
ar
X

iv
:1

90
8.

00
11

2v
1 

 [
cs

.A
I]

  3
1 

Ju
l 2

01
9

Under consideration for publication in Theory and Practice of Logic Programming 1

Domain-Independent Cost-Optimal Planning in ASP

David Spies, Jia-Huai You, Ryan Hayward

University of Alberta, Edmonton, Canada

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We investigate the problem of cost-optimal planning in ASP. Current ASP planners can be trivially extended

to a cost-optimal one by adding weak constraints, but only for a given makespan (number of steps). It is

desirable to have a planner that guarantees global optimality. In this paper, we present two approaches to

addressing this problem. First, we show how to engineer a cost-optimal planner composed of two ASP

programs running in parallel. Using lessons learned from this, we then develop an entirely new approach to

cost-optimal planning, stepless planning, which is completely free of makespan. Experiments to compare

the two approaches with the only known cost-optimal planner in SAT reveal good potentials for stepless

planning in ASP. The paper is under consideration for acceptance in TPLP.

KEYWORDS: Cost-Optimal Planning, Answer Set Programming, CORE-2 ASP Standard.

1 Introduction

Answer Set Programming (ASP) has been celebrated for its elegance and applicability to AI plan-

ning (Lifschitz 2002). A planning problem in this context is, given a collection of actions, each

with pre-conditions and effects, and fluents which are properties over states, determine whether

there is a sequence of actions from an initial state to a final state (Fikes and Nilsson 1971). State-

of-the-art ASP planners like PLASP have been developed (Gebser et al. 2011; Dimopoulos et al. 2019).

In cost-optimal planning, each action is associated with a cost, and our objective is to find a

plan which minimizes the sum cost of all actions. Any ASP planner can be trivially extended to a

cost-optimal planner by adding weak constraints, but only for a given makespan. Such a planner

does not guarantee global optimality. Eiter et al. (2003) present an approach to addressing this

problem, but make the assumption that a polynomial upper bound on makespan exists and is

known in advance.

In the related field of SAT, some work has been done on cost-optimal Partial-Weighted-MaxSat

planning with regard to makespan (e.g., (Maratea 2012) and (Chen et al. 2008)). Again, readers

should find this somewhat unsatisfactory. After all, finding a plan that is “cost-optimal with

regard to makespan” is just a way to sidestep the complication the real problem presents. A

makespan is just an internal artifact of the SAT approach to planning. A solution should not de-

pend on the way in which the planner happens to order the actions. Ideally, we want an approach

to planning which guarantees a globally optimal solution and makes no mention of makespan.

We are aware of only one existing logic-based approach that tackles this much more difficult

problem for SAT planning, the paper by Robinson et al. (2010). Inspired by this work, we pursue

a separate investigation into globally cost-optimal planning in ASP and develop a two-threaded

planner, one thread being a regular planner and the other an any-goal planner. While the former

http://arxiv.org/abs/1908.00112v1
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computes successive decreasing upper bounds of the optimal cost by iteratively increasing the

makespan, the latter computes successive increasing lower bounds by planning in a modified

environment where some amount of cheating is allowed. We achieve this by forcing the any-

goal planner to “make progress” at each time-step. An optimal plan is obtained when the two

bounds meet in the middle, i.e., they are guaranteed to agree at some point. However, unlike in

Robinson’s approach, through the use of “make-progress” rules, we’re able to develop a planner

which guarantees to eventually find an optimal solution (or report no solution) even when the

problem contains actions with zero cost.

Using insights gained from this approach, we then develop a new approach to logic-based

planning, stepless planning. The idea is to first engineer a planner which produces “partially

ordered plans” - actions arranged into a graph of dependencies where stable model semantics

ensures that the graph is acyclic; then we show how to express the problem in Σ
P
2 of “making

progress”; and finally, we show a critical component of the planner, the suffix layer, which de-

termines how many occurrences of each of the actions and fluents we will need to produce an

optimal plan.

We report experiments on our cost-optimal planners on benchmarks of (Robinson et al. 2010)

and compare with Robinson’s SAT-based planner. We found that the stepless planner outper-

formed the other two planners in most domains and the two-threaded planner outperformed the

SAT-based planner in most domains.

The paper is organized as follows. Section 2 describes ASP planning translated from SATPlan.

Section 3 discusses the problem of no-solution detection and provides solutions. Section 4 ex-

tends no-solution detection to optimal planning, with Section 5 adding a delete-free planner as a

suffix layer to improve the effectiveness. Section 6 gives the two-threaded planner and Section 7

is about the stepless planner. Section 8 reports experiments and Section 9 is on related work and

future directions.

We assume that the reader is familiar with STRIPS planning. The ASP encodings in this pa-

per are constructed to run on system CLINGO and generally follow the ASP-Core-2 Standard

(Calimeri et al. 2015), except that we adopt two special features provided by CLINGO : (i) we

will use ; to separate rule body atoms since the conventional comma sign , is overloaded and

has a different meaning in more complex rules, and (ii) the disjunctive head of a rule may be

expressed conveniently by a conditional literal.

Parts of this paper have been moved to Appendices, including proofs, encodings, and some

technical explorations. For more information, the reader may also want to consult the thesis

written by the first author of this paper (Spies 2019).

2 Preliminaries: STRIPS Planning in ASP

We adopt a direct translation of 5 rules of SATPlan (Kautz 2004) into ASP and call the resulting

planner ASPPlan.

rule 1. holds(F,K) :- goal(F); finalStep(K).

rule 2. happens(A,K-1) : add(A,F),validAct(A,K-1) :- holds(F,K); K > 0.

rule 3. holds(F,K) :- pre(A,F); happens(A,K); validFluent(F,K).

rule 4. :- mutexAct(A,B); happens(A,K); happens(B,K).

rule 5. :- mutex(F,G); holds(F,K); holds(G,K).
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where validAct(A,K) means that action A can occur at time K and validFluent(F,K) means

fluent F can be true at time K.1 Time-steps used in constructing a plan are also called layers.

Rule 1 says that goals hold at the final layer. In rule 2, if a fluent holds at layer K, the dis-

junction of actions that have that fluent as an effect hold at layer K − 1. The next rule says that

actions at each layer imply their preconditions. The last two rules are mutex constraints: in rule

4, actions with (directly) conflicting preconditions or effects are mutually exclusive, and in rule

5, the fluents that are inferred to be mutually exclusive are encoded as constraints.

Following SATPlan, we add to our plan “preserving” actions for each fluent. The goal is to

simulate the frame axioms by using the existing machinery for having an action add a fluent that

gets used some steps later. These preserving actions can be specified as:

action(preserve(F)) :- fluent(F).

pre(preserve(F),F) :- fluent(F).

add(preserve(F),F) :- fluent(F).

where each fluent F has a corresponding preserving action denoted by term preserve(F). Pre-

serving actions can be easily distinguished from regular actions. Now that an action occurs at

time K indicates that its add-effect F will hold at time K + 1.

Note that the reason why rule 5 of ASPPlan prevents fluents from being deleted before they’re

used is a bit subtle. In order for a fluent to hold, it must occur in conjunction with a preserving

action at each time-step it’s held for. A preserving action has that fluent as a precondition and so

would be mutex with any action that has it as a delete effect. This means that deleting actions

cannot occur as long as that fluent is held (by rule 4).2

Like SATPlan, we run this planner by solving at some initial makespan K, where K is the first

layer at which validFluent(F,K) holds for all goal(F), and if it is UNSAT, we increment

f inalStep by 1 until we find a plan.

This is a straightforward and unsurprising encoding in every respect, but has a somewhat

surprising consequence as compared to SATPlan. Because ASP models are stable, for any fluent

F , holds(F,K) can only be true if there exists some action which requires its truth as per rule

3. Similarly for actions as per rule 2. Furthermore, since rule 2 is disjunctive at every step, the

set of actions which occurs is a minimal set required to support the fluents at the subsequent

step. This conforms exactly to the approach to planning in (Blum and Furst 1997): First build

the planning graph, then start from the goal-state planning backwards, at each step selecting a

minimal set of actions necessary to add all the preconditions for the current set of actions. That

is, in this ASP translation, the neededness-analysis as carried out in (Robinson et al. 2008) is

accomplished automatically during grounding or during the search for stable models.

Encoding Reduction: Rule 4 in ASPPlan can blow up in size when grounded because nearly

any two actions acting on the same fluent can be considered directly conflicting. For example,

imagine a planning problem in which there is a crane which we must use to load boxes onto

1 Blum and Furst (1997) give a handy way to identify for each action and each fluent, what is the first layer at which this
action/fluent might occur by building the planning graph. Note that validAct/2 and validFluent/2 as well as predicates
mutexAct/2 and mutex/2 are all extracted from the planning graph.

2 As a further note, when PDDL (planning domain definition language) without any extensions is defined, goals can
only be positive and actions can only have positive preconditions. There is a :negative-preconditions extension
to PDDL, but we didn’t use it. Any problem which uses :negative-preconditions can be trivially adapted to avoid
using it by adding a fluent :not-F for every fluent :F and then adding a corresponding add-effect wherever there’s a
delete-effect and vice versa.
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freighters and there are many boxes and many freighters available but only one crane. Then

we will have one such constraint for every two actions of the form, load(Crate,Freighter), for

any crate and any freighter. As there is already a quadratic number of actions in the problem

description size, the number of mutex constraints over pairs of actions is quartic in the initial

problem description size.

We would like to avoid such an explosion by introducing new predicates to keep the problem

size down. We will only consider two actions to be mutex if one deletes the other’s precondition.

But we will take extra steps to ensure that no add-effect is later used if the same fluent is also

deleted at that step. Here is the revised encoding of rule 4.

used_preserved(F,K) :- happens(A,K); pre(A,F); not del(A,F).

deleted_unused(F,K) :- happens(A,K); del(A,F); not pre(A,F).

:- {used_preserved(F,K); deleted_unused(F,K);

happens(A,K) : pre(A,F), del(A,F)} > 1; valid_at(F,K).

deleted(F,K) :- happens(A,K); del(A,F).

:- holds(F,K); deleted(F,K-1).

Effectively, we are splitting the ways in which we care that an action A can relate to a fluent F

into three different cases: (i) A has F as a precondition, but not a delete-effect; (ii) A has F as a

delete-effect, but not a precondition; and (iii) A has F as both a precondition and a delete-effect.

By explicitly creating two new predicates for properties (i) and (ii), we have packed this re-

striction into one big cardinality constraint. Further, we must account for conflicting effects, so

we define one more predicate (deleted/2) which encapsulates the union of all actions from

properties (ii) and (iii) (those that delete F) and assert that F cannot hold at this step if any of

those actions occurred in the previous one.

Note that the formulation in (Blum and Furst 1997) will not allow two actions A and B to ever

happen at the same time-step K if they have “conflicting effects” (one adds a fluent F and the

other deletes the same fluent). Our encoding allows this, but only in cases where holds(F,K)

is false. Except for this technicality, the two are otherwise equivalent. A detailed justification is

presented in Appendix B.

3 Planning with No-Solution Detection

From a theoretical standpoint, let us consider why cost-optimal planning is such a difficult prob-

lem. When the planner terminates with a plan of cost c, it is additionally asserting “I have

proved there does not exist a plan of cost c − 1”. But here we immediately have a problem

because all the planners we have written so far in ASP are not actually planners in the sense of

(Blum and Furst 1997); they cannot identify when a problem has no solution. If there is no solu-

tion our ASP planners will simply march on forever searching for one until somebody kills the

process. So before we can create a cost-optimal planner, we must first create a (normal) planner

which can determine if a problem has no solution.

Planning is PSPACE-complete. What makes planning decidable is, of course, the finite state

space. Any plan which goes on too long will eventually visit some state twice, so we only need

to search for a plan among those that never revisit the same state. We can, of course, produce a

naive upper bound on the number of possible states by taking n = 2| f luents| and then terminate the

search after n steps, but let us try to do better. Indeed, a main technical innovation of this work
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is the development of ASP-based decision procedures for planning, which can potentially prove

the unsatisfiability of a planning problem much earlier than when taking the theoretical number

of states as upper bound for the planning horizon.

First, instead of requiring goals to hold at final step (rule 1 of Section 2), let us say

{holds(F,K)} :- fluent(F); finalStep(K).

By using a choice rule here, the planner can now choose any goal it wants and then plan

towards that goal. This makes our instance always satisfiable (just produce any valid sequence of

actions, then take the end-state and claim that was your goal).

Now here comes the “we must make progress” rule. We’ll refer to this as the “layered make-

progress” rule (which also includes its strengthening to be discussed in the next section) to dis-

tinguish it from the “stepless make-progress rule” for stepless planning.

:- not holds(F,K) : not holds(F,J), fluent(F); step(J); step(K); J < K.

In English: “For any time-step pair J and K where J < K, we cannot allow that every fluent

F which does not hold at J also does not hold at K.’ That is, any sequence containing time-steps

(J,K) (J < K) where the state of K is a subset of that of J would fail this rule.

Thus, the rule guarantees that there exists a makespan n for which our planning instance is

UNSAT. This is because we are now enforcing that the state must change at every time-step

to take on some value which it did not have in any previous time-step. But if there are only m

reachable states in our planning instance, then for all n > m this is clearly impossible.

Hence, we can build a complete planner by running two separate computations in parallel. The

first is our usual ASP planner which increases the makespan until it finds an instance for which

the solver finds a plan. The second is our “any-goal” planner which increases the makespan until

it finds an instance for which the solver returns UNSAT, at which point we record the previous

makespan as maxlength. Once that is done, if the first instance manages to reach maxlength and

report UNSAT, we can safely claim to have proved that no plan exists and terminate the solver.

3.1 Stronger Notions of Progress

Unfortunately, there exist problems that contain many independent variables which may be sep-

arately manipulated to generate a large easily-traversable state-space. For such problems, our

solver above can produce long plans which idly “flip bits” to avoid repeating themselves.

To make this scenario more concrete, imagine that we take any unsolvable planning problem

and adjoin to it a binary counter with one hundred two-state switches. In addition to the actions

from the original problem, we also have two hundred actions which independently flip each of

the switches in the counter (either from 0 to 1 or from 1 to 0). Even though this counter has no

impact on the problem itself, it suffices to increase the length of the longest plan by a factor of

2100 because for every state in the longest path, we can flip through all possible arrangements of

these switches before proceeding to the next state. This easily puts the possibility of solving the

problem out of reach whenever there is no solution.

One way to deal with this is to somehow encode into our planner the knowledge that the longest

possible time it can take to iterate over the possible states of two independent subproblems is the

maximum of the respective longest times rather than the product. One attempt at this is given in

Appendix A, where we reduce the length of the longest plan in the above example to 100.

We want to do better though and we can. We are able to formulate a stronger definition of
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“make progress”, which we conjecture perfectly defeats the independent parts problem in all its

forms. First, a definition.

Definition 3.1

A partially-ordered plan is a transitive directed acyclic graph G (equivalently, a partial ordering)

of “action occurrences” such that all topological sorts of G are valid sequential plans.

Starting with any sequential plan S, we can generalize it to its canonical partially-ordered plan

as follows. If a precedes b in S, then we will say a ≺ b for actions a and b (adding an edge from

a to b) iff any of the following holds:

1. a adds some fluent which is used as a precondition for b

2. b deletes some fluent which is used as a precondition for a (and a 6= b)

3. a adds a fluent which b deletes

4. a deletes some fluent and b adds the same fluent

5. a and b are different instances of the same action3

6. There exists an action c such that a ≺ c and c ≺ b

Note that these rules only apply to a-b pairs for which a precedes b in S (otherwise, the state-

ments 3 and 4 above would appear to be contradictory).

If we add a source and sink s and t respectively to any partially-ordered plan such that for all

actions s ≺ a ≺ t, we can consider any s-t cut x as a generalized “intermediate state” for this plan.

To see this, take any ordering where the s-side actions all precede the t-side actions and look at

what fluents hold after we have taken only the s-side actions. Let us call this state x-state.

Here comes the strongest possible (domain-independent) definition of “make progress” that

we can think of. The idea is that for any set of actions identified as being sandwiched in between

two cuts, they must make progress by turning some fluent to true.

Definition 3.2

A partially-ordered plan is strongly minimal iff, given any two s-t cuts x and y, if there exists

any t-side action in x which is an s-side action in y, then there must be some fluent which is true

in y-state but not in x-state. We similarly call a sequential plan strongly minimal if its canonical

partially-ordered plan is.

An action is said to make progress if no two cuts exist on either side of the action without

this property (that some new fluent occurs between them). In a strongly minimal plan, all actions

make progress.

This beautifully handles the one hundred 3-state switch scenario by forcing us, for each switch

w, to consider the generalized intermediate state where all w-flips happen before anything else.

Thus if w is flipped to the same state twice we can produce the cuts at each of those states

demonstrating that this plan is not minimal. The ASP encoding of this rule is complicated, and

so will be relegated to Section 7 when we apply it to stepless planning.4 This is the “stepless

make-progress rule”. In our two-threaded planner introduced next, we have chosen to implement

the layered make-progress rule.

3 Actually, this rule is not strictly necessary as any minimal plan which satisfies the other five rules will also satisfy it.
By keeping it, we don’t have to worry about discussing action occurrences until later when we actually start digging
into the stepless planner.

4 The same technique can with some effort be encoded for layered planners as well. Essentially, it requires quite a bit of
boilerplate in order to talk about next and previous occurrences of each fluent and action.
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4 Extending No-Solution Detection to Cost-Optimality Detection

Now, let us add weak constraints for action costs to ASPPlan (called MinASPPlan5) as well as

to the any-goal solver so that a plan with the least action cost can be identified by each solver for

a given makespan. We run MinASPPlan and the any-goal solver in parallel.

Once the MinASPPlan solver produces a plan of cost C, we treat C as an upper-bound on

the cost of an optimal plan. Then we tell the any-goal solver to only search for non-repeating

plans of cost < C. When the any-goal solver terminates with UNSAT at some time-step n we

claim that all non-repeating plans with cost < C have a makespan < n which means we can

stop the MinASPPlan solver after finishing with makespan n− 1. Meanwhile, if the any-goal

solver gives back a minimum-cost plan for layer n,6 then that cost is a lower bound on the

optimal cost of any plan with makespan at least n. Thus, by increasing makespan, MinASPPlan

computes successive lower (i.e., non-increasing) upper bounds of optimal cost and the any-goal

solver computes successive increasinglower bounds of the optimal cost; when the two meet in

the middle, an optimal plan is identified.

Let us summarize what we have so far. We have two threads iteratively solve successively

larger instances. We will name them I and II in deference to their similarity to Robinson’s

(Robinson et al. 2010) Variant-I and Variant-II encodings.

• I is MinASPPlan; and

• II is the any-goal solver augmented by weak constraints by action costs. It is similar to I

except for two major differences: (i) in place of the goal conditions, II is allowed to choose

its own goal, and (ii) II is given some notion of progress together with the constraint that

it must make progress at every time-step.

How we determine when to stop depends on which solver (I or II) lags behind. I’s result costs

are monotonically nonincreasing while II’s result costs are monotonically nondecreasing. If I

lags behind, then as soon as I’s lowest cost is ≤ the II’s cost for the layer it is currently trying to

solve, we can stop and report the solution at that layer as optimal. If II lags behind, then as soon

as its cost for some layer is ≥ the best known I-cost so far (at any layer), we can stop.

The asymmetry in deciding when to stop happens because of the types of bounds I and II

produce. I will never produce a cost D<C if C is the optimal cost, but II will continually increase

its lower bound eventually marching straight past C and on to infinity (the point at which it returns

no solution). This is why we must take into account the layer at which each lower bound was

produced when determining if we are done, but we do not care what layer the upper bound was

produced at.

5 Delete-Free Planning

The lower bounds produced by the Variant-II solver can be improved by adding a suffix layer,

which is a delete-free planner. Delete-free planning (DFP) is a special case of planning which

happens to be in NP. These are the planning problems without delete-effects. Surprisingly, DFP

can be modeled as a graph problem.

Given a directed bipartite graph G = (X ,Y,E) with weights on X and a goal set YF ⊆Y , find a

minimum acyclic subgraph G∗ = (X∗,Y ∗,E∗) such that

5 Besides ASPPlan discussed here, it also includes a smart encoding of mutex constraints (cf. Chapter 6 of (Spies 2019)).
6 Note that make-progress rules are crucial - without them, the minimum cost will always be zero.
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1. YF ⊆ Y ∗

2. If x ∈ X∗ and (y,x) ∈ E , then y ∈ Y ∗ and (y,x) ∈ E∗

3. For all y ∈ Y ∗, E∗ contains at least one edge (x,y) (and x ∈ X∗).

Connection to DFP: X is the set of actions, and Y is the set of fluents, the (x,y) edges are

add-effects and the (y,x) edges are preconditions. YF is the goal set and the initial set has been

removed (together with all corresponding preconditions) from the graph. Rule 1 means the goal

fluents must be true. Rule 2 means an action implies its preconditions. Rule 3 means every fluent

must have a causing action. The graph must be acyclic to ensure the actions can occur in some

order. This is possible because there is no incentive to ever take an action or cause a fluent more

than once. As soon as any fluent is true, it is permanently true.

We now can encode DFP in ASP as solving the above graph problem independent of makespan.

Its encoding in ASP can be found in Appendix C.

The key takeaway is that the encoding is an efficient “one-shot” encoding in ASP. Rather than

structuring the problem into layers and then iteratively increasing the makespan until a solution

is found, we eschew layers entirely and encode the problem as a single ASP instance. This is

similar to how (unlike with SAT encodings) Hamiltonian Path can be encoded one-shot in ASP

(Spies 2019) without needing numeric fluents or layers or quadratic space when grounded. The

problem of ensuring that an acyclic structure exists is solved by the stable-model semantics.

This may be considered the most novel contribution of this paper. Besides for delete-free

planning (and the suffix layer in the next section), the same trick will also be used later for

”Stepless Planning” where we arrange actions and fluents into a graph and rely on stable-model

semantics to ensure that the graph is acyclic. Without the ability to do this, other encodings of

planning problems are forced to rely on either using numeric fluents (not compatible with SAT-

based techniques) or structuring the problem into layers (which multiplies the grounded size of

the problem by the number of layers needed).

6 A Two-Threaded Cost-Optimal Planner with Suffix Layer

As with A∗-search, we can generate successively better lower bounds by planning normally from

the starting state Q to some intermediate state S chosen by the planner and then finding the

minimum-cost solution to the delete relaxation for the planning problem from S to the goal

state.7 This suggests a natural way to modify our Variant-II encoding in Section 4 to find better

lower bounds. We append a “suffix layer” at the end, which must generate a plan in the delete

relaxation of the problem from the chosen any-goal state to the actual goal state. The costs for

any actions taken in the suffix layer must be added to the total cost of our plan. Indeed, in many

cases this produces a remarkable lower bound.

We now give a complete description of our two-threaded planner. We have two ASP programs

running in parallel. One is the Variant-I standard ASPPlan solver with weak constraints for action

costs. The other is the Variant-II solver with a progress rule and appended a suffix layer.

• Both solvers independently run successively on makespan 0, 1, 2 etc. until we kill them.

• Each time the Variant-I solver begins solving a new makespan, we update the current

makespan being solved for.

7 More precisely, we encode in ASP the problem of finding the minimum total cost across all possible subgoal states
of cost(normalplan)+ cost(su f f ixplan) (given that the normal plan respects whichever progress rule we choose to
employ)
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• When the Variant-I solver finds a plan, we record the plan and its cost if this is the lowest-

cost plan found so far.

• When the Variant-II solver finds an optimal plan for some makespan using the suffix layer,

we record the optimal cost as a lower bound for that makespan (as well as all larger

makespans).

• If the Variant-II solver ever finds an optimal plan which doesn’t use the suffix layer, then

that plan is globally optimal. We can return it as a solution and entirely ignore the Variant-I

solver (this only happened twice in all of our experiments and seems to be fairly unlikely).

• If the Variant-II solver obtains UNSAT for a layer, we can stop running it and record the

cost of that and all future layers as ∞.

• Any time the best-cost plan found so far (by the Variant-I solver) is no greater than the

Variant-II lower bound for the currently-solving layer or any earlier layer, we can stop

both solvers and report that plan as an optimal solution.

• Any time the Variant-I solver is solving for a makespan whose Variant-II lower bound is

∞, we stop the solver and return the best-cost plan found so far or “no solution” if no plan

has been found.

The correctness of our two-threaded planner depends on the correctness of two component

solvers. While this is straightforward for Variant-I solver, we have the following claim for Variant-

II solver.

Theorem 6.1

Let Q be a planning problem. Assume that we are using the layered ‘make-progress’ rule.

• (Variant-II Soundness) If Q has an optimal solution P with cost C and makespan n, then

for any k ≤ n, at makespan k the Variant-II solver will find a relaxed plan with cost ≤C.

• (Variant-II Completeness) If Q has no solution, then the Variant-II solver will eventually

produce an UNSAT instance.

Intuitively, the completeness is due to non-repetition of states enforced by the ‘make-progress’

rule, and the soundness follows from the fact that if there exists a plan, then it can be “reduced

to a plan which satisfies the ‘make progress’ rule. Furthermore, it can be truncated at any lower

makespan to a partial plan which satisfies the ‘make progress’ rule. A more detailed argument

(and all proofs of the claims of this paper) can be found in Appendix B.

7 Planning without Layers: Stepless Planning

Besides the delete-free planner above (which is only useful for delete-free planning problems),

all the planners so far in this paper (and indeed, all SAT/ASP planners that we have encountered)

have used layers to order the actions and fluents that occur within a planning problem. But let us

consider the notion of partially ordered plan from Definition 3.1, where no layers are specified.

Any topological sort of this graph corresponds to a valid plan. Perhaps we could avoid layers

entirely and embed action-dependencies directly. The idea here is that, just as with delete-free

planning, we can create a plan by specifying only which actions and which fluents hold, and we

will rely on stable model semantics to ensure that the resulting solution graph is acyclic.

As was mentioned in Section 5 this is the most novel contribution of this paper. We use stable-

model semantics, rather than layers, to produce an acyclic plan.

There is a key difference between delete-free planning and full stepless planning though, which
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accounts for the distinction in computational complexity. In the case of delete-free planning, no

fluent holds more than once and no action occurs more than once. In stepless planning, it is

possible for an action to occur multiple times. As such, we will have to have separate atoms in

our encoding representing each occurrence of an action. But prior to solving, we don’t know how

many occurrences of each action or fluent will be needed.

Here, we will first present a solver that assumes it has enough occurrences and then we will

come back to the issue of figuring out how many of each are needed in order to produce an

optimal plan. The stepless planner is significantly more complicated than anything else done in

this paper so we put more care into explaining what each line of ASP code does, but we will have

to do it in an appendix (Appendix D). Here we provide an outline of the planner. Additionally,

since no planner like this has ever been built before, we will take more care to try and bridge the

gap between the standard approach to planning and the approach being presented here.

7.1 Stepless Planner Encoding

To avoid an O
(

|actions|2
)

-size encoding, we don’t directly encode dependencies between ac-

tions. Instead we use the fluents as intermediate nodes in the solution graph.

An occurrence of a fluent F will be encoded as an object in an atom, f luentOcc(F,M), where

M is a sequentially-ordered index. M = 0 is reserved for the initial fluents. All others start at

M = 1 (when caused by some action). Similarly, the object actOcc(A,N) indicates an occurrence

of action A.8 In stepless planning, there are no preserving actions since there are no layers to

preserve things across, and we don’t utilize mutex relationships between objects. Whereas in

our previous encodings the causes and destroyers of each fluent were implicit, here we must

explicitly give which occurrence of which action AO causes which fluent occurrence FO to hold

(causes(AO,FO)) and which occurrence of which fluent FO is used as a precondition for which

action occurrence AO (permits(FO,AO)). Additionally, we need an atom for each deleted fluent

occurrence FO which action occurrence AO has as a precondition and deletes (deletes(AO,FO))

and also one in the rare case that an action has a fluent as a delete-effect, but not a precondition,

for which occurrence of the fluent F the action occurrence AO follows ( f ollows(AO,FO)). (Refer

to Appendix D under the subtitle Problem Description.)

From this we can structure the graph and assert that it is acyclic. For each action occurrence

we have an “event”; additionally there is an event for the start and end of each occurrence of each

fluent. There is also an event “goal” which corresponds to the goal state being reached.

Events are grouped into vertices in our graph each of which contains at most one action occur-

rence. When an action occurrence causes a fluent, the action and the start of that fluent belong

to the same vertex. Similarly when it deletes a fluent, the action and the end of the fluent belong

to the same vertex. To encode this we use the predicate inVertex/2 which indicates that its first

argument belongs to the vertex named by the second argument. (Refer to Appendix D under the

subtitle Plan Event Graph.9)

8 We index action and fluent occurrences with numbers N and M and have symmetry-breaking rules ensuring that the
occurrences happen in numerical order for a given action or fluent, but it is important to understand that these numbers
are not layers. There’s no global step of any kind to which they correspond. A fluent occurrence can be used as
a precondition for an appropriate action occurrence regardless of what their indices are or how they relate to each
other. The same goes for an action causing a fluent. The indices are simply to be able to distinguish between multiple
occurrences of the same object; they have no global significance or relation to any other object.

9 We have removed the goal event from the encoding in the appendix since it is incompatible with the suffix layer. To
see the original encoding refer to (Spies 2019).
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7.2 Making Stepless Progress with a Suffix Layer

Now we need a way to assert that the action occurrences of a given stepless plan “make progress”.

With no layers to make assertions about, the only notion of progress we are left with is the defi-

nition (Def. 3.2) of a plan which is strongly minimal. This definition logically takes the form of

“there does not exist a pair of (s, t)-cuts such that ....” This means that given a particular plan,

determining whether it is strongly minimal is likely co-NP-complete (membership is straightfor-

ward but the hardness is an open conjecture), and then the problem of determining the existence

of such a plan for a given collection of atoms and fluents could possibly be Σ
P
2 -complete. Luckily,

ASP gives us a way to encode problems in Σ
P
2 through the use of disjunctive rules (Baral 2003).

The code for this can be found in Appendix D under the subtitle Strong Minimality.

If there aren’t enough occurrences of a fluent or action, we can tack on a suffix layer in the

same way we did with the stepped-cost-optimal planner. In the code in Appendix D Appendix D

under the subtitle Suffix Layer, we replace all uses of goal with a subgoal which is the entry-point

into the suffix layer. The coding is similar to the suffix layer used in the two-threaded planner, but

there are a few key differences. First, if the suffix layer is used at all, we use an atom useSuffix to

indicate that this is true. There is a cost of 1 at level -1 for useSuffix so among plans of equal cost,

the solver will prefer one which doesn’t use the suffix to one which does. If an optimal solution

doesn’t use the suffix, then it must be globally optimal with respect to cost. (Refer to Appendix

D under subtitle Suffix Layer.)

Finally, we will add rules to enforce the use of action and fluent occurrences from our bag so

that the planner resorts to the suffix layer only when it “runs out” of something. With this we

know how to expand our bag of occurrences. Each time we get back a plan making use of the

suffix layer, look at all the fluents or actions which were saturated by that plan and add another

occurrence of each one. (Refer to Appendix D under subtitle Saturated.)

This, coupled with our definition of making progress, is what guarantees that it will eventually

find a plan or determine that none exists. The suffix layer is only used because the planner ran

out of something it needed and needs to request more of that item from the controlling program

(in particular, not as a way to save on plan cost).

Appendix E provides a detailed example of running the stepless planner, and Appendix B gives

a proof of the following theorem.

Theorem 7.1

• (Stepless Soundness) All plan costs produced by the stepless planner are lower bounds on

the cost of the true optimal plan.

• (Stepless Completeness) The stepless planner will eventually find the solution if it exists

or produce an UNSAT instance if it doesn’t.

8 Experiments

We ran our cost-optimal two-threaded solver and stepless solver on most of the same instances

as Robinson (Robinson et al. 2010) and here report results10.

Experiments were run on a cluster of c3.large Amazon EC2 instances each with two Intel

10 excluding satellites since our planner doesn’t support the : equality extension to PDDL and miconic since we couldn’t
find the problem files for it. Robinson was kind enough to send us the instances from his constructed f tb domain so
we can report performance on that as well
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Table 1. Experiments with two-threaded planner and stepless planner
Problem C∗ n n∗ tπ t∗ t2-threaded ns tstepless ls tRobinson

block-12 20 20 17 0.5 1203.4 1203.9 - - - ?
block-15 16 16 12 0.4 113.4 113.8 7 89.4 33.7 ?
block-18 26 26 16 0.9 256.8 257.7 - - - 3.2
block-23 30 - - - - - - - - 29.8
block-25 34 - - - - - - - - 27.4
depots-2 15 - 12 - 771.5 771.5 2 9.7 4.2 -

depots-13 25 - - - - - 3 475.9 137.2 -
driverlog-2 19 - - - - - 20 215.5 44.4 -
driverlog-3 12 7 3 0.1 0.9 1.0 1 0.4 0.4 450.2

driverlog-11 19 - - - - - 1 13.5 13.5 -
elevators-2 26 3 0 0.4 1.7 2.1 1 2.7 2.7 13.0
freecell-3 18 - - - - - 2 420.5 344.0 -

ftb-30 1001 25 0 1.8 0.3 2.1 1 5.5 5.5 1.8
ftb-38 601 33 0 2.7 0.2 2.9 1 3.2 3.2 1.5
ftb-39 801 33 0 3.9 0.3 4.2 1 5.6 5.6 2.2
ftb-40 1001 33 0 3.9 0.4 4.3 1 8.2 8.2 ?

gripper-1 11 7 4 0.1 0.4 0.5 2 0.4 0.2 14.6
gripper-2 17 11 8 0.6 312.4 313.0 7 23.5 9.7 -
pegsol-9 5 15 11 3.9 35.9 39.8 5 131.5 46.6 386.8

pegsol-16 8 21 17 48.3 1029.0 1509.3 10 910.2 280.8 -
pegsol-18 7 - - - - - 7 1548.0 537.1 -
rovers-3 11 7 4 0.1 0.2 0.3 1 0.1 0.1 49.4
rovers-4 8 4 0 0.0 0.0 0.0 1 0.1 0.1 ?
rovers-6 36 - - - - - 48 1354.3 391.0 -
rovers-9 31 - - - - - 53 1040.6 101.4 -
rovers-14 28 - - - - - 72 900.7 55.9 -
storage-7 14 14 11 0.6 42.9 43.5 10 89.2 42.4 1.1
storage-8 13 - - - - - 15 799.1 239.5 -
storage-9 11 - - - - - 9 181.0 46.0 -
storage-13 18 - - - - - - - - 244.0

TPP-5 19 7 2 0.1 0.2 0.3 2 0.5 0.3 -
TPP-7 34 - - - - - 13 189.6 32.4 -

transport-1 54 5 0 0.1 0.1 0.2 2 0.5 0.3 0.2
transport-2 131 12 4 74.3 55.1 129.4 2 111.6 106.3 -
transport-11 456 9 3 0.3 1.6 1.9 2 163.4 151.4 -
transport-21 478 7 1 0.2 0.6 0.8 2 5.2 3.5 -
zenotravel-4 8 7 3 0.5 2.8 3.3 3 14.1 6.9 783.4
zenotravel-6 11 7 0 7.2 6.5 13.7 1 2.1 2.1 -

zenotravel-10 22 - - - - - 1 1387.1 1387.1 -

Xeon 2.8 GHz CPU cores and 3.75 GB of memory. We used GNU Parallel (Tange 2018) to

distribute the work of running multiple instances.

For comparison, we include Robinson’s reported results scaled down by a factor of 2.6
2.8 to

account for the difference in processor speeds.

For each domain, we report the largest instance solved by each of the two-threaded planner,

the stepless planner, and Robinson’s planner where largest is measured by the amount of time

it took that planner to solve the instance. Where it differs, we also report the largest-indexed

instance solved by each of the two-thread and stepless planners.

Every plan produced by either planner was validated by the Strathclyde Planning Group plan

verifier VAL (Howey et al. 2004).

The column C∗ is the optimal cost found for each instance. In all cases the optimal cost for

the two-thread planner agrees with the optimal cost reported by Robinson (Robinson et al. 2010)

where applicable (Robinson compares his results against a non-SAT-based planner and our opti-

mal costs agrees with that as well).

The column n is the lowest makespan at which the problem has a C∗ plan (according to our
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Variant-I solver). Our value for the makespan n agreed with all of Robinson’s reported results

except for Rovers-3 where we found we only needed a makespan of 7 to produce the optimal

plan while Robinson reported a required makespan of 8. We suspect this is because the definition

of mutex of (Blum and Furst 1997) is overly restrictive for actions (cf. the footnote on page 3).

n∗ is the makespan at which our Variant-II suffix solver proves C∗ is optimal. Interestingly,

for many of instances this value was 0 which indicates that the optimal plan in the delete-free

reduction of the problem has the same cost as the true optimal plan.

tπ is the time required to find the plan (by our Variant-I solver); t∗ is the time required to prove

optimality (by our Variant-II suffix solver); and t2-threaded is the sum of these two numbers (can

be thought of as “total solve time” although the algorithm necessitates that they run in parallel,

so the actual wall-clock time required to run them was the maximum, not the sum, but with two

CPU cores rather than one). All reported times are measured in seconds.

ns is the number of times the stepless solver was run for this instance (each time adding more

items to its bag of fluents and actions based on what was saturated in the previous rounds). On

the last of these runs it produced an optimal solution which doesn’t use the suffix layer and hence

is globally cost-optimal. ts is the total time running the stepless solver across all runs.

One important distinction between the experiments run with the two-threaded solver and those

run with the stepless solver is that the two-threaded solver took advantage of “iterative” solving.

That is, CLINGO provides an API for interacting with it programatically. Rather than restarting

from scratch each time there is a new instance to be solved, we can after observing the solution

at makespan k, make some adjustments to the instance so that it now represents the program for

makespan k+ 1 and then ask CLINGO to continue solving from this point while maintaining any

learnt clauses which are still relevant.

This is incredibly powerful and resulted in a major speedup in the two-threaded solver.

For the stepless solver this was not possible since it relies heavily on full-program-spanning

loop constraints to give correct results, but CLINGO doesn’t support having loop constraints cross

multiple iterative stages. Thus, every time new fluents or actions are added to the stepless solver’s

bag, it starts solving from scratch. In the future we hope CLINGO can support this, but they have

no plans to do so at this time.

ls is the total time required for the last iteration of the stepless solver to run. This one run by

itself is sufficient to both find the globally optimal solution and prove its optimality. However we

know of no more efficient way to find the right bag of actions and fluents in order to guarantee

the optimal solution won’t use the suffix layer. This number is still interesting in that it provides a

lower bound on the time it would take to solve the instance if CLINGO supported loop constraints

crossing program section boundaries (so that we could add more occurrences and continue solv-

ing rather than having to restart). It gives us some idea of what savings such a modification to

CLINGO might provide.

tRobinson is the total time reported by (Robinson et al. 2010) to find the optimal solution scaled

by a factor of 2.6
2.8 . A question mark ? in this column indicates the time is unknown since it’s

not reported in (Robinson et al. 2010). If the solver for which this row is maximal successfully

solved the largest instance reported by Robinson in this domain and found this instance to be

larger, we fill with a dash mark − rather than ? in this column (our best guess as to whether

Robinson’s planner solved it). A − in any other column indicates the relevant planner failed to

solve the instance in less than 1671.4 seconds (30 minutes scaled down by 2.6
2.8 ). In the case of

depots-2, the Variant-II suffix solver reached layer 12 before the Variant-I MinASPPlan solver

and so it found an optimal no-suffix solution by itself.
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All instances were solved with CLINGO version 5.2.3. The controller logic for both the two-

threaded solver (handling of incremental solving, coordinating the two solvers, and figuring out

when to terminate the search) and the stepless solver (figuring out which occurrences to include

and topologically sorting the output) was written in Haskell using the clingo-Haskell bindings

written by tsahyt (GitHub alias) to communicate with CLINGO .

We used the default configuration and options for CLINGO except that the stepless planner used

the –opt-usc option which finds optimal solutions by expanding an unsatisfiable core (Definition

2 in (Alviano et al. 2015)).

All planners presented here are available on GitHub at https://github.com/davidspies/aspplan2.

Feel free to contact the repo owner (the first author of this paper) for any help with reproducing

these results.

In all domains except for blocks, f tb, and storage, our two-threaded solver outperformed

Robinson’s SAT-based solver and our stepless solver outperformed both (in terms of number of

instances solved). In the case of storage, the stepless solver and Robinson’s solver each solved

an instance which the other failed to solve which seems to point to the possibility that the stepless

solver encounters different difficulties from a more traditional approach. One more piece of evi-

dence favoring this conclusion is that the toy example bridge-crossing problem from Appendix E

required a full 30 seconds to solve (whereas the 2-threaded solver solves it in 2 seconds) and in

general we found that on small/toy problems the stepless solver’s performance is abysmal com-

pared with other approaches we tried but scales better with larger instances.

Prior to running the full suite of experiments, the above observation gave us the mistaken

impression that the stepless solver was interesting as a theoretical oddity, but fails to produce

decent results in practice, since for every example we ran it on while tuning it, it seemed to run

slower than the two-threaded solver. It was a pleasant surprise to discover when officially running

the experiments that in fact the inverse was true.

9 Related Work and Final Remarks

Our 2-threaded solver algorithm is inspired by the approach of (Robinson et al. 2010). The better

performance of our planner, besides solver technologies, seems partly due to the grounding size

and search space pruning under stable model semantics as commented in Section 2, and partly

due to less clustered encoding in ASP than in SAT, plus the smart encoding of mutex constraints.

But note that their approach works only if we assume the problem is solvable (which he does)

and all actions have positive (nonzero) costs (which he also does).

Eiter et al. (2003) propose an approach to finding globally cost-optimal plans in ASP with ac-

tion costs, but confine their discussion to the planning problems which look for polynomial length

plans. They make the assumption that the planning domain has some polynomial upper bound

on plan lengths which is known in advance. In contrast, we do not make such an assumption. It

is interesting to note that through some key technical innovations, we are able to show that the

current ASP techniques are capable of encoding cost-optimal planners without this assumption.

Partially-ordered plans have been explored elsewhere. One is the CPT planner (Vidal and Geffner 2006)

for optimal temporal planning using Constraint Programming (CP), where actions have durations

and makespan refers to total duration which corresponds to the cost of a plan in our setting. Op-

timality here means minimal duration. CPT consists of pre-processing that induces lower bounds

to be used in starting makespan and in formulation of constraints, a branching scheme, and a

CP-based branch and bound search. The branching scheme is specifically designed for temporal

https://github.com/davidspies/aspplan2
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planning aiming for increased reasoning efficiency. The current makespan B increases by 1 if no

plan is found. Thus, the first plan found is guaranteed to be duration minimal. CPT dynamically

generates action tokens from action types achieving the similar goal of the suffix layer of our

stepless planner. Thus, a main difference between CPT and our stepless planner is no-solution

detection in our case and the lack of it in CPT, i.e., the current CPT does not terminate on its own

for UNSAT instances.

Delete-free planning has been investigated as a stand-alone topic, including a CP solution

(Barták et al. 2012). To the best of our knowledge, our modeling of delete-free planning as a

graph problem is original, and it leads to a five-line ASP program which does everything (cf.

Appendix C).

The Madagascar Planner is a family of efficient implementations of the SAT based techniques

for planning. The main idea is, instead of using the standard decision heuristics such as VSIDS,

planning-specific variable selection heuristics are applied (Rintanen 2012). One would expect

that the same idea can work for ASP-based planning, and in this case, our 2-threaded cost-optimal

planner can benefit from it directly.

Cost-optimal planners can also be built on the SAS+ platform. An SAS+ planner based on

greedy selection of a subset of heuristics for guiding A∗ search (Lelis et al. 2016) has made to

the top tier in IPC-2018. SAS+ planning can be encoded in SAT and ASP as well, but the most

critical component, the selection algorithm, needs to be implemented by an external program.

Though the goal of this paper is limited to ASP-based cost-optimal planning, there is always

a question of whether such a planner is competitive in efficiency (in terms of solving time) with

state-of-the-art planners, e.g., the top planners from IPC. Further investigation and experimen-

tation are needed to address such questions. A major advantage of ASP-based planners is the

succinctness and elegance of the encoding. An expressive KR language like ASP provides some

unique advantages, e.g., determining the existence of a plan that satisfies the stepless make-

progress rule is likely Σ
P
2 -hard, which can be a challenge for other KR languages.

Stepless planning is a brand new approach to logic-based planning and brings with it a lot of

unknowns and potentials for future directions. One issue is that the lack of any notion of simul-

taneity makes certain standard optimizations difficult, such as incorporating mutex constraints

and supporting conditional-effects (an extension to STRIPS planning). The latter extension has

been realized in SAT-based planning (Rintanen 2011), but incorporating it to stepless planning

appears to be non-trivial. Our stepless planner is a nontrivial application that requires support-

edness cycles to extend across different program sections, it would be nice if CLINGO supported

iterative solving with this.

More recently, no-solution detection for planners has become an interesting topic, along with

the competition called Unsolvability IPC, which aims to test classical automated planners to

detect when a planning task has no solution. Our no-solution techniques presented in this paper

may be relevant. This is one interesting future direction.

Finally, property directed reachability (PDR), a promising method for deciding reachability in

symbolically represented transition systems, which was originally conceived as a model checking

algorithm for hardware circuits, has recently been related to planning (Suda 2014). The relation-

ship with our stepless planner deserves a further study; in particular, an interesting question is

whether and how PDR-based planners can be strengthened to become cost-optimal.
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Appendix A Actions Happen As Soon As Possible

Here, we give the rule that says that actions always happen as soon as it is possible, but we must

be careful. There are quite a few things which might prevent an action from occurring any sooner.

If we leave any out, we risk rendering the problem unsolvable. For an action to be able to occur

at the previous time-step, its preconditions must hold at the previous time-step, its delete-effects

should not be used at the previous time-step, and its used add-effects should not be deleted at the

previous time-step. There are a few other conditions which at first appear to be necessary (such

as its preconditions must not be deleted at the previous time-step), but upon further consideration

you may notice that all of these are redundant if our goal is specifically to prevent the action

from occurring at the current time-step. We must borrow our definition of deleted/2 from the

modified encoding of rule 4 in Section 2 of the paper (see Encoding Reduction of that section)

and additionally add a similar definition for used/2.

deleted(F,K) :- happens(A,K); del(A F).

used(F,K) :- happens(A,K); pre(A,F); not preserving(A).

:- happens(A,K); K > 0; not preserving(A);

holds(F,K-1) : pre(A,F); not used(F,K-1) : del(A,F);

not deleted(F,K-1) : add(A,F), holds(F,K).

How does this defeat the 100-switch-scenario? Remember that the 100 switches exponentially

increased the plan length because the planner may choose to flip some switches but not others to

achieve one state, but then flip those other switches later to achieve an alternative state.

For every switch this rule boils down to, “if we want to flip switch i at time t, then we must

also flip switch i at time t −1 as well”. Otherwise the solution fails this rule since the switch flip

could have occurred one action sooner.

Under this rule, we have made it impossible to achieve more than 100 unnecessary states

within the 100-switch problem. At each step where we do not make progress somewhere else,

we must choose at least one switch to stop flipping (if we toggle the exact same set of switches

as in the last step, we revert to the same overall state as two steps earlier which is forbidden by

the layered ‘make-progress’ rule).

More generally, one can see that wherever a planning problem has multiple independent parts,

this rule forces all the parts to proceed independently and not stall needlessly. However, the rule

still has some gaps.

• Even adding a linear number of unnecessary steps is suboptimal. All the switches are

independent so we really should not be adding more than one layer regardless of how

many switches there are.

• The switch scenario is contrived to make our solution look better than it is. One can easily

see that by using three-state switches rather than two-state switches (where each state is

reachable from the other two), it is still possible to construct exponential-length plans even

with this restriction in place. This is because we can still reach an exponential number of

states while continually changing every switch at every time-step.

The above issues are addressed by Definition 3.2 of the main paper where we give the ‘make-

progress’ notion which is used by the stepless planner.
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Appendix B Proofs

B.1 Correctness of Mutex Action Rules

We show that the following handle all mutex action constraints that we care about strictly via

unit propagation (labels are added for reference):

1. used_preserved(F,K) :- happens(A,K); pre(A,F); not del(A,F).

2. deleted_unused(F,K) :- happens(A,K); del(A,F); not pre(A,F).

3. :- {used_preserved(F,K); deleted_unused(F,K);

happens(A,K) : pre(A,F), del(A,F)} > 1; valid_at(F,K).

4. deleted(F,K) :- happens(A,K); del(A,F).

5. :- holds(F,K); deleted(F,K-1).

given the existing rules:

6. holds(F,K) :- happens(A,K); pre(A,F).

7. :- holds(F,K); holds(G,K); mutex(F,G).

Proof

Suppose A and B are mutex actions because A deletes fluent F and B has F as a precondition.

The proof is based on a case analysis.

Case 1. A does not have F as a precondition and B does not delete F . If we select happens(A,K)

then by unit propagation we have deleted unused(F,K) (2) and then ¬used preserved(F,K) (3)

and then ¬happens(B,K) (1). We can write this as:

happens(A,K)⇒2 deleted unused(F,K)⇒3 ¬used preserved(F,K)⇒1 ¬happens(B,K)

Case 2. A has F as a precondition and B does not delete F . Then,

happens(A,K)⇒3 ¬used preserved(F,K)⇒1 ¬happens(B,K)

Case 3. A does not have F as a precondition, B deletes F . Then,

happens(A,K)⇒2 deletedunused(F,K)⇒3 ¬happens(B,K)

Case 4. A has F as a precondition, B deletes F . Then,

happens(A,K)⇒3 ¬happens(B,K)

In the case of conflicting effects (A adds F , B deletes F), there’s only a conflict when the

conflicted fluent “holds”. So in fact we actually only care about a unit propagation mutex between

holds(F,K + 1) and happens(B,K). A is not relevant (as mentioned in the Section 2 of the main

paper, this is where our mutex rules differ from those of (Blum and Furst 1997)). So

holds(F,K + 1)⇒5 ¬deleted(F,K)⇒4 ¬happens(B,K)

Conversely:

happens(B,K)⇒4 deleted(F,K)⇒5 ¬holds(F,K + 1)

Finally, suppose A and B have mutex preconditions (pre(A,F); pre(B,G); mutex(F,G)). Then

(again by unit propagation),

happens(A,K)⇒6 holds(F,K)⇒7 ¬holds(G,K)⇒6 ¬happens(B,K)



Domain-Independent Cost-Optimal Planning in ASP 19

Thus no explicit mutex action rules are needed beyond this. Thanks to unit propagation, the

effect is the same.

B.2 Soundness and Completeness of Variant-II Solver

The make-progress rule here refers to the layered ‘make-progress’ rule.

Lemma Appendix B.1

Given a planning problem solution (plan) P, we can find a solution P∗ which satisfies the ‘make-

progress’ rule such that C(P∗)≤C(P) (C(P) is the sum action cost of plan P) and n(P∗)≤ n(P)

(n(P) is makespan of plan P).

Proof

If P satisfies the ‘make-progress’ rule, then P∗ = P and we’re done. Otherwise there exists a pair

of layers l1 and l2 such that SP(l2) ⊂ SP(l1) (SP(l) is the set of fluents which hold at layer l in

P). We can reduce P by “removing” all the layers between l1 (exclusive) and l2 (inclusive) along

with any actions that occur on those layers. Repeat this process until no such pair of layers exists.

Since every iteration removes at least one layer and P has a finite number of layers, it follows that

this will eventually terminate and the resulting plan P∗ will have no such pair and thus satisfy the

‘make-progress’ rule.

Corollary Appendix B.1

If a planning problem Q is solvable, then it has an optimal solution which “makes progress”

according to the rule.

Lemma Appendix B.2

Given a plan P∗ which satisfies the ‘make-progress’ rule, any prefix of that plan P..k also satisfies

the ‘make-progress’ rule.

Proof

This is trivial: If there exists no pair of layers in P∗ with some property, then of course there

exists no pair of layers with that property in any prefix of P∗.

Lemma Appendix B.3

Given a planning problem Q with solution P, the delete-free relaxation of Q has a solution P∗, the

set of actions that occur in P (ordered according to the first time they are taken in P). It follows

that C(P∗)≤C(P) (note: this is not strictly equal since actions in P may be taken more than once

and incur their cost every time).

Proof

Also trivial: If a precondition or goal is satisfied at some layer in P, then it must also be satisfied

by that time in the delete-free relaxation since all the same actions have occurred.

Theorem Appendix B.2

(Variant-II Soundness Theorem) If Q has an optimal solution P with cost C and makespan n, then

for any k ≤ n, at makespan k the Variant-II solver will find a relaxed plan with cost ≤C.
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Proof

This can be established by constructing a solution at makespan k with cost C(P,k) ≤ C. By

Corollary Appendix B.1, we may assume WLOG that P makes progress. First, set the ‘subgoal‘

fluents to be SP(k). The fluents and actions in the normal part of the program match P exactly.

By Lemma Appendix B.2 these will satisfy the ‘make-progress’ rule. Finally, the suffix layer is

solved by the set of actions that occur in the suffix Pk.. which solves the delete-free relaxation by

Lemma Appendix B.3. C(P,k) here is the sum of two parts; the solution to the prefix P..k which

is the same as P..k (and therefore has the same cost as P..k), and the relaxed solution to the suffix

Pk.., which by Lemma Appendix B.3 is no greater than in C(Pk..) so C(P,k) ≤C. It follows that

the optimal solution at makespan k is at most C(P,k) (and so is transitively ≤C).

Theorem Appendix B.3

(Variant-II Completeness Theorem) If a planning problem Q has no solution, the Variant-II solver

will eventually produce an UNSAT instance.

Proof

A plan which makes progress cannot encounter the same state twice and there are a finite number

of possible states. This means that the length of a plan which makes progress is bounded by the

number of possible states. Thus, for a sufficiently-large makespan, the make-progress rule is

unsatisfiable.

B.3 Soundness and Completeness of Stepless Planner

Theorem Appendix B.4

(Stepless Soundness Theorem) All plan costs produced by the stepless planner are lower bounds

on the cost of the true optimal plan.

Proof

Case 1. There are sufficient occurrences of fluents and actions to construct the optimal plan: In

this case, these occurrences constitute a solution so the minimal solution to this instance will

have a cost which is no greater.

Otherwise pick an arbitrary sequentialization of the optimal plan. Now we have two cases:

Case 2. The first missing occurrence in the plan is an action occurrence. In this case, consider

the plan cut where all actions up to this point occur (since we have enough occurrences) and the

state at this cut form the subgoals. By Lemma Appendix B.3 again, we can put the remainder

of the plan into the suffix layer. The missing action occurrence will be a starting action and that

action will also be saturated so the saturation rules are satisfied.

Case 3. The first missing occurrence in the plan is a fluent occurrence. In that case, use the plan

cut up to (but not including) the action occurrence which adds this fluent occurrence (putting the

remainder of the plan including the adding action into the suffix layer by Lemma Appendix B.3).

This action will be a starting action so the added fluent will be a saturated starting fluent which

also satisfies the saturation requirement.

The ‘make progress’ rule below refers to the stepless ‘make-progress’ rule.
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Lemma Appendix B.4

Given a collection of action occurrences in a plan P, they may be ordered such that for each

consecutive pair there is an (s, t)-cut which puts the first one on the s-side and the other one on

the t-side.

Proof

Pick a serialization of P. Order the actions according to the sub-order in that serialization. Place

the cuts anywhere between them.

Lemma Appendix B.5

For any action A there exists a (finite) count k such that the stepless planner will not add more

than k occurrences of A.

Proof

In order to add another occurrence of A, it must be the case that A is saturated in some plan that

makes progress. This means that k occurrences of A are used in the plan. Order the occurrences

of A as (A0,A1,A2, ...,Ak) such that there exists a cut between each consecutive pair (by Lemma

Appendix B.4; also because of our symmetry-breaking rule this can be the natural ordering by

action index). It follows by the ‘make-progress’ rule that the state at each of the cuts must be

distinct from the state at any other cut. Thus, k cannot exceed the number of possible states

(which is finite).

Corollary Appendix B.5

For any fluent F there exists a finite count k such that the stepless planner will not add more than

k occurrences of F .

Proof

When F is saturated, each occurrence must be caused by some action occurrence. Since Lemma

Appendix B.5 bounds the number of action occurrences which a progress-making plan can have,

it follows that the number of fluent occurrences is also bounded.

Theorem Appendix B.6

(Stepless Completeness Theorem) The stepless planner will eventually find the solution if it

exists or produce an UNSAT instance if it doesn’t.

Proof

In the proof of Theorem Appendix B.4 we show that if a plan exists, then there will always be

a solution to any stepless instance constructed from that problem (either the plan itself if there

are enough occurrences, or a partial plan with a suffix layer since some fluent or action does not

have enough occurrences and can therefore be saturated). Lemma Appendix B.5 and Corollary

Appendix B.5 together ensure that the process of alternately solving instances and then including

any saturated fluents or actions will eventually halt (since there are at most a finite number of

actions and fluents that can be included before finding a progress-making plan which saturates

something becomes impossible).
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Appendix C Delete-Free Planning

Recall that delete-free planning can be modeled as a graph problem: Given a directed bipartite

graph G = (X ,Y,E) with weights on X and a goal set YF ⊆ Y , find a minimum acyclic subgraph

G∗ = (X∗,Y ∗,E∗) such that

1. YF ⊆ Y ∗

2. If x ∈ X∗ and (y,x) ∈ E , then y ∈ Y ∗ and (y,x) ∈ E∗

3. For all y ∈ Y ∗, E∗ contains at least one edge (x,y) (and x ∈ X∗).

Recall its connection to delete-free planning: X is the set of actions, and Y is the set of fluents,

the (x,y) edges are add-effects and the (y,x) edges are preconditions. YF is the goal set and the

initial set has been removed (together with all corresponding preconditions) from the graph. Rule

1 means the goal fluents must be true. Rule 2 means an action implies its preconditions. Rule 3

means every fluent must have a causing action. The graph must be acyclic to ensure the actions

can occur in some order. The entire problem of a delete-free planning problem can be encoded

in a single “one-shot” ASP program. This is possible because there is no incentive to ever take

an action or cause a fluent more than once. As soon as any fluent is true, it is permanently true.

Let us write an ASP program to solve the problem of delete-free planning. Here we do not

worry about makespan; thanks to the NP-ness of delete-free planning, we can solve this problem

all in one go. Note that we can trivially add an extra rule to make our plans cost-optimal. (The

code below is a complete ASP program: run it on the problem and get an optimal solution.)

holds(F) :- init(F).

{happens(A)} :- holds(F) : pre(A,F); action(A).

holds(F) :- add(A,F); happens(A).

:- goal(F); not holds(F).

:~ happens(A); cost(A,C).[C,A]

We have again encountered a five-line program which, magnificently, does everything. It hand-

ily encodes the problem of delete-free planning. To be supported, an action’s preconditions must

hold independently of that action itself and a fluent’s causing action must not require that fluent.

However, we have lost something by encoding planning “from the ground up”. Earlier, we

mentioned how the state-space for solving a planning problem was reduced when we started

from the goal, and built support up backwards. That is, an action should only happen if something

needs it. Let us fix that.

If we build up the plan backwards, we must be careful to ensure that the actions can happen

in some order. As such, we need to explicitly include atoms whose only purpose is to ensure

supportedness.

% Delete-free planning

holds(F) :- goal(F).

{happens(A) : add(A,F)} >= 1 :- holds(F), not init(F).

holds(F) :- pre(A,F); happens(A).

supportFluent(F) :- init(F); holds(F).

supportAct(A) :- supportFluent(F) : pre(A,F), holds(F); happens(A).

supportFluent(F) :- supportAct(A); happens(A); add(A,F); holds(F).
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:- holds(F); not supportFluent(F).

:~ happens(A); cost(A,C).[C,A]

Now the first three rules encompass neededness. We add actions and fluents in working back-

wards from the goal until we encounter the initial fluents. Meanwhile the second three rules

indicate whether an action or fluent is supported. Together, with the restriction that all the fluents

must be supported, these guarantee a correct plan. Essentially, for an action or fluent to occur, it

now must have support both from the bottom and from the top.

Appendix D Stepless Planner with Suffix Layer

Requires an external program to detect which fluents and actions are saturated each time the

suffix layer is used and feed in more occurrences.

is(fluentOcc(F,1)) :- fluent(F).

is(actOcc(A,1)) :- action(A).

is(fluentOcc(F,0)) :- init(F).

% ======================== Problem Description =========================

% Helper function to recognize subsequent occurrences of fluent/action.

nextOcc(fluentOcc(F,0),fluentOcc(F,1)) :- fluent(F).

nextOcc(fluentOcc(F,M),fluentOcc(F,M+1)) :- is(fluentOcc(F,M)).

nextOcc(actOcc(A,N),actOcc(A,N+1)) :- is(actOcc(A,N)).

% Fluent occurrence which is not initial (M > 0) must have exactly one

% causing action

{causes(actOcc(A,N),fluentOcc(F,M)) : add(A,F), is(actOcc(A,N))}=1 :-

holds(fluentOcc(F,M)); M > 0.

% If an action causes a fluent, it happens.

happens(AO) :- causes(AO,_).

% An action cannot cause more than one occurrence of the same fluent.

:- {causes(AO,fluentOcc(F,M))} > 1; is(AO); fluent(F).

% For each precondition an action occurrence has, some occurrence of

% that fluent must permit it.

{permits(fluentOcc(F,M),actOcc(A,N)) : is(fluentOcc(F,M))}=1 :-

happens(actOcc(A,N)); pre(A,F).

% A fluent occurrence which permits an action must hold.

holds(FO) :- permits(FO,_).

% A fluent which is used to satisfy a subgoal condition "permits" it.

% For each subgoal condition, exactly one occurrence of that fluent

% permits it.

{permits(fluentOcc(F,M),subgoal(F)) : is(fluentOcc(F,M))}=1 :-

subgoal(F).

% A fluent which permits a subgoal condition cannot be deleted.
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:- deleted(FO); permits(FO,subgoal(_)).

% An occurrence of an action deletes an occurrence of a fluent if

% it permits it and that action has the fluent as a delete effect.

deletes(actOcc(A,N),fluentOcc(F,M)) :-

permits(fluentOcc(F,M),actOcc(A,N)); del(A,F).

% No fluent may be deleted by more than one action.

:- {deletes(_, FO)} > 1; is(FO).

% An action which deletes a fluent, but doesn’t have it as a precondition

% follows some occurrence of that fluent. Can possibly follow occurrence

% index 0 even if the fluent is not an initial fluent (indicating this

% action occurs before any occurrence of that fluent).

{follows(actOcc(A,N),fluentOcc(F,M)) : holds(fluentOcc(F,M));

follows(actOcc(A,N),fluentOcc(F,0))}=1 :-

del(A,F); not pre(A,F); happens(actOcc(A,N)).

% Fluent occurrences 0 which aren’t initial fluents count as "deleted".

deleted(fluentOcc(F,0)) :- fluent(F); not init(F).

% A fluent is deleted if something deletes it.

deleted(FO) :- deletes(_, FO).

% A fluent is deleted if something follows it.

deleted(FO) :- follows(_, FO).

% Weak constraint charging the cost of an action occurrence.

:~ happens(actOcc(A,N)); cost(A,V).[V,A,N]

% An occurrence of a fluent doesn’t hold if its previous occurrence

% doesn’t hold.

:- holds(fluentOcc(F,M+1)); not holds(fluentOcc(F,M));

is(fluentOcc(F,M)); M > 0.

% An occurrence of an action doesn’t happen if its previous occurrence

% didn’t happen.

:- happens(BO); not happens(AO); nextOcc(AO,BO).

% ======================= Plan Event Graph ===========================

% Events in the graph; these will be grouped into vertices

event(start(FO)) :- holds(FO).

event(end(FO)) :- holds(FO).

event(end(fluentOcc(F,0))) :- fluent(F).

event(AO) :- happens(AO).

% subgoals are events

event(subgoal(F)) :- subgoal(F).
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% Triggering actions

% The start of a fluent by its causing action.

actionTriggers(AO,start(FO)) :- causes(AO,FO).

% The end of a fluent by its deleting action.

actionTriggers(AO,end(FO)) :- deletes(AO,FO).

% Vertices

% If no action triggers an event, then it gets a vertex by itself.

vertex(V) :- event(V); not actionTriggers(A,V) : is(A).

% Otherwise it belongs to the vertex for its trigger action.

inVertex(E,V) :- actionTriggers(V,E).

% Every event which is the name of a vertex belongs to that vertex.

inVertex(V,V) :- vertex(V).

% Graph edges

% A fluent ends after it starts

edge(start(FO),end(FO)) :- holds(FO).

% If a fluent permits an action, then the action happens after

% the start of the fluent

edge(start(FO),AO) :- permits(FO,AO).

% If a fluent permits an action but the action doesn’t delete the

% fluent, then the action happens before the end of the fluent.

edge(AO,end(FO)) :- permits(FO,AO); not deletes(AO,FO).

% An action happens after the fluent it follows

edge(end(FO),AO) :- follows(AO,FO).

% but before the next occurrence

edge(AO,start(GO)) :- follows(AO,FO); nextOcc(FO,GO); holds(GO).

% The start of the next occurrence of a fluent happens after the

% end of the previous occurrence

edge(end(FO),start(GO)) :- holds(GO); nextOcc(FO,GO).

% The next occurrence of an action happens after the previous

% occurrence

edge(AO,BO) :- happens(AO); happens(BO); nextOcc(AO,BO).

% And now we use stable models to assert that the graph is acyclic; sup(X)

% indicates that X has acyclic support going back to the root of the graph.

% The input for a given event has support if all events joined

% by any incoming edge have support.

sup(in(E)) :- sup(D) : edge(D,E); event(E).

% A vertex has support if all of its events’ inputs have support.

sup(V) :- sup(in(E)) : inVertex(E,V); vertex(V).

% An event has support if its vertex has support.

sup(E) :- sup(V); inVertex(E,V).

% Every vertex must have support.
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:- vertex(V); not sup(V).

% ======================= Strong Minimality ============================

% A counterexample to strong minimality consists of two cuts, cut1 and cut2.

cut(cut1; cut2).

% For each vertex V and each cut C, V is on either the s-side or

% the t-side of V. Note this rule is disjunctive.

onSideOf(V,s,C) | onSideOf(V,t,C) :- vertex(V); cut(C).

% An event belongs to the cut side of its vertex.

onSideOf(E,X,C) :- inVertex(E,V); onSideOf(V,X,C).

% Any subgoal is always on the t-side of cut2.

onSideOf(subgoal(F),t,cut2) :- subgoal(F).

% If there’s a directed edge from D to E, but D is on the t-side

% and E is on the s-side, this is not a cut (invalidating this

% counterexample to strong minimality).

not_counterexample :- edge(D,E); onSideOf(D,t,C); onSideOf(E,s,C).

% If a fluent starts on the s-side of cut2 and ends on the t-side,

% then it "holds over" cut2.

holdsOver(FO,cut2) :-

onSideOf(start(FO),s,cut2); onSideOf(end(FO),t,cut2).

% Similarly if it starts and ends on the same side of cut1, then it

% doesn’t hold over cut1.

not_holdsOver(FO,cut1) :-

onSideOf(start(FO),X,cut1); onSideOf(end(FO),X,cut1).

% Action occurrence AO is not between cut1 and cut2 if it’s on the

% s-side of cut1 or the t-side of cut2.

not_betweenCuts(AO) :- onSideOf(AO,s,cut1).

not_betweenCuts(AO) :- onSideOf(AO,t,cut2).

% If no action occurs between the two cuts, then this is not a counterexample.

not_counterexample :- not_betweenCuts(AO) : happens(AO).

% If there exists a fluent for which some occurrence holds over cut2,

% but no occurrence holds over cut1, then this is not a counterexample.

not_counterexample :-

holdsOver(fluentOcc(F,_),cut2);

not_holdsOver(fluentOcc(F,M),cut1) : holds(fluentOcc(F,M)).

% There should be no counterexample (sorry for the triple negative).

:- not not_counterexample.

% If this is not a counterexample, all atoms must hold.

onSideOf(V,s,C) :- vertex(V); cut(C); not_counterexample.

onSideOf(V,t,C) :- vertex(V); cut(C); not_counterexample.

To see why this works, imagine that we find a plan which satisfies these rules. Consider the

candidate model which includes the atom not counterexample. Because all the rules here are

strictly positive, the last two rules force all the others to hold. Any other solution is a strict subset.
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Therefore if some other solution exists which does not include the not counterexample atom,

then a model including it would be rejected for not being minimal. It follows that the only models

which include not counterexample (and satisfy the triple-negative rule) are those for which no

counterexample exists.

% ========================= Suffix Layer ===============================

% All goal fluents hold in the suffix layer.

suffix(holds(F)) :- goal(F).

% If a fluent holds in the suffix layer, either some action causes it

% or it is a subgoal.

{subgoal(F); suffix(causes(A,F)) : add(A,F)} = 1 :- suffix(holds(F)).

% If an action causes a fluent in the suffix, it happens.

suffix(happens(A)) :- suffix(causes(A,_)).

% If an action occurs in the suffix layer, then all of its

% preconditions hold in ths suffix layer

suffix(holds(F)) :- suffix(happens(A)); pre(A,F).

% If any action happens in the suffix layer, then we are using it.

useSuffix :- suffix(happens(_)).

% A fluent is supported in the suffix if it’s a subgoal

suffix(sup(holds(F))) :- subgoal(F).

% An action is supported in the suffix if all of its preconditions are

suffix(sup(happens(A))) :-

suffix(sup(holds(F))) : pre(A,F); suffix(happens(A)).

% A fluent is supported in the suffix if its causing action is

suffix(sup(holds(F))) :- suffix(sup(happens(A))); suffix(causes(A,F)).

% No action happens in the suffix without support

:- suffix(happens(A)); not suffix(sup(happens(A))).

% No fluent holds in the suffix without support

:- suffix(holds(F)); not suffix(sup(holds(F))).

% Actions that happen in the suffix layer impose their cost.

:~ suffix(happens(A)); cost(A,V).[V,A,suffix]

% Very weak preference to avoid using the suffix layer.

:~ useSuffix.[1@-1]

% ========================== Saturated ================================

% A fluent is saturated if all occurrences of it hold (besides the 0th).

saturated(fluent(F)) :-

holds(fluentOcc(F,M)) : is(fluentOcc(F,M)),M>0; fluent(F).

% An action is saturated if all occurrences of it happen.

saturated(action(A)) :-
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happens(actOcc(A,N)) : is(actOcc(A,N)); action(A).

% If an action happens in the suffix layer and all of its preconditions

% are subgoals, we designate it a "starting" action.

suffix(start(action(A))) :- subgoal(F) : pre(A,F); suffix(happens(A)).

% Any fluent caused by a starting action is designated a "starting" fluent.

suffix(start(fluent(F))) :- suffix(start(action(A))); suffix(causes(A,F)).

% Guarantees that some starting action or fluent will be saturated.

:- useSuffix; not saturated(X) : suffix(start(X)).

% =======================================================================

#show causes/2. #show deletes/2. #show happens/1.

#show holds/1. #show permits/2. #show follows/2.

#show suffix(happens(A)) : suffix(happens(A)).

Appendix E An Example of Stepless Planning: Bridge Crossing

We will use a modified version of the bridge-crossing problem from (Eiter et al. 2003).

In the original problem, we have four people, Joe, Jack, William, and Averell, needing to cross

a bridge in the middle of the night. The bridge is unstable, so at most two people can cross at a

time. The four only have a single lantern between them and since there are planks missing it is

unsafe to cross unless someone in your party is carrying the lantern. In the original problem, it

takes Joe 1 minute to run across, Jack 2 minutes, William 5 minutes and Averell 10. When two

people cross together they must go at the slower speed of the two. What’s the fastest all four

can get across considering that after each crossing somebody needs to cross back carrying the

lantern?

In our version we’ll add two more people Jill and Candice for a total of six people. Jill takes 3

minutes to cross and Candice takes 20 (the original problem doesn’t make for a very interesting

example of stepless planning).

We can now phrase the problem as follows:

person(joe;jack;jill;william;averell;candice)

side(side_a;side_b)

crossing_time(joe,1).

crossing_time(jack,2).

crossing_time(jill,3)

crossing_time(william,5).

crossing_time(averell,10).

crossing_time(candice,20).

fluent(lantern_at(S)) :- side(S).

fluent(at(P,S)) :- person(P); side(S).

init(at(P,side_a)) :- person(P).

init(lantern_at(side_a)).
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goal(at(P,side_b)) :- person(P).

action(cross_alone(P,FROM,TO)) :-

person(P); side(FROM); side(TO); FROM != TO.

pre(cross_alone(P,FROM,TO),at(P,FROM)) :-

action(cross_alone(P,FROM,TO)).

pre(cross_alone(P,FROM,TO),lantern_at(FROM)) :-

action(cross_alone(P,FROM,TO)).

add(cross_alone(P,FROM,TO),at(P,TO)) :-

action(cross_alone(P,FROM,TO)).

add(cross_alone(P,FROM,TO),lantern_at(TO)) :-

action(cross_alone(P,FROM,TO)).

del(cross_alone(P,FROM,TO),at(P,FROM)) :-

action(cross_alone(P,FROM,TO)).

del(cross_alone(P,FROM,TO),lantern_at(FROM)) :-

action(cross_alone(P,FROM,TO)).

cost(cross_alone(P,FROM,TO),C) :-

action(cross_alone(P,FROM,TO)); crossing_time(P,C).

action(cross_together(P_SLOW,P_FAST,FROM,TO)) :-

side(FROM); side(TO); FROM != TO;

crossing_time(P_SLOW,T1); crossing_time(P_FAST,T2); T2 < T1.

pre(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

pre(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

pre(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

add(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(TO)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_SLOW,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),at(P_FAST,FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

del(cross_together(P_SLOW,P_FAST,FROM,TO),lantern_at(FROM)):-

action(cross_together(P_SLOW,P_FAST,FROM,TO)).

cost(cross_alone(P_SLOW,P_FAST,FROM,TO),C) :-

action(cross_alone(P_SLOW,P_FAST,FROM,TO)); crossing_time(P_SLOW,C).

Let’s run the stepless solver on this. On the first iteration we input one occurrence of every

fluent and every action as well as a bonus zero’th occurrence of each initial fluent.

is(fluentOcc(F,1)) :- fluent(F).
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is(actOcc(A,1)) :- action(A).

is(fluentOcc(F,0)) :- init(F).

It gives back a directed graph of action and fluent dependencies. After toplogically sorting the

graph and throwing out everything that isn’t an action we have the plan:

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(william,jill,side_a,side_b)

cost: 29

In the suffix layer when Candice and Averell cross from side a to side b, the fluent lantern at(side a)

is not deleted (because the suffix layer encodes the delete-free relaxation of the problem), so this

is still considered to be achieved when Joe, and then William and Jill cross. Nobody needs to

bring the lantern back for them. The use of the suffix layer is allowed because there isn’t a sec-

ond occurrence of the fluent at( joe(sideb)), but this is a starting fluent (all 3 suffix actions are

starting actions since they do not depend on each other). Since the suffix layer was used, we add

a second occurrence of each of the fluents and actions which were saturated by this plan:

Adding:

is(fluentOcc(at(joe,side_a),2)).

is(fluentOcc(lantern_at(side_a),2)).

is(fluentOcc(lantern_at(side_b),2)).

is(fluentOcc(at(joe,side_b),2)).

is(fluentOcc(at(jack,side_b),2)).

is(actOcc(cross_together(jack,joe,side_a,side_b),2)).

is(actOcc(cross_alone(joe,side_b,side_a),2)).

and run it again:

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

suffix cross_together(jack,joe,side_a,side_b)

cost: 32

This time we start by having William and Joe cross together and then Joe carries the lantern

back, crosses with Jill and carries it back again. In the suffix layer, Candice and Averell cross

together while Jack and Joe cross together (each pair making use of the same undeleted lantern).

Again the suffix layer occurs because we don’t have enough occurrences of at( joe(side b)).

Interestingly, a cheaper solution seems to have been skipped. Namely the plan which is iden-

tical to the cost-29 plan, but with Joe running across and running back first for a total cost of

31.

This is because such a plan fails to make progress. We can produce two cuts, namely the one

at the start of the plan and the one after Joe crosses back the first time and see that no new fluents

hold between the two cuts. The rules enforcing strong minimality will reject this plan.
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Add another occurrence of each saturated item

Adding:

is(fluentOcc(at(joe,side_a),3)).

is(fluentOcc(lantern_at(side_a),3)).

is(fluentOcc(lantern_at(side_b),3)).

is(fluentOcc(at(joe,side_b),3)).

is(fluentOcc(at(jill,side_b),2)).

is(fluentOcc(at(william,side_b),2)).

is(actOcc(cross_together(jill,joe,side_a,side_b),2)).

is(actOcc(cross_together(william,joe,side_a,side_b),2)).

is(actOcc(cross_alone(joe,side_b,side_a),3)).

and again:

cross_together(william,jack,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(jill,jack,side_a,side_b)

suffix cross_alone(jack,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 33

Here we have William and Jack crossing together. Then Jack crosses back alone. Jill and

Jack cross together, and now Jack would cross back alone again taking the lantern, but there

are only two occurrences of the action cross alone( jack,side b,side a) in our bag so instead

we move into the suffix layer. In the suffix layer he carries the lantern back, but because of the

delete relaxation, we don’t lose the fluent at( jack,side b) so he doesn’t need to cross back again.

Candice and Averell use the lantern to cross as does Joe by himself.

The rest of the output from the stepless solver follows:

Adding:

is(fluentOcc(at(jack,side_a),2)).

is(fluentOcc(at(jack,side_b),3)).

is(actOcc(cross_together(jill,jack,side_a,side_b),2)).

is(actOcc(cross_together(william,jack,side_a,side_b),2)).

is(actOcc(cross_alone(jack,side_b,side_a),2)).

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 34
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Adding:

is(fluentOcc(at(joe,side_a),4)).

is(fluentOcc(lantern_at(side_a),4)).

is(fluentOcc(lantern_at(side_b),4)).

is(fluentOcc(at(joe,side_b),4)).

is(actOcc(cross_alone(joe,side_b,side_a),4)).

cross_together(jill,jack,side_a,side_b)

cross_alone(jill,side_b,side_a)

cross_together(william,jill,side_a,side_b)

suffix cross_alone(jill,side_b,side_a)

suffix cross_alone(joe,side_a,side_b)

suffix cross_together(candice,averell,side_a,side_b)

cost: 35

Adding:

is(fluentOcc(at(jill,side_a),2)).

is(fluentOcc(at(jill,side_b),3)).

is(actOcc(cross_together(william,jill,side_a,side_b),2)).

is(actOcc(cross_alone(jill,side_b,side_a),2)).

cross_together(jack,joe,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(jill,jack,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(william,jack,side_a,side_b)

suffix cross_alone(jack,side_b,side_a)

suffix cross_together(candice,averell,side_a,side_b)

cost: 36

Adding:

is(fluentOcc(at(jack,side_a),3)).

is(fluentOcc(at(jack,side_b),4)).

is(actOcc(cross_alone(jack,side_b,side_a),3)).

cross_together(jack,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jill,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(candice,averell,side_a,side_b)

cross_alone(jack,side_b,side_a)

cross_together(william,joe,side_a,side_b)

cross_alone(joe,side_b,side_a)

cross_together(jack,joe,side_a,side_b)

cost: 37
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In the last one, the suffix layer is not used so we’re done. No other plans need be searched.
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