessary to return the exit substitu-
tion of a call w.r.t. all its matching clauses. The implementation of the LUB operation (abs_1lub,
Fig. 3) is based on the operations provided by the abstract domain implementation.

This code also performs an incremental computation of the LUB as follows: upon success,
the first answer, corresponding to the exit substitution f81,, is stored in the answer table of
the tabled predicate. Let us call this stored answer ;. For the subsequent exit substitutions
B icxis,i > 1, there are two possible cases: if the saved substitution is more general (B icvir C Bexir),
then B i,y is discarded; otherwise we make Beyir = Bexir LI B fexir-

4.2.3 Connecting Abstract Substitutions with Lattice-Based Aggregates

The TCLP system handles entailment, aggregation, etc. by delegating operations to an underlying
constraint solver using a fixed interface (Arias and Carro 2019a). Since we purposely did not
change the representation of the CiaoPP abstract domains (they are used in other parts of the
system), we constructed a bridge between these domains and the interface that TCLP expects.

The original entry point of the fixpoint, proj_to_prime_nr/9 (renamed as
call_to_success_fixpoint/3 in the TCLP implementation), now tabled, is automati-
cally rewritten (by the package tclp_aggregate) to call an auxiliary predicate that, at run
time, substitutes the arguments carrying abstract substitutions by attributed variables (Holzbaur
1992) that simulate having a constrained variable. Their attributes are tuples that contain (a)
the identifier (abst_lub, in our example) that determines the interface to be used and (b) the
abstract substitution and ancillary information necessary by the abstract interpreter.

When one operation of the tabling engine involves a call with attributed variables, the engine
checks if it has an attribute with contents it recognizes. If so, it calls the corresponding predicate
from the interface that, in our case, operates on the substitution stored in the attributes.

5 Evaluation

Besides simplifying code, the implementation of PLAI using TCLP gives performance advan-
tages in many cases. These come mainly because part of the bookkeeping related to dependen-
cies, saving the analysis state when restarting the analysis of a dependent call, checking for
termination, etc. are handled at a lower level. On the other hand, the implementation currently in
CiaoPP, as commented before, has been fine-tuned and specialized during many years to mini-
mize the overhead of the fixpoint implementation, so that a large proportion of the analysis time
is spent in domain-related operations. On top of that, the CiaoPP domain representation and do-
main operations are designed to work well with its current architecture and coding decisions (e.g.
saving and retrieving from the dynamic databases) and are suboptimal for a tabling-based imple-
mentation: for example, redundant data is manipulated and/or stored. As commented earlier, we
did not change any of these so the TCLP fixpoint can seamlessly interact with the rest of the
CiaoPP tool, exposing and using exactly the same interfaces.

Even with these constraints, we observed speedups when analyzing most programs from a
benchmark set. We used the Groundness and Sharing+Freeness (Muthukumar and Hermenegildo
1991) domains due to their relevance (e.g., for program optimization and correctness of paral-
lelization). Groundness (see Table 1 for performance results) determines if some program vari-

Abstract Interpretation Fixpoint using TCLP 13

Speedup TCLP (ms) CiaoPP (ms)

fibf_alt 1.60 0.29 0.46
aiakl 1.56 245 3.82
boyer 1.50 7.31 10.97
pv_queen 1.46 0.74 1.07
subst 1.41 0.25 0.35
pv_gabriel 1.37 3.65 4.99
rdtok 1.32 7.03 9.25
mmatf 1.24 0.31 0.39
hanoi 1.22 0.53 0.65
revf_lin 1.20 0.27 0.32
append 1.20 0.17 0.20
rev_lin 1.19 0.26 0.31
prefix 1.16 0.27 0.31
revf 1.15 0.32 0.37
pv_plan 1.15 1.94 2.23
sublist_app 1.14 0.24 0.27
reverse 1.14 0.38 0.43
flatten 1.13 0.55 0.62
palindro 1.12 0.34 0.38
fact 1.08 0.25 0.27
rotate 1.06 0.46 0.49
maxtree 0.98 0.63 0.61
zebra 0.92 1.38 1.26
browse 0.89 1.76 1.57
AVG 1.31 31.78 41.59

Table 1: Performance comparison: CiaoPP fixpoint in Prolog and TCLP (Groundness domain).

able will be bound to a ground term. This is useful to derive modes, optimize unification, and
improve the precision of the Sharing+ Freeness analysis, among others.

Sharing+Freeness (see Table 2) determines if two (or more) program variables may be bound
to terms sharing a common variable. It is useful to determine, for example, whether running two
goals in parallel may try to bind the same variable, thus causing races and compromising cor-
rectness. The benchmarks used are standard programs that have been previously used to evaluate
CiaoPP.

All the experiments in this paper were performed on a Linux 5.0.0-13-generic machine with
an Intel Core i7 at 1.80GHz with 16Gb of memory and using gcc 8.3.0 to compile the abstract
machine of Ciao Prolog. In all cases, every program was analyzed 40 times and the 10 worst
times were discarded, both when using the tabling and the Prolog implementation, to try to
minimize the effect of spurious interruptions, O.S. scheduling, etc. that can introduce noise in
the execution. The remaining times were averaged. All the code and the system under evaluation
is available at http://www.cliplab.org/papers/tclp-plai-iclp2019.

The average speedups in each table were calculated by adding up the (averaged) execution
times for all the benchmarks and dividing the CiaoPP time by the TCLP time. This shows that,
on average, the analysis with the Groundness domain speeds up a bit more than 30%, while the
analysis with the Sharing+Freeness has experienced, on average, a slight slowdown (about 3%).

By looking at every benchmark in isolation, we can observe that the speedups differ greatly

http://www.cliplab.org/papers/tclp-plai-iclp2019

14 J. Arias and M. Carro

Speedup TCLP (ms) CiaoPP (ms)

fact 1.30 0.26 0.33
pv_queen 1.23 1.21 1.49
mmatf 1.17 0.51 0.60
mmatrix 1.15 0.53 0.61
prefix 1.14 0.46 0.52
revf 1.12 0.47 0.53
revf_lin 1.10 0.39 0.43
reverse 1.10 0.39 0.43
rev_lin 1.10 0.38 0.42
rotate 1.06 0.72 0.76
pv_pg 1.01 2.67 2.70
append 0.98 1.11 1.09
sublist_app 0.96 0.87 0.84
zebra 0.91 16.34 14.80
AVG 0.97 26.31 25.55

Table 2: Performance comparison: CiaoPP fixpoint in Prolog and TCLP (Sh+Fr domain).

among them. We have sorted the benchmarks according to the speedup to appreciate better the
differences. In both cases, only a small part of the benchmarks (three) experienced a slow-
down, and even in these cases, the maximum slowdown was about 10%. In the case of Shar-
ing+Freeness, the slowest analysis corresponded as well to the largest execution time (larger
than the rest of the benchmarks combined). We want to note that this benchmark (zebra) is prob-
ably not a representative of a typical program, as it is a combinatorial problem with many free
variables in a single clause, some of which are aliased with each other.

The source of the speed difference is not easy to determine. A profile of the number of fixpoint
calls in CiaoPP vs. fixpoint calls, entailment checks, joins, etc. in the TCLP version does not seem
to show a correlation with the observed speedups. We therefore conjecture that the shape and size
of the abstract substitution, and the relative cost of checking entailment, has to be explored to
have a better explanation of the differences observed.

6 Conclusions and Future Work

We have presented a re-implementation of PLAI, a fixpoint computation algorithm for abstract
interpretation, using tabled constraint logic programming. The resulting code is considerably
shorter than the current Prolog implementation of PLAI in CiaoPP (one-third of its size) and
much simpler: all the bookkeeping necessary to keep track of dependencies between predicates,
analysis restarting, etc. is in charge of the tabling engine, which increases the maintainability of
the implementation of PLAI

We have evaluated its performance using several benchmarks and abstract domains, and com-
pared it with the original implementation in CiaoPP. In most cases, the TCLP implementation
showed improved performance, sometimes with a speedup of 60%. In a few cases there was a
small slowdown, which we think is a reasonable price to pay for the added code clarity, especially
taking into account that there is room for improvement in the current implementation.

Among the immediate future plans, we want to experiment re-implementing the abstract do-
mains with an optimized representation of the abstract substitutions, and also use constraint logic

Abstract Interpretation Fixpoint using TCLP 15

programming techniques to propagate the effects of updates. We also expect that, using con-
straints, we will be able to define widening heuristics independently of the fixpoint algorithm
thereby increasing the resulting flexibility, precision and performance w.r.t. the state of the art.

Acknowledgements

We would like to thank Maximiliano Klemen, who helped us understand the intricacies of the
CiaoPP implementation of PLAI. Thanks are also due to Manuel Hermenegildo, who gave us
very valuable feedback on the paper manuscript and also a historical account on the early rela-
tionship between tabling and efficient abstract interpretation implementations.

References

ARIAS, J. AND CARRO, M. 2019a. Description, Implementation, and Evaluation of a Generic Design for
Tabled CLP. Theory and Practice of Logic Programming 19, 3, 412-448.

ARIAS, J. AND CARRO, M. 2019b. Incremental evaluation of lattice-based aggregates in logic program-
ming using modular TCLP. In Practical Aspects of Declarative Languages - 21st International Sympo-
sium (PADL 2019), J. J. Alferes and M. Johansson, Eds. Lecture Notes in Computer Science, vol. 11372.
Springer, 98-114.

BRUYNOOGHE, M. 1991. A Practical Framework for the Abstract Interpretation of Logic Programs. Jour-
nal of Logic Programming 10, 91-124.

BUENO, F., LOPEZ-GARCIA, P., AND HERMENEGILDO, M. V. 2004. Multivariant Non-Failure Analysis
via Standard Abstract Interpretation. In FLOPS’04. Number 2998 in LNCS. Springer-Verlag, 100-116.

CHICO DE GUZMAN, P., CARRO, M., HERMENEGILDO, M. V., AND STUCKEY, P. 2012. A General
Implementation Framework for Tabled CLP. In Int’l. Symposium on Functional and Logic Programming
(FLOPS’12). Number 7294 in LNCS. Springer Verlag, 104-119.

CousorT, P. AND CousoT, R. 1977. Abstract Interpretation: a Unified Lattice Model for Static Analy-
sis of Programs by Construction or Approximation of Fixpoints. In ACM Symposium on Principles of
Programming Languages (POPL’77). ACM Press, 238-252.

Cul, B. AND WARREN, D. S. 2000. A system for Tabled Constraint Logic Programming. In Int’l. Con-
ference on Computational Logic. LNCS, vol. 1861. 478-492.

DEMOEN, B. AND SAGONAS, K. 1998. CAT: The Copying Approach to Tabling. In Programming Lan-
guage Implementation and Logic Programming. Lecture Notes in Computer Science, vol. 1490. Springer-
Verlag, 21-35.

DIETRICH, S. W. 1987. Extension Tables: Memo Relations in Logic Programming. In Fourth IEEE
Symposium on Logic Programming. 264-272.

FREIRE, J., SWIFT, T., AND WARREN, D. S. 2001. Beyond Depth-First: Improving Tabled Logic Pro-
grams through Alternative Scheduling Strategies. In International Symposium on Programming Lan-
guage Implementation and Logic Programming. Number 1140 in LNCS. Springer-Verlag, 243-258.

GANGE, G., NAVAS, J. A., SCHACHTE, P., SONDERGAARD, H., AND STUCKEY, P. J. 2013. Failure
Tabled Constraint Logic Programming by Interpolation. TPLP 13, 4-5, 593-607.

Guo, H.-F. AND GUPTA, G. 2008. Simplifying Dynamic Programming via Mode-directed Tabling. Soft-
ware: Practice and Experience 1 (Jan), 75-94.

HERMENEGILDO, M. V., BUENO, F., CARRO, M., LOPEZ-GARCIA, P., MERA, E., MORALES, J., AND
PUEBLA, G. 2012. An Overview of Ciao and its Design Philosophy. Theory and Practice of Logic
Programming 12, 1-2 (January), 219-252. http://arxiv.org/abs/1102.5497.

HERMENEGILDO, M. V., PUEBLA, G., BUENO, F., AND LOPEZ-GARCIA, P. 2005. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The Ciao System Prepro-
cessor). Science of Computer Programming 58, 1-2 (October), 115-140.

16 J. Arias and M. Carro

HOLZBAUR, C. 1992. Metastructures vs. Attributed Variables in the Context of Extensible Unification. In
Int’l. Symposium on Programming Language Implementation and Logic Programming. Number 631 in
LNCS. Springer Verlag, 260-268.

JAFFAR, J. AND MAHER, M. 1994. Constraint Logic Programming: A Survey. Journal of Logic Program-
ming 19/20, 503-581.

JANSSENS, G., BRUYNOOGHE, M., AND DUMORTIER, V. 1995. A blueprint for an abstract machine for
abstract interpretation of (constraint) logic programs. In /ILPS. 336-350.

JANSSENS, G. AND SAGONAS, K. 1998. On the Use of Tabling for Abstract Interpretation: An Experiment
with Abstract Equation Systems. In Tabulation in Parsing and Deduction.

KANAMORI, T. AND KAWAMURA, T. 1993. Abstract Interpretation Based on OLDT Resolution. Journal
of Logic Programming 15, 1-30.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1989. Determination of Variable Dependence Informa-
tion at Compile-Time Through Abstract Interpretation. In 1989 North American Conference on Logic
Programming. MIT Press, 166—189.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1990. Deriving A Fixpoint Computation Algorithm for
Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90, Microelec-
tronics and Computer Technology Corporation (MCC), Austin, TX 78759. April.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1991. Combined Determination of Sharing and Freeness
of Program Variables Through Abstract Interpretation. In International Conference on Logic Program-
ming (ICLP 1991). MIT Press, 49-63.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1992. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. JLP 13, 2/3 (July), 315-347.

NIELSON, F., NIELSON, H. R., AND HANKIN, C. 2005. Principles of Program Analysis. Springer. Second
Ed.

SANTOS COSTA, V., ROCHA, R., AND DAMAS, L. 2012. The YAP Prolog system. Theory and Practice
of Logic Programming 12, 1-2, 5-34.

SCHRIJVERS, T., DEMOEN, B., AND WARREN, D. S. 2008. TCHR: a Framework for Tabled CLP. Theory
and Practice of Logic Programming 4 (Jul), 491-526.

SWIFT, T. AND WARREN, D. S. 2010. Tabling with answer subsumption: Implementation, applications
and performance. In Logics in Artificial Intelligence. Vol. 6341. 300-312.

TAMAKI, H. AND SATO, M. 1986. OLD Resolution with Tabulation. In Third International Conference
on Logic Programming. Lecture Notes in Computer Science, Springer-Verlag, London, 84-98.

VAUCHERET, C. AND BUENO, F. 2002. More Precise yet Efficient Type Inference for Logic Programs. In
9th International Static Analysis Symposium (SAS’02). Lecture Notes in Computer Science, vol. 2477.
Springer-Verlag, 102-116.

WARREN, D. S. 1992. Memoing for Logic Programs. Communications of the ACM 35, 3,93-111.

WARREN, D. S. 1999. Programming in Tabled Prolog. https://www3.cs.stonybrook.edu/ warren/
xsbbook/book.html. Unpublished manuscript. Accessed on May 15, 2019.

WARREN, R., HERMENEGILDO, M., AND DEBRAY, S. K. 1988. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on Logic Programming.
MIT Press, 684-699.

WIELEMAKER, J., SCHRIJVERS, T., TRISKA, M., AND LAGER, T. 2012. SWI-Prolog. Theory and Prac-
tice of Logic Programming 12, 1-2, 67-96.

ZHOU, N.-F., KAMEYA, Y., AND SATO, T. 2010. Mode-Directed Tabling for Dynamic Programming,
Machine Learning, and Constraint Solving. In Int’l. Conference on Tools with Artificial Intelligence.
Number 2. IEEE, 213-218.

https://www3.cs.stonybrook.edu/~warren/xsbbook/book.html
https://www3.cs.stonybrook.edu/~warren/xsbbook/book.html

Abstract Interpretation Fixpoint using TCLP 17

Appendix A PLAI Algorithm Implementation Using TCLP

In this appendix we include the code corresponding to the reimplementation of PLAI using
TCLP. It is not expected to be used to understand the code (we did not add any facility or
improve its functionality), but rather to compare the code length and complexity with that of
the original PLAI in CiaoPP, which we include in Appendix B. Therefore, we have removed
the comments that appear in the original files. The files with comments can be accessed at
http://www.cliplab.org/papers/tclp-plai-iclp2019.

/% Copyright (C)1990-2019 UPM-CLIP */
:- module(fixpo_plai_tabling,
init_fixpoint/0,

cleanup_fixpoint/1,

1
2

3

4

5 query/8,
6

7

8 entry_to_exit/9
9

1,

10 [assertions, datafacts]).

2 % Ciao library

13 :- use_module(engine(io_basic)).

14

15 :- use_module(library(aggregates), [bagof/3, (~)/2]).

16 :- use_module(library(lists), [member/2, append/3]).

17 :- use_module(library(terms_vars), [varset/2]).

18 :- use_module(library(terms_check)).

19 :- use_module(library(sets), [merge/3, ord_subtract/3]).
20 :- use_module(library(sort), [sort/2]).

21 :- use_module(library(messages)) .

2 :- use_module(library(write)).

24 % CiaoPP library

25 :- use_module(ciaopp(preprocess_flags), [current_pp_flag/2, set_pp_flag/2]).

2

27 % Plai library

28 :- use_module(ciaopp(plai/fixpo_ops), [inexistent/2, variable/2, bottom/1,

29 singleton/2, fixpoint_id_reuse_prev/5, fixpoint_id/1, fixp_id/1,

30 each_abs_sort/3,

31 % each_concrete/4,

32 each_extend/6, each_project/6, each_exit_to_prime/8, each_unknown_call/4,
33 each_body_succ_builtin/12, body_succ_meta/7, reduce_equivalent/3,

34 each_apply_trusted/7, widen_succ/4, decide_memo/6,clause_applies/2,
35 abs_subset_/3]).

36

37 :- use_module(ciaopp(plai/domains)).

38 :- use_module(ciaopp(plai/trace_fixp), [fixpoint_trace/7, cleanup/0]).

39 :- use_module(ciaopp(plai/plai_db),

40 [complete/7, memo_call/5, memo_table/6, cleanup_plai_db/1, patch_parents/6]).
41 :- use_module(ciaopp(plai/psets), [update_if_member_idlist/3]).

42 :- use_module(ciaopp(plai/re_analysis), [erase_previous_memo_tables_and_parents/4]).
43 :- use_module(ciaopp(plai/transform), [body_info0/4, trans_clause/3]).

4 :- use_module(ciaopp(plai/apply_assertions_old),

45 [apply_trusted0/7,

46 cleanup_trusts/1]1).

47

4 :- doc(author,"Joaquin Arias").

49

50 :- doc(module,"This module adapts the implementation of the top-down

51 fixpoint algorithm of PLAI using TCLP with aggregates and an

52 extension that also checks call entailment.").

s4 init_fixpoint.

http://www.cliplab.org/papers/tclp-plai-iclp2019

18 J. Arias and M. Carro

55
s6 cleanup_fixpoint(_AbsInt).
57

LI e e e e %
59 % call_to_success(+,+,+,+,+,+,-) b
L B et et et yA
61

62 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ) :-

63 call_to_success_fixpoint (SgKey,Sg, st(Sv,Call,Proj,AbsInt,Prime)),
64 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

66 hhhhhhhhhhh%h TCLP interface %hhhhhhhhhhhdh

67 :- use_package(tclp_aggregate).

68 :- table call_to_success_fixpoint(_,_,abst_lub).

69

70 call_entail(abst_lub, st(V,_,ProjA,AbsInt,_), st(V,_,ProjB,AbsInt,_)) :-

71 identical_abstract(AbsInt,ProjA,ProjB), !.

7

73 answer_entail (abst_lub, st(V,_,_,AbsInt,PrimeAs), st(V,_,_,AbsInt,PrimeBs),1) :-

74 singleton(PrimeA,PrimeAs),
75 singleton (PrimeB,PrimeBs),
76 less_or_equal (AbsInt,PrimeA,PrimeB), !.

7
78 answer_join(abst_lub,st(V,_,_,AbsInt,PrimeAs), st(V,_,_,AbsInt,PrimeBs),

79 st(V,_,_,AbsInt,PrimeNews)) :-
80 singleton(PrimeA,PrimeAs),

81 singleton (PrimeB,PrimeBs),

82 singleton(PrimeNew,PrimeNews),

83 compute_lub(AbsInt, [PrimeA,PrimeB] ,PrimeNew), !.

84
85 apply_answer (abst_lub, st(V,_,_,Ab,A), st(V,_,_,Ab,B)) :- A = B.

86

87 call_to_success_fixpoint (SgKey,Sg,st(Sv,Call,Proj,AbsInt,Primes)) :-

88 trans_clause (SgKey, _,Clause),

89 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes).

90 call_to_success_fixpoint(SgKey,Sg,st(Sv,_Call,Proj,AbsInt,Primes)) :-
ol \+ trans_clause(SgKey,_,_),

92 apply_trustedO(Proj,SgKey,Sg,Sv,AbsInt, _ClId,Prime),

93 singleton(Prime,Primes).

94
95 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes):-

9 Clause = clause(Head,Vars_u,K,Body),

97 clause_applies(Head,Sg), !,

98 varset (Head,Hv),

99 sort (Vars_u,Vars),

100 ord_subtract (Vars,Hv,Fv),

101 process_body (Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,Call,

102 Proj,Primes,_Id).
13 do_nr_cl(_Clause,_Sg,_Sv,_Call,_Proj,_AbsInt,[[]]).

104

105 process_body(Body,K,AbsInt,Sg,Hv,_Fv,_,Head,Sv,Call,Proj,LPrime,_Id):-

106 Body = g(_,[], " '$built'(_,true,_), 'true/0',true), !,

107 singleton(Prime,LPrime),

108 call_to_success_fact (AbsInt,Sg,Hv,Head,K,Sv,Call,Proj,Prime, _Succ).
19 process_body(Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,_,Proj,Prime,Id):-

110 call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,Fv,Proj,Entry,Extralnfo),

11 singleton(Entry,LEntry),

112 entry_to_exit(Body,K,LEntry,Exit, [],_,Vars_u,AbsInt,Id),

13 each_exit_to_prime(Exit,AbsInt,Sg,Hv,Head,Sv,Extralnfo,Prime).

114

I B e T e %
16 % entry_to_exit (+,+,+,-,+,-,+,+,+) %
17 == m e m e e e o e e e %
18

119 entry_to_exit((Sg,Rest),K,Call,Exit,01ldList,NewList,Vars_u,AbsInt,NewN):- !,

120 body_succ(Call,Sg,Succ,01dList,IntList,Vars_u,AbsInt,K,NewN,_),

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

Abstract Interpretation Fixpoint using TCLP 19

entry_to_exit(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,NewN).
entry_to_exit(true,_,Call,Call,List,List,_,_,_):- !.
entry_to_exit(Sg,Key,Call,Exit,01dList,NewList,Vars_u,AbsInt,NewN):-
body_succ(Call,Sg,Exit,01dList,NewList,Vars_u,AbsInt,Key,NewN,_),
true.

body_succ(Call,_Atom,Succ,List,List, _HvFv_u,_AbsInt,_ClId,_ParentId,no):-
bottom(Call), !,
Succ = Call.
body_succ(Call,Atom,Succ,List,NewList ,HvFv_u,AbsInt,ClId,ParentId,Id):-
Atom=g(Key,Sv,Info,SgKey,Sg),
body_succ_(Info,SgKey,Sg,Sv,HvFv_u,Call,Succ,List,NewList,AbsInt,
ClId,Key,ParentId,Id).

body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,ClId,Key,PId,Id):-
Info = [_|_1, !,
split_combined_domain(AbsInt,Call,Calls,Domains),
map_body_succ(Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewL,Domains,
ClId,Key,PId,Id),
split_combined_domain(AbsInt,Succ,Succs,Domains) .
body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,C1lId,Key,PId,Id):-
body_succ0(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,
ClId,Key,PId,Id).

map_body_succ([],_SgKey,_Sg,_Sv,_HFv,[],[],L,L,[],_ClId,_Key,_PId,no).
map_body_succ ([I|Infol,SgKey,Sg,Sv,HFv, [Call|Calls], [Succ|Succs],L,NewL,
[AbsInt |Domains],C1Id,Key,PId,Id):-
body_succ0(I,SgKey,Sg,Sv,HFv,Call,Succ,L,_NewL,AbsInt,
ClId,Key,PId,_Id), !,
map_body_succ (Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewlL,Domains,
C11d,Key,PId,Id).

body_succ0('$var',SgKey,Sg,_Sv_u,HvFv_u,Calls,Succs,List0,List,AbsInt,
_C1Id,F,_N,_Id):-
1
(Calls=[Calll],
concrete (AbsInt,Sg,Call,Concretes),
concretes_to_body(Concretes,SgKey,AbsInt,B)
-> meta_call(B,HvFv_u,Calls, [],Succs,ListO,List,AbsInt,_ClId,_Id,_Ids)
; List=ListO,
each_unknown_call(Calls,AbsInt, [Sg],Succs) % Sg is a variable
).
body_succO('$meta'(T,B,_),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
_ClId4,_F,_N,_Id):-
1
meta_call(B,HvFv_u,Call, [],Exits,ListO,List,AbsInt,C1Id,Id,_Ids),
(body_succ_meta(T,AbsInt,Sv_u,HvFv_u,Call,Exits,Succ) ->
true
; % for the trusts, if any:
varset(Sg,Sv_r), % Sv_u contains extra vars (from meta-term)
% which will confuse apply_trusted
body_succO(nr,SgKey,Sg,Sv_r,HvFv_u,Call,Succ, [1,_List,AbsInt,
_ClId,_F,_N,_IdO)
).
body_succO('$built'(T,Tg,Vs),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
_Clid,_F,_N,_Id):-
1
List=ListO,
sort (Sv_u,Sv),
each_body_succ_builtin_(Call,AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,Succ).
body_succO(_RFlag,SgKey,Sg,Sv_u,HvFv_u,Call,Succ,_List0O,_List,AbsInt,
_ClId,_F,_N,_Id):-
sort(Sv_u,Sv),
each_call_to_success(Call,SgKey,Sg,Sv,HvFv_u,AbsInt,Succ).

%% predicate adapted from fixpo_ops

20 J. Arias and M. Carro

157 each_body_succ_builtin_([1,_,_T,_Tg,_,_,_Sg,_Sv,_HvFv_u,[]).
188 each_body_succ_builtin_([Call|Calls],AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u, [Succ|Succs]):-

189 project (AbsInt,Sg,Sv,HvFv_u,Call,Proj),
190 body_succ_builtin(T,AbsInt,Tg,Vs,Sv,HvFv_u,Call,Proj,Succ),!, %/ Doamin call
191 each_body_succ_builtin_tabling_(Calls,AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,Succs).

192
193 each_call_to_success([Call],SgKey,Sg,Sv,HvFv_u,AbsInt,Succ):-

194 ',

195 project (AbsInt,Sg,Sv,HvFv_u,Call,Proj),

196 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,Succ).

197

198 each_call_to_success(LCall,SgKey,Sg,Sv,HvFv_u,AbsInt,LSucc):-
199 each_call_to_success0(LCall,SgKey,Sg,Sv,HvFv_u,AbsInt,
200 LSucc).

201
202 each_call_to_successO0([],_SgK,_Sg,_Sv,_HvFv,_AbsInt,[]).
203 each_call_to_successO0([Call|LCall],SgKey,Sg,Sv,HvFv_u,AbsInt,

204 LSucc) : -

205 project (AbsInt,Sg,Sv,HvFv_u,Call,Proj),

206 call_to_success(SgKey,Call,Proj,Sg,Sv,AbsInt,LSuccO),
207 append (LSuccO,LSuccl,LSucc),

208 each_call_to_success0(LCall,SgKey,Sg,Sv,HvFv_u,AbsInt,
209 LSuccl).

210

211 meta_call([],_HvFv_u,Call,[],Call,List,List,_AbsInt,_Cl1Id,_Id,[]).
22 meta_call([Bodyl|Bodies],HvFv_u,Call,SuccO,Succ,LO,List,AbsInt,C1Id,Id,Ids):-

213 meta_call_([Body|Bodies],HvFv_u,Call,Succ0O,Succ,LO,List,AbsInt,C1Id,Id,Ids).
214 meta_call_([Body|Bodies] ,HvFv_u,Call,SuccO,Succ,L0,List,AbsInt,C1Id,Id,Ids):-

215 meta_call_body(Body,ClId,Call,Succl,LO,L1,HvFv_u,AbsInt,Id,Ids0),

216 widen_succ (AbsInt,Succ0O,Succl,Succ2),

217 append (SuccO, Succl,Succ2),

218 append (Ids0,Ids1,Ids),

219 meta_call_(Bodies,HvFv_u,Call,Succ2,Succ,L1,List,AbsInt,C1Id,Id,Idsl).

20 meta_call_([],_HvFv_u,_Call,Succ,Succ,List,List,_AbsInt,_C1Id,_Id,[]).

21

22 meta_call_body((Sg,Rest),K,Call,Exit,01dList,NewList,Vars_u,AbsInt,PId,CIds):-
223 !

24 CIds=[Id|Ids],
25 body_succ(Call,Sg,Succ,01dList,IntList,Vars_u,AbsInt,K,PId,Id),
226 meta_call_body(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,PId,Ids).

27 meta_call_body(true,_,Call,Call,List,List,_,_,_,[nol):- !.

28 meta_call_body(Sg,Key,Call,Exit,0ldList,NewList,Vars_u,AbsInt,PId, [Id]):-
229 body_succ(Call,Sg,Exit,01dList,NewList,Vars_u,AbsInt,Key,PId,Id).
230

231 concretes_to_body([],_SgKey,_AbsInt,[]).

232 concretes_to_body([SglSgs],SgKey,AbsInt, [BIBs]):-

233 body_info0(Sg:SgKey, [],AbsInt,B),

234 concretes_to_body(Sgs,SgKey,AbsInt,Bs).

235

236 hmm = mmmmm oo o oo oo - %
237 % query(+,+,+,+,+,+,+,-) %
238 hmmm e e e o %
239

240 :- doc(query(AbsInt,QKey,Query,Qv,RFlag,N,Call,Succ),

241 "The success pattern of @var{Query} with @var{Call} is

242 @var{Succ} in the analysis domain @var{AbsInt}. The predicate

243 called is identified by @var{QKey}. The goal @var{Query} has

244 variables @var{Qvl}.").

245
26 query(AbsInt,QKey,Query,Qv,_RFlag,_N,Call,Succ) :-

247 project (AbsInt,Query,Qv,Qv,Call,Proj),

248 call_to_success(QKey,Call,Proj,Query,Qv,AbsInt,Succ), !.
249

250 query(_AbsInt,_QKey,_Query,_Qv,_RFlag,_N,_Call,_Succ):-

251 % should never happen, but...

252 error_message ("SOMETHING HAS FAILED!").

Abstract Interpretation Fixpoint using TCLP 21

Appendix B PLAI Algorithm Implementation in Ciao Prolog

We include here the Ciao Prolog implementation of PLAI. As mentioned before, we have re-
moved the comments from the file since the goal of this appendix it to make it easier for the reader
to compare the Ciao Prolog code w.r.t. the code using TCLP, which we include in Appendix A.
The original version is available at http://www.cliplab.org/papers/tclp-plai-iclp2019.

/* Copyright (C)1990-2019 UPM-CLIP */

1
2

3 :- module(fixpo_plai_with_comments,
4 [query/s8,

5 init_fixpoint/0,

6 cleanup_fixpoint/1,

7 entry_to_exit/9

8 1,

9

[assertions, datafacts]).

1 % Ciao library

12 :- use_module(library(aggregates), [bagof/3, (~)/2]).

13 :- use_module(library(lists), [member/2, append/3]).

14 :- use_module(library(terms_vars), [varset/2]).

15 :- use_module(library(sets), [merge/3, ord_subtract/3]).
16 :- use_module(library(sort), [sort/2]).

17 :- use_module(library(messages)) .

19 % CiaoPP library

20 :- use_module(ciaopp(preprocess_flags), [current_pp_flag/2, set_pp_flag/2]).

21

2 % Plai library

23 :- use_module(ciaopp(plai/fixpo_ops), [inexistent/2, variable/2, bottom/1,

24 singleton/2, fixpoint_id_reuse_prev/5, fixpoint_id/1, fixp_id/1,

25 each_abs_sort/3,

26 each_extend/6, each_project/6, each_exit_to_prime/8, each_unknown_call/4,
27 each_body_succ_builtin/12, body_succ_meta/7, reduce_equivalent/3,

28 each_apply_trusted/7, widen_succ/4, decide_memo/6,clause_applies/2,
29 abs_subset_/3]).

30

31 :- use_module(ciaopp(plai/domains)).

3 :- use_module(ciaopp(plai/trace_fixp), [fixpoint_trace/7, cleanup/0]).

33 :- use_module(ciaopp(plai/plai_db),

34 [complete/7, memo_call/5, memo_table/6, cleanup_plai_db/1, patch_parents/6]).
35 :- use_module(ciaopp(plai/psets), [update_if_member_idlist/3]).

36 :- use_module(ciaopp(plai/re_analysis), [erase_previous_memo_tables_and_parents/4]).
37 :- use_module(ciaopp(plai/transform), [body_info0/4, trans_clause/3]).

33 :- use_module(ciaopp(plai/apply_assertions_old),

39 [apply_trusted0/7,

40 cleanup_trusts/1 1).

41

£ :- doc(author,"Kalyan Muthukumar").

43 :- doc(author,"Maria Garcia de la Banda").

44 :- doc(author,"Francisco Bueno").

45

4 :- doc(module,"This module implements the top-down fixpoint

47 algorithm of PLAI, both in its mono-variant and multi-variant

48 on successes versions. It is always multi-variant on calls.

49 The algorithm is parametric on the particular analysis domain.").

50

51

52 :- data '$depend_list'/3.

53 :- data ch_id/2.

54

ss :- data approx/6.

s6 :- data fixpoint/6.

http://www.cliplab.org/papers/tclp-plai-iclp2019

22 J. Arias and M. Carro

57 :- data fixpoint_variant/6.
ss :- data approx_variant/7.
59

60 init_fixpoint:-

61 retractall_fact (approx(_,_,_,_,_,_)),

& retractall_fact(fixpoint(_,_,_,_,_,_)),

6 retractall_fact('$depend_list'(_,_,_)),

64 retractall_fact(ch_id(_,_)),

65 retractall_fact(fixpoint_variant(_,_,_,_,_,_)),
66 retractall_fact (approx_variant(_,_,_,_,_,_,_)),
67 trace_fixp:cleanup.

68
60 cleanup_fixpoint (AbsInt):-

70 cleanup_plai_db(AbsInt),

71 cleanup_trusts(AbsInt),

7 retractall_fact(fixp_id(_)),

7 asserta_fact(fixp_id(0)), % there is no way to recover this
74 init_fixpoint. % if several analyses coexist!

75
76 approx_to_completes (AbsInt):-

77 current_fact (approx (SgKey,Sg,Proj,Prime,Pid,Fs) ,Ref),

78 asserta_fact (complete(SgKey,AbsInt,Sg,Proj,Prime,Pid,Fs)),

79 erase (Ref),

80 fail.

81 approx_to_completes(AbsInt):-

82 current_fact (approx_variant(_Id,Pid,SgKey,Sg,Proj,Prime,Fs) ,Ref),
83 asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Pid,Fs)),

84 erase (Ref),

85 fail.

86 approx_to_completes(_AbsInt).
87
88

80 hmmmmmm e e %

90 % call_to_success(+,+,+,+,+,+,+,-,—,+,+,+) %

Ol hmmmm e m o o e A

153

93 call_to_success(_RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-
94 % ClId = number identifying the clause?... for an entry point is O...
95 % F = program point of the call. clauseId+/0 for an entry call

96 current_fact (complete(SgKey,AbsInt,Subg,Projl,Primel,Id,Fs),R),

97 identical_proj(AbsInt,Sg,Proj,Subg,Projl), !,

98 patch_parents (R, complete (SgKey, AbsInt,Subg,Projl,Primel,Id,Ps),F,N,Ps,Fs),
99 List = [],

100 each_abs_sort(Primel,AbsInt,Prime),

101 each_extend(Sg,Prime, AbsInt,Sv,Call,Succ).

12 call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id) :-

103 current_fact (approx (SgKey,Subg,Projl,Primel,Id,Fs) ,Ref),

104 identical_proj (AbsInt,Sg,Proj,Subg,Proj1), !,

105 each_abs_sort(Primel,AbsInt,TempPrime),

106 current_fact ('$depend_list' (Id,SgKey,IdList)),

107 call_to_success_approx(SgKey,Subg,Call,Proj,Projl,S8g,Sv,AbsInt,F,N,Fs,
108 Id,Ref,IdList,Primel,TempPrime,List,Prime),

109 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

1o call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-
111 current_fact(fixpoint (SgKey,Subg,Proj1,Primel,Id,Fs),Ref),

112 identical_proj (AbsInt,Sg,Proj,Subg,Proji), !,

113 patch_parents (Ref,fixpoint (SgKey,Subg,Projl,Primel,Id,Ps),F,N,Ps,Fs),
114 current_fact(ch_id(Id,Num)),

115 List = [Id/Num],

116 each_abs_sort(Primel,AbsInt,Prime),

117 each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

ns call_to_success(_RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-
119 current_pp_flag(variants,on),

120 current_fact (complete (SgKey,AbsInt,Subg,Projl,Primel,_Idl,_Fs),_R),
121 identical_proj_1(AbsInt,Sg,Proj,Subg,Projl,Primel,Prime2), !,

122 format ("call to success tipe _RFlag SgKey",[1),

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

188

Abstract Interpretation Fixpoint using TCLP 23

(current_pp_flag(reuse_fixp_id,on) ->
fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

fixpoint_id(Id)

)’
each_abs_sort(Prime2,AbsInt,Prime),
List = [1,

asserta_fact (complete(SgKey,AbsInt,Sg,Proj,Prime,Id, [(F,N)]1)),
each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).
call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id) :-
current_pp_flag(variants,on),
current_fact (approx (SgKey, Subg,Projl,Primel,Id1,Fs),Ref),
identical_proj_1(AbsInt,Sg,Proj,Subg,Projl,Primel,Prime2), !,
each_abs_sort (Prime2,AbsInt,TempPrime),
current_fact ('$depend_list'(Idl,SgKey,IdList)),
call_to_success_approx_variant (SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,
Id,Id1,Ref,IdList,Primel,TempPrime,List,Prime),
each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).
call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id):-
current_pp_flag(variants,on),
current_fact (fixpoint (SgKey,Subg,Projl,Primel,Idl,_Fs),_Ref),
identical_proj_1(AbsInt,Sg,Proj,Subg,Projl,Primel,Prime2), !,
(
current_fact(fixpoint_variant (Id1,Id,SgKey,Sgv,Projv,Fsv),Refv),
identical_proj (AbsInt,Sg,Proj,Sgv,Projv) ->
patch_parents(Refv,fixpoint_variant(Idl,Id,SgKey,Sgv,Projv,Ps),F,N,Ps,Fsv)

(
current_pp_flag(reuse_fixp_id,on) ->
fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)
fixpoint_id(Id)

)’

asserta_fact (fixpoint_variant(Id1,Id,SgKey,Sg,Proj,[(F,N)1))

),

each_abs_sort(Prime2,AbsInt,Prime),

current_fact (ch_id(Id1,Num)),

List = [Id1/Num],

each_extend(Sg,Prime, AbsInt,Sv,Call,Succ).

call_to_success(r,SgKey,Call,Proj,Sg,Sv,AbsInt,_ClId,Succ,List,F,N,Id) :-
init_fixpointO(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N, [(F,N)],Id,List,Prime),
each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

call_to_success(nr,SgKey,Call,Proj,Sg,Sv,AbsInt,ClId,Succ, [],F,N,Id):-

(current_pp_flag(reuse_fixp_id,on) ->
fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)
fixpoint_id(Id)

),

proj_to_prime_nr (SgKey,Sg,Sv,Call,Proj,AbsInt,C1Id,Prime,Id),

asserta_fact(complete(SgKey,AbsInt,Sg,Proj,Prime,Id, [(F,N)]1)),

each_extend(Sg,Prime,AbsInt,Sv,Call,Succ).

call_to_success_approx(SgKey,Subg,_Call,Proj,Proj1,Sg,_Sv,_AbsInt,F,N,Fs,
Id,Ref,IdList,Primel,TempPrime,List,Prime):-
not_modified(IdList), !,
patch_parents(Ref,approx(SgKey,Subg,Projl1,Primel,Id,Ps),F,N,Ps,Fs),
Prime = TempPrime,
List = IdList.
call_to_success_approx(SgKey, _Subg,Call,Proj,_Proj1,Sg,Sv,AbsInt,F,N,Fs,
Id,Ref,_IdList,_Primel,TempPrime,List,Prime):-
erase (Ref),
init_fixpoint_(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,
TempPrime,List,Prime).

aproxs_to_fixpoint_variant (Id):-
current_fact (approx_variant (Id,Idv,SgKey,Sgv,Projv,_Primev,Fs),Ref),!,

24 J. Arias and M. Carro

189 erase (Ref),
190 asserta_fact(fixpoint_variant (Id,Idv,SgKey,Sgv,Projv,Fs)),
191 aproxs_to_fixpoint_variant (Id).

192 aproxs_to_fixpoint_variant(_).

193

194

195 call_to_success_approx_variant (SgKey,_Subg,_Call,Proj,_Projl,Sg,_Sv,AbsInt,F,N,_Fs,

196 Id,Id1,_Ref,IdList,_Primel,TempPrime,List,Prime):-
197 not_modified(IdList), !,

198 (

199 current_fact (approx_variant(Idl,Id,SgKey,Sgv,Projv,Primev,Fsv),Refv),
200 identical_proj (AbsInt,Sg,Proj,Sgv,Projv) ->

201 patch_parents (Refv,approx_variant (Id1l,Id,SgKey,Sgv,Projv,Primev,Ps),F,N,Ps,Fsv)
202 H

203 (

204 current_pp_flag(reuse_fixp_id,on) ->

205 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

206 ;

207 fixpoint_id(Id)

208),

209 asserta_fact (approx_variant (Id1,Id,SgKey,Sg,Proj,TempPrime, [(F,N)]))
210),

211 Prime = TempPrime,

212 List = IdList.

213 call_to_success_approx_variant (SgKey, Subg,Call,Proj,Projl,Sg,Sv,AbsInt,F,N,Fs,
214 Id,Id1,Ref,_IdList,Primel, _TempPrime,List,Prime):-
215 (

216 current_fact (approx_variant(Id1l,Id,SgKey,Sgv,Projv,_Primev,Fsv),Refv),
217 identical_proj (AbsInt,Sg,Proj,Sgv,Projv) ->

218 erase (Refv),

219 (member ((F,N),Fsv) -> NewFs = Fsv ; NewFs = [(F,N)|Fsv] %)

220 ;

21 (

222 current_pp_flag(reuse_fixp_id,on) ->

23 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

24 5

25 fixpoint_id(Id)

226),

27 NewFs = [(F,N)]

08),

229 aproxs_to_fixpoint_variant(Idl),

230 erase (Ref),

231 asserta_fact(fixpoint_variant (Id1,Id,SgKey,Sg,Proj,NewFs)),

232 varset (Subg, Subv) ,

233 init_fixpoint_(SgKey,Call,Proj1,Subg,Subv,AbsInt,F,N,Fs,Idl,

234 Primel,List,Prime0),

235 each_exit_to_prime(Prime0,AbsInt,Sg,Subv,Subg,Sv, (no,Proj) ,Prime).

236
237 init_fixpointO(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime):-

238 init_fixpoint2(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime).

239

20 init_fixpointl(SgKey,_Call,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

241 current_fact (complete (SgKey,AbsInt,Subg,Projl,Primel,Id,Fs),R),

242 identical_proj (AbsInt,Sg,Proj,Subg,Projl), !,

243 patch_parents (R, complete (SgKey,AbsInt,Subg,Projl,Primel,Id,Ps),F,N,Ps,Fs),
244 List = [],

245 each_abs_sort(Primel,AbsInt,Prime).

246 init_fixpointl(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

247 current_fact (approx (SgKey,Subg,Projl,Primel,Id,Fs) ,Ref),

248 identical_proj(AbsInt,Sg,Proj,Subg,Projl), !,

249 each_abs_sort(Primel,AbsInt,TempPrime),

250 current_fact ('$depend_list'(Id,SgKey,IdList)),

251 call_to_success_approx(SgKey,Subg,Call,Proj,Projl,Sg,Sv,AbsInt,F,N,Fs,
252 Id,Ref,IdList,Primel,TempPrime,List,Prime).

253 init_fixpoint1(SgKey,_,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-
254 current_fact(fixpoint (SgKey,Subg,Proj1,Primel,Id,Fs),Ref),

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

301
302
303

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

Abstract Interpretation Fixpoint using TCLP 25

identical_proj (AbsInt,Sg,Proj,Subg,Projl), !,

patch_parents (Ref,fixpoint (SgKey,Subg,Projl,Primel,Id,Ps),F,N,Ps,Fs),

current_fact(ch_id(Id,Num)),

List = [Id/Num],

each_abs_sort (Primel,AbsInt,Prime).
init_fixpoint1(SgKey,_Call,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-

current_pp_flag(variants,on),

current_fact (complete (SgKey,AbsInt,Subg,Projl,Primel,_Idl,_Fs),_R),

identical_proj_1(AbsInt,Sg,Proj,Subg,Projl,Primel,Prime2), !,

(current_pp_flag(reuse_fixp_id,on) ->

fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)

fixpoint_id(Id)

),
each_abs_sort(Prime2,AbsInt,Prime),
List = [],

asserta_fact (complete(SgKey,AbsInt,Sg,Proj,Prime,Id, [(F,N)])).
init_fixpoint1(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-
current_pp_flag(variants,on),
current_fact (approx (SgKey, Subg,Projl,Primel,Id1,Fs),Ref),
identical_proj_1(AbsInt,Sg,Proj,Subg,Projl,Primel,Prime2), !,
each_abs_sort(Prime2,AbsInt,TempPrime),
current_fact ('$depend_list'(Idl,SgKey,IdList)),
call_to_success_approx_variant (SgKey,Subg,Call,Proj,Proj1,Sg,Sv,AbsInt,F,N,Fs,
Id,Id1,Ref,IdList,Primel,TempPrime,List,Prime).
init_fixpoint1(SgKey,_,Proj,Sg,_Sv,AbsInt,F,N,_Fs0,Id,List,Prime):-
current_pp_flag(variants,on),
current_fact (fixpoint (SgKey,Subg,Projl,Primel,Idl,_Fs),_Ref),
identical_proj_1(AbsInt,Sg,Proj,Subg,Projl,Primel,Prime2), !,
(
current_fact (fixpoint_variant(Idi,Id,SgKey,Sgv,Projv,Fsv),Refv),
identical_proj (AbsInt,Sg,Proj,Sgv,Projv) ->
patch_parents(Refv,fixpoint_variant(Id1,Id,SgKey,Sgv,Projv,Ps),F,N,Ps,Fsv)

(
current_pp_flag(reuse_fixp_id,on) ->
fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)
fixpoint_id(Id)
),
asserta_fact (fixpoint_variant(Id1,Id,SgKey,Sg,Proj, [(F,N)]))
),
each_abs_sort(Prime2,AbsInt,Prime),
current_fact(ch_id(Id1,Num)),
List = [Id1/Num].
init_fixpoint1(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime):-
init_fixpoint2(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime).

init_fixpoint2(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,List,Prime):-

(current_pp_flag(reuse_fixp_id,on) ->
fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)
fixpoint_id(Id)

),

asserta_fact(ch_id(Id, 1)),

proj_to_prime_r (SgKey,Sg,Sv,Call,Proj,AbsInt,TempPrime,Id),

init_fixpoint_(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,

TempPrime,List,Prime).

init_fixpoint_(SgKey,Call,Proj,Sg,Sv,AbsInt,F,N,Fs,Id,Prime0,List,Prime):-
normalize_asubO(AbsInt,Prime0,TempPrime),
asserta_fact (fixpoint (SgKey,Sg,Proj,TempPrime,Id,Fs)),
bagof (X, X~ (trans_clause(SgKey,r,X)),Clauses),!,
fixpoint_compute (Clauses,SgKey,Sg,Sv,Call,Proj,
AbsInt, _LEntry,TempPrime,Primel,Id,TempList),
each_apply_trusted(Proj,SgKey,Sg,Sv,AbsInt,Primel,Prime),

26 J. Arias and M. Carro

321 current_fact (fixpoint (SgKey,Sg,_,_,Id,Fs2),Ref),

322 erase (Ref),

323 (current_fact('$depend_list'(Id,SgKey,_),RefDep) ->

324 erase (RefDep)

325 ; true

326),

327 update_if_member_idlist (TempList,Id,AddList),

328 (member ((F,N),Fs2) -> NewFs = Fs2 ; NewFs = [(F,N)|Fs2]),
329 decide_approx (AddList,Id,NewFs,AbsInt,SgKey,Sg,Proj,Prime),
330 List = AddList.

31
332 widen_call(AbsInt,SgKey,Sg,F1,Id0,Projil,Proj):-

333 (current_pp_flag(widencall,off) -> fail ; true),

334 widen_callO(AbsInt,SgKey,Sg,F1,1d0, [Id0],Proj1,Proj), !.
335

336 widen_callO(AbsInt,SgKey,Sg,F1,1d0,Ids,Projl,Proj):-

337 widen_calll(AbsInt,SgKey,Sg,F1,1d0,Ids,Proj1,Proj).

338 widen_callO(AbsInt,SgKey,Sg,F1,Id0,Ids,Projl,Proj):-

339 current_pp_flag(widencall,com_child),

340 widen_call2(AbsInt,SgKey,Sg,F1,1d0,Ids,Proj1,Proj).

341
32 widen_calll(AbsInt,SgKey,Sg,F1,1d0,Ids,Projl,Proj):-

343 current_fact (fixpoint (SgKey0,Sg0,ProjO, _Prime0,Id0,Fs0)),
344 (SgKey=SgKeyO0,

345 % same program point:

346 member ((F1,_NewId0),Fs0)

347 -> Sg0=Sg,

348 abs_sort (AbsInt,ProjO,Projo_s),

349 abs_sort (AbsInt,Projl,Projl_s),

350 widencall (AbsInt,ProjO_s,Projil_s,Proj)

351 ; % continue with the parents:

352 member ((_F1,NewId0),Fs0),

353 \+ member (NewIdO,Ids),

354 widen_calll(AbsInt,SgKey,Sg,F1,NewIdO, [NewIdO|Ids],Projl,Proj)
355).

356
357 widen_call2(AbsInt,SgKey,Sg,F1,_Id,_Ids,Projl,Proj):-

358 current_fact (complete(SgKey,AbsInt,Sg0,ProjO,_Prime0,_Id0,Fs0)),
359 member ((F1,Id0),Fs0),

360 Sg0=Sg,

361 same_fixpoint_ancestor(IdO, [Id0],AbsInt),

362 abs_sort (AbsInt,ProjO,Projo_s),

363 abs_sort (AbsInt,Projl,Projl_s),

364 widencall (AbsInt,ProjO_s,Projl_s,Proj).

365
36 same_fixpoint_ancestor (Id0,_Ids,_AbsInt):-

367 current_fact (fixpoint (_SgKey0,_Sg0,_ProjO,_Prime0,Id0,_Fs0)), !.

368 same_fixpoint_ancestor(Id0,_Ids,_AbsInt):-

369 current_fact (approx (_SgKey0,_Sg0,_Projo0,_Prime0,Id0,_Fs0)), !.

370 same_fixpoint_ancestor(Id0,Ids,AbsInt):-

371 current_fact (complete(_SgKeyO,AbsInt,_Sg0,_ProjO,_Prime0,Id0,Fs0)),
372 member ((_F1,Id),Fs0),

373 \+ member (Id,Ids),

374 same_fixpoint_ancestor (Id, [Id|Ids],AbsInt).

375
376 fixpoint_variants_update(Id,AbsInt,Sg,Prime):-

377 current_fact(fixpoint_variant (Id,Idv,SgKey,Sgv,Projv,Fs),Ref),!,
378 erase (Ref),

379 varset (Sg,Hv) ,

380 varset (Sgv,Hvv) ,

381 each_exit_to_prime(Prime,AbsInt,Sgv,Hv,Sg,Hvv, (no,Projv) ,Prime2),
382 asserta_fact (complete(SgKey,AbsInt,Sgv,Projv,Prime2,Idv,Fs)),

383 fixpoint_variants_update(Id,AbsInt,Sg,Prime).

34 fixpoint_variants_update(_,_,_,_).

385
336 approx_variants_update(Id,AbsInt,Sg,Prime):-

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

442
443
444
445
446
447
448
449
450
451
452

Abstract Interpretation Fixpoint using TCLP

current_fact(fixpoint_variant(Id,Idv,SgKey,Sgv,Projv,Fs),Ref),!,

erase (Ref),

varset (Sg,Hv) ,

varset (Sgv,Hvv) ,

each_exit_to_prime(Prime,AbsInt,Sgv,Hv,Sg,Hvv, (no,Projv) ,Prime2),

asserta_fact (approx_variant (Id,Idv,SgKey,Sgv,Projv,Prime2,Fs)),

approx_variants_update(Id,AbsInt,Sg,Prime).
approx_variants_update(_,_,_,_).

decide_approx([],Id,Fs,AbsInt,SgKey,Sg,Proj,Prime):- !,
current_fact(ch_id(Id,_),Ref3),
erase (Ref3),
% Not needed for correctness: only book-keeping
% update_depend_list_approx(Id,AbsInt),
asserta_fact (complete(SgKey,AbsInt,Sg,Proj,Prime,Id,Fs)),

(
current_pp_flag(variants,on) ->
each_abs_sort (Prime,AbsInt,Prime_s),
fixpoint_variants_update(Id,AbsInt,Sg,Prime_s)
true

).

decide_approx (AddList,Id,Fs,_AbsInt,SgKey,Sg,Proj,Prime):-
asserta_fact ('$depend_list'(Id,SgKey,AddList)),
asserta_fact (approx(SgKey,Sg,Proj,Prime,Id,Fs),_),

(
current_pp_flag(variants,on) ->
each_abs_sort(Prime,AbsInt,Prime_s),
approx_variants_update (Id,AbsInt,Sg,Prime_s)
true

).

not_modified([]).

not_modified([Id/N|List]):-
current_fact(ch_id(Id,N)), !,
not_modified(List).

proj_to_prime_nr(SgKey,Sg,Sv,Call,Proj,AbsInt,_ClId,LPrime,Id) :-
bagof (X, X~ (trans_clause(SgKey,nr,X)),Clauses), !,
proj_to_prime(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LPrimel,Id),
compute_clauses_lub(AbsInt,Proj,LPrimel,LPrime).
proj_to_prime_nr(SgKey,Sg,Sv,_Call,Proj,AbsInt,ClId,LPrime,_Id) :-
apply_trustedO(Proj,SgKey,Sg,Sv,AbsInt,ClId,Prime), !,
singleton(Prime,LPrime).
proj_to_prime_nr (_SgKey,Sg,Sv,Call, _Proj,AbsInt,_ClId,LSucc,_Id) :-
% In Java programs, mode and type information is known for any method.
% Therefore, in case of a method with unavailable code we can still
% infer useful information.
(current_pp_flag(prog_lang,java) ->
unknown_call(AbsInt,Sg,Sv,Call,Succ),
singleton(Succ,LSucc)
fail
).
proj_to_prime_nr(SgKey,_Sg,_Sv,_Call,_Proj,_AbsInt,ClId,Bot,_Id) :-
bottom(Bot),
inexistent (SgKey,ClId).

proj_to_prime_r(SgKey,Sg,Sv,Call,Proj,AbsInt,Prime,Id) :-
bagof (X, X~ (trans_clause(SgKey,nr,X)),Clauses), !,
proj_to_prime(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,Prime,Id).
proj_to_prime_r(_SgKey, _Sg,_Sv,_Call,_Proj,_AbsInt,Bot,_Id):-
bottom(Bot) .

proj_to_prime(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,Prime,Id) :-

27

28 J. Arias and M. Carro

453 proj_to_prime_loop(Clauses,Sg,Sv,Call,Proj,AbsInt,ListPrime0,Id),
454 reduce_equivalent (ListPrime0,AbsInt,ListPrimel),
455 each_apply_trusted(Proj,SgKey,Sg,Sv,AbsInt,ListPrimel,Prime).

456

457 proj_to_prime_loop([l,_,_,_,_,_,[],_).

48 proj_to_prime_loop([Clause|Rest],Sg,Sv,Call,Proj,AbsInt,Primes,Id):-

459 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes,TailPrimes,Id),!,
460 proj_to_prime_loop(Rest,Sg,Sv,Call,Proj,AbsInt,TailPrimes,Id).
461

42 do_nr_cl(Clause,Sg,Sv,Call,Proj,AbsInt,Primes,TailPrimes,Id):-

463 Clause = clause(Head,Vars_u,K,Body),

464 clause_applies(Head,Sg), !,

465 varset (Head,Hv) ,

466 sort (Vars_u,Vars),

467 ord_subtract (Vars,Hv,Fv),

468 process_body (Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,Call,

469 Proj,LPrime,Id),
470 append_(LPrime,TailPrimes,Primes).

411 do_nr_cl(_Clause,_Sg,_Sv,_Call,_Proj,_AbsInt,Primes,Primes,_Id).

472

473 append_([Prime] ,TailPrimes,Primes):- !, Primes=[Prime|TailPrimes].

414 append_(LPrime,TailPrimes,Primes):- append(LPrime,TailPrimes,Primes).
475

476 process_body(Body,K,AbsInt,Sg,Hv,Fv,_,Head,Sv,Call,Proj,LPrime,Id):-

477 Body = g(_,[],"'$built'(_,true,_), " 'true/0',true), !,

478 Help=(Sv,Sg,Hv,Fv,AbsInt),

479 singleton(Prime,LPrime),

480 call_to_success_fact (AbsInt,Sg,Hv,Head,K,Sv,Call,Proj,Prime, _Succ),
481 (current_pp_flag(fact_info,on) ->

482 call_to_entry(AbsInt,Sv,Sg,Hv,Head,k, [],Prime,Exit,_),

483 decide_memo (AbsInt,K,Id,no,Hv, [Exit])

484 H

485 true

486).

487 process_body(Body,K,AbsInt,Sg,Hv,Fv,Vars_u,Head,Sv,_,Proj,Prime,Id):-
488 call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,Fv,Proj,Entry,Extralnfo),
489 singleton(Entry,LEntry),

490 entry_to_exit(Body,K,LEntry,Exit, [],_,Vars_u,AbsInt,Id),

491 each_exit_to_prime(Exit,AbsInt,Sg,Hv,Head,Sv,Extralnfo,Prime).

492
493 fixpoint_compute(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

494 PrimeO,Prime,Id,List) :-

495 fixpoint_compute_(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,
496 PrimeO,Primel,Id,List),

497 compute_clauses_lub(AbsInt,Proj,Primel,Prime).

498
490 fixpoint_compute_(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

500 TempPrime,Prime,Id,List) :-

501 compute (Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

502 TempPrime,Primel,Id, [],NewList,Flag),

503 fixpoint (NewList,Flag,Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,
504 Primel,Prime,Id,List), !.

505

so fixpoint([l,_,_,_,_,_,_,_,_,_,Primel,Prime,_,List):- !,

507 Prime = Primel,

508 List = [].

s00 fixpoint (NewList,Flag,_,_,_,_,_,_,_,_,Primel,Prime,_,List):-

510 var (Flag),!,

511 Prime = Primel,

512 List = NewList.

513 fixpoint(_,_,Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,Primel,Prime,Id,List):-
514 fixpoint_compute_(Clauses,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,

515 Primel,Prime,Id,List).

516

517 } some domains need normalization to perform the widening:
s;8 normalize_asubO(AbsInt,Prime0O,Prime):-

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
571
578
579
580
581
582
583
584

Abstract Interpretation Fixpoint using TCLP 29

current_pp_flag(widen,on), !,
normalize_asub(AbsInt,Prime0O,Prime).
normalize_asubO(_AbsInt,Prime,Prime).

compute([],_,_,_,_,_,_,[],Prime,Prime,_,List,List,_).
compute ([Clause|Rest],SgKey,Sg,Sv,Call,Proj,AbsInt, [EntryInf |LEntryInf],
TempPrime,Prime,Id,List,NewList,Flag) :-
do_r_cl(Clause,SgKey,Sg,Sv,Proj,AbsInt,EntryInf,Id,List,IntList,
TempPrime,NewPrime,Flag),
compute (Rest,SgKey,Sg,Sv,Call,Proj,AbsInt,LEntryInf,NewPrime,Prime,
Id,IntList,NewlList,Flag).

do_r_cl(Clause,SgKey,Sg,Sv,Proj,AbsInt,EntryInf,Id,01dL,List,TempPrime,
NewPrime,Flag):-

Clause=clause (Head,Vars_u,K,Body),
clause_applies(Head,Sg), !,
erase_previous_memo_tables_and_parents(Body,AbsInt,K,Id),
varset (Head,Hv),
reuse_entry (EntryInf,Vars_u,AbsInt,Sv,Sg,Hv,Head,K,Proj,Entry,Extralnfo),
singleton(Entry,LEntry),
entry_to_exit(Body,K,LEntry,Exit,01dL,List,Vars_u,AbsInt,Id),
each_exit_to_prime(Exit,AbsInt,Sg,Hv,Head,Sv,Extralnfo,Primel),
widen_succ(AbsInt,TempPrime,Primel,NewPrime),
decide_flag(AbsInt,TempPrime,NewPrime,SgKey,Sg,Id,Proj,Flag).

widen_succ_off (AbsInt,Prime0,Primel,LPrime):-
current_pp_flag(multi_success,on), !,
reduce_equivalent ([Prime0O,Primel] ,AbsInt,LPrime) .
widen_succ_off (AbsInt,Prime0,Primel,Prime):-
singleton(PO,Prime0),
singleton(P1,Primel),
singleton(P,Prime),
compute_lub(AbsInt, [PO,P1],P).

reuse_entry (EntryInf,Vars_u,AbsInt,Sv,Sg,Hv,Head,K,Proj,Entry,Extralnfo) : -
var (EntryInf), !,
sort (Vars_u,Vars),
ord_subtract (Vars,Hv,Fv),
call_to_entry(AbsInt,Sv,Sg,Hv,Head,K,Fv,Proj,Entry,Extralnfo),
EntryInf = (Entry,Extralnfo).

reuse_entry(EntryInf, _Vars_u,_AbsInt,_Sv,_Sg,_Hv,_Head,_K,_Proj,Entry,ExtraInfo):-
EntryInf = (Entry,Extralnfo).

decide_flag(AbsInt,TempPrime,NewPrime, _SgKey,_Sg,_Id,_Proj,_Flag):-
abs_subset_(NewPrime,AbsInt,TempPrime), !.
decide_flag(_AbsInt,TempPrime,NewPrime,SgKey,Sg,Id,Proj,Flag):-
Flag = notend,
merge_(NewPrime, TempPrime,LPrime),
current_fact (fixpoint (SgKey,Sg,_,_,Id,Fs),Ref),
erase (Ref),
asserta_fact (fixpoint (SgKey,Sg,Proj,LPrime,Id,Fs)),
current_fact(ch_id (Id,Num),Ref3),
erase (Ref3),
Numl is Num+1,
asserta_fact(ch_id(Id,Numl)).

merge_([NewPrime], _TempPrime,LPrime):- !, LPrime=[NewPrime].
merge_(NewPrime, TempPrime,LPrime) : -
merge (NewPrime, TempPrime,LPrime) .

30 J. Arias and M. Carro

sss entry_to_exit((Sg,Rest),K,Call,Exit,01dList,NewList,Vars_u,AbsInt,NewN):- !,
586 body_succ(Call,Sg,Succ,01dList,IntList,Vars_u,AbsInt,K,NewN,_),
587 entry_to_exit(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,NewN).

588 entry_to_exit(true,_,Call,Call,List,List,_,_,_):- !.

589 entry_to_exit(Sg,Key,Call,Exit,0ldList,NewList,Vars_u,AbsInt,NewN):-

590 body_succ(Call,Sg,Exit,01dList,NewList,Vars_u,AbsInt,Key,NewN,_),
591 decide_memo (AbsInt,Key,NewN,no,Vars_u,Exit),!.

592

593 body_succ(Call,Atom,Succ,List,List,HvFv_u,AbsInt,_ClId,ParentId,no):-

504 bottom(Call), !,

595 Succ = Call,

596 Atom=g(Key, _Av,_I,_SgKey,_Sg),

597 asserta_fact (memo_table(Key,AbsInt,ParentId,no,HvFv_u,Succ)).

508 body_succ(Call,Atom,Succ,List,NewList,HvFv_u,AbsInt,ClId,ParentId,Id):-
599 Atom=g(Key,Sv,Info,SgKey,Sg),

600 body_succ_(Info,SgKey,Sg,Sv,HvFv_u,Call,Succ,List,NewList,AbsInt,
601 ClId,Key,ParentId,Id),

602 decide_memo (AbsInt,Key,ParentId,Id,HvFv_u,Call).

603
604 body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,C1Id,Key,PId,Id):-
605 Info = [_I_1, !,

606 split_combined_domain(AbsInt,Call,Calls,Domains),

607 map_body_succ (Info,SgKey,Sg,Sv,HFv,Calls,Succs,L,NewL,Domains,

608 ClId,Key,PId,Id),

609 split_combined_domain(AbsInt,Succ,Succs,Domains) .

610 body_succ_(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,C1Id,Key,PId,Id):-
611 body_succO(Info,SgKey,Sg,Sv,HFv,Call,Succ,L,NewL,AbsInt,

612 ClId,Key,PId,Id).

613

614 map_body_succ([],_SgKey,_Sg,_Sv,_HFv,[],[],L,L,[],_ClId,_Key,_PId,no).
615 map_body_succ([I|Info],SgKey,Sg,Sv,HFv, [CalllCalls], [Succ|Sucecs],L,NewL,

616 [AbsInt |Domains],ClId,Key,PId,Id):-

617 body_succ0(I,SgKey,Sg,Sv,HFv,Call,Succ,L,_NewL,AbsInt,

618 ClId,Key,PId,_Id), !,

619 map_body_succ(Info,SgKey,Sg,Sv,HFv,Calls, Succs,L,NewL,Domains,
620 ClId,Key,PId,Id).

621
622 body_succO('$var',SgKey,Sg,_Sv_u,HvFv_u,Calls,Succs,List0,List,AbsInt,
623 Cl1lI1d,F,_N,Id):-

624 !

625 (Calls=[Call],

626 concrete (AbsInt,Sg,Call,Concretes),

627 concretes_to_body(Concretes,SgKey,AbsInt,B)

628 -> fixpoint_id(Id),

629 meta_call(B,HvFv_u,Calls, [],Succs,List0O,List,AbsInt,C1Id,Id,Ids),
630 assertz_fact (memo_call(F,Id,AbsInt,Concretes,Ids))

631 ; Id=no,

632 List=ListO,

633 variable(F,ClId),

634 each_unknown_call(Calls,AbsInt, [Sgl,Succs) % Sg is a variable
635)

63 body_succO('$meta’(T,B,_),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
637 Cl1I1d,F,N,Id):-

638 !,

639 (current_pp_flag(reuse_fixp_id,on) ->

640 (Call=[C]

641 -> sort(Sv_u,Sv),

642 project (AbsInt,Sg,Sv,HvFv_u,C,Proj),

643 fixpoint_id_reuse_prev(SgKey,AbsInt,Sg,Proj,Id)
644 ; true

645)

646 H

647 fixpoint_id(Id)

648),

649 meta_call(B,HvFv_u,Call,[],Exits,ListO,List,AbsInt,C1Id,Id,_Ids),

650 (body_succ_meta(T,AbsInt,Sv_u,HvFv_u,Call,Exits,Succ) ->

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

Abstract Interpretation Fixpoint using TCLP 31

(Call=[C] ->
sort(Sv_u,Sv),
project (AbsInt,Sg,Sv,HvFv_u,C,Proj),
each_project (Exits,AbsInt,Sg,Sv,HvFv_u,Prime),
asserta_fact (complete(SgKey,AbsInt,Sg,Proj,Prime,Id, [(F,N)]))
; true
)
; % for the trusts, if any:
varset(Sg,Sv_r), % Sv_u contains extra vars (from meta-term)
% which will confuse apply_trusted
body_succO(nr,SgKey,Sg,Sv_r,HvFv_u,Call,Succ, [],_List,AbsInt,
ClId,F,N,Id0),
retract_fact (complete (SgKey,AbsInt,Sg,Proj,Prime,Id0,Ps)),
asserta_fact (complete(SgKey,AbsInt,Sg,Proj,Prime,Id,Ps))
).
body_succO('$built'(T,Tg,Vs),SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
_ClId,F,N,Id):-
]
Id=no,
List=ListO,
sort(Sv_u,Sv),
each_body_succ_builtin(Call,AbsInt,T,Tg,Vs,SgKey,Sg,Sv,HvFv_u,F,N,Succ) .
body_succ0(RFlag,SgKey,Sg,Sv_u,HvFv_u,Call,Succ,List0,List,AbsInt,
Cl11d,F,N,Id):-
sort(Sv_u,Sv),
each_call_to_success(Call,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,
Succ,ListO,List,F,N,Id).

each_call_to_success([Call],RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,Succ,LO,L,
F,N,Id):-
1
project (AbsInt,Sg,Sv,HvFv_u,Call,Proj),
call_to_success (RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,C1Id,Succ,L1,F,N,Id),

merge(L1,L0,L).
each_call_to_success(LCall,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,C1Id,LSucc,LO,L,
F,N,Id):-
each_call_to_success0(LCall,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,
LSucc,LO,L,F,N,Id).

each_call_to_successO0([],_Flag,_SgK,_Sg,_Sv,_HvFv,_AbsInt,_,[],L,L,_F,_N,_NN).
each_call_to_success0([Call|LCall],RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,
LSucc,LO,L,F,N,NewN): -
project (AbsInt,Sg,Sv,HvFv_u,Call,Proj),
call_to_success(RFlag,SgKey,Call,Proj,Sg,Sv,AbsInt,C1Id,LSuccO,L1,F,N,_),
merge(LO,L1,L2),
append (LSuccO,LSuccl,LSucc),
each_call_to_success0(LCall,RFlag,SgKey,Sg,Sv,HvFv_u,AbsInt,ClId,
LSucc1,L2,L,F,N,NewN) .

meta_call([],_HvFv_u,Call,[],Call,List,List,_AbsInt,_C1Id,_Id,[]).
meta_call ([Body|Bodies],HvFv_u,Call,Succ0O,Succ,LO,List,AbsInt,C1Id,Id,Ids):-
meta_call_([Body|Bodies],HvFv_u,Call,SuccO,Succ,L0,List,AbsInt,C1Id,Id,Ids).

meta_call_([Body|Bodies],HvFv_u,Call,Succ0O,Succ,LO,List,AbsInt,C1lId,Id,Ids):-
meta_call_body(Body,ClId,Call,Succl,LO,L1,HvFv_u,AbsInt,Id,Ids0),
widen_succ (AbsInt,SuccO,Succl,Succ2),
append (SuccO, Succl,Succ2),
append (Ids0,Ids1,Ids),
meta_call_(Bodies,HvFv_u,Call,Succ2,Succ,L1,List,AbsInt,C1Id,Id,Ids1).
meta_call_([],_HvFv_u,_Call,Succ,Succ,List,List,_AbsInt,_ClId,_Id4,[]).

meta_call_body((Sg,Rest),K,Call,Exit,01ldList,NewList,Vars_u,AbsInt,PId,CIds):-
1

CIds=[Id|Ids],
body_succ(Call,Sg,Succ,01dList,IntList,Vars_u,AbsInt,K,PId,Id),

32

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

J. Arias and M. Carro

meta_call_body(Rest,K,Succ,Exit,IntList,NewList,Vars_u,AbsInt,PId,Ids).
meta_call_body(true,_,Call,Call,List,List,_,_,_,[nol):- !.
meta_call_body(Sg,Key,Call,Exit,0ldList,NewList,Vars_u,AbsInt,PId, [Id]):-

body_succ(Call,Sg,Exit,01dList,NewList,Vars_u,AbsInt,Key,PId,Id).

concretes_to_body([],_SgKey, _AbsInt,[]).

concretes_to_body ([SglSgs],SgKey,AbsInt, [B|Bs]):-
body_info0(Sg:SgKey, [],AbsInt,B),
concretes_to_body(Sgs,SgKey,AbsInt,Bs).

b= o %
% query (+,+,+,+,+,+,+,-) %
T et %

:- doc(query(AbsInt,QKey,Query,Qv,RFlag,N,Call,Succ),
"The success pattern of @var{Queryl} with @var{Call} is
@var{Succ} in the analysis domain @var{AbsInt}. The predicate
called is identified by @var{QKey}, and @var{RFlag} says if it
is recursive or not. The goal @var{Queryl} has variables @var{Qv},
and the call pattern is uniquely identified by @var{N}.").

query (AbsInt,QKey,Query,Qv,RFlag,N,Call,Succ) :-
project (AbsInt,Query,Qv,Qv,Call,Proj),
call_to_success(RFlag,QKey,Call,Proj,Query,Qv,AbsInt,0,Succ,_,N,0,Id),
approx_to_completes (AbsInt).

query (_AbsInt,_QKey,_Query, _Qv,_RFlag,_N,_Call,_Succ):-
% should never happen, but...
error_message ("SOMETHING HAS FAILED!").

	1 Introduction
	2 Related Work
	3 Background
	3.1 The Mod TCLP framework
	3.2 The PLAI algorithm

	4 Implementations of the PLAI Algorithm: Prolog vs. Tabling
	4.1 PLAI in CiaoPP
	4.2 The PLAI Algorithm in TCLP

	5 Evaluation
	6 Conclusions and Future Work
	References
	Appendix A PLAI Algorithm Implementation Using TCLP
	Appendix B PLAI Algorithm Implementation in Ciao Prolog

