
ar
X

iv
:1

90
8.

02
07

8v
1

 [
cs

.P
L

]
 6

 A
ug

 2
01

9

Under consideration for publication in Theory and Practice of Logic Programming 1

A Transformational Approach to Resource Analysis

with Typed-norms Inference∗

Elvira Albert, Samir Genaim

Dep. Sistemas Informáticos y Computación, Universidad Complutense de Madrid

C/ Prof. José Garćıa Santesmases 9, 28040 Madrid, Spain

(e-mail: elvira@fdi.ucm.es, samir.genaim@fdi.ucm.es)

Raúl Gutiérrez

Dep. Sistemes Informàtics i Computació, Universitat Politècnica de València

Camino de Vera S/N, 46022 València, Spain

(e-mail: rgutierrez@dsic.upv.es)

Enrique Martin-Martin

Dep. Sistemas Informáticos y Computación, Universidad Complutense de Madrid

C/ Prof. José Garćıa Santesmases 9, 28040 Madrid, Spain

(e-mail: emartinm@ucm.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In order to automatically infer the resource consumption of programs, analyzers track how
data sizes change along program’s execution. Typically, analyzers measure the sizes of data
by applying norms which are mappings from data to natural numbers that represent the sizes
of the corresponding data. When norms are defined by taking type information into account,
they are named typed-norms. This article presents a transformational approach to resource
analysis with typed-norms that are inferred by a data-flow analysis. The analysis is based on
a transformation of the program into an intermediate abstract program in which each variable
is abstracted with respect to all considered norms which are valid for its type. We also present
the data-flow analysis to automatically infer the required, useful, typed-norms from programs.
Our analysis is formalized on a simple rule-based representation to which programs written
in different programming paradigms (e.g., functional, logic, imperative) can be automatically
translated. Experimental results on standard benchmarks used by other type-based analyzers
show that our approach is both efficient and accurate in practice.

Under consideration in Theory and Practice of Logic Programming (TPLP).

KEYWORDS : resource analysis, typed-norms, data-flow analysis, program transformation

∗ This work was funded partially by the Spanish MICINN/FEDER, UE projects RTI2018-094403-B-C31
and RTI2018-094403-B-C32, MINECO projects TIN2015-69175-C4-2-R and TIN2015-69175-C4-1-R,
by the CM project S2018/TCS-4314, the GV project PROMETEO/2019/098, and the UPV project
SP20180225. Raúl Gutiérrez was also supported by INCIBE program “Ayudas para la excelencia de
los equipos de investigación avanzada en ciberseguridad”.

http://arxiv.org/abs/1908.02078v1

2 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

1 Introduction

Automated resource analysis (Wegbreit 1975) needs to infer how the sizes of data are

modified along program’s execution. Size is measured using so-called norms (Bossi et al. 1991)

which define how the size of a term is computed. Examples of norms are list-length which

counts the number of elements of a list, tree-depth which counts the depth of a tree, term-

size which counts the number of constructors, etc. Basically, in order to infer the resource

consumption of executing a loop that traverses a data-structure, the analyzer tries to in-

fer how the size of such data-structure decreases at each iteration w.r.t. the chosen norm.

Given a tree t, using a term-size norm, we infer that a loop like “while (t!=leaf) t=t.right;”

performs at most nodes(t) iterations, where function nodes returns the number of nodes

in the tree. This is because size analysis infers that at each iteration the instruction

t=t.right decreases nodes(t). However, by using the tree-depth norm, we will infer that

depth(t) is an upper bound on the number of iterations. The latter is obviously more

precise than the former bound as depth(t)≤nodes(t).

The last two decades have witnessed a wealth of research on using norms in ter-

mination analysis, especially in the context of logic programming (Bossi et al. 1991;

Bruynooghe et al. 2007; Genaim et al. 2002). Early work pointed out that the choice

of norm affects the precision such that the analyzer may only succeed to prove termina-

tion if a certain norm is used, while it cannot prove it with others. Later on, there has

been further investigation on applying multiple norms, i.e., using two or more norms by

applying them simultaneously (Bossi et al. 1991). This means that the same data in the

original program is replaced by two or more abstract data each one specifying its size

information w.r.t. the corresponding norm. Even a further step has been taken on using

typed-norms which allow defining norms based on type information (namely on recur-

sive types) (Bruynooghe et al. 2007). Inferring norms from type information makes sense

as recursive types represent recursive data-structures and thus, in termination analysis,

they identify some potential sources of infinite recursion and, in resource analysis, they

might influence the number of iterations that the loops perform. Besides, typed-norms

allow that the same term can be measured differently depending on its type. As pointed

out in (Genaim et al. 2002), this is particularly useful when the same function symbol

may occur in different type contexts.

In the context of resource analysis, we found early work that already pointed out that

the combination of norms affects the precision of lower-bound time analysis (King et al. 1997).

Sized-types provide a way to consider more than one norm for each type. They have been

used in the context of functional (Pedro Vasconcelos 2008; Vasconcelos and Hammond 2003)

and recently in logic programming (Serrano et al. 2013; Serrano et al. 2014). In the for-

mer case, they are inferred by a type analysis and in the latter via abstract interpretation.

In contrast, we propose a transformational approach which provides a simple and accurate

way to use multiple typed-norms in resource analysis as follows: (1) we first transform the

program into an intermediate abstract program in which each variable is abstracted with

respect to all considered norms valid for its type, (2) such intermediate program is then

transformed into upper and lower resource bounds automatically. As regards the first

phase, we formalize the transformation assuming that the input programs are given in a

simple rule-based representation. The rule-based representation contains program rules,

pattern matching and assignment using a compact syntax. Programs written in first-

A Transformational Approach to Resource Analysis with Typed-norms Inference 3

order functional or imperative programming languages can be represented by means of

this representation in a straightforward way (since this representation can model control-

flow graphs with procedure calls). Logic programs can be represented as well by replacing

matching (and assignment) by unification, without any further change in our analysis.

As regards the second phase, note that we are interested in relying on existing techniques

and using them as a black-box without modifying them. This is important since they

receive abstract programs that come from different sources, and we do not want to make

any change that is particular to our transformation that might break the functionality

of other parts. Thus, formalizing our framework focuses only on the first step.

While allowing multiple norms might lead to more accurate bounds than adopting

one norm, the efficiency of the analysis can be degraded considerably. This is because

the process of finding resource bounds from abstractions that have more arguments (due

to the use of multiple norms) is more costly. Thus, an essential aspect for the practical

applicability of our method is to obtain the smallest sets for the relevant typed-norms,

i.e., eliminate those abstractions that will not lead to further precision. For this purpose,

we present a new algorithm for the inference of typed-norms which, by inspecting the

program, can detect which norms are useful to later infer the resource consumption, and

discard norms that are useless for this purpose. Our inference is formalized as a data-flow

analysis which is applied as a pre-process, such that once the relevant norms are inferred,

the transformation into the abstract program is carried out w.r.t. the inferred norms.

1.1 Summary of Contributions

The main contributions of this article can be summarized as follows:

1. We introduce a transformation from the rule-based representation to an abstract

representation in which each variable is abstracted with respect to all considered

norms valid for its type, and prove soundness of the process.

2. We present to the best of our knowledge the first algorithm for the inference of

typed-norms that are relevant to infer the resource consumption, and prove sound-

ness of the type inference step.

3. We extend our approach to handle polymorphic types and context-sensitive norms.

4. We perform an experimental evaluation and compare the results with those ob-

tained using other systems (Hoffmann et al. 2012; Serrano et al. 2014).

This article is an extended and revised version of a conference paper that was published

in the proceedings of LOPSTR 2013 (Albert et al. 2014). The main extensions w.r.t. the

conference paper affect all points above. As regards (1), we now provide a semantics for

the rule-based representation and for the abstract representation and prove soundness of

the transformation process, while (Albert et al. 2014) did not have soundness results. (2)

The formalization of the algorithm for the inference of typed-norms and its soundness

are new contributions of this article. In (Albert et al. 2014) the inference algorithm was

informally presented without any theoretical result, but in this extended revised ver-

sion we present a completely formalized data-flow algorithm for inferring typed-norms,

prove its termination and also prove that the detected typed-norms cover those that

may affect the program executions, i.e., the inference algorithm is correct. (3) Also,

in (Albert et al. 2014), we had considered only monomorphic types. (4) The experiments

4 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

of (Albert et al. 2014) have also been improved to deal with the same benchmarks as

in related work (Hoffmann et al. 2012; Serrano et al. 2014) and a comparison with these

systems has been included. We also have analyzed an industrial case study to show the

performance of our approach when handling larger programs.

1.2 Organization of the Article

The article is organized as follows. In Section 2 we describe the syntax and the semantics

of the rule-based representation. Section 3 presents our transformational approach to

resource analysis with typed-norms. We start by reviewing the concept of typed-norm in

Section 3.1. It is then extended to symbolic typed-norm and used to define the program

abstraction in Section 3.2. Soundness of the transformation is proven in Section 3.3.

Section 4 presents a typed-norms inference algorithm that is essential for the scalability

of our approach. It infers the smallest sets for the typed-norms that are relevant for the

inference of upper bounds. Section 4.1 formalizes the inference process and Section 4.2

proves its soundness. In Section 5.1 we describe the extension of our approach to handle

polymorphic types. Section 6 contains our experimental evaluation, Section 7 compares

our approach to related work, and Section 8 concludes. Finally, Appendix A contains the

proofs of the theoretical results.

2 A Rule-based Language

To simplify the presentation, we formalize our approach on a compact program syntax

called rule-based representation (RBR) that contains program rules, pattern matching,

and assignment. It already incorporates static single assignment (Cytron et al. 1991)

(each variable is assigned exactly once). Recursion is the only iterative mechanism and

rule guards are the only conditional constructions in the RBR. Although simple, the

RBR syntax can represent programs from different programming languages by means

of an intermediate translation. For example, the RBR can be obtained from Java pro-

grams (Albert et al. 2012), from the functional part of Abstract Behavioral Specifica-

tion (Johnsen et al. 2012) (ABS) programs (Albert et al. 2015), and from the impera-

tive part of ABS (Albert et al. 2015). This RBR can handle core-Prolog programs as

well simply by interpreting the pattern matching as unification. Interestingly this does

not require any further change in our size abstraction since our abstract programs are

actually constraint logic programs. However, we note that analyzing abstract programs

that originate from logic programs for cost should be done by an analyzer that takes

failure into account (Serrano et al. 2014).

2.1 Syntax of the rule-based language

In order to present typed-norms and its impact on termination and resource analyses in

a clear way, for now we will consider only monomorphic types, although in Section 5.1

we will present the extension to polymorphic types.

Definition 1 (Monomorphic types)

A monomorphic type T can be a built-in data type as Int or an algebraic data type D

defined as:

A Transformational Approach to Resource Analysis with Typed-norms Inference 5

Dd ::= data D = Alt [| Alt]

Alt ::= Co[(T)]

where Co represents a data constructor and the notation [X] represents an optional

sequence of elements X . For simplicity, we assume that recursive types are in direct

recursive form, otherwise, we could consider mutually recursive types to be the same

type.

Example 1 (List of integer numbers)

Using the syntax presented in Def. 1 we can define the data type of integer lists (IntList)

as follows:

data IntList = Nil | Cons(Int, IntList)

In this case, the type of the nullary data constructor Nil is IntList, and the type of the

binary data constructor Cons is Int × IntList → IntList.

We define programs in rule-based representation (RBR programs in the sequel) as a

set of data declarations followed by typed procedures:

Definition 2 (RBR syntax)

P ::= [Dd] Proc

Proc ::= p :: T1 × · · · × Tk r

r ::= p(x̄, ȳ)← g, b1, . . . , bn
b ::= x:=t | p(x̄, ȳ)

g ::= true | g ∧ g | e > e | e = e | e ≥ e | match(x, p) | nonmatch(x, p)

p ::= Co(x̄)

t ::= e | Co(t̄)

e ::= x | n | e+e | e−e

RBR programs P are formed by an optional set of data declarations (Dd) followed

by a set of typed procedures (Proc). A typed procedure begins with a type declaration

p :: T1×· · ·×Tn×Tn+1×· · ·×Tn+m stating the types T1, . . . , Tn of its n input arguments

x̄ (n ≥ 0) and the types Tn+1, . . . Tn+m of its m output arguments ȳ (m ≥ 0). After the

type declarations there is a set of guarded rules (r), where p(x̄, ȳ) is the head of the

rule, the guard g specifies the conditions for the rule to be applicable and b1, . . . , bn are

the statements in the rule’s body. For clarity, we sometimes enclose input and output

arguments with angles “〈” and “〉”, i.e., p :: 〈T1 × · · · × Tn〉 × 〈Tn+1 × · · · × Tn+m〉 and

p(〈x̄〉, 〈ȳ〉). If a program P has n rules, we say that |P | = n and P i represents the i-th rule

of P . Guards match(x, p) and nonmatch(x, p), where x 6∈ vars(p) and x and p are of the

same type, check if the value stored in variable x matches with pattern p. Patterns (p) are

data constructors Co applied to variables. Terms (t) can be expressions (variables, integer

numbers or arithmetic operations over expressions) or data constructors Co applied to

properly typed terms (e.g., Cons(6, y), where 6 has type Int and y has type IntList). Terms

not containing variables are called closed terms (a.k.a. ground terms). We assume that

RBR programs are well-typed, i.e., every term and subterm in the program (including

variables) have a type assigned that is coherent with procedure type declarations and

data constructor types, considering a standard monomorphic type system (Pierce 2002).

6 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

1 data IntList = Nil | Cons(Int, IntList)
2

3 fact :: 〈Int〉 × 〈Int〉

41 fact(〈n〉, 〈prod’〉) ← true,
5 prod := 1,
6 while 0(〈n, prod〉, 〈prod’〉)
7

8 while 0 :: 〈Int× Int〉 × 〈Int〉

92 while 0(〈n, prod〉, 〈prod’〉) ← 0 >= n
10 prod’ := prod

113 while 0(〈n, prod〉, 〈prod’〉) ← 0 < n,
12 prod1 := prod ∗ n,
13 n1 := n − 1,
14 while 0(〈n1, prod1〉, 〈prod’〉)
15

16 factSum :: 〈IntList〉 × 〈Int〉

174 factSum(〈l〉, 〈sum’〉) ← true,

18 sum := 0,
19 while 1(〈l, sum〉, 〈sum’〉)
20

21 while 1 :: 〈IntList× Int〉 × 〈Int〉

225 while 1(〈l, sum〉, 〈sum’〉) ←
23 match(l, Nil),
24 sum’ := sum

256 while 1(〈l, sum〉, 〈sum’〉) ←
26 match(l, Cons(e,l1)),
27 fact(〈e〉, 〈prod〉),
28 sum1 := sum + prod,
29 while 1(〈l1, sum1〉, 〈sum’〉)
30

31 main :: 〈〉 × 〈Int〉

327 main(〈〉 × 〈r’〉) ← true,
33 l := Cons(2, Nil),
34 factSum(〈l〉, 〈r’〉)

Fig. 1. RBR program.

(1)
b ≡ x:=t evalt(t, lv) = v

〈p, b·bs , lv〉·C ❀ 〈p, bs , lv [x 7→ v]〉·C

(2)

b ≡ m(x̄, ȳ) m(x̄′, ȳ′)← g, b1 · · · bk ∈ P fresh

lv1 ≡ [x ′ 7→ lv(x)] evalg(g , lv1) = lv2
〈p, b·bs , lv〉·C ❀ 〈m, b1 · · · bk , lv1 ⊎ lv2 〉·〈p[y ′ ∼ y], bs , lv〉·C

(3)
〈m, ǫ, lv1 〉·〈p[y ′ ∼ y], bs , lv〉·C ❀ 〈p, bs , lv [y 7→ lv1 (y ′)]〉·C

Fig. 2. Operational semantics of rule-based programs

Example 2 (RBR program)

Figure 1 contains the RBR of a program with three principal procedures: fact computes

the factorial of an integer number, factSum traverses a list of integer numbers and adds

the factorial value for each element, and main is the entry point of the program that

invokes factSum with the unitary list Cons(2,Nil). Both fact and factSum have only one

rule each, which establishes the value of the accumulator and invokes while n. Each loop

is a procedure with two rules: one for finishing the loop and other for computing one

iteration. For example, the first rule of while 0 has the guard 0 >= n (Line 9) to check

that the loop has finished, therefore returning the input accumulator as output value.

On the other hand, the second rule of while 0 (lines 11–14) contains the guard 0 < n that

checks that the loop has not finished yet. In that case, updated values of prod and n are

stored in prod1 and n1 (recall the use of static single assignment) and those values are

used in the recursive call. Finally, main is a procedure with one rule that simply invokes

factSum.

A Transformational Approach to Resource Analysis with Typed-norms Inference 7

2.2 Semantics of the rule-based language

The rule-based language is evaluated using an operational semantics based on variable

mappings and configurations, which are defined as:

Definition 3 (Variable mappings)

A variable mapping lv ∈ LV is a mapping [x 7→ v] that associates values v (namely integer

numbers or ground constructed terms) to variables x. We use the symbol ǫ for empty

mappings and lv1 ⊎ lv2 for the union of variable mappings with disjoint domain. The

notation lv [x 7→ v] represents the extension of lv with the new mappings [x 7→ v] (this

operation redefines the previous mappings for variables x if they appear in the domain of

lv). The application lv(x) returns the value v associated to variable x, and lv(t) returns

the term resulting of replacing every variable in t by its value in lv (similarly for patterns

p).

Example 3 (Variable mappings)

Consider two variable mappings lv1 ≡ [x 7→ 3 , y 7→ Nil] and lv2 ≡ [z 7→ Cons(3 ,Nil)].

Since lv1 and lv2 have disjoint domains its union lv1 ⊎ lv2 is defined, with result [x 7→

3, y 7→ Nil, z 7→ Cons(3,Nil)]. On the other hand, lv1 [x 7→ Nil, z 7→ 0] = [y 7→ Nil, x 7→

Nil, z 7→ 0] because the mapping x 7→ 3 has been redefined in the extension of lv1 .

Definition 4 (Configurations)

A configuration (or call stack), denoted as C , is a sequence of activation records. An

activation record is a triple of the form 〈p, b·bs , lv〉 where p is a procedure name,1 b is the

next statement to execute, bs is the sequence of statements after b, and lv is the variable

mapping that stores the values of the procedure parameters and local variables. Elements

in sequences are separated by dots, where the last element of the sequence can represent

the rest of the sequence (for example b1 · b2 · bs or 〈p, b·bs , lv〉 · C), and we overload the

symbol ǫ to denote empty sequences.

Figure 2 shows the rules of the operational semantics (❀) that evaluates RBR pro-

grams. We consider a function evalt(t, lv) that evaluates a term t under a variable map-

ping lv , returning a value v, and a function evalg(g, lv) that checks if a guard g is satisfied

under a variable mapping lv , returning a new (possibly empty) mapping that performs

pattern matching.2 Figure 2 contains 3 rules. Rule (1) evaluates activation records where

the next statement is an assignment. In that case the value obtained from the right-hand

side is introduced in the variable mapping of the activation record. Rule (2) evaluates

an activation record where the next statement is a procedure call m(x̄, ȳ). The first step

is to obtain a fresh version of a rule of m with all its variables renamed to avoid any

collision. Then a variable mapping lv1 is created for parameter passing and this mapping

is used to evaluate the rule guard g. If the guard is evaluated to true, a new activation

record with the rule body and the variable mapping3 lv1 ⊎ lv2 (where lv2 is generated

1 While procedure names are not really needed in the operational semantics, they increase clarity and
simplify the proofs in Appendix A.

2 The straightforward definition of these functions can be found in Appendix A.
3 Static single assignment guarantees that x does not appears in lv1 , so we could use mapping union
instead of extension.

8 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

during the evaluation of the guard) is inserted in front of the configuration. Note that

the activation record of the caller stores the relation y′ ∼ y between the output values of

the rule and the output parameters of the call. Finally, rule (3) handles empty activation

records, which are removed after the output values of the callee are stored in the variable

mapping of the caller.

When needed, we decorate steps with two values ❀a·b: the semantic rule a applied—

(1), (2) or (3)—and the program rule number b used, considering the whole program. If

the step is not a procedure call i.e., it uses semantic rules (1) or (3), the program rule

number is set to ǫ. Examples of these decorations can be seen in the next example:

Example 4 (Evaluation of an RBR program)

The evaluation of the main procedure in Figure 1 proceeds as shown below. For simplicity,

when obtaining fresh names for variables—rule (2) in Figure 2—we simply use subscripts

(n) with the same number as the current configuration Cn , we have underlined the

statement that controls each step, and we write ❀
∗ for several ❀-steps. Note that the

program rule of factSum is the 4th rule in the program, and the second rule of while 1 is

the 6th rule in the program.

C0 ≡〈main, l0:=Cons(2, Nil) · factSum(〈l0〉,〈r’0〉), ǫ〉❀(1)·ǫ

C1 ≡〈main, factSum(〈l0〉,〈r’0〉), [l0 7→ Cons(2, Nil)]〉❀(2)·4

C2 ≡〈factSum, sum2:=0 · while 1(〈l2, sum2〉, 〈sum’2〉), [l2 7→ Cons(2, Nil)]〉·

〈main[sum’2 ∼ r’0], ǫ, [l0 7→ Cons(2, Nil)]〉❀(1)·ǫ

C3 ≡〈factSum,while 1(〈l2, sum2〉, 〈sum’2〉), [l2 7→ Cons(2, Nil), sum2 7→ 0]〉·

〈main[sum’2 ∼ r’0], ǫ, [l0 7→ Cons(2, Nil)]〉❀(2)·6

C4 ≡〈while 1, fact(〈e4〉,〈prod4〉) · · ·while 1(〈l14,sum4〉,〈sum’4〉), [l4 7→ Cons(2, Nil),

sum4 7→ 0, e4 7→ 2, l14 7→ Nil]〉·

〈factSum[sum’4 ∼ sum’2], ǫ, [l2 7→ Cons(2, Nil), sum2 7→ 0]〉·

〈main[sum’2 ∼ r’0], ǫ, [l0 7→ Cons(2, Nil)]〉❀∗

C5 ≡〈while 1, ǫ, [l4 7→ Cons(2, Nil), sum4 7→ 0, e4 7→ 2, l14 7→ Nil, sum’4 7→ 2]〉·

〈factSum[sum’4 ∼ sum’2], ǫ, [l2 7→ Cons(2, Nil), sum2 7→ 0]〉·

〈main[sum’2 ∼ r’0], ǫ, [l0 7→ Cons(2, Nil)]〉❀(3)·ǫ

C6 ≡〈factSum, ǫ, [l2 7→ Cons(2, Nil), sum2 7→ 0, sum’2 7→ 2]〉·

〈main[sum’2 ∼ r’0], ǫ, [l0 7→ Cons(2, Nil)]〉❀(3)·ǫ

C7 ≡〈main, ǫ, [l0 7→ Cons(2, Nil), r’0 7→ 2]〉

Definition 5 (Traces and sequences of steps)

A trace T = C0 ❀
r1 C1 ❀

r2 . . . ❀rn Cn is a sequence of ❀-steps from an initial

configuration C0 . Given a trace T , its steps are defined as steps(T) = 〈r1, r2, . . . , rn〉,

i.e., the sequence of step decorations of the ❀-steps in T . Finally, the set of trace steps

combines the steps of all the possible traces starting from a given configuration. Formally,

Tr(C0) = {steps(C0 ❀
r1 C1 ❀

r2 . . .❀rn Cn) | n ∈ N}. These notions will play an

important role when defining the soundness of the abstraction (Section 3.3) and the

soundness of the typed-norms inference in Section 4.2.

Let us informally discuss how the operational semantics is typically instrumented to

account for cost of traces. We first assume that our language includes a special instruction

tick(n), where n is a number, which is used to simulate a consumption of n resources.

A Transformational Approach to Resource Analysis with Typed-norms Inference 9

Note that n can be negative to simulate release of resources as well. In practice, we also

allow the use any arithmetic expression instead of n, but for simplicity we assume it is

a constant. Next, we instrument activation records with a global resource consumption

counter called cost, and add a corresponding semantic rule for tick(n) that simply sets

cost to cost− n. A trace T is said to be valid if cost never takes negative values, i.e.,

cost is initialized with an amount of resources that is enough to carry out this particular

execution. The cost of a trace is the minimal initial value for cost that makes it valid.

Finally, a function f that maps initial configurations to nonnegative values is called an

upper bound on the worst-case cost if, for any initial configuration C0 , setting the initial

value of cost to f(C0) guarantees generating valid traces only. It is called a lower bound

on the best-case cost if, for any initial configuration C0 , setting the initial value of cost

to a value smaller than f(C0) generates an invalid trace.

3 Size Abstraction Using Typed-Norms

The resource analysis framework we rely on (Albert et al. 2007; Albert et al. 2015) per-

forms two phases: (1) the program is transformed into an abstract representation where

data are replaced by their sizes, and (2) such intermediate program is then analyzed to ob-

tain upper/lower bounds on the resource consumption. In this section we will present how

to abstract the size of program data using typed-norms and we will show that this abstrac-

tion is sound wrt. the original semantics of RBR programs. The second phase, performed

by cost relation solvers like PUBS (Albert et al. 2013), CoFloCo (Flores-Montoya and Hähnle 2014;

Flores-Montoya 2016) or the solver in CiaoPP (Serrano et al. 2014), is independent of the

technique applied to abstract data sizes and therefore will not be covered in this paper.

3.1 Preliminaries on Typed-Norms

In order to obtain the abstract representation of a program, we first replace data with

numbers representing their sizes and then transform each instruction to linear constraints

that reflect how these sizes change. The mapping from data structures to sizes is done

by means of size functions (usually called norms). The most well-known norm used in

the literature is term-size (Bossi et al. 1991; Bruynooghe et al. 2007), which counts the

number of constructors in a given data structure:

Definition 6 (Term-size norm)

The size of a term t using the term-size norm is defined as: ‖Co(t1, . . . , tn)‖ts = 1 +∑n
i=1 ‖ti‖ts .

Notice that term-size is defined for terms containing only data constructors and cannot

handle integer numbers.

Example 5 (Term-size norm)

Consider the following program that uses binary trees (BT), list of binary trees (BTL),

and lists of lists of binary trees (BTLL).

10 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

1 data BT = E | B(BT, BT)

2 data BTL = N | C(BT, BTL)

3 data BTLL = NL | CL(BTL,BTLL)

4

5 trees :: 〈BTL〉 × 〈Int〉

6 trees(〈l〉,〈n’〉) ← match(l, N),

7 n’ := 0

8 trees(〈l〉,〈n’〉) ← match(l, C(h,t)),

9 trees(〈t〉, 〈nt〉),

10 n’ := 1 + nt

11

12 sumtrees :: 〈BTLL〉 × 〈Int〉

13 sumtrees(〈l〉, 〈n’〉) ← match(l, NL),

14 n’ := 0

15 sumtrees(〈l〉,〈n’〉) ← match(l, CL(h,t)),

16 trees(〈h〉, 〈nh〉),

17 sumtrees(〈t〉, 〈nt〉),

18 n’ := nh + nt

The trees function counts the number of binary trees in a list of type BTL, and sumtrees

counts the number of binary trees in all the lists inside a list of type BTLL. Using the

term-size norm, an empty list N or NL has size 1 (one data constructor), whereas the list

C(E,C(E,N)) has size 5 (three list constructors plus two empty binary tree constructors).

The function sumtrees traverses every element of the list for computing its number of

trees. Using the term-size norm, a static analysis obtains a complexity of O(n2) for the

function sumtrees, where n is the total size of the original list (i.e., the number of list,

list of lists, and binary tree constructors). The size of each inner BTL list is bounded by

n, so each call to trees will contribute O(n) to the overall complexity. This is an example

where term-size is not very precise, as it does not keep separate the information about

the length of the BTLL list (l), the length of the inner BTL lists (s), and the size of the

binary trees (b) to obtain a more accurate complexity of O(l × s). Note that the size of

the binary trees does not play any role in the actual complexity of sumtrees because the

binary trees are not traversed.

In order to overcome the mentioned imprecision we use typed-norms, which distinguish

data constructors according to their types. Using this kind of norms we can measure

the length of a list and the size of its elements separately, similarly to what has been

done in the context of termination analysis of logic programs (Bruynooghe et al. 2007).

Before introducing typed-norms, we present some notation about types that will be used

throughout the paper:

Definition 7

Given two types T1 and T2, we say that T2 depends on T1, written T1 � T2, if the

definition of type T2 uses (either directly or transitively) type T1. Relying on this notion,

we define the set of constituent types of T as Constituents(T) = {T ′ | T ′ � T } ∪ {T },

i.e., all the types involved in the definition of T including T itself. If T � T we say that

T is a recursive type. We use typei(t) to refer to the type of a term t in the i-th rule of

the program, or simply type(t) if the rule is clear from the context (note that the same

variable can have different types in different rules). As the program is well-typed then

every term t has a monomorphic type assigned, so typei(t) simply returns that type.

By definition of IntList—Line 1) in Figure 1—we have that Int � IntList and

IntList � IntList, therefore IntList is a recursive type and Constituents(IntList) =

{Int, IntList}.

Definition 8 (Typed-norms for closed terms)

A Transformational Approach to Resource Analysis with Typed-norms Inference 11

We consider two typed-norms for computing the size of a closed term t regarding a

type T : ‖t‖+T and ‖t‖T . We will not contemplate integer values for the first norm but

non-negative integer numbers (denoted as Int+) as we explain later.

‖t‖+T =

t if T = Int+ and type(t) = Int+

0 if T 6= Int+ and type(t) = Int+

1 +
∑n

i=1 ‖ti‖
+
T if t = Co(t1, . . . , tn) and type(t) = T

∑n

i=1 ‖ti‖
+
T if t = Co(t1, . . . , tn) and type(t) 6= T

‖t‖T =

t if T = Int and type(t) = Int

0 if T 6= Int and type(t) = Int

1 +
∑n

i=1 ‖ti‖T if t = Co(t1, . . . , tn) and type(t) = T

maxn
i=1‖ti‖T if t = Co(t1, . . . , tn) and type(t) 6= T

Note that, in the last case of the definition of ‖t‖T , the max of an empty set is −∞ if T is

Int, and 0 otherwise. In principle, this depends on the domain of the elements whosemax

we are taking. The intuition behind these typed-norms is to count the number of data

constructors of type T that appear in term t. For integer numbers they simply return

their value, whereas for constructed terms they check whether the term has type T or

not in order to count the constructor in the head. The difference is how to handle those

nested subterms of type T that occur in a bigger term of type different from T : ‖t‖+T sums

the sizes of those subterms, whereas ‖t‖T just keeps the size of the maximal subterm. The

reason to constrain ‖t‖+T to Int+ instead of Int is that adding the integers inside a data

structure provides a size that is not sound when negative values are involved. For example,

‖Cons(3, Cons(-3, Nil))‖+Int would be 0. On the other hand, ‖Cons(3, Cons(-3, Nil))‖Int =

3, so we know that any integer inside the list is smaller than or equal to 3. We claim

that ‖t‖T suits better in the static analysis framework we consider, as we explain in

Example 6.

In our rule-based language we only consider the basic type of integer numbers, so the

rest of values are constructed using data constructors Co. However, typed-norms could be

easily extended to support more basic types by providing a suitable case in the definition

of ‖·‖+T and ‖·‖T . For example, if String were a basic type, we could define the size of

strings as their length: ‖·‖+T = length(t) if T = String and type(t) = String (similarly

for ‖·‖T).

Example 6 (Typed-norms for closed terms)

Consider the program involving lists of binary trees shown in Example 5. The program

does not contain integer values but only constructed data, so in this case both typed-

norms ‖·‖T and ‖·‖+T are sound. Regarding the list types BTL and BTLL, both typed-

norms obtain the same values: ‖N‖+BTL = ‖N‖BTL = 1 and ‖NL‖+BTLL = ‖NL‖BTLL = 1 because

they contain exactly one list constructor. They also coincide in the list of type BTLL

with two elements t ≡ CL(C(E,C(E,N)), CL(N,NL)) regarding the type BTLL—‖t‖+BTLL =

‖t‖BTLL = 3—as both count the number of list constructors: two constructors CL and one

NL. However, the two norms differ wrt. type BTL: ‖t‖+
BTL

= 4 because it is the sum

of all the BTL constructors in the list, 3 in the first element and one in the second

element, but ‖·‖BTL = 3 as it is the maximum number of BTL constructors that appear

12 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

in some element of the list. This difference has an impact on the concrete upper bounds

obtained by static analysis. For example, the function sumtrees defined in Example 5 has

an asymptotic complexity of O(l × s) in both cases, where l is the size of the list of lists

BTLL and s is the size of its inner lists BTL. The size of any list l is the same using both

typed-norms (‖l‖+BTLL = ‖l‖BTLL), however, the size of its elements of type BTL will differ

(‖l‖+BTL ≥ ‖l‖BTL). Since the static analysis framework we are considering is compositional

and assumes worst-case scenarios for each iteration, the upper bound obtained using ‖·‖T
will in general be tighter.

As a final comment, note that we could also define a typed-norm analogous to ‖·‖T that

estimates the minimum value, by replacing “max” with “min”. This would be useful in

situations where the upper bounds depend on the minimum value that an inner element

of type T can take, for example in recursive definitions where the value increments in

every invocation. Similarly, if we replace the sum in the definition of ‖·‖T by “max”, then

we estimate the depth of terms instead of the number of their constructs. This is useful

in cases like the example in Section 1. Note that all these norms can be used at the same

time, so the size of some elements could be measured using minimum, maximum, depth,

etc., if these values are relevant for the cost.

3.2 Our Transformational Approach

Next we describe how to use typed-norms to translate RBR programs to abstract pro-

grams that only contain procedure calls and constraints between sizes. From this informa-

tion the resource analysis framework can produce cost relations (Albert et al. 2011) to ob-

tain the desired bounds. The main feature of our approach is that we allow the use of sev-

eral abstractions for the same variable at the same time, as in (Bruynooghe et al. 2007).

Thus, we can estimate the size of a term using different measures, and even relations

between sizes of different measures which might be crucial for precision as claimed

in (Bruynooghe et al. 2007).

This is important since two different parts of the program might traverse two different

parts of the same data structure, so having both measures allows us to provide tighter

bounds. Since rules will usually contain variables, we need symbolic versions of typed-

norms. These versions extend the typed-norms presented in Definition 8 with new cases

for handling variables. In the following definition we only show the symbolic typed-norm

‖·‖T , but it is analogous for ‖·‖+T . Notice that we use the same notation to represent

typed-norms for closed terms and their symbolic counterparts because the version used

is clear from the context.

A Transformational Approach to Resource Analysis with Typed-norms Inference 13

Definition 9 (Symbolic typed-norms)

The symbolic typed-norm to compute the size of a term t (possibly with variables)

regarding a type T is defined as:

‖t‖T =

XT if t ≡ x and T ∈ Constituents(type(x))

−∞ if t ≡ x, T = Int and Int /∈ Constituents(type(x))

n if t ≡ n and T = Int

‖e1‖T ± ‖e2‖T if t ≡ e1 ± e2 and T = Int

1 +
∑n

i=1 ‖ti‖T if t = Co(t1, . . . , tn) and type(t) = T

maxn
i=1‖ti‖T if t = Co(t1, . . . , tn) and type(t) 6= T

0 in other case

Note that, as in the closed case, the max of an empty set is −∞ if T = Int, and 0

otherwise. When a variable x is abstracted using a type T ∈ Constituents(type(x)), it

generates a variable XT . On the other hand, abstracting variables not related to Int

using the type T = Int generates the size −∞. This special case is useful to obtain

precise sizes in terms containing integer numbers and variables like pairs (Int, Seq).

For example, we get ‖Pair(−5, x)‖Int = max(‖−5‖Int, ‖x‖Int) = max(−5,−∞) = −5

because Int /∈ Constituents(type(x)) = {Seq}, which is more precise than a size of 0

obtained if ‖x‖Int = 0. Integer numbers are abstracted to themselves if T is Int, and

in integer expressions with T = Int both subexpressions are abstracted recursively. The

cases for data constructors are similar to Definition 8. Finally, if the type T 6= Int

is not valid wrt. the type of t, i.e., t cannot include any subterm of type T , then the

symbolic typed-norm simply returns 0. Notice that the symbolic version is equivalent to

the typed-norm defined in Definition 8 for closed terms.

As an example, consider the term 3 + x where both 3 and x have type Int. The

abstractions wrt. Int and IntList are ‖3 + x‖Int = 3 + XInt and ‖3 + x‖IntList = 0.

If we consider a more complex term like t ≡ Cons(z,Cons(5,Nil)) we have that ‖t‖Int =

max(ZInt,max(5, 0)) and ‖t‖IntList = 1 + 1 + 1 = 3.

In some cases it is inevitable to measure the size of a variable x wrt. all its depen-

dent types—Constituents(type(x))—to bound the resource consumption of a program.

However, often many types do not play any role for termination or resource consump-

tion and therefore can be safely ignored. In order to consider only those important types

we use the notion of relevant types. For every variable x and rule i in the program,

we write rtypes i(x) to refer to the set of types wrt. which we want to measure the

size of that variable. In Section 4 we explain how to automatically infer these types.

If the rule is clear from the context, we usually omit the subscript. Note that the set

rtypes(x) must be a subset of all dependent types of a variable x in a program rule, i.e.,

rtypes i(x) ⊆ Constituents(typei(x)).

Using the above symbolic typed-norms and the notion of relevant type-norms we can

define our transformation of RBR programs. Figure 3 contains the definition of the

function ·α that abstracts guards, statements, rules, and procedures into procedure calls

and conjunctions of arithmetic constraints between sizes4. In all these cases we assume

4 Relations (=, >,≥) between linear expressions containing integer variables representing sizes.

14 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Guard (g) Guard abstraction (gα)

true ⊤
g1 ∧ g2 gα1 ∧ g

α
2

e1 op e2 (e1 op e2)[y 7→ YInt], where op ∈ {>,=,≥}
and {y} = vars(e1 op e2)

match(x, p)
∧

{XT = ‖p‖T | T ∈ rtypes(x)}
nonmatch(x, p) ⊤

Statement (b) Statement abstraction (bα)

p(x̄, ȳ) p(X̄, Ȳ)
x := t

∧

{XT = ‖t‖T | T ∈ rtypes(x)}

Rule (r) Rule abstraction (rα)

p(x̄, ȳ)← g, b1, . . . , bn p(X̄, Ȳ)← gα ∧ non neg(S), bα1 , . . . , b
α
n

where S =
⋃n

i=1 vars(bi) ∪ vars(g) ∪ {ȳ} ∪ {x̄}

Procedure (Proc) Procedure abstraction (Procα)

p :: T1 × · · · × Tk r1 . . . rm rα1 . . . r
α
m

Fig. 3. Size abstraction for guards, statements, rules, and procedures

that given a type T ∈ rtypes(x) the variable XT is an integer valued variable representing

the size of (the value of) x w.r.t. the typed-norm ‖.‖T . If T 6= Int, then we implicitly

assume XT ≥ 0, as constructed terms cannot have negative size. For a sequence of

variables x̄, we consider X̄ is a sequence that results from replacing each variable xi by

X i
T1
, . . . , X i

Tn
, where rtypes(xi) = {T1, . . . , Tn}.

As shown in Figure 3, the trivial guard true is transformed into the truth value ⊤,

the identity element of conjunction. Conjunction of guards (g1 ∧ g2) is abstracted into

the conjunction of their size abstractions. Arithmetic guards are abstracted by replacing

their variables y with YInt. For example, the expression 5 is directly abstracted as 5,

whereas x+y+8 is abstracted as XInt+YInt+8. Match guards—match(x, t)—generate a

conjunction with as many elements as types in rtypes(x). Each element in the conjunction

will be an equality between the variable XT (the size of x wrt. T) and ‖t‖T (the size of

the term t wrt. T , computed using the symbolic typed-norm). For example, if rtypes(z) =

{Int, IntList}, the abstraction of match(z,Cons(6 ,Nil)) will be the conjunction ZInt =

max(6, 0) ∧ ZIntList = 2. On the other hand, the nonmatch(x, t) guard is abstracted to

the truth value ⊤, as it does not provide any information relating the sizes of x and t.

Regarding statements, the abstraction of a procedure call p(x̄, ȳ) simply replaces each

variable with variables related to its different sizes5 (for example, p(x, y) is abstracted to

p(XInt, XIntList, YInt) considering rtypes(x) = {Int, IntList} and rtypes(y) = {Int}).

Likewise, an assignment x := t is abstracted by generating a conjunction of equalities

between the different variables XT and their sizes. The abstraction of a rule p(x̄, ȳ) ←

g, b1, . . . , bn proceeds compositionally by abstracting its head, the guard and all the

5 When needed, we use angles “〈” and “〉” to enclose input and output variables, as we do in Section 2.

A Transformational Approach to Resource Analysis with Typed-norms Inference 15

statements. As mentioned before, non-integer variables in a rule are assumed to be non-

negative. The abstraction inserts these constraints explicitly using function non neg(S),

where S is the set of variables occurring in the rule. The definition of non neg(S) is the

following:

non neg(S) =
∧
{XT ≥ 0 | x ∈ S, T ∈ rtypes(x), T 6= Int}

Finally, the abstraction of a procedure is the abstraction of all its rules.

Definition 10 (Program abstraction)

Given a program P ≡ [Dd] Proc, its size abstraction Pα is obtained by abstracting each

procedure, i.e., Pα ≡ Procα.

Figure 4 shows the abstraction for a fragment of the running example given in Figure 1.

When using the typed-norm ‖·‖T in Definition 9, Pα might include constraints of the

form XT = E where E is an arithmetic expression that involves “max”. If the second

phase of the resource analysis framework does not support this kind of constraints, they

can be approximated using linear constraints as follows: (1) replace the sub-expression

max(B1, . . . , Bn) by a new auxiliary variable A, (2) add the constraints A ≥ B1∧· · ·∧A ≥

Bn; and (3) if Bi ≥ 0 for all 1 ≤ i ≤ n, then add the constraint B1 + . . . + Bn ≥ A as

well. This process might be applied repeatedly in case of nested or multiple occurrences

of max. In the case of nested “max” expression, we try to flatten them first. Notice that

this approximation is not the only approach to handle max constraints, as they could also

be approximated as in (Alonso-Blas et al. 2011). Moreover, in practice, the constant −∞

(that we used in the definition of norms) can safely be replaced by any other constant

— replacing it by the minimum value that syntactically appears in the program (or by

0) works well in practice.

Example 7 (Program abstraction)

Figure 4 shows the abstraction using the typed-norm ‖·‖T of the procedures factSum,

while 1 and main from Figure 1. Each line contains a comment indicating if it involves

non-negativity constraints or is the abstraction of a particular line of the original RBR

program. We assume that list variables (x ∈ { l, l1}) have rtypes(x) = {Int, IntList},

whereas integer variables (x ∈ { sum, sum’, e, prod, sum1, r’}) have rtypes(x) = {Int}.

The abstraction proceeds rule by rule, abstracting rule heads, guards, and statements; so

rule numbers (gray circles in the left margin) does not change from the concrete program.

Notice that the constraints from the guard are combined with the non-negativity of all

the non-integer variables of each rule. The most interesting part is the abstraction of

the guard match(l, Cons(e,l1)) in the second rule of while 1. For the type Int, the guard

generates LInt = max(EInt, L1Int)—which could be approximated by linear constraints—

and for the type IntList the guard generates the constraint LIntList = 1 + L1IntList,

stating that the new list l1 is one constructor smaller than l.

Note that deterministic programs can be abstracted to non-deterministic programs if

different terms of the same type have the same size. For example, consider the simple

data type data Dir = Up | Down, and the following price :: 〈Dir〉 × 〈Int〉 procedure:

price(〈x〉,〈y〉) ← match(x, Up), y := 10 price(〈x〉,〈y〉) ← match(x, Down), y := 0

Since rtypes(x) = Dir and rtypes(y) = Int in both rules, and ‖Up‖Dir = ‖Down‖Dir = 1,

the program abstraction results in the nondeterministic version:

16 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

14 factSum(〈LInt, LIntList〉, 〈Sum’Int〉) ← ⊤ // RBR line 17
2 ∧ LIntList ≥ 0, // non-negativity constraints
3 SumInt = 0, // RBR line 18
4 while 1(〈LInt, LIntList , SumInt〉, 〈Sum’Int〉) // RBR line 19
5

65 while 1(〈LInt, LIntList , SumInt〉, 〈Sum’Int〉) ← // RBR line 22
7 LInt = −∞ ∧ LIntList = 1 // RBR line 23
8 ∧ LIntList ≥ 0, // non-negativity constraints
9 Sum’Int = SumInt // RBR line 24

10

116 while 1(〈LInt, LIntList , SumInt〉,〈Sum’Int〉) ← // RBR line 25
12 LInt = max(EInt, L1Int) ∧ LIntList = 1 + L1IntList // RBR line 26
13 ∧ LIntList ≥ 0 ∧ L1IntList ≥ 0, // non-negativity constraints
14 fact(〈EInt〉, 〈ProdInt〉), // RBR line 27
15 Sum1Int = SumInt + ProdInt, // RBR line 28
16 while 1(〈L1Int, L1IntList , Sum1Int〉, 〈Sum’Int〉) // RBR line 29
17

187 main(〈〉, 〈R’Int〉) ← ⊤ // RBR line 32
19 ∧ LIntList ≥ 0,// non-negativity constraints
20 LInt = 2 ∧ LIntList = 2,// RBR line 33
21 factSum(〈LInt, LIntList〉, 〈R’Int〉)// RBR line 34

Fig. 4. Abstraction of a fragment of the RBR program from Figure 1.

price(〈XDir〉,〈YInt〉) ←

XDir = 1, YInt = 10

price(〈XDir〉,〈YInt〉) ←

XDir = 1, YInt = 0

However, the possible nondeterminism introduced by the abstraction is not a problem

from the point of view of soundness, as any trace in the deterministic program can

be performed in the nondeterministic abstraction. This result is presented in the next

section.

3.3 Soundness

The abstraction presented in the previous section transforms RBR programs into abstract

programs, which the resource analysis framework can take as input for computing bounds.

Therefore, we ensure that the size of variables that are observed in ❀ traces of RBR

programs can be observed in traces of their abstractions. In order to prove this soundness

result, we need an abstract operational semantics for abstract programs, which is an

adaptation of the operational semantics for RBR programs in Figure 2. This abstract

operational semantics evaluates abstract configurations step by step:

Definition 11 (Abstract configurations)

An abstract configuration, denoted as AC ≡ arα|ψ, is a sequence arα of abstract activa-

tion records followed by a conjunction ψ of constraints. Similarly, an abstract activation

record, denoted as 〈bsα〉, is a sequence of constraint conjunctions and abstract procedure

calls p(X̄, Ȳ). We use Greek letters (ψ, ϕ, . . .) to denote constraint conjunctions, bα to

denote one constraint conjunction or one abstract procedure call, and bsα to denote a

sequence bα1 · · · b
α
n.

A Transformational Approach to Resource Analysis with Typed-norms Inference 17

(1)
ψ∧ϕ 6|= false

〈ϕ · bsα〉 · arα|ψ ❀α 〈bs
α〉 · arα|ψ∧ϕ

(2)
p(X̄ ′, Ȳ ′)← ϕ, bα1 , . . . , b

α
n ∈ Pα fresh X = X ′ ∧ ϕ∧ψ 6|= false

〈p(X̄, Ȳ) · bsα〉 · arα|ψ ❀α 〈b
α
1 · · · b

α
n〉

Y =Y ′

· 〈bsα〉 · arα|X = X ′ ∧ ϕ∧ψ

(3)
ψ∧Y = Y ′ 6|= false

〈ǫ〉Y =Y ′

· arα|ψ ❀α ar
α|ψ∧Y = Y ′

Fig. 5. Operational semantics of abstract rule-based programs

Figure 5 contains the operational semantics ❀α that evaluates abstract configura-

tions regarding an abstract program Pα. Rule (1) handles abstracted assignments, which

are translated into conjunctive constraints ϕ. If ϕ is consistent wrt. the global set of

constraints (ψ ∧ ϕ 6|= false) then it is added to the global constraints and the evalu-

ation continues with the next element of the abstract activation record. Rule (2) han-

dles procedure invocation. First, we obtain a fresh rule from the abstract program Pα.

Then, if the parameter passing, the guard and the global constraints are consistent

(X = X ′ ∧ ϕ∧ψ 6|= false),6 a new abstract activation record containing the body of

the procedure is inserted in the abstract configuration.

Similarly to the ❀ semantics, the relation Y = Y ′ between the output variables and the

parameters is stored as a mark. Finally, rule (3) removes an empty abstract activation

record if the output variables are consistent with the global constraints. Notice that

global constraints accumulate variables from all the abstract activation records, even

those whose execution has finished and therefore have been removed. Similarly to ❀,

we use the notion of abstract trace T α = AC 0 ❀
r1
α AC 1 ❀

r2
α . . . ❀rn

α ACn where its

steps are defined as steps(T α) = 〈r1, r2, . . . , rn〉, and the set of abstract trace steps as

the combination of the steps of all the possible abstract traces starting from a given

configuration (Tr(AC 0) = {steps(AC 0 ❀
r1 AC 1 ❀

r2 . . .❀rn AC n) | n ∈ N}.

Example 8 (Evaluation of an abstract program)

The abstract evaluation of the main procedure in Figure 1 proceeds similarly to Exam-

ple 4. When obtaining fresh names for variables—rule (2) in Figure 5—we use super-

scripts with the same number as the current abstract configuration ACn. For simplicity,

the statement or constraint that controls each step is underlined, the constraints in each

abstract configuration AC i are denoted as ψi and ⊤ is omitted. Each step ❀
a·b
α is deco-

rated with the semantic rule a and abstract program rule b used, and ❀
∗
α refers to many

❀α-steps.

6 We use the notation X = X′ to denote the conjunction of constraints
∧

X = X′.

18 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

AC 0 ≡〈L0
Int = 2 ∧ L0

IntList = 2 · factSum(〈L0
Int, L

0
IntList〉, 〈R

′0
Int〉)〉 | L

0
IntList ≥ 0 ❀

(1)·ǫ
α

AC 1 ≡〈factSum(〈L0
Int, L

0
IntList〉, 〈R

′0
Int〉)〉 | L

0
IntList ≥ 0 ∧ L0

Int = 2 ∧ L0
IntList = 2 ❀

(2)·4
α

AC 2 ≡〈Sum
2
Int = 0 · while 1(〈L2

Int, L
2
IntList, Sum

2
Int〉, 〈Sum

′2
Int〉)〉

R′0
Int=Sum ′2

Int ·

〈ǫ〉 | ψ1 ∧ L0
Int = L2

Int ∧ L
0
IntList = L2

IntList ∧ L
2
IntList ≥ 0 ❀

(1)·ǫ
α

AC 3 ≡〈while 1(〈L2
Int, L

2
IntList, Sum

2
Int〉, 〈Sum

′2
Int〉)〉

R′0
Int=Sum′2

Int ·

〈ǫ〉 | ψ2 ∧ Sum2
Int = 0 ❀

(2)·6
α

AC 4 ≡〈fact(〈E4
Int〉, 〈Prod

4
Int〉) · · ·〉

Sum ′2
Int=Sum ′4

Int ·

〈ǫ〉R
′0
Int=Sum′2

Int ·

〈ǫ〉 | ψ3 ∧ L2
Int = L4

Int ∧ L
2
IntList = L4

IntList ∧ Sum2
Int = Sum4

Int∧

L4
Int = max(E4

Int, L1
4
Int) ∧ L

4
IntList = 1 + L14IntList∧

L4
IntList ≥ 0 ∧ L14IntList ≥ 0 ❀

∗
α

AC 5 ≡〈ǫ〉Sum
′2
Int=Sum ′4

Int ·

〈ǫ〉R
′0
Int=Sum′2

Int ·

〈ǫ〉 | ψ5 ❀
(3)·ǫ
α

AC 6 ≡〈ǫ〉R
′0
Int=Sum′2

Int ·

〈ǫ〉 | ψ5 ∧ Sum ′2
Int = Sum ′4

Int ❀
(3)·ǫ
α

AC 7 ≡〈ǫ〉 | ψ6 ∧R′0
Int = Sum′2

Int

In AC 3 the first program rule of while 1 (Line 6 in Figure 4) cannot be used to evaluate

the call because the guard is not compatible with the global set of constraints, namely:

L2
IntList = L4

IntList ∧ L
4
IntList = 1 ∧ L0

IntList = L2
IntList ∧ L

0
IntList = 2 |= false. Therefore,

the evaluation can only proceed with the second rule of while 1 (Rule 6, Line 11 in

Figure 4).

The soundness result relates ❀-traces starting from a configuration C with abstract

❀α-traces starting from the abstraction of C . The following definitions present the ab-

straction of configurations, which is based on ‖·‖T and the abstraction of statements

defined in Figure 3.

Definition 12 (Variable mapping abstraction)

The abstraction of a variable mapping lv is defined as lvα =
∧
{XT = ‖lv(x)‖T | x ∈

dom(lv),T ∈ rtypes(x)}. Notice that lvα is a conjunction of equalities between distinct

XT variables and integer values, since lv(x) are concrete values and therefore ‖lv(x)‖T
generates integer numbers.

Definition 13 (Configuration abstraction)

Let C = 〈p1 , bs1 , lv1 〉···〈pn , bsn , lvn〉 be a configuration. Its abstraction is defined as:

Cα = 〈bsα1 〉···〈bs
α
n 〉|ψ where ψ = lvα

1 ∧ . . . ∧ lvα
n . Notice that ψ is a conjunction of

equalities between distinct XT variables and integer values, since every activation record

uses fresh variables and ψ is the conjunction of abstracted variable mappings.

The following theorem establishes the soundness of our translation using typed-norms:

for any trace C0 ❀
∗ Cn it is possible to create an abstract trace Cα

0 ❀
∗
α arα|ψ with the

same steps.

A Transformational Approach to Resource Analysis with Typed-norms Inference 19

Theorem 1 (Soundness)
If T ≡ C0 ❀

∗ Cn then there is an abstract trace T α ≡ Cα
0 ❀

∗
α arα|ψ such that

steps(T) = steps(T α), Cα
n = arα|ψ̃ and ψ ∧ ψ̃ 6|= false.

Intuitively, the above theorem states that the sizes of the variables of the concrete

configuration Cn , w.r.t. the corresponding norm, define a model of the abstract state

configuration.

Let us now informally explain how abstract programs preserve cost. The idea is to

simulate the same process that we have described at the end of Section 2. First, during

the abstraction phase the instruction tick(n) is kept in the abstract program. Next, we in-

strument abstract activation records with a cost counter costα, and add a corresponding

abstract semantic rule for tick(n) that simply sets costα to costα−n. An abstract trace

T α is said to be valid if costα never takes negative values, i.e., cost is initialized with

an amount of resources that is enough to carry out this particular abstract execution.

Finally, a function fα that maps initial abstract configurations to nonnegative values

is called an upper bound on the (abstract) worst-case cost if, for and AC 0, setting the

initial value of costα to fα(AC 0) guarantees generating valid abstract traces only. It is

called a lower bound on the best-case cost if, for any AC 0, setting the initial value of

costα to a value smaller than fα(AC 0) generates an invalid abstract trace. The function

fα is typically given in terms of the input abstract variables, i.e., in terms of the sizes

of the corresponding data. The black-box component that infer the cost of the abstract

program, infers such functions.

Given the statement of Theorem 1, it is easy to see that if fα is is an upper (resp.

lower) bound on the abstract worst-case (resp. best-case) cost, then it is also an upper

(resp. lower) bound on the concrete cost (up to rewriting it in terms of typed-norms

instead of corresponding abstract variables).

As a final remark, let us mention that although the paper and the experiments focus

on upper bounds inference, our transformation is valid also to infer lower bounds as it

ensures that the cost of every trace is preserved by the transformed program.

4 Inference of Relevant Types

As explained in the previous section, in order to abstract the size of a variable x in

the rule number i we consider a set rtypes i(x) containing its relevant types. It is safe to

assume that rtypes i(x) contains all the constituent types of x. However, the complexity of

the solving phase that obtains bounds grows exponentially with the number of variables

involved, so it is very important to obtain the smallest sets for the relevant typed-norms.

In this section we will present the inference algorithm for relevant types as well as its

soundness result.

As it was observed in (Albert et al. 2008), variables that do not affect the cost can

be removed from the abstract program and the bounds obtained do not change. In

our setting, the cost of a program depends primarily on the number of recursive calls

performed, which is affected by the guards in the rules. Therefore, any variable that does

not affect directly or indirectly the value of a guard can be ignored. We push this idea

further and detect, from each variable, those types that do not affect a guard evaluation

directly or indirectly. These types are useless from the point of view of resource analysis,

so they should be discarded from the set of relevant types of the variable.

20 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

The main intuition behind the algorithm for inferring relevant types is detecting those

constituent types of a guard variable that are involved in the guard evaluation. For

example, in match(l, Cons(x,xs)) we say that the type IntList of variable l is involved

in the guard evaluation because the pattern matched is of type IntList. On the other

hand, the type Int of the same variable is not involved in the guard evaluation because

it can succeed or fail regardless of the possible Int values stored in l. Once we have this

information from the guards, we propagate it backwards to include those relevant types

in the rest of variables that can affect the value of the guard variable. Relevant types

will be propagated to the rules formal parameters, where they will be combined with the

relevant types from the rest of rules of the same procedure. Similarly, when invoking a

procedure, the relevant types of the formal parameters will be included in the variables

of the actual arguments.

Example 9 (Intuition of relevant types inference)

Consider the RBR program in Figure 1. From Line 9 (Rule 2) we discover that Int is

involved in the arithmetic guard 0 >= n for procedure while 0, so Int ∈ rtypes2(n). The

procedure while 0 is invoked in Line 6 of Rule 1 , so that this relevant type is propagated

to the fact rule, i.e., Int ∈ rtypes1(n). Similarly, fact is invoked in Line 27 of the Rule

6 corresponding to the while 1 predicate, so Int will be a relevant type for variable e.

That rule contains a guard match(l, Cons(e,l1)) in Line 26, so Int will be propagated

from variable e to l, i.e., Int ∈ rtypes6(l). After another step of propagation in Rule 4

(procedure factSum) we will obtain that Int ∈ rtypes4(l). In summary, the relevant type

Int detected in Rule 2 has been propagated to Rule 4 following the path 2 → 1

→ 6 → 4 . A similar but shorter process would produce that IntList ∈ rtypes4(l) by

propagating it in the path 5 → 4 . In this case all the constituent types of IntList are

relevant types for the parameter l in factSum (Rule 4), as the resource usage depends

both in the length of the list and its stored numbers.

4.1 Formalization of relevant type inference

We formalize the relevant types inference algorithms as a data-flow analysis that con-

structs a mapping for the complete program. This mapping relates a set of relevant types

to every variable in the program, and is defined as follows:

Definition 14 (Rule and program mappings)

A rule mapping M ∋ µ = [x 7→ P (Types)] maps variables x̄ in a rule to sets of types.

The domain of µ is denoted as dom(µ) = {x̄}, and µ(x) returns the set of relevant types

related to variable x. We use ǫ to denote an empty rule mapping.

A program mapping ΣP ∋ σ = 〈µ1, µ2, . . . , µn〉 aggregates the mappings of all the rules

of a program P , considering that P has n rules. We use the notation σ(i) = µi to refer

to the ith rule mapping in σ, and σ(i)(x) to refer to the set of relevant types of variable

x in the ith rule.

Rule and program mappings support the following set of standard operations (exten-

sion, ordering, combination, restriction and renaming) that we use in the formalization

of the inference algorithm.

A Transformational Approach to Resource Analysis with Typed-norms Inference 21

Definition 15 (Operations on rule and program mappings)
A rule mapping can be extended to a program mapping by assigning it to the ith rule and

considering the empty mapping for the rest of rules. The extension of a rule mapping is

denoted as 〈µ〉ni = 〈ǫ1, . . . , ǫi−1, µ, ǫi+1, . . . , ǫn〉.

We consider the natural order of rule mappings based on subset inclusion. We say that

µ ⊑ µ′ iff. ∀x ∈ dom(µ). µ(x) ⊆ µ′(x). This order is extended to program mappings as

follows: σ ⊑ σ′ iff. σ(i) ⊑ σ′(i) for all rule i.

Rule mappings can be combined using the commutative and associative operator ⊕,

defined as:

(µ⊕ µ′)(x) =

µ(x) ∪ µ′(x) if x ∈ dom(µ) ∩ dom(µ′)

µ(x) if x ∈ dom(µ)r dom(µ′)

µ′(x) if x ∈ dom(µ′)r dom(µ)

undefined i.o.c.

If a variable x appears in both rule mappings, its typed-norms are combined, otherwise

it takes the typed-norms from the mapping where it appears. Notice that variables not

appearing in dom(µ1) nor dom(µ2) are undefined in µ1⊕µ2. We also consider the combi-

nation of program mappings of the same length by proceeding element-wise. We overload

the symbol ⊕:

〈µ1, . . . , µn〉 ⊕ 〈µ
′
1, . . . , µ

′
n〉 = 〈µ1 ⊕ µ

′
1, . . . , µn ⊕ µ

′
n〉

When combining sequences of mappings we use the notation
⊕n

i=1 µi = µ1 ⊕ . . . ⊕ µn,

and
⊕

σ∈C σ = σ1 ⊕ . . .⊕ σn for combining sets C = {σ1, . . . , σn} of program mappings.

Rule mappings can be restricted to a set of variables C, formally:

(µ|C)(x) =

{
µ(x) if x ∈ C

undefined i.o.c.

Finally, we use µx̄∼ȳ to denote the renaming of a rule mapping µ, where the variables

x̄ = x1, . . . , xn are renamed to ȳ = y1, . . . , yn (we consider that {x̄} ⊆ dom(µ) and

{ȳ} ∩ dom(µ) = ∅):

(µx̄∼ȳ)(z) =

µ(xi) if z = yi
µ(z) if z ∈ dom(µ)r {x̄}

undefined i.o.c.

Example 10 (Operations on rule and program mappings)
Consider the following rule mappings:

µ1 = [x 7→ {Int}, y 7→ {Int, IntList}]

µ2 = [y 7→ {IntList}]

µ3 = [y 7→ {Int}]

We have that µ2 ⊑ µ1 ({IntList} ⊆ {Int, IntList} for variable y) and µ3 ⊑ µ1 ({Int} ⊆

{Int, IntList} for variable y) but µ1 6⊑ µ2 (x /∈ dom(µ2)) and µ2 6⊑ µ3 ({IntList} 6⊆ {Int}

for variable y). Regarding combination, we have that µ2 ⊕ µ3 = [y 7→ {Int, IntList}] and

µ1 ⊕ µ2 = µ1 ⊕ µ3 = µ1. The restriction of rule mappings simply reduces the domain, so

µ1|{x} = [x 7→ {Int}] and µ1|{y} = [y 7→ {Int, IntList}]. Finally, the renaming changes the

variables in the domain, for example µ1x,y∼a,b = [a 7→ {Int}, b 7→ {Int, IntList}] because

x is renamed by a and y is renamed by b.

22 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

genP : ΣP 7→ ΣP

genP (σ) = σ ⊕
⊕n

i=1 gen
P
i (σ)

genP
i : ΣP 7→ ΣP

genP
i (σ) = 〈genGP

i (g, σ)〉
n
i ⊕ genSP

i ({b̄}, σ)⊕ 〈µi〉
n
i , where

P i = p(x̄, ȳ)← g, b̄, µi =
⊕

µ∈Si
µ and

Si = {(σ(j)|w̄z̄)w̄z̄∼x̄ȳ | j ∈ [1..n], P j = p(w̄, z̄)← g′, b̄′}

genGP
i : Guard× ΣP 7→M

genGP
i (true , σ) = ǫ

genGP
i (g1 ∧ g2, σ) = genGP

i (g1, σ)⊕ genGP
i (g2, σ)

genGP
i (e1 op e2, σ) = [x 7→ {Int} | x ∈ vars(e1) ∪ vars(e2)]

genGP
i (match(x, p), σ) = [x 7→ {T} | T = type i(x), T is recursive] ⊕

[x 7→ {T | y ∈ vars(p), T ∈ σ(i)(y)}]
genGP

i (nonmatch(x, p), σ) = [x 7→ {T | y ∈ vars(p), T ∈ σ(i)(y)}]

genSP
i : P (Statement)× ΣP 7→ ΣP

genSP
i ({b̄}, σ) =

⊕

b∈{b̄} genS
P
i (b, σ)

genSP
i : Statement×ΣP 7→ ΣP

genSP
i (x:=t, σ) = 〈[y 7→ Tx,y,i | y ∈ vars(t)]〉ni , where

Tx,y,i = {T | T ∈ σ(i)(x) ∩ Constituents(typei(y))}
genSP

i (p(x̄, ȳ), σ) =
⊕

σ∈A∪B σ, where
A = {〈(σ(j)|w̄)w̄∼x̄〉

n
i | j ∈ [1..n], P j = p(w̄, z̄)← g, b̄}

B = {〈(σ(i)|ȳ)ȳ∼z̄〉
n
j | j ∈ [1..n], P j = p(w̄, z̄)← g, b̄}

Fig. 6. Functions for inferring typed-norms.

Next we explain the inference algorithm, which is based on the definition of genP that

is given in Figure 6. Let P be a program with n rules (|P | = n). Then the relevant types

inferred for the program is the least fixed point of the function genP , i.e., lfp(genP) ∈ ΣP .

Note that genP is a monotone function and ΣP is a finite complete lattice, so the least

fixed point can be computed exactly. Considering this fixed point, the notation rtypes i(x)

is defined as lfp(genP)(i)(x). The function genP takes a program mapping σ and extends

it with the new information from the different rules of the program. For each program

rule, it computes genP
i (σ) and combines them with the current program mapping.

The function genP
i takes the current program mapping and extends it using the infor-

mation in rule number i. This function processes a rule p(x̄, ȳ)← g, b̄ by combining the

information from the guard (genGP
i), the body (genSP

i) and also collecting the relevant

types from the parameters of all the rules of the same procedure (mapping µi). This last

step, which requires a renaming of the parameters w̄z̄ to x̄ȳ, forces rules of the same

predicate to have the same relevant types and therefore be abstracted to rules with the

same name and number of abstracted parameters.

The function genGP
i takes a guard g and a program mapping σ and generates new

relevant types in a rule mapping. This function proceeds by combining the new relevant

types obtained in every fragment of the guard. A true guard always succeeds, so it does

not impose any relevant type. Arithmetic guards e1 op e2 requires Int as a relevant

A Transformational Approach to Resource Analysis with Typed-norms Inference 23

type for any variable in the expression. If there is a match(x, p) guard and x has a

recursive type T then this type is included as a relevant type for x. Non-recursive types

are ignored because they cannot directly affect the number of recursions. However, if it

contains an inner recursive type it will be detected and propagated when computing the

fixed point. Finally, in match(x, p) and nonmatch(x, p) guards all relevant types already

detected in the variables of the pattern p are propagated to the matching variable x.

Note that in match(x, p) guards, the recursive type T of x will be only relevant if the

procedure is recursive, otherwise it will not affect the execution. Therefore, in practice

we can infer relevant types for recursive procedures and then transfer that information

to non-recursive ones.

The function genSP
i is overloaded. When it takes a set of statements {b̄} and a pro-

gram mapping σ then it traverses all the statements, invoking genSP
i for each one and

combining the results. When genSP
i is invoked with only one statement b then it prop-

agates the information from σ according to the statement processed. If b ≡ x:=t then

all the relevant types detected for x that are constituents of the type of some variable

y of the right-hand side t (set Tx,y,i) are propagated to that variable y. Finally, if the

statement is a procedure call p(x̄, ȳ) then the function propagates the relevant types of

the parameters. The set A propagates all the relevant types for the input parameters

w̄ of the rules j for the same procedure to the input parameters x̄ of the current rule

i. Similarly, the set B propagates the relevant types of the output parameters ȳ of the

current rule i to the output parameters z̄ of the rules j of the same predicate. Sets A

and B contain program mappings that are combined.

The result of the relevant types inference always exists, and it can be effectively com-

puted by iterating genP starting from the empty program typed-norms mapping, as we

state below.

Theorem 2

Consider a program P such that |P | = n. Then lfp(genP) exists and is the supremum of

the ascending Kleene chain starting from 〈ǫ1, . . . , ǫn〉.

Example 11 (Relevant types inference)

Here we explain how the functions in Figure 6 produce the result intuitively explained

in Example 9. We consider P as the RBR program in Figure 1. The process starts with

an empty program mapping σ0 = 〈ǫ, ǫ, ǫ, ǫ, ǫ, ǫ, ǫ〉. In the first iteration σ1 = genP (σ0),

when processing Rule 2 we obtain that Int ∈ σ1(2)(n) because of the call genGP
2 (0

>= n, σ0). In the next iteration, σ2 = genP (σ1), so that information is propagated to

Rule 1 , i.e., Int ∈ σ2(1)(n), thanks to the invocation genSP
1 (while 0(〈n, prod〉,〈prod’〉)

, σ1). This information is collected in the set A from Rule 2 . Similarly, that information

is propagated to Int ∈ σ3(6)(e) from the procedure call fact(〈e〉,〈prod〉) in Line 27 by

invoking genSP
6 (fact(〈e〉,〈prod〉), σ2). In the next step, the relevant type of e is propagated

to l—Int ∈ σ4(6)(l)—when processing the guard with genGP
6 (match(l, Cons(e,l1)), σ3).

Finally, the relevant type in the input parameter l of Rule 6 is propagated to Rule

4 when processing the procedure call with genSP
4 (while 1(〈l, sum〉,〈sum’〉), σ4), so Int ∈

σ5(4)(l). As the function genP is monotone, all this information will be kept in the least

fixed point.

24 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

4.2 Soundness of relevant types inference

The inference of relevant types previously presented obtains a set of interesting types for

every variable in every rule in the program. In order to state that those inferred types

are enough to guide the traces, we need to introduce a new notion: value variation.

Definition 16 (Value variation)

We say that v′ is a variation of v wrt. a type T (written v⊲T v′) if v′ results from replacing

some components of v with type T for other components of the same type. For exam-

ple, Cons(1, Nil) ⊲Int Cons(4, Nil)—replacing 1 by 4—and Cons(0, Cons(1, Nil)) ⊲IntList

Cons(1, Nil)—replacing the list completely.

Using the notion of variation, we can define when a type is useful for a variable: T

will be useful for a variable x in the i-th rule of a program if changing the value of that

variable changes the set of trace steps starting from a configuration of rule i. Formally:

Definition 17 (Useful type)

We say that a type T is useful for variable x in the i-th rule of a program P—written

usefulTi (x)—if there are configurations C0 and C ′
0 such that:

1. C0 = 〈p, b·bs , lv〉 · C1 , where b·bs are statements from the i-th rule of P

2. x ∈ dom(lv)

3. C ′
0 = 〈p, b·bs , lv ′〉 · C1 with lv ′ = lv [x 7→ v] and lv(x) ⊲T v

4. Tr(C0) 6= Tr(C ′
0)

Finally, we can state the soundness result of the inference of relevant types: if changing

some components of type T of a variable x in rule i affects the possible trace steps—i.e.

usefulTi (x)—then that type T will be inferred by our process—i.e. T ∈ rtypes i(x).

Theorem 3 (Soundness)

If usefulTi (x) then T ∈ rtypes i(x).

5 Extensions

The purpose of this section is to propose two extensions, which are very useful in practice,

to the previous analysis. This, moreover, demonstrates that extending our framework is

very easy.

5.1 Extension to Polymorphic Types

Let us now describe the extension of our approach to handle polymorphic types. First,

we extend the data type definition in Section 2 by adding polymorphic types.

Definition 18 (Polymorphic types)

Given a countable set of type variables VT , a polymorphic type T (VT) can be either a

monomorphic type T , a type variable α ∈ VT , or an algebraic data type D〈Γ〉 defined as:

pDd ::= data D〈Γ〉 = pAlt [| pAlt]

pAlt ::= Co[(T (Γ))]

where Γ ⊆ VT is a finite subset of variables and any type variable in the right-hand side

of a data type definition must be in the finite subset of variables in the left-hand side.

A Transformational Approach to Resource Analysis with Typed-norms Inference 25

1 data List〈A〉 =
2 Nil
3 | Cons(A, List〈A〉)
4

5 head〈A〉 :: <List〈A〉>×<A>

61 head(<l>,<e>) ←
7 match(l,Cons(e,l’))
8

9 tail〈A〉 :: <List〈A〉>×<List〈A〉>

102 tail(<l>,<l’>) ←
11 match(l,Cons(e,l’))

12 factSum :: <List〈Int〉>×<Int>

133 factSum(<l>, <sum’>) ← true,
14 sum := 0,
15 while 1(<l, sum>, <sum’>)
16

17 while 1 :: <List〈Int〉 × Int>×<Int>

184 while 1(<l, sum>, <sum’>) ← match(l, Nil)
19 sum’ := sum

205 while 1(<l, sum>, <sum’>) ←
21 nonmatch(l, Nil),
22 head(<l>, <e>),
23 fact(<e>, <prod>),
24 sum1 := sum + prod,
25 tail(<l>, <l1>),
26 while 1(<l1, sum1>, <sum’>)

Fig. 7. RBR program with polymorphic types.

Example 12 (Polymorphic list)
Using the syntax presented in Definition 18 we can define the data type of a polymorphic

list (List〈A〉) as follows:

data List〈A〉 = Nil | Cons(A, List〈A〉)

The type IntList in Definition 1 can be represented by the type List〈Int〉, where the

parametric type A is instantiated to Int.

The RBR program syntax in Definition 2 can also be extended by adding polymorphic

typed procedures in the following way:

Proc ::= p〈Γ〉 :: T (Γ)× · · · × T (Γ) r

In this context, properly typed terms must be understood as the natural extension to

polymorphic types. Figure 7 contains a RBR program with polymorphic types. In order

to avoid confusion with the angles used to represent polymorphic types, in the examples

of this section we use < and > to separate input and output arguments.

Analyzing RBR programs with polymorphic types can be done by transforming them

into equivalent programs with monomorphic types only. This basically creates monomor-

phic versions of procedures (and types) for every use of the polymorphic types. Note

that all possible uses (or instantiations) of the polymorphic types can be inferred us-

ing standard type inference algorithms. The following list of steps describes how such a

transformation can be carried out:

• For every polymorphic type definition D〈Γ〉 and every needed instantiation of the

polymorphic type, we replace the polymorphic type definition by new copies using

fresh monomorphic types and constructors.
• For every polymorphic procedure p〈Γ〉 and every needed instantiation of its poly-

morphic type declarations, we replace the polymorphic procedure by new copies

using fresh monomorphic types. Calls to procedures are also replaced by their

properly typed monomorphic translations.

26 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Note that, in addition, in some situations the user might be interested in analyzing

a polymorphic procedure without providing any calling context, i.e., the polymorphic

type cannot be instantiated to a monomorphic one in such cases. To handle these cases,

for every type variable A in the program, we create a corresponding fresh monomorphic

type A together with a fresh constant a, and then use those types to instantiate the

corresponding procedures.

Example 13

Consider the RBR program in Figure 7. We can analyze the program and extract that

head and tail are called in the body of while 1 with the type A instantiated to Int.

Therefore, we obtain the transformed program presented in Figure 8 and its abstraction

in Figure 9. Note also that we have instantiated procedures head and tail with respect

to the auxiliary monomorphic type A. This allows analyzing these procedures directly

without considering the calling context of while 1.

1 data A = a
2

3 data ListA =
4 NilA
5 | ConsA(A, ListA)
6

7 data ListInt =
8 NilInt
9 | ConsInt(Int, ListInt)

10

11 headA :: <ListA>×<A>

121 headA(<l>,<e>) ←
13 match(l,ConsA(e,l’))
14

15 headInt :: <ListInt>×<Int>

162 headInt(<l>,<e>) ←
17 match(l,ConsInt(e,l’))
18

19 tailA :: <ListA>×<ListA>

203 tailA(<l>,<l’>) ←
21 match(l,ConsA(e,l’))

22 tailInt :: <ListInt>×<ListInt>

234 tailInt(<l>,<l’>) ←
24 match(l,ConsInt(e,l’))
25

26 factSum :: <ListInt>×<Int>

273 factSum(<l>, <sum’>) ← true,
28 sum := 0,
29 while 1(<l, sum>, <sum’>)
30

31 while 1 :: <ListInt× Int>×<Int>

325 while 1(<l, sum>, <sum’>) ← match(l, NilInt)
33 sum’ := sum

346 while 1(<l, sum>, <sum’>) ←
35 nonmatch(l, NilInt),
36 headInt(<l>, <e>),
37 fact(<e>, <prod>),
38 sum1 := sum + prod,
39 tailInt(<l>, <l1>),
40 while 1(<l1, sum1>, <sum’>)

Fig. 8. Transformed RBR program.

Notice that, in this example, the number of arguments of head and tail procedures in

the different instantiated versions of Figure 9 are the same, but they can differ depending

on the instantiations of the type variables. In this way, we can keep the size relations

between input and output instantiated abstractions (this is not possible if we have only

one version of head and tail and a fixed number of arguments).

It is easy to check that any evaluation step given in the original RBR program is

translated into an evaluation step in the transformed RBR program. The rest of the

analysis follows from previous sections.

Another possibility for handling polymorphism could be to analyze every method once

and instantiate that information in every particular method invocation. However, this is

A Transformational Approach to Resource Analysis with Typed-norms Inference 27

1 headA(<LListA, LA>, <EA>) ←
2 LListA = L’ListA + 1
3 ∧ L’ListA ≥ 0 ∧ LA =max(EA,L’A)
4 ∧ EA ≥ 0 ∧ L’A ≥ 0,
5

6 headInt(<LListInt , LInt>, <EInt>) ←
7 LListInt = L’ListInt + 1
8 ∧ L’ListInt ≥ 0
9 ∧ LInt =max(EInt,L’Int),

10

11 tailA(<LListA, LA>, <L’ListA,L’A>) ←
12 LListA = L’ListA + 1
13 ∧ L’ListA ≥ 0 ∧ LA =max(EA,L’A)
14 ∧ EA ≥ 0 ∧ L’A ≥ 0,
15

16 tailInt(<LListInt , LInt>, <L’ListInt ,L’Int>)
17 ← LListInt = L’ListInt + 1
18 ∧ L’ListInt ≥ 0
19 ∧ LInt =max(EInt,L’Int),

20 factSum(<LListInt , LInt>, <Sum’Int>) ←
21 ⊤ ∧ LListInt ≥ 0 ∧ L’ListInt ≥ 0,
22 SumInt = 0,
23 while 1(<LListInt , LInt, SumInt>,
24 <Sum’Int>)
25

26 while 1(<LListInt , LInt, SumInt>,
27 <Sum’Int>) ←
28 LInt = −∞ ∧ LListInt = 1
29 ∧ LListInt ≥ 0
30 Sum’Int = SumInt

31

32 while 1(<LListInt , LInt, SumInt>,
33 <Sum’Int>) ← ⊤,
34 headInt(<LListInt , LInt>,<EInt>),
35 fact(<EInt>, <ProdInt>),
36 Sum1Int = SumInt + ProdInt,
37 tailInt(<LListInt , LInt>,<L1ListInt ,L1Int>),
38 while 1(<L1ListInt , L1Int, Sum1Int>,
39 <Sum’Int>)
40

Fig. 9. Abstraction of the polymorphic RBR program.

not an straightforward approach because different uses of the same polymorphic method

can involve a different number of norms whose sizes must be related. Our approach is not

completely modular and cannot be applied in every scenario (for example, polymorphic

recursion cannot be handled), but provides a simple and effective way of supporting

standard parametric polymorphism in our setting.

5.2 Context-Sensitive Norms

In this section, we propose a way to improve the precision of typed-norms using annota-

tions. When we define a data type, we can use the same type in different positions and for

different purposes. In such cases, if the type is not part of the recursive data structure,

we can distinguish the different uses of the same type. The corresponding upper bounds

are typically more precise and provide insights on the complexity of processing each part

of the data. Technically, to achieve this, we need to annotate non-recursive types with

their positions in the data type structures.

Definition 19 (Annotated Monomorphic types)

An annotated monomorphic type T can be a built-in data type as Int or an algebraic

data type D defined as:

Dd ::= data D = AltD [| AltD]

AltD ::= Co[(TD,Co,1, . . . , TD,Co,n)]

TD,Co,1 ::=

{
T if T is recursive in D

TCo,i if T is non-recursive in D

By unrolling annotated type definitions as trees we can extend Constituents(T) to

28 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

IntListPair

IntListPair,1

IntCons,1 IntList

IntListPair,2

IntCons,1 IntList

Fig. 10. Unrolled type definition tree view of type IntListList

consider the annotations in the path from the root to the types. Figure 10 shows the type

definition IntListPair = Pair(IntList, IntList) as a tree. From these annotations we obtain

Constituents(IntListPair) = {(IntListPair,Λ), (IntList, (Pair, 1)), (Int, (Pair, 1) ·

(Cons, 1)), (IntList, (Pair, 2)), (Int, (Pair, 2) · (Cons, 1))}, where each element of the

set is formed by a pair (type, chain of positions) that represents its annotations in the

tree, and the empty chain is represented by Λ. Notice that, if we do not have duplicated

non-recursive types, we obtain the same number of norms (but annotated).

Symbolic typed norms are extended to deal with annotated types. The intuition in

‖t‖(T,A) is that we traverse the annotated data structure usingA and when the annotation

is empty (Λ), we have reached the type-norm we want to compute and we can use a

definition similar to Definition 9.

Definition 20 (Symbolic annotated typed-norms)

The symbolic typed-norm to compute the size of a term t (possibly with variables)

regarding a type T is defined as ‖t‖(T,A) = ‖t‖
A
(T,A) where:

‖t‖Λ(T,A) =

X(T,A) if t ≡ x and (T,A) ∈ Constituents(type(x))

−∞ if t ≡ x, T = Int and (Int, A) /∈ Constituents(type(x))

n if t ≡ n and T = Int

‖e1‖Λ(T,A) ± ‖e2‖
Λ
(T,A) if t ≡ e1 ± e2 and T = Int

1 +
∑n

i=1 ‖ti‖
Λ
(T,A) if t = Co(t1, . . . , tn) and type(t) = T

maxn
i=1‖ti‖

Λ
(T,A) if t = Co(t1, . . . , tn) and type(t) 6= T

0 in other case

‖t‖
(Co,i)·rest
(T,A) =

‖ti‖
rest
(T,A) if t = Co(t1, . . . , tn)

−∞ if t 6= Co(t1, . . . , tn) and T = Int

0 in other case

By using ‖t‖(T,A), we obtain a sound abstraction in the sense of Theorem 1, and

the relevant type inference presented in Section 4 could be easily adapted to consider

annotated type-norms. In the following, we present an example that shows how this

technique is applied in practice.

Example 14

Consider the program in Figure 11 (left) where the rule lengthP takes a non-recursive

IntListPair structure and computes the length of the second list if the first list is empty;

otherwise, returns the length of the first list. Since both lists are of the same type (IntList),

we are interested in considering their norms separately to obtain a better upper bound.

A Transformational Approach to Resource Analysis with Typed-norms Inference 29

1 data IntListPair = Pair(IntList, IntList)
2

3 lengthP :: IntListPair× Int

41 lengthP(p, res) ←
5 match(p,Pair(Nil,l2)),
6 length(l2,res)

72 lengthP(p, res) ←
8 nomatch(p,Pair(Nil,l2)),
9 match(p,Pair(l1,l2)),

10 length(l1,res)

11 lengthP(<PIntListPair , PIntList1 , PIntList2 , PInt1

, PInt2>,<ResInt>) ←
12 PIntList1 = 1
13 ∧ PIntList1 ≥ 0
14 ∧ PIntList2 ≥ 0,
15 length(<PIntList2 , PInt2>, <ResInt>)
16

17 lengthP(<PIntListPair , PIntList1 , PIntList2 , PInt1

, PInt2>,<ResInt>) ←
18 PIntList1 > 1
19 ∧ PIntList1 ≥ 0
20 ∧ PIntList2 ≥ 0,
21 length(<PIntList1 , PInt1>, <ResInt>)

Fig. 11. Abstraction of RBR program with context-sensitive norms.

Figure 11 (right) shows this abstraction7. It basically distinguishes the uses of IntList by

their position in the definition of IntListPair—note the use of IntList1 and IntList2. Using

this improvement, we can obtain the upper bound 1+max(6+6∗PIntList1 , 5+6∗PIntList2)

for the function lengthP(<PIntListPair,PIntList1 ,PIntList2 ,PInt1 ,PInt2>,<ResInt>) instead

of 7+6∗PIntList lengthP(<PIntListPair,PIntList,PInt>, <ResInt>). Note that in this case

PIntList = PIntList1 + PIntList2 .

The proposed approach using annotated types to handle context-sensitive norms gen-

erates abstract programs without any type information where every parameter represents

an integer value. Therefore, these abstract programs can be solved automatically to upper

and lower resource bounds using the existing techniques with no additional adaptations.

6 Experiments

We have implemented our approach in the SACO system (Albert et al. 2011; Albert et al. 2014).

SACO is a Static Analyzer for Concurrent Objects that in addition to the resource ana-

lyzer also includes a deadlock analyzer. Although in this paper we have focused on sequen-

tial programs, concurrent objects (Agha and Callsen 1993) provide a formalism to model

concurrent and distributed systems using the ABS language mentioned in Section 2.

SACO carries out the transformation of ABS programs into the intermediate representa-

tion defined in Section 2 so that new extensions and analyses can be integrated in SACO

at this point in the implementation. The whole system is implemented in Prolog and can

be used from an online web interface at https://costa.fdi.ucm.es/saco/web/, where

in addition to the examples that will be described in this section, the user can type her

own programs and run the available analyses.

In this section we perform an experimental comparison of the different norms to evalu-

ate both the precision of the obtained upper bounds and the time needed by our resource

analysis framework to obtain them. In order to create a set of benchmarks as complete

as possible, we have collected tests from different sources. First, we have taken some

7 For simplicity, we use IntList1 and IntList2 instead of IntList(Pair,1) and IntList(Pair,2), and Int1 and

Int2 instead of Int(Pair,1)·(Cons,1) and Int(Pair,2)·(Cons,1).

https://costa.fdi.ucm.es/saco/web/

30 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Method TS
TN sum TN max

Inference w/o Inference Inference w/o Inference

append 121 32 32 32 32
appendAll2 41809 535 451 3189 3189
coupled 92 84 84 84 84
dyade 3601.5 273 273 273 273
eratos 6424 387 387 387 387
factSum 573 − − 63 63
fib 627 467 467 467 467
isort 3912.5 285 285 285 285
isortlist 2100497 7214.5 3999.5 14444 14444
listfact 573 − − 63 63
listnum 48 44.5 44.5 44.5 44.5
minSort 6485.5 835 835 457 457
nub 1454705 3492 3571.5 − −
partition 247.5 65 65 65 65
traverse1 1243 83 83 − −
traverse2 1234 83 83 − −
zip3 291 81 87 81 90

Fig. 12. Median number of steps when evaluating the upper bounds for the list manip-

ulation examples using 10 random input parameters.

Method TS
TN sum TN max

Inference w/o Inference Inference w/o Inference

ButtonImpl.press 725 217 217 217 217
Button-
Impl.registerListener

113 40 40 40 40

ClientGUI-
Impl.init2

146 73 73 73 73

ClientImpl.getGUI 167 94 94 94 94
ClientImpl.receive 154 64 64 64 124
Main.main 17831 4687 4372 4687 3859
ServerImpl.connect 170 80 80 80 116
Server-
Impl.sessionClosed

134 44 44 44 44

SessionImpl.close 138 48 48 48 48
SessionImpl.init2 159 69 69 69 105
UserImpl.use 750 242 242 242 242

Fig. 13. Median number of steps when evaluating the upper bounds for Chat methods

using 10 random input parameters.

examples from the Resource Aware ML (Hoffmann et al. 2017; Hoffmann et al. 2012;

Hofmann and Jost 2003) (RAML) set of examples, which are also used in the resource

usage analysis using sized types presented in (Serrano et al. 2014). These examples are

mainly focused on list manipulation, and include:

• append and appendAll2 for appending lists and compound lists,

• coupled, a pair of mutually recursive functions that generate lists of a given size,

• dyade for combining and multiplying two lists,

A Transformational Approach to Resource Analysis with Typed-norms Inference 31

Method TS
TN sum TN max

Inference w/o Inference Inference w/o Inference

Solver.bestSolution 2 2 2 2 2
Solver.contains 840.5 118.5 118.5 118.5 118.5
Solver.randomMap 23873.5 515 515 515 515
Solver.utility 95160 1250 6076 1250 timeout

Fig. 14. Median number of steps when evaluating the upper bounds for ETICS methods

using 10 random input parameters.

• eratos for detecting prime numbers in a range using the sieve of Eratosthenes,

• fib for computing the nth number of the Fibonacci sequence,

• isort, isortlist and minSort, for sorting integer lists and lists of integer lists,

• listnum, that creates a list of decreasing integer numbers,

• nub for removing duplicates in a list of lists,

• partition for splitting a list given a pivot element, and

• zip3 for combining 3 lists in a list of triples.

Additionally, we have included in this first set of list manipulation examples the factSum

method presented in Figure 1, the listfact running example used in (Serrano et al. 2014)

for adding all the factorial numbers in a list, and two extra methods traverse1 and

traverse2 for traversing lists of lists.

As the second set of examples we have used 11 different methods of the Chat pro-

gram, a well-known distributed ABS (Johnsen et al. 2012) program used for testing and

evaluating static analyses. This program provides a chat server that allows different

clients to exchange messages. Finally, we have also considered a third set of 4 meth-

ods from the industrial case study ETICS8. This case study models in ABS the process

of exploiting on-demand virtual machines to satisfy service requests trying to maxi-

mize the profit considering cost and penalty terms specified in service level agreements

(SLAs). The complete code of all the examples used in this section can be found in

https://costa.fdi.ucm.es/saco/web/ inside the “Typed-Norms” folder.

Figures 12–14 contain upper bounds on the number of steps obtained by our resource

analysis framework with different norms and enabling/disabling the relevant types infer-

ence algorithm presented in Section 4. The resource analysis framework obtains upper

bounds as arithmetic expressions on the input parameters of the methods, which are dif-

ficult to compare (when possible). In order to easily compare the upper bounds obtained

for the different norms, we have evaluated them using 10 sets of random input parame-

ters.9 This approach generates 10 different numeric values for each method and norm, so

in the Figures 12–14 we have included the median of those numbers.10 If the framework

is not able to obtain an upper bound for a method using a particular norm we mark

it with the symbol “–”, and if the framework requires more than 2 hours to obtain the

upper bound we use the term “timeout”. These figures contain a row for each method,

8 http://envisage-project.eu/wp-content/uploads/2015/04/D4_4_1r.pdf
9 Note that we evaluate the obtained upper bounds, so in this comparison we are considering the worst
case of every method for different random sizes of its parameters.

10 We have used the median value instead of the average to avoid any influence of extreme outliers. These
values may appear, as we are evaluating upper bounds using random input parameters.

https://costa.fdi.ucm.es/saco/web/
http://envisage-project.eu/wp-content/uploads/2015/04/D4_4_1r.pdf

32 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

whose upper bounds have been computed using the different norms presented in Defini-

tions 6 and 8: term-size norm ‖·‖ts (TS in the figures), typed-norm ‖·‖+T (TN sum in

the figures), and typed-norm ‖·‖T (TN max in the figures). In the case of typed-norms,

the upper bound has been computed inferring the useful types (column Inference) and

without inferring that information (column w/o Inference).

The main result extracted from Figures 12–14 is that, for all methods, the resource

analysis framework obtains more precise results using typed-norms (‖·‖+T or ‖·‖T) than

using term-size (‖·‖ts). Concretely, for the list manipulation examples in Figure 12 we

observe that the ratio steps typed-norm
steps term-size ranges from 0.002 (isortlist, nub) to 0.93 (listnum),

although the vast majority of the examples show a very small ratio: considering the 17

methods, the 53% have a ratio smaller than 0.1 and 82% have a ratio smaller than 0.3.

As shown in Figure 13, the examples of the Chat program obtain more precise upper

bounds than using term-size, but the gain is not as relevant as in the list manipulation

examples. For these methods, the ratio ranges between 0.22 for Main.main and 0.80

for ClientImpl.receive. Finally, Figure 14 shows improved upper bounds with ratio 0.01

for Solver.utility, 0.02 for Solver.randomMap and 0.14 for Solver.contains. In the case

of Solver.bestSolution, there is no improvement because the method has a constant cost

which does no involve traversing any data structure, so in this case the chosen norm is

not relevant for the upper bound.

Another important result extracted from Figures 12–14 is that, for the majority of the

methods, the upper bounds obtained using ‖·‖+T and ‖·‖T are equal. There are cases where

one typed-norm definition allows obtaining an upper bound, whereas the other definition

cannot (namely in factSum, listfact, nub, traverse1, and traverse2 from Figure 12). This is

not a surprising result, as depending on the manipulation performed on a data structure

one typed-norm can detect a decreasing of the size whereas the other cannot, which has

a dramatic impact on the obtained upper bound. However, this cannot be seen as a

practical limitation because our resource analysis framework can support term-size norm

and both types of typed-norms, so the user can choose at any moment which norm to

use.

A surprising result observed in Figures 12–14 is that, in some cases like appendAll2,

isortlist, nub, zip3, ClientImpl.receive, Main.main, or Solver.utility, the upper bound ob-

tained for a typed-norm is different with or without the inference enabled. From the

theoretical point of view both versions have the same upper bounds, but the actual im-

plementation of the cost relation solver can produce different upper bounds. Concretely,

we use CoFloCo (Flores-Montoya and Hähnle 2014; Flores-Montoya 2016), a composi-

tional solver for programs with complex execution flow and multi-dimensional ranking

functions. This solver can find different ranking functions for recurrences (loops), and in

those cases it selects one of them to generate the final upper bound. For this selection

step, it takes into account which ranking functions can be maximized in terms of the

input parameters, and it uses some heuristics in case of ties. When we remove some

variables thanks to the inference of typed-norms, the set of ranking functions found by

CoFloCo for a given recurrence can be different, altering the selected ranking function

and therefore the final upper bound.

Another dimension we have measured in our benchmarks is the time needed by our

resource analysis framework to obtain upper bounds using the different norms. Fig-

ures 15–17 show these results for the 3 sets of examples, measuring time in milliseconds

A Transformational Approach to Resource Analysis with Typed-norms Inference 33

Method TS
TN sum TN max

Inference w/o Inference Inference w/o Inference

append 31.0 32.0 62.0 46.0 31.0
appendAll2 125.0 282.0 281.0 172.0 187.0
coupled 47.0 47.0 62.0 16.0 47.0
dyade 110.0 62.0 110.0 63.0 110.0
eratos 125.0 109.0 140.0 93.0 141.0
factSum 140.0 − − 47.0 159.0
fib 31.0 31.0 31.0 16.0 31.0
isort 94.0 94.0 125.0 110.0 94.0
isortlist 375.0 937.0 797.0 359.0 375.0
listfact 46.0 − − 62.0 109.0
listnum 32.0 31.0 47.0 31.0 46.0
minSort 109.0 109.0 140.0 125.0 172.0
nub 594.0 531.0 647.0 − −
partition 78.0 78.0 110.0 93.0 125.0
traverse1 62.0 63.0 62.0 − −
traverse2 31.0 47.0 47.0 − −
zip3 94.0 78.0 141.0 62.0 125.0

Fig. 15. Time (milliseconds) to obtain upper bounds for the list manipulation examples

Method TS
TN sum TN max

Inference w/o Inference Inference w/o Inference

ButtonImpl.press 63.0 63.0 157.0 63.0 172.0
Button-
Impl.registerListener

31.0 47.0 63.0 31.0 125.0

ClientGUI-
Impl.init2

62.0 47.0 109.0 47.0 141.0

ClientImpl.getGUI 62.0 62.0 140.0 78.0 157.0
ClientImpl.receive 63.0 94.0 109.0 78.0 140.0
Main.main 765.0 375.0 875.0 484.0 750.0
ServerImpl.connect 141.0 47.0 141.0 63.0 188.0
Server-
Impl.sessionClosed

109.0 47.0 94.0 63.0 125.0

SessionImpl.close 47.0 32.0 110.0 63.0 94.0
SessionImpl.init2 94.0 63.0 125.0 63.0 109.0
UserImpl.use 78.0 62.0 172.0 78.0 156.0

Fig. 16. Time (milliseconds) to obtain upper bounds for Chat methods

in a CPU Intel R© i5-7300U CPU with 8 GB of memory. As before, we use “–” to denote

that the framework is not able to obtain the upper bound and “timeout” if the framework

does not finish in 2 hours. In general, obtaining upper bounds using typed-norms requires

more time than using the term-size norm. This fact was expected because of two causes:

the additional stage for inferring typed-norms and the increment in variables when using

typed-norms. Although the data-flow analysis is not very expensive, for small programs

where solving is very fast the inference can require a similar amount of time, therefore

significantly increasing the overall time. However, independently of the typed-norm in-

ference stage, using typed-norms implies that one data-structure can be measured using

34 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Method TS
TN sum TN max

Inference w/o Inference Inference w/o Inference

Solver.bestSolution 47.0 30.0 31.0 31.0 31.0
Solver.contains 360.0 265.0 469.0 234.0 500.0
Solver.randomMap 359.0 328.0 2000.0 312.0 2063.0
Solver.utility 3719.0 4125.0 444109.0 3937.0 timeout

Fig. 17. Time (milliseconds) to obtain upper bounds for ETICS methods. Executions

were aborted after 2 hours.

different sizes, which results in more than one variable per structure in the set of cost

relations that the solver processes. The time needed by the solver is proportional to the

complexity of the cost relations (i.e., the number of relations and the amount of vari-

ables), so using typed-norms usually increases the overall time of the analysis. As shown

in Figures 15–17, the increase of time wrt. term-size norms is not very pronounced and

this extra time greatly compensates the gain in precision. However, there are also some

situations (for example in coupled, eratos, zip3, ClientGUIImpl.init2, ServerImpl.connect,

ServerImpl.sessionClosed, and Solver.contains, among others) where the time required to

obtain upper bounds using typed-norms with inference is faster than using term-size. The

explanation of this behavior is that the type-norm inference can detect that a parameter

has not relevant types (i.e., its value is not involved in any recurrence), so that parameter

disappears from the cost relations, reducing the number of variables. As explained before,

the resulting set of cost relations will be simpler and the solver will require less time to

obtain the upper bound. Similarly, we also notice that using the typed-norm inference

in general produces better times than avoiding this step. Although this requires an ex-

tra analysis, the reduction on the complexity (number of variables) of the resulting cost

relations makes the resolution stage faster, producing smaller overall times. An extreme

example of this situation is the method Solver.utility, where not applying inference is 120

times slower (for ‖·‖+T) or reaches the time limit of 2 hours (for ‖·‖T).

6.1 Comparison to RAML and Sized Types

To conclude this section we will compare the results obtained by RAML (Hoffmann et al. 2017;

Hoffmann et al. 2012; Hofmann and Jost 2003), sized types (Serrano et al. 2014) and our

approach using the set of list manipulation examples. To that end, we will use Table 1

from (Serrano et al. 2014) extended with a new column containing the upper bounds

obtained by our resource analysis framework using the best typed-norm definition for

each program. We will also consider a new example hanoi that computes a list of move-

ments needed to solve the Tower of Hanoi puzzle, as it is included in the comparison

of (Serrano et al. 2014). The results can be found in Figure 18, where we show the com-

plexity order of the upper bounds instead of the concrete expression obtained. Parameters

L, L1, L2, and L3 are lists of different types, and parameters N, A, B, C, and E are integer

numbers. We represent the integer type as “i”, lists of integers as “il”, lists of lists of

integers as “ill”, and lists of lists of lists of integers as “illl”.

As shown in Figure 18, the three approaches obtain the same results for the majority

of the methods and they differ in a small number of cases. RAML cannot handle factSum,

A Transformational Approach to Resource Analysis with Typed-norms Inference 35

Method RAML Sized Types Typed-norms

append(L1,L2) L1il L1il L1il
appendAll2(L) Lil·Lill·Lilll Lil·Lill·Lilll Lil·Lill·Lilll
coupled(N) Ni Ni Ni
dyade(L1,L2) L1il·L2il L1il·L2il L1il·L2il
eratos(L) Lil·Lil Lil·Lil Lil·Lil
factSum(L) infeasible Lil·Li Lil·Li

fib(N) infeasible ϕ
Ni 2

Ni

hanoi(N,A,B,C) infeasible 2
Ni unknown

isort(L) Lil·Lil Lil·Lil Lil·Lil
isortlist(L) Lill·Lill·Lil Lill·Lill·Lil Lill·Lill·Lil
listfact(L) unknown Lil·Li Lil·Li
listnum(N) unknown Ni Ni
minSort(L) Lil·Lil Lil·Lil Lil·Lil
nub(L) Lill·Lill·Lil Lill·Lill·Lil Lill·Lill·Lil
partition(E,L) Lil Lil Lil
traverse1(L) Lill· Lil unknown Lil
traverse2(L) Lill· Lil Lil Lil
zip3(L1,L2,L3) L3il min(L1il,L2il,L3il) L3il

Fig. 18. Complexity order of the upper bounds obtained by

RAML (Hoffmann et al. 2017), sized types (Serrano et al. 2014), and typed-norms.

fib, listfact, and listnum, but both sized types and typed-norms obtain a similar upper

bound. In the case of fib both approaches obtain an exponential upper bound but sized

types obtain a slightly more precise bound of ϕN , where ϕ ≈ 1.62 is the golden ratio,

whereas our approach obtains the upper bound 2N . Both RAML and typed-norms obtain

upper bounds for traverse1 and traverse2, but the upper bounds Lil computed by typed-

norms are more precise than the ones from RAML (Lill· Lil). On the other hand, sized

types cannot handle traverse1 but generate the same upper bound Lil for traverse2. In

zip3 both RAML and typed-norms obtain the same upper bound L3il (the length of

the third list), but the upper bound min(L1il,L2il,L3il) generated by sized types is more

precise, as it represents the minimum length of any of the lists. Finally, RAML cannot

handle the hanoi method whereas sized types obtain an upper bound of 2N . Note that

the fact that SACO cannot obtain an upper bound for this example is not related to

typed-norms abstraction. This program creates a data-structure of exponential size in

the input parameter N and then traverses it. SACO is able to infer that the cost of

generating the data-structure is 2N , and that the cost of traversing it is linear in the size

of the data-structure. However, the underlying cost analysis techniques of SACO cannot

track exponential input-output dependencies, and thus it fails to conclude that the cost

of traversing the data-structure is actually exponential in N .

7 Related Work

Our work is inspired by (Genaim et al. 2002) where the authors introduce the notion

of typed-based norm in the context of termination analysis, and show how types can

be very useful for finding suitable norms even for untyped languages like Prolog. They

36 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

also illustrate that typed-based norms sometimes must be combined to get a termination

proof.

Resource AwareML (Hoffmann et al. 2017; Hoffmann et al. 2012; Hofmann and Jost 2003)

uses automatic amortized resource analysis, where the main idea is to consider potential

functions that depend on data structures. For every step the available potential must

be sufficient for the cost of the evaluation and the potential of the next state. The in-

formation about the potential functions (combinations of a set of base polynomials) are

annotated in the types, and the type system collects the relations among the different

types, which are finally solved by linear programming. On the other hand, our transfor-

mational approach is based on Wegbreit’s (Wegbreit 1975): (1) generation of an abstract

representation and (2) resolution of cost relations. Although originally presented for Lisp

programs, this approach has been applied to other functional languages (Sands 1990;

Grobauer 2001), imperative languages like Java bytecode (Albert et al. 2007) or actor

systems (Albert et al. 2015).

Sized types (Hughes et al. 1996; Hughes and Pareto 1999; Chin and Khoo 2001) are

type expressions that incorporates annotations representing lower/upper bounds of the

size of the different components of a type. They were originally proposed for guaran-

teeing various basic properties of reactive systems like productivity, memory leaks, or

termination. In (Pedro Vasconcelos 2008), Vasconcelos proposed to use sized types to

track the different sizes involved in a data structure and use them to perform resource

analysis. Unlike our approach, in this approach one can handle multiple typed-norms

on variables only by having parametric data-structures. The techniques of Vasconce-

los have been extended to the context of logic programs (Serrano et al. 2013) and ap-

plied to resource usage analysis (Serrano et al. 2014) inside the PLAI abstract interpreta-

tion framework (Muthukumar and Hermenegildo 1992; Puebla and Hermenegildo 1996)

of CiaoPP (Hermenegildo et al. 2012).

Our approach and the one presented in (Serrano et al. 2013; Serrano et al. 2014) use

the sizes of different inner parts of a data structure in order to obtain more precise bounds,

but differ in the destination resource analysis framework: the analysis in (Serrano et al. 2013;

Serrano et al. 2014) must fit in the abstract interpretation framework used by CiaoPP,

whereas our analysis must fit in a transformational framework based on Wegbreit’s ap-

proach (Wegbreit 1975). From this point of view, the presented approach in this paper

is simpler to define and to implement because we do not need to update the abstract

interpretation theory (defining specific concretization, abstraction functions, etc.). In-

stead, we have to add explicit arguments for the sizes of data structures and define a

size abstraction which is rather straightforward. The implementation simply requires

a pre-process to add the arguments and properly abstract them. Then, standard size

analysis works on the transformed program. As regards accuracy, the resource analysis

in (Serrano et al. 2014) is closer to logic programming and takes into account some fea-

tures like backtracking or failure to obtain more precise upper and lower bounds. The

sized types used in (Serrano et al. 2014) can track separately the size of different com-

ponents of a clause, but the only data type they use are lists of elements. Using lists and

procedures, our approach could provide a similar level of precision . Finally, the approach

used in (Serrano et al. 2014) detects relevant Prolog variables and generates constraints

between them. Once a variable is detected as relevant, its complete sized type is used to

generate constraints, although some of them may not have any impact in the resource

A Transformational Approach to Resource Analysis with Typed-norms Inference 37

analysis. As explained in Section 4, we define an additional step to infer the relevant

typed-norms of any variable, which is an extension of the results in (Albert et al. 2011)

to deal with typed-norms in addition to useless arguments. Using this analysis, irrelevant

variables will have an empty set of relevant typed-norms, and will therefore be ignored

in the resolution phase. Moreover, for relevant variables only those relevant typed-norms

will be kept in the next phase. As explained in the experiments in Section 6, removing

useless typed-norms is an optimization in the resolution phase with a great impact in

the overall time when obtaining upper bounds, so this analysis is essential to be scalable

in practice. Moreover, to the best of our knowledge, it is the first time that it is applied

on norms.

8 Conclusions and Future Work

We have presented a transformational approach to resource analysis with typed-norms

which has the advantage that its formalization can be done by only adapting the first

phase of cost analysis in which the program is transformed into an intermediate ab-

stract program. Besides its simple formal development, the implementation easily in-

tegrates into the previous system as a pre-phase to the existing analysis. Additionally,

we have presented, to the best of our knowledge, the first algorithm to automatically

infer typed-norms from programs. Our analysis is formalized on a simple rule-based lan-

guage and it is therefore not tied to any particular programming language. Translating

from the standard programming languages to the rule-based form is rather straightfor-

ward (see e.g. (Albert et al. 2015; Albert et al. 2012)). Finally, we have carried out a

thorough experimental evaluation of our proposal and integrated it within the SACO

system (Albert et al. 2011). In future work we plan to extend our work to a concurrent

setting for which the inference of typed-norms will be more contrived.

References

Agha, G. and Callsen, C. J. 1993. Actorspace: An open distributed programming paradigm.
In Proceedings 4th ACM Conference on Principles and Practice of Parallel Programming,
ACM SIGPLAN Notices. 23–32.

Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-Zamalloa, M., and an d

Guillermo Román-Dı́ez, G. P. 2015. Object-Sensitive Cost Analysis for Concurrent Ob-
jects. Software Testing, Verification and Reliability 25, 3, 218–271.

Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
Martin-Martin, E., Puebla, G., and Román-Dı́ez, G. 2014. SACO: Static Analyzer for
Concurrent Objects. In Tools and Algorithms for the Construction and Analysis of Systems
- 20th International Conference, TACAS 2014, E. Ábrahám and K. Havelund, Eds. Lecture
Notes in Computer Science, vol. 8413. Springer, 562–567.

Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., and Puebla, G. 2011. Cost
Analysis of Concurrent OO programs. In Programming Languages and Systems - 9th Asian
Symposium, APLAS 2011, Kenting, Taiwan, December 5-7, 2011. Proceedings, H. Yang, Ed.
Lecture Notes in Computer Science, vol. 7078. Springer, 238–254.

Albert, E., Arenas, P., Genaim, S., and Puebla, G. 2011. Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46, 2, 161–203.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2007. Cost Analysis
of Java Bytecode. In Programming Languages and Systems, 16th European Symposium on

38 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Programming, ESOP 2007, Held as Part of the Joint European Conferences on Theory and
Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings,
R. D. Nicola, Ed. Lecture Notes in Computer Science, vol. 4421. Springer-Verlag, 157–172.

Albert, E.,Arenas, P.,Genaim, S., Puebla, G., and Zanardini, D. 2008. Removing Useless
Variables in Cost Analysis of Java Bytecode. In Proceedings of the 2008 ACM Symposium
on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, R. L. Wainwright
and H. Haddad, Eds. ACM, 368–375.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2012. Cost Analysis
of Object-Oriented Bytecode Programs. Theoretical Computer Science (Special Issue on
Quantitative Aspects of Programming Languages) 413, 1, 142–159.

Albert, E., Genaim, S., and Gutiérrez, R. 2014. A Transformational Approach to Resource
Analysis with Typed-Norms. In Proc. of the 23rd International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR’13). Lecture Notes in Computer Science,
vol. 8901. Springer, 38–53.

Albert, E., Genaim, S., and Masud, A. N. 2013. On the Inference of Resource Usage Upper
and Lower Bounds. ACM Transactions on Computational Logic 14, 3, 22:1–22:35.

Alonso-Blas, D. E., Arenas, P., and Genaim, S. 2011. Handling Non-linear Operations in
the Value Analysis of COSTA. In Proceedings of the Bytecode 2011 workshop, the Sixth
Workshop on Bytecode Semantics, Verification, Analysis and Transformation (Bytecode).
Electronic Notes in Theoretical Computer Science, vol. 279 Issue 1. Elsevier, 3–17.

Bossi, A., Cocco, N., and Fabris, M. 1991. Proving Termination of Logic Programs by Ex-
ploiting Term Properties. In APSOFT’91: Proceedings of the International Joint Conference
on Theory and Practice of Software Development, Brighton, UK, April 8-12, 1991, Volume
2: Advances in Distributed Computing (ADC) and Colloquium on Combining Paradigms for
Software Developmemnt (CCPSD), S. Abramsky and T. S. E. Maibaum, Eds. Lecture Notes
in Computer Science, vol. 494. Springer, 153–180.

Bruynooghe, M., Codish, M., J. P. Gallagher, Genaim, S., and Vanhoof, W. 2007.
Termination analysis of logic programs through combination of type-based norms. ACM
Transactions on Programming Languages and Systems 29, 2.

Chin, W.-N. and Khoo, S.-C. 2001. Calculating sized types. H igher-Order and Symbolic
Computation 14, 2 (Sep), 261–300.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991.
Efficiently Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Trans. Program. Lang. Syst. 13, 4, 451–490.

Flores-Montoya, A. 2016. Upper and lower amortized cost bounds of programs expressed
as cost relations. In FM 2016: Formal Methods - 21st International Symposium, Limassol,
Cyprus, November 9-11, 2016, Proceedings, J. S. Fitzgerald, C. L. Heitmeyer, S. Gnesi, and
A. Philippou, Eds. Lecture Notes in Computer Science, vol. 9995. Springer, 254–273.

Flores-Montoya, A. and Hähnle, R. 2014. Resource analysis of complex programs with
cost equations. In Programming Languages and Systems - 12th Asian Symposium, APLAS
2014, Singapore, November 17-19, 2014, Proceedings. LNCS, vol. 8858. Springer, 275–295.

Genaim, S., Codish, M., Gallagher, J., and Lagoon, V. 2002. Combining Norms to Prove
Termination. In 3 rd International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI’02), G. Goos, J. Hartmanis, and J. van Leeuwen, Eds. LNCS, vol.
2294. Springer, 123–138.

Grobauer, B. 2001. Cost recurrences for DML programs. In International Conference on
Functional Programming. 253–264.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., and
Puebla, G. 2012. An Overview of Ciao and its Design Philosophy. Theory and Practice of
Logic Programming 12, 1–2 (January), 219–252. http://arxiv.org/abs/1102.5497.

Hoffmann, J., Aehlig, K., and Hofmann, M. 2012. Resource Aware ML. In 24rd Inter-

A Transformational Approach to Resource Analysis with Typed-norms Inference 39

national Conference on Computer Aided Verification (CAV’12). Lecture Notes in Computer
Science, vol. 7358. Springer, 781–786.

Hoffmann, J.,Das, A., andWeng, S.-C. 2017. Towards automatic resource bound analysis for
ocaml. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL 2017. ACM, New York, NY, USA, 359–373.

Hofmann, M. and Jost, S. 2003. Static Prediction of Heap Space Usage for First-Order Func-
tional Programs. In 30th Symposium on Principles of Programming Languages (POPL’03).
ACM Press.

Hughes, J. and Pareto, L. 1999. Recursion and Dynamic Data-structures in Bounded Space:
Towards Embedded ML Programming. In Proc. of ICFP’99. ACM Press, 70–81.

Hughes, J., Pareto, L., and Sabry, A. 1996. Proving the correctness of reactive systems
using sized types. In POPL. 410–423.

Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., and Steffen, M. 2012. ABS: A
Core Language for Abstract Behavioral Specification. In Formal Methods for Components
and Objects - 9th International Symposium, FMCO 2010, Graz, Austria, November 29 -
December 1, 2010. Revised Papers, B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue,
Eds. Lecture Notes in Computer Science, vol. 6957. Springer, 142–164.

King, A., Shen, K., and Benoy, F. 1997. Lower-bound Time-complexity Analysis of Logic
Programs. In 1997 International Logic Programming Symposium, J. Maluszyński, Ed. MIT
Press, Cambridge, MA, 261–275.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming 13, 2/3 (July), 315–347.

Nielson, F., Nielson, H. R., and Hankin, C. 1999. Principles of Program Analysis. Springer.

Pedro Vasconcelos. 2008. Space cost analysis using sized types. Ph.D. thesis, School of
Computer Science, University of St Andrews.

Pierce, B. C. 2002. Types and Programming Languages. MIT Press.

Puebla, G. and Hermenegildo, M. 1996. Optimized Algorithms for the Incremental Analysis
of Logic Programs. In International Static Analysis Symposium (SAS 1996). Number 1145
in LNCS. Springer-Verlag, 270–284.

Sands, D. 1990. Calculi for time analysis of functional programs. Ph.D. thesis, Department of
Computing, Imperial College London.

Serrano, A., López-Garćıa, P., Bueno, F., and Hermenegildo, M. V. 2013. Sized Type
Analysis for Logic Programs. Theory and Practice of Logic Programming 13, 4-5-Online-
Supplement (August).

Serrano, A., López-Garćıa, P., and Hermenegildo, M. V. 2014. Resource usage analysis
of logic programs via abstract interpretation using sized types. TPLP 14, 4-5, 739–754.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of
Mathematics 5, 2, 285–309.

Vasconcelos, P. and Hammond, K. 2003. Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In Proceedings of the International Workshop
on Implementation of Functional Languages. Lecture Notes in Computer Science, vol. 3145.
Springer-Verlag, 86–101.

Wegbreit, B. 1975. Mechanical Program Analysis. Communications ACM 18, 9, 528–539.

40 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Appendix A Proofs

Definition 21 (evalt function for terms)

The function evalt : Terms × LV →֒ Terms evaluates a term t based on a variable

mapping lv :

evalt(t, lv) =

lv(x) if t ≡ x, x ∈ dom(lv)

n if t ≡ n

evalt(e1, lv) + evalt (e2 , lv) if t ≡ e1 + e2

evalt(e1, lv)− evalt (e2 , lv) if t ≡ e1 − e2

Co(evalt(tn, lv)) if t ≡ Co(tn)

undefined i.o.c

Definition 22 (evalg function for guards)

The function evalg : Guards ×LV →֒ LV checks if a guard g is satisfied w.r.t. a variable

mapping lv , returning the variable mapping that instantiates the variables in the guard:

evalg(g, lv) =

ǫ if g ≡ true

lv1 ⊎ lv2 if g ≡ g1 ∧ g2, evalg(g1, lv) = lv1 ,

evalg(g2, lv ⊎ lv1) = lv2

ǫ if g ≡ e1 op e2, op ∈ {>,=,≥},

evalt(e1, lv) = n1 , evalt (e2 , lv) = n2 , n1 op n2

lv ′ if t ≡ match(x, p), ∃lv ′ ∈ LV s .t . lv ′(p) = lv(x),

dom(lv ′) = vars(p)

ǫ if t ≡ nonmatch(x, p), ∄lv ′ ∈ LV s .t . lv ′(p) = lv(x),

dom(lv ′) = vars(p)

undefined i.o.c

Proposition 1

Let {x} be those variables occurring in the patterns p of a guard g. If evalg(g, lv) = lv ′

and dom(lv) ∩ {x} = ∅ then dom(lv) ∩ dom(lv ′) = ∅.

Proof

By induction on the structure of the guard g.

A.1 Results in Section 3

Proposition 2

Consider a configuration C and its abstraction Cα = arα|ψ. Then ψ 6|= false.

Proof

ψ is a conjunction of equalities between distinct XT variables, so there is a trivial model.

A Transformational Approach to Resource Analysis with Typed-norms Inference 41

Proposition 3

If ϕ ∧ ψ 6|= false then ϕ 6|= false.

Proof

ϕ ∧ ψ have at least one solution S, and it is also a valid solution to ϕ.

In the rest of the appendix we will use the notation Xn = zn to denote the conjunction

of constraints X1 = z1 ∧X2 = z2 ∧ . . . ∧Xn = zn, where zi ∈ Z. Similarly, the notation

Xn = zn ∈ ϕ expresses that the conjunction of constraints ϕ syntactically contains the

constraints Xn = zn.

Proposition 4

If ψ1 ∧ ψ2 6|= false and Xi = zi ∈ ψ2, where zi ∈ Z, then ψ1 ∧X ′
i = Xi ∧ ψ2 ∧X ′

i = zi 6|=

false.

Proof

Every solution S to the original set of constraints ψ1 ∧ ψ2 can be extended S ∪X ′
i = zi

and it is also a solution of ψ1 ∧X ′
i = Xi ∧ ψ2 ∧X ′

i = zi.

In order to prove the soundness of the translation using typed-norms, we first need to

prove that the definition of typed-norms is consistent with the evaluation of terms and

guards. The next two lemmas prove that consistency with respect the definition of ‖t‖T
in Def. 8 and Def. 9, but the proof will be similar for ‖t‖+T . Moreover, any definition

of typed-norms satisfying the following Lemma 1 and Lemma 2 will produce a sound

translation.

Lemma 1

If x:=t ∈ P , evalt(t, lv) = v and ψ∧ lvα 6|= false then XT = ‖t‖T ∧XT = ‖v‖T ∧ψ∧ lvα 6|=

false for any type T ∈ rtypes(x).

Proof

By induction on the structure of the term t. It is important to notice that evalt(t, lv) = v

implies that y ∈ dom(lv) for every variable y ∈ vars(t), so lvα will contain equalities

YT = ‖lv(y)‖T that are consistent with ψ. Therefore, XT = ‖v‖T will assign a concrete

value toXT that is consistent with the constraintXT = ‖t‖T that involves those variables

YT .

Lemma 2

Let g a guard in a program P . If evalg(g, lv) = lvg and ψ ∧ lvα 6|= false then ψ ∧ gα ∧

lvα ∧ lvg
α 6|= false

Proof

By induction on the structure of the guard g. The most interesting cases are match(x, p)

and g1 ∧ g2:

42 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

• g ≡ match(x, p), where p ≡ Co(y1, . . . , yk) and yi do not appear in dom(lv). In this

case gα is
∧
{XT = ‖p‖T | T ∈ rtypes(x)}. Consider only a type T ′ ∈ rtypes(x) such

that T ′ = type(x), then XT ′ = 1 + Y 1
T ′ . . . + Y k

T ′ . On the other hand, XT ′ = z appears

in lvα and lvα
g contains some constraints Y i

T ′ = zi such that 1 + zi . . . + zk = z (by

definition of evalg). Therefore, ψ ∧XT ′ = 1+ Y 1
T ′ . . .+ Y k

T ′ ∧ Y i
T ′ = zi ∧ lv

α
g 6|= false. The

case is the same if T ′ 6= type(x), and it can be repeated for every T ′ ∈ rtypes(x), so

ψ ∧ gα ∧ lvα ∧ lvg
α 6|= false .

• g ≡ g1∧g2. By definition of guard abstraction (Fig. 3) gα = gα1 ∧g
α
2 , and by definition of

evalg we have that (A) evalg(g1, lv) = lv1 and (B) evalg(g2, lv ⊎ lv1) = lv2 . From (A) and

the premises, by IH we obtain that ψ ∧ gα1 ∧ lv
α ∧ lvα

1 6|= false. By Prop. 1 we know that

dom(lv)∩ dom(lv1) = ∅, so lvα ∧ lvα
1 = (lv ⊎ lv1)

α
. Then, again, by IH and using (B) we

have that ψ∧ gα1 ∧ g
α
2 ∧ lv

α ∧ (lv ⊎ lv1)
α ∧ lvα

2 6|= false . Finally, as by Prop. 1 the domains

of the generated variable mappings are disjoint then (lv ⊎ lv1)
α ∧ lvα

2 = lvα ∧ lvα
1 ∧ lv

α
2 =

lvα ∧ (lv1 ⊎ lv2)
α
and therefore ψ ∧ gα1 ∧ g

α
2 ∧ lvα ∧ (lv1 ⊎ lv2)

α 6|= false .

Theorem 1 (Soundness). If T ≡ C0 ❀
∗ Cn then there is an abstract trace T α ≡

Cα
0 ❀

∗
α arα|ψ such that steps(T) = steps(T α), Cα

n = arα|ψ̃ and ψ ∧ ψ̃ 6|= false .

Proof

By induction on the length of the C0 ❀
n Cn derivation.

Base Case: n = 0

We have T ≡ C0 ❀
0 Cn and the trivial derivation T α ≡ Cα

0 ❀
0
α Cα

0 , where Cα
0 ≡ arα|ψ

and therefore ψ = ψ̃ in this case. By Prop. 2 ψ 6|= false, so ψ ∧ ψ 6|= false. Additionally,

the sequences of steps in both traces are empty: steps(T) = 〈〉 = steps(T α).

Inductive Step: n > 0

We have a derivation C0 ❀
n−1 Cn−1 ❀ Cn . By Induction Hypothesis we have that if

C0 ❀
n−1 Cn−1 then Cα

0 ❀
n−1
α arαn−1 |ψn−1 such that Cα

n−1 = arαn−1 |ψ̃n−1 , ψn−1 ∧

ψ̃n−1 6|= false , and steps(C0 ❀
n−1 Cn−1) = steps(Cα

0 ❀
n−1
α arαn−1 |ψn−1). Depending

on Cn−1 we can perform the last step using the 3 different rules:

• Cn−1 ≡ 〈p, x :=t ·bs , lv〉·C . Then we can only apply rule (1):

(1)
b ≡ x:=t evalt(t, lv) = v

Cn−1 ≡ 〈p, b·bs , lv〉·C ❀
(1)·ǫ 〈p, bs , lv [x 7→ v]〉·C ≡ Cn

By definition of configuration abstraction (Def. 13) Cα
n−1 = arαn−1 |ψ̃n−1 , where ar

α
n−1 =

〈ϕ1 · bsα〉 · arα and ϕ1 =
∧
{XT = ‖t‖T |T ∈ rtypes(x)}. Then we can perform the

following abstract step from arαn−1|ψn−1:

(1)
ϕ1∧ψn−1 6|= false

〈ϕ1 · bsα〉 · arα|ψn−1 ❀
(1)·ǫ
α 〈bsα〉 · arα|ϕ1∧ψn−1

We define ϕ2 =
∧
{XT = ‖lv(x)‖T | T ∈ rtypes(x)} as the constraints added by the

mapping extension lv [x 7→ v], and lv1 , . . . , lvk the variable mappings in the activation

records in C . By IH we have ψn−1 ∧ ψ̃n−1 6|= false , where ψ̃n−1 = lvα ∧ lvα
1 ∧ . . .∧ lv

α
k by

definition. By the repeated application of Lemma 1 using all the variable mappings

A Transformational Approach to Resource Analysis with Typed-norms Inference 43

lv ⊎ lv1 ⊎ . . . ⊎ lvk (their domains are disjoint because variables in every activation

record are fresh), we obtain that ϕ1 ∧ ϕ2 ∧ ψn−1 ∧ ψ̃n−1 6|= false . Therefore the ab-

stract (1) step is correct—ϕ1 ∧ ψn−1 6|= false by Prop. 3—and ϕ1 ∧ ϕ2 ∧ ψn−1 ∧ ψ̃n−1 =

(ϕ1 ∧ ψn−1) ∧ (ϕ2 ∧ ψ̃n−1) = ψn ∧ ψ̃n 6|= false . Finally, since steps(C0 ❀
n−1 Cn−1) =

steps(Cα
0 ❀

n−1
α arαn−1 |ψn−1) then it is clear that steps(C0 ❀

n−1 Cn−1 ❀
(1)·ǫ Cn) =

steps(Cα
0 ❀

n−1
α arαn−1 |ψn−1 ❀

(1)·ǫ
α 〈bsα〉 · arα|ϕ1∧ψn−1).

• Cn−1 ≡ 〈p,m(x̄ , ȳ)·bs , lv〉·C . Then we can only apply rule (2):

(2)

b ≡ m(x̄, ȳ) m(x̄′, ȳ′)← g, b1 · · · bk ∈ P fresh

lv1 ≡ [x ′ 7→ lv(x)] evalg (g, lv1) = lv2
Cn−1 ≡ 〈p, b·bs , lv〉·C ❀

(2)·rn 〈m, b1 · · · bk , lv1 ⊎ lv2 〉·〈p[y ′ ∼ y], bs , lv〉·C ≡ Cn

We assume that the fresh program rule m(x̄′, ȳ′) ← g, b1 · · · bk used in the step is the

number rn. By definition of configuration abstraction (Def. 13) Cα
n−1 = arαn−1 |ψ̃n−1 ,

where arαn−1 = 〈p(¯X, Ȳ) · bsα〉 · arα. Then we can perform the following abstract step

from arαn−1|ψn−1 using the abstract semantic rule (2) and a fresh instance of the abstract

program rule number rn:

(2)

m(X̄ ′, Ȳ ′)← gα | bα1 , . . . , b
α
k ∈ Pα fresh X = X ′ ∧ ψn−1∧g

α 6|= false

〈m(X̄, Ȳ) · bsα〉 · arα|ψn−1 ❀
(2)·rn
α

〈bα1 · · · b
α
k 〉

Y=Y ′

· 〈bsα〉 · arα|X = X ′ ∧ ψn−1 ∧ gα

We need to prove that:

1. (X = X ′ ∧ gα ∧ψn−1)∧ (lvα
1 ∧ lv

α
2 ∧ ψ̃n−1) = ψn ∧ ψ̃n 6|= false, from the soundness

theorem.

2. (X = X ′ ∧ gα ∧ ψn−1) 6|= false, i.e., the abstract step is valid.

We will focus only on the first statement as it implies the second one by Prop. 3. By

Prop. 4 we have that (X = X ′ ∧ ψn−1) ∧ (lvα
1 ∧ ψ̃n−1) 6|= false , because:

—
∧

x∈x,T∈rtypes(x){XT = ‖lv(x)‖T } ∈ ψ̃n−1, with ‖lv(x)‖T ∈ Z, by definition of

configuration transformation, and

— lvα
1 = [x ′ 7→ lv(x)]α =

∧
x ′∈x ′,T∈rtypes(x ′){X

′
T = ‖lv(x)‖T}

— rtypes(x) = rtypes(x′)

Then by the guard evaluation evalg(g, lv1) = lv2 and Lemma 2 we have that:

(X = X ′ ∧ ψn−1 ∧ ψ̃n−1) ∧ gα ∧ lvα
1 ∧ lvα

2 6|= false

= (X = X ′ ∧ gα ∧ ψn−1) ∧ (lvα
1 ∧ lvα

2 ∧ ψ̃n−1) 6|= false

= ψn ∧ ψ̃n 6|= false

Similarly to the previous case steps(C0 ❀
n−1 Cn−1 ❀

(2)·rn Cn) = steps(Cα
0 ❀

n−1
α

arαn−1|ψn−1 ❀
(2)·rn
α 〈bα1 · · · b

α
m〉

Y =Y ′

· 〈bsα〉 · arα|X = X ′ ∧ ψn−1 ∧ gα).

• Cn−1 ≡ 〈m, ǫ, lv1 〉·〈p[y ′ ∼ y], bs , lv〉·C . Then we can only apply rule (3):

(3)
Cn−1 ≡ 〈m, ǫ, lv0 〉·〈p[y ′ ∼ y], bs , lv〉·C ❀

(3)·ǫ 〈p, bs , lv [y 7→ lv0 (y ′)]〉·C ≡ Cn

By definition of configuration abstraction (Def. 13) Cα
n−1 = arαn−1 |ψ̃n−1 , where ar

α
n−1 =

44 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

〈ǫ〉Y=Y ′

· 〈bsα〉 · arα. Then we can perform the following abstract step from arαn−1|ψn−1:

(3)
ψn−1∧Y = Y ′ 6|= false

〈ǫ〉Y=Y ′

· 〈bsα〉 · arα|ψn−1 ❀
(3)·ǫ
α 〈bsα〉 · arα|ψn−1∧Y = Y ′

Let lv1 , lv2 , . . . , lvk the variable mappings in the activation records in C . The constraints

lvα
0 contains Y ′

i = zi for some zi ∈ Z, therefore by definition of configuration abstraction

(Def. 13) we have that ψ̃n−1 ≡ lvα
0 ∧ lv

α ∧ lvα
1 ∧ lv

α
2 ∧ . . .∧ lv

α
k and ψ̃n ≡ lvα ∧Yi = zi ∧

lvα
1 ∧ lvα

2 ∧ . . . ∧ lvα
k . As before, we need to prove that:

1. ψn ∧ ψ̃n = (ψn−1 ∧ Y = Y ′) ∧ (lvα ∧ Yi = zi ∧ lvα
1 ∧ lvα

2 ∧ . . . ∧ lvα
k) 6|= false, from

the soundness theorem.

2. ψn−1 ∧ Y = Y ′ 6|= false, i.e., the abstract step is valid.

The first statement implies the second one by Prop. 3, so we focus only on the first one. By

IH we have ψn−1∧ψ̃n−1 6|= false , so we can apply Prop. 4 and obtain that ψn−1∧Yi = Y ′
i ∧

ψ̃n−1∧Yi = zi 6|= false , i.e., ψn−1∧Yi = Y ′
i ∧lv

α
0 ∧lv

α∧lvα
1 ∧lv

α
2 ∧. . .∧lv

α
k ∧Yi = zi 6|= false .

By Prop. 3 we can remove the constraints lvα
0 and the set remains satisfiable, therefore

(ψn−1∧Y = Y ′)∧(lvα∧Yi = zi ∧ lvα
1 ∧ lv

α
2 ∧ . . .∧ lv

α
k) 6|= false. As before steps(C0 ❀

n−1

Cn−1 ❀
(3)·ǫ Cn) = steps(Cα

0 ❀
n−1
α arαn−1|ψn−1 ❀

(3)·ǫ
α 〈bsα〉 · arα|ψn−1∧Y = Y ′).

A.2 Results in Section 4.1

Lemma 3

(ΣP ,⊑) is a partially ordered set.

Proof

• reflexivity: σ ⊑ σ because σ(i) ⊑ σ(i) for every rule i, since for all x ∈ dom(σ(i)) we

have that σ(i)(x) ⊆ σ(i)(x).

• transitivity: if σ1 ⊑ σ2 then for all rule i and x ∈ dom(σ1(i)), σ1(i)(x) ⊆ σ2(i)(x).

Similarly, if σ2 ⊑ σ3 then for all rule i and x ∈ dom(σ2(i)), σ3(i)(x) ⊆ σ3(i)(x). Therefore,

for every rule i and x ∈ dom(σ1(i)), σ1(i)(x) ⊆ σ2(i)(x) ⊆ σ3(i)(x), so σ1 ⊑ σ3.

• anti-symmetry: if σ1 ⊑ σ2 then for all rule i and x ∈ dom(σ1(i)), σ1(i)(x) ⊆ σ2(i)(x).

Similarly, if σ2 ⊑ σ1 then for all rule i and x ∈ dom(σ2(i)), σ2(i)(x) ⊆ σ1(i)(x). Therefore

for all rule i dom(σ1(i)) = dom(σ2(i)) and σ1(i)(x) = σ2(i)(x) for every variable, so

σ1 = σ2.

Lemma 4

In the partially ordered set (ΣP ,⊑) every subset C ⊆ ΣP has a least upper bound

σ′ =
⊕

σ∈C σ.

A Transformational Approach to Resource Analysis with Typed-norms Inference 45

Proof

We consider that |P | = n and C = {σ1, σ2, . . . , σk}, where σi = 〈µ1
i , µ

2
i , . . . , µ

n
i 〉. By

definition of
⊕

we have σ′ = 〈µ1
1 ⊕ µ

1
2 . . .⊕ µ

1
k, µ

2
1 ⊕ µ

2
2 . . .⊕ µ

2
k, . . . , µ

n
1 ⊕ µ

n
2 . . .⊕ µ

n
k 〉.

We proceed by reduction to the absurd: suppose σ′′ is a least upper bound of C but σ′ 6⊑

σ′′, then for some rule i and variable x we have σ′(i)(x) 6⊆ σ′′(i)(x). If x /∈ dom(σ′′(i))

then σ′′ cannot be an upper bound of C, because dom(σ′(i)) =
⋃k

j=1 dom(µi
j)) so for

some µi
j we will have that µi

j(x) 6⊆ σ′(i). On the other hand, if x ∈ dom(σ′′(i)) then

σ′(i)(x) 6⊆ σ′′(i)(x) because T ∈ σ′(i)(x) but T 6∈ σ′′(i)(x) for some type T . By definition

of
⊕

we have that σ′(i)(x) =
⋃k

j=1 µ
i
j(x), so T ∈ µ

i
j(x) for some µi

j(x). Therefore σ
′′

cannot be an upper bound of C because σ′′(i)(x) 6⊆ µi
j(x), so σ

′′ 6⊑ σj .

Theorem 2. Consider a program P such that |P | = n. Then lfp(genP) exists and is the

supremum of the ascending Kleene chain starting from ⊥P = 〈ǫ1, . . . , ǫn〉.

Proof

(ΣP ,⊑) is a partially ordered set because by Lemma 3 ⊑ is reflexive, transitive, and

anti-symmetric. By Lemma 4 every subset of ΣP has a least upper bound (obtained by

⊕) so (ΣP ,⊑) is also a complete lattice by Lemma A.2 (Nielson et al. 1999). ΣP satisfies

the Ascending Chain condition trivially because it is finite, and genP is monotone as

by definition (Fig. 6) it extends the program mapping σ passed as argument. Then

lfp(genP) = genP (n)(⊥P) for some n ≥ 0 (Nielson et al. 1999; Tarski 1955).

A.3 Results in Section 4.2

In this section we need to track the concrete program rule associated to each activation

record. Therefore we will assume that activation records contain in their first element

the rule number used to create them. For example 〈pi, b·bs , lv〉 is an activation record

generated by a call to procedure p using the i-th rule of the program.

We will also use the notion of a variable z being dependent on a variable x w.r.t. a

type T in a step C ❀ C ′—written x⇒T z. This relation tracks the dependence between

variables in a step, so that a change in a component of type T in the value of x in the

original configuration will have an impact on the components of type T of variable z in

the destination configuration. Formally:

Definition 23 (Dependent variables in a ❀-step)

Consider a step 〈pi, bs , lv〉 · C ′
0 ❀ 〈q j , bs ′, lv ′〉 · C ′

1 . The set D of dependent variables

w.r.t. T is defined as:

• If the step evaluates an assignment x:=t using rule (1) of Fig. 2 then D = {y ⇒T

x | y ∈ vars(t), T � type(y)}, i.e., x is dependent on all the variables y ∈ vars(t).
• If the step evaluates a procedure callm(x̄, ȳ)—rule (2) of Fig. 2—using the program
rule m(x̄′, ȳ′) ← g, b1 · · · bk ∈ P then D = depT (D0 , g) where D0 = {xk ⇒T x′k |
T � type(xk)} and

depT (D , g) =

depT (depT (D , g1), g2) if g = g1 ∧ g2
D ∪ {x⇒T y | y ∈ vars(p), T � type(y)}∪ if g = match(x, p)
{z ⇒T y | z ⇒T x ∈ D, y ∈ vars(p), T � type(y)}

D otherwise

Note that, in the case of match(x, p) guards, the variables y ∈ vars(p)—which are

46 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

fresh—are dependent on the variable x. Recursively, if x depends on any variable

z, then any variable y ∈ vars(p) is also dependent on z.

• Finally, if the step uses rule (3) of Fig. 2 to evaluate 〈pi, ǫ, lv1 〉·〈q j [y ′ ∼ y], bs , lv〉·C

then we have D = {y′k ⇒T yk | y′k, T � type(y′k)}, i.e., the output arguments of a

call (yk) are dependent on the output variables of the fresh instance (y′k) used to

evaluate a call.

We use the notation x ⇒∗T y in a trace T = C0 ❀ C1 ❀ . . . ❀ Cn to refer to a chain

of k ≤ n dependences between ordered (but not necessarily consecutive) steps. Formally,

we have a sequence of k positions p1 < p2 < . . . < pk−1 < pk such that 0 ≤ pi < n and a

chain of k dependencies:

1. x⇒T x1 in some step Cp1
❀ Cp1+1 ,

2. x1 ⇒T x2 in some subsequent step Cp2
❀ Cp2+1 ,

...

(k-1). xk−2 ⇒T xk−1 in some subsequent step Cpk−1
❀ Cpk−1+1 ,

k. xk−1 ⇒T y in step Cpk
❀ Cpk+1 with pk > pk−1

Finally, we will use an extended notion of value variations for variable mappings and

configurations. We will say that lv ′ is a variation of lv , written lv ⊲T lv ′, if lv ′ = lv [xi 7→ v ′
i]

for some variables xi ∈ dom(lv) and lv(xi)⊲
T v′i. This notion can be extended to configu-

rations, written C ⊲T C ′, if C ′ results from C by replacing some of its variable mappings

lv by lv ′ such that lv ⊲T lv ′.

Lemma 5

Let σ be the result of the typed-norms inference of a program P . If 〈pi, bs , lv〉 · C0 ❀

〈q j , bs ′, lv ′〉 · C ′
0 , T ∈ σ(j)(z) and x⇒T z, then T ∈ σ(i)(x).

Proof

By case distinction on the semantic rule from Fig. 2 used to perform the step:

• If the step evaluates an assignment using rule (1) we have:

(1)
b ≡ x:=t evalt(t, lv) = v

〈pi, b·bs , lv〉·C ❀ 〈pi , bs , lv [x 7→ v]〉·C

In this case the step is in the same activation record of pi, and the only dependent variable

is x, which depends on every y ∈ vars(t): y ⇒T x. Then by the first equation of genSP
i

any typed-norm of x—T ∈ σ(i)(x)—will be a typed-norm of y—T ∈ σ(i)(y).

• When using rule (2) we have:

(2)

b ≡ m(x̄, ȳ) m(x̄′, ȳ′)← g, b1 · · · bk ∈ P fresh

lv1 ≡ [x ′ 7→ lv(x)] evalg (g, lv1) = lv2
〈pi, b·bs , lv〉·C ❀ 〈mj , b1 · · · bk , lv1 ⊎ lv2 〉·〈pi [y ′ ∼ y], bs , lv〉·C

In this case the dependence between variables is more complex: there are dependences

from the parameter passing (xk ⇒T x′k) and also from the sequence of guards (xk ⇒T zm
for those variables zm appearing in the right-hand side of match guards).

A Transformational Approach to Resource Analysis with Typed-norms Inference 47

1. For the parameter passing, we have T ∈ σ(i)(xk) directly by the second equation of

genSP
i (set A). The typed-norms of any input variable for any rule of m (including

rule number j) will be propagated to the arguments x̄k of the call m(x̄, ȳ) in rule

i.
2. Assume a variable zm in some guard such that xk ⇒T zm and T ∈ σ(i)(zm). Thus

there is a sequence of match guards

match(x′k, p1) ∧match(z1, p2) ∧ . . . ∧match(zm−1, pm)

such that zi ∈ vars(pi)—note that we can safely ignore e1 op e2 as they do not

define new variables. Then by definition of genGP
i (2nd and 4th rules) we know that

T ∈ σ(i)(zm−1), T ∈ σ(i)(zm−2), . . . , T ∈ σ(i)(z2), T ∈ σ(i)(z1), T ∈ σ(i)(x′k).

Therefore T ∈ σ(i)(xk) using the same reasoning as in case 1.

• Finally, if we use rule (3):

(3)
〈pi, ǫ, lv1 〉·〈q j [y ′ ∼ y], bs , lv〉·C ❀ 〈q j , bs , lv [y 7→ lv1 (y ′)]〉·C

In this case we have that y′k ⇒T yk, so if T ∈ σ(j)(yk) then T ∈ σ(i)(y′k) because of

the second equation of genSP
i : rule q

j will contain a call q(x̄, ȳ), so using the set B the

typed-norm T will be propagated to any output variable of any rule of procedure q, in

particular those y′k ∈ rvars(i) such that y′k ⇒T yk. Therefore σ(i)(y
′
k).

Theorem 3 (Soundness). If usefulTi (x) then T ∈ rtypes i(x).

Proof
Let σ be the result of the typed-norms inference of the program. By definition of usefulTi (x)

there are two configurations such that:

1. C0 = 〈p, b·bs , lv〉 · C ′ containing statements from the i-th rule of P
2. x ∈ dom(lv)
3. C ′

0 = 〈p, b·bs , lv ′〉 · C ′ with lv ′ = lv [x 7→ v] and lv(x) ⊲T v
4. Tr(C0) 6= Tr(C ′

0)

From point 4 we know that Tr(C0) 6⊆ Tr(C ′
0) or Tr(C0) 6⊇ Tr(C ′

0). We will focus only

on the first case, as the second one is similar. Since Tr(C0) 6⊆ Tr(C ′
0) we know that there

is a trace T ∈ Tr(C0) such that T 6∈ Tr(C ′
0). However, Tr(C

′
0) will contain a trace T ′

which starts with a (possibly empty) prefix of T . Therefore:

T = C0 ❀
r1 C1 ❀

r2 . . .❀rn Cn ❀
rn+1 Cn+1

T ′ = C ′
0 ❀

r1 C ′
1 ❀

r2 . . .❀rn C ′
n

but C ′
n 6❀

rn+1 C ′
∗. Furthermore, from point 3 we have that C0 ⊲

T C ′
0 . Assuming Cn =

〈q j , bs ′, lvn〉 · C ′′
n then by Lemma 6 we know that there is a variable z ∈ dom(lvn) such

that

1. usefulTj (z)
2. x⇒∗T z
3. T ∈ σ(j)(z)

Therefore by Lemma 7 we have that T ∈ σ(i)(x).

48 E. Albert, S. Genaim, R. Gutiérrez and E. Martin-Martin

Lemma 6

Consider a configuration C0 = 〈pi , b·bs , lv〉 · C containing statements from the i-th rule

of P , and a variant configuration C0 ≡ 〈pi , b·bs , lv〉 · C ⊲T 〈pi, b·bs , lv ′〉 · C ′ ≡ C ′
0 . Let

{x̄} ⊆ dom(lv) be those variables whose value has changed from C0 to C ′
0 , and σ be the

result of the typed-norms inference of the program. If there are traces

T = C0 ❀
r1 C1 ❀

r2 . . .❀rn Cn

T ′ = C ′
0 ❀

r1 C ′
1 ❀

r2 . . .❀rn C ′
n

such that Cn ❀
rn+1 Cn+1 but C ′

n 6❀
rn+1 C ′

∗, where Cn = 〈q j , , lvn〉 ·C ′′
n , then Cn ⊲

T C ′
n

and there is a variable z ∈ dom(lvn) such that:

1. usefulTj (z)

2. xk ⇒∗T z for some xk ∈ {x̄}

3. T ∈ σ(j)(z)

Proof

By induction on the length n of the traces.

• Base Case: n = 0

In this case C0 ❀
r1 C1 but C ′

0 6❀
r1 C ′

1 , where lv ⊲
T lv ′. According to the rules in Fig. 2

the only rule that can prevent such a step is (2):

(2)

b ≡ m(x̄, ȳ) m(x̄′, ȳ′)← g, b1 · · · bk ∈ P fresh

lv1 ≡ [x ′ 7→ lv(x)] evalg (g, lv1) = lv2
〈pi, b·bs , lv〉·C ❀ 〈mj , b1 · · · bk , lv1 ⊎ lv2 〉·〈pi [y ′ ∼ y], bs , lv〉·C

C ′
0 cannot be reduced because evalg(g, [x′ 7→ lv ′(x)]) is undefined, but on the other hand

evalg(g, [x′ 7→ lv(x)]) returns a variable mapping. Then it is clear that the value of some

variable z ∈ {x′} must differ from lv to lv ′. If there is only differences in one variable z

then usefulTi (z) (in this case i = j) because clearly Tr(〈pi, b·bs , lv〉·C) 6= Tr(〈pi , b·bs , lv ′〉·

C). If there are several variables z ⊆ dom(lv) such that lv(z) ⊲T lv ′(z) then it is clear

that we can revert the values of all of them but one, which would prevent the guard

evaluation, so again usefulTi (z). In this case z ⇒∗T z trivially, because there is no step

involved. Finally, by definition of genGP
i and genSP

i (2nd rule, set A) the typed-norm

T will be propagated from the guard to the input variable, and then to z, therefore

T ∈ σ(j)(z). Note that C0 ⊲
T C ′

0 holds trivially in this case.

• Inductive Step: n > 0

We know that the traces from C1 and C ′
1 are different, so C1 6= C ′

1 and by Prop. 5

we have that C1 ⊲
T C ′

1 with C1 = 〈qk , , lv1 〉 · C and C1 = 〈qk , , lv ′
1 〉 · C

′. Then by

IH we know Cn ⊲
T C ′

n and (1) usefulTj (z), (2) y ⇒∗T z for some y ∈ dom(lv1) and (3)

T ∈ σ(j)(z).

If y ∈ dom(lv) then lv(y) ⊲T lv ′(y) and the proof is finished. Otherwise, consider the set

of variables {x̄} ⊆ dom(lv) whose value has changed from C0 to C ′
0 , i.e., lv(xk)⊲

T lv ′(xk).

Then by a case distinction on the definition of dependent variables (Def. 23) we have

that there is at least one variable xk ∈ dom(lv) such that xk ⇒T y, therefore xk ⇒∗T z.

A Transformational Approach to Resource Analysis with Typed-norms Inference 49

Lemma 7

Let σ be the result of the typed-norms inference of the program. Consider configurations

C0 = 〈pi , bs , lv〉 ·C ′ and Cn = 〈q j , bs ′, lvn〉 ·C ′′. If C0 ❀
r1 C1 ❀

r2 . . .❀rn Cn , x⇒∗T z

for some x ∈ dom(lv), and T ∈ σ(j)(z), then T ∈ σ(i)(x).

Proof

By induction on the length n of the trace:

• Base Case: n = 0

In this case C0 = Cn , q
j = pi, and x⇒∗T x. Therefore T ∈ σ(i)(x) = σ(j)(x).

• Inductive Step n > 0

We assume that C1 = 〈rk , bs ′′, lv ′′〉 · C ′′. The dependence x ⇒∗T z appears in the

complete trace, so there are two cases:

— x ∈ dom(lv′′). Then by the Induction Hypothesis we have that T ∈ σ(k)(x). If

x ∈ dom(lv′′) and x ∈ dom(lv) then pi and rk are the same activation record, so

T ∈ σ(i)(x).

— x 6∈ dom(lv′′), so x⇒T z′ in the first step and z′ ⇒∗T z in the rest of the trace, for

some z′ ∈ dom(lv ′′). Then by the Induction Hypothesis we have that T ∈ σ(k)(z′).

From T ∈ σ(k)(z′), x⇒T z′ and Lemma 5, we obtain directly that T ∈ σ(i)(x).

Proposition 5

If C0 ❀
r C1 , C

′
0 ❀

r C ′
1 , C0 ⊲

T C ′
1 , and C ′

0 6= C ′
1 then C1 ⊲

T C ′
1 .

Proof

By case distinction on the rule of Fig. 2 used. Note the importance of the premise

C ′
0 6= C ′

1 , as rule (3) of Fig. 2 drops an activation record from the configuration and

could remove those variables storing variations, therefore making C ′
0 equal to C ′

1 .

	1 Introduction
	1.1 Summary of Contributions
	1.2 Organization of the Article

	2 A Rule-based Language
	2.1 Syntax of the rule-based language
	2.2 Semantics of the rule-based language

	3 Size Abstraction Using Typed-Norms
	3.1 Preliminaries on Typed-Norms
	3.2 Our Transformational Approach
	3.3 Soundness

	4 Inference of Relevant Types
	4.1 Formalization of relevant type inference
	4.2 Soundness of relevant types inference

	5 Extensions
	5.1 Extension to Polymorphic Types
	5.2 Context-Sensitive Norms

	6 Experiments
	6.1 Comparison to RAML and Sized Types

	7 Related Work
	8 Conclusions and Future Work
	References
	Appendix A Proofs
	A.1 Results in Section 3
	A.2 Results in Section 4.1
	A.3 Results in Section 4.2

