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Abstract

The chase procedure for existential rules is an indispensable tool for several database applications, where
its termination guarantees the decidability of these tasks. Most previous studies have focused on the skolem
chase variant and its termination analysis. It is known that the restricted chase variant is a more powerful
tool in termination analysis provided a database is given. But all-instance termination presents a challenge
since the critical database and similar techniques do not work. In this paper, we develop a novel technique
to characterize the activeness of all possible cycles of a certain length for the restricted chase, which leads
to the formulation of a parameterized class of the finite restricted chase, called k-safe(Φ). This approach
applies to any class of finite skolem chase identified with a condition of acyclicity. More generally, we show
that the approach can be applied to the hierarchy of bounded rule sets previously only defined for the skolem
chase. Experiments on a collection of ontologies from the web show the applicability of the proposed meth-
ods on real-world ontologies. Under consideration in Theory and Practice of Logic Programming (TPLP).
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1 Introduction

The advent of emerging applications of knowledge representation and ontological reasoning has
been the motivation of recent studies on rule-based languages, known as tuple-generating de-
pendencies (TGDs) (Beeri and Vardi 1984), existential rules (Baget et al. 2011) or Datalog±

(Cali et al. 2010), which have been considered as a powerful modeling language for applications
in data exchange, data integration, ontological querying, and so on. A major advantage of this
approach is that the formal semantics based on first-order logic facilitates reasoning in an appli-
cation, where answering conjunctive queries over a database extended with a set of existential
rules is a primary task, but unfortunately an undecidable one in general (Beeri and Vardi 1981).
The chase procedure is a bottom-up algorithm that extends a given database by applying spec-
ified rules. If such a procedure terminates, given an input database I, a finite rule set R and a
conjunctive query, we can answer the query against R and I by simply evaluating it on the result
of the chase. In applications such as in data exchange scenarios, we need the result that the chase
terminates for all databases. Thus, determining if the chase of a rule set terminates is crucial in
these applications.

Existential rules in this context are implications of the form ∀x∀y (φ(x,y)→∃z ψ(x,z)), where
φ and ψ are conjunctions of atoms.
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For example, that every student has a classmate who is also a student can be expressed by

Student(x)→∃z Classmate(x,z),Student(z)

where universal quantifiers are omitted.
We can remove existential quantifiers by skolemization where existential variables are re-

placed by skolem terms. For the above example, the resulting skolemized rule is

Student(x)→ Classmate(x, fz(x)),Student( fz(x))

Given a database, say I = {Student(a)}, the atom in it triggers the application of the rule, which
will first add in I the atoms Classmate(a, fz(a)), Student( fz(a)); repeated applications will further
add Classmate( fz(a), fz( fz(a))), Student( fz( fz(a))), and so on. In this example, the chase produces
an infinite set.

Note that a set of skolemized rules is a Horn logic program.
Four main variants of the chase procedure have been considered in the literature, which are

called oblivious (Fagin et al. 2005), skolem (Marnette 2009) (semi-oblivious),1 restricted (a.k.a.
standard) (Fagin et al. 2005) and the core chase (Deutsch et al. 2008).

What is common to all these chase variants is the property that, for any database instance I,
a finite rule set R and a Boolean conjunctive query q, q is entailed by R and I if and only if it
is entailed by the result of the chase on R and I. However, they behave differently concerning
termination. The oblivious chase is weaker than the skolem chase, in the sense that whenever the
oblivious chase terminates, so does the skolem chase, but the reverse does not hold in general.
In turn, the skolem chase is weaker than the restricted chase, which is itself weaker than the core
chase.

The core chase is defined based on the restricted chase combined with the notion of cores of
relational structures (Hell and Nešetřil 1992). This chase variant is theoretically interesting as it
captures all universal models of a given rule set and instance.2 Given a rule set R and an instance
I, whenever there is a universal model of R and I, the core chase produces the smallest such
model.

As the cost of each step of the core chase is DP-complete, this chase variant is a bit more
complicated than the other main chase variants and to the best of our knowledge, there are no
known efficient algorithms to compute the core when the instances under evaluation are of non-
trivial sizes.

In this paper, we focus on the skolem and the restricted versions of the chase, which have been
the most investigated in the literature, as the core chase is computationally costly in practice (cf.
(Benedikt et al. 2017) for more details).

Despite the existence of many notions of acyclicity in the literature (cf. (Cuenca Grau et al.
2013) for a survey), there are natural examples from real-world ontologies that are non-terminating
under the skolem chase but terminating under the restricted chase. However, finding a suit-
able characterization to ensure restricted chase termination is a challenging task, and in the last
decade, to the best of our knowledge, only a few conditions have been discovered. In (Carral

1 The chase using skolemized rules can be expressed equivalently by introducing fresh nulls. The chase under these two
different notations are considered equivalent due to a one-to-one correspondence between generated skolem terms and
introduced fresh nulls.

2 Given an instance I and a rule set R, an instance J is a model of R and I if J satisfies all rules in R and there is a
homomorphism from I to J. Moreover, a model U is universal for R and I if it has homomorphism into every model
of R and I. Models of R and I are not unique, but universal models of R and I are unique up to homomorphism.
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et al. 2017), the classes of restricted joint acyclicity (RJA), restricted model-faithful acyclic-
ity (RMFA) and restricted model-summarizing acyclicity (RMSA) of finite all-instance, all-path
restricted chase are introduced which generalize the corresponding classes under the skolem
chase, namely (by removing the letter R in the above names) joint-acyclicity (JA) (Krötzsch
and Rudolph 2011), model-faithful acyclicity (MFA) and model-summarizing acyclicity (MSA)
(Cuenca Grau et al. 2013), respectively. Intuitively, the classes for the restricted chase introduce
a blocking criterion to check if the head of each rule is already entailed by the derivations when
constructing the arena for checking the corresponding acyclicity conditions for JA, MFA, and
MSA, respectively. Here, we extend their work in two different directions. First, we provide a
highly general theoretical framework to identify strict superclasses of all existing classes of finite
skolem chase that we are aware of, and second, we show a general critical database technique,
which works uniformly for all bounded finite chase classes.

With the curiosity on the intended applications of some of the practical ontologies that we
collected from the web (which will be used in our experimentation to be reported later in this pa-
per) and the question why the restricted chase may help identify classes of terminating rule sets,
we analyze some of them to get an understanding. Here, let us introduce a case-study of policy
analysis for access control, which is abstracted from a practical ontology from the considered
collection. This example shows how the user may utilize the approach we have developed in this
paper to model and reason with a particular access policy.

Consider a scenario involving several research groups in a given lab located in a depart-
ment. Each one of these groups may have some personnel working in labs. Also, each per-
son may possess keys which are access cards to the labs of that department. The set of rules
R = {r1,r2,r3,r4,r5} below is intended to model the access policy to the labs: any member of any
research lab must be able to enter their lab that is assigned to the research group (r1); for each
person x who has a key to a room y there is a lab u such that x can enter u and the key y opens
the door of that lab (r2); and if a person can enter a lab, he or she must have a matching key that
opens the lab (r3).

An employee of the department is responsible for granting the keys to labs (r4). Once an
employee grants a key to a person, the grantee is assumed to be in the possession of the key (r5).

r1 : MemOf(x,y)→ Enters(x,y)
r2 : HasKey(x,y)→∃u Enters(x,u),KeyOpens(y,u)
r3 : Enters(x,y)→∃v HasKey(x,v),KeyOpens(v,y)
r4 : HasKey(x,y)→∃w Grants(w, x,y),Emp(w)
r5 : Grants(t, x,y)→ HasKey(x,y)

The intended meanings of the predicates are: MemOf(x,y) represents that x is a member of
(lab) y; Enters(x,y) says that (person) x enters (lab) y; HasKey(x,y) affirms that (person) x has a
key card to (room) y; KeyOpens(y,u) means that the key to (room) y opens (lab) u; Furthermore,
by Grants(w, x,y), we declare that (employee) w grants (person) x access to (room) y; Finally,
Emp(w) confirms that w is an employee of the department.

The rules in R can be applied cyclically. For example, an application of r4 triggers an applica-
tion of r5 which triggers r4 again. But even under the skolem chase variant, these two rules do
not produce an infinite derivation sequence. Let us consider the path π1 = (r4,r5) and show the
skolem chase derivations of sk(π1) from {HasKey

(
a,b

)
}. Recall that the skolem chase considers
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the skolemized version of the rules.

I0 = {HasKey
(
a,b

)
}
〈sk(r4),{x/a,y/b}〉
−−−−−−−−−−−−−→

I1 = I0∪
{
Grants

(
fw(a,b),a,b

)
,Emp

(
fw(a,b)

)} 〈sk(r5),{t/ fw(a,b),x/a,y/b}〉
−−−−−−−−−−−−−−−−−−−−→

I2 = I1

where
〈sk(r),τ〉
−−−−−−→ denotes that rule sk(r) is applied using substitution τ.

The sequence of derivations for the path π2 = (r5,r4) can be obtained similarly. From these
derivations, we can observe that any path of rules that only consist of r4 and r5 is terminating
under the skolem chase.

However, the cyclic applications of r2 and r3 lead to an infinite skolem chase. To illustrate, let
us construct a skolem chase sequence starting from the application of r2 on a singleton database
{HasKey(a,b)} as follows (where the existential variable u in r2 is skolemized to fu(x,y) and v in
r3 is skolemized to fv(x,y)):

I0 = {HasKey
(
a,b

)
}
〈sk(r2),{x/a,y/b}〉
−−−−−−−−−−−−−→

I1 = I0∪
{
Enters

(
a, fu(a,b)

)
,KeyOpens

(
b, fu(a,b)

)} 〈sk(r3),{x/a,y/ fu(a,b)}〉
−−−−−−−−−−−−−−−−−→

I2 = I1∪
{
HasKey

(
a, fv(a, fu(a,b))

)
,KeyOpens

(
fv(a, fu(a,b)), fu(a,b)

)}
〈sk(r2),{x/a,y/ fv(a, fu(a,b))}〉
−−−−−−−−−−−−−−−−−−−−−→

I3 = I2∪
{
Enters

(
a, fu(a, fv(a, fu(a,b)))

)
,KeyOpens

(
fv(a, fu(a,b)), fu(a, fv(a, fu(a,b)))

)
}

. . .

On the other hand, in each valid derivation of a restricted chase sequence, we must ensure that
each rule ri that is used in the derivation is not already satisfied by the current conclusion set,
which is the set of all derivations generated so far right before application of ri.

Though the skolem chase leads to an infinite sequence, the restricted chase does terminate.
Utilizing fresh nulls, denoted by ni, for the representation of unknowns,3 we have the following
sequence of restricted chase derivations for this rule set, where θ is a substitution which maps n3

to n1 and other symbols to themselves. From this derivation sequence, it can be seen that I3 is not
a new instance, and therefore, (r2,r3,r2) is not an active path, i.e., the one that leads to a (valid)
restricted chase sequence.

I0 = {HasKey
(
a,b

)
}
〈r2,{x/a,y/b}〉
−−−−−−−−−−→

I1 = I0∪
{
Enters

(
a,n1

)
,KeyOpens

(
b,n1

)} 〈r3,{x/a,y/n1}〉
−−−−−−−−−−−→

I2 = I1∪
{
HasKey

(
a,n2

)
,KeyOpens

(
n2,n1

)} 〈r2,{x/a,y/n2}〉
−−−−−−−−−−−→

I3 = I2∪
{
Enters

(
a,n3

)
,KeyOpens

(
n2,n3

)} θ={n3/n1}
=======⇒ θ(I3) ⊆ I2

From the above sequence of derivations, it can be seen that when we attempt to apply r2 on I2,
its head can be instantiated to Enters(a, ) and KeyOpens(n2, ), where we place an underline to
mean that the existential variable v in r3 can be instantiated to form atoms that are already in I2,
which halts the derivation under the restricted chase.

In this paper, we will show that we can run such tests on cyclic rule applications of a fixed

3 For the clarity of illustration, we use fresh nulls instead of skolem terms - there is a one-to-one correspondence between
these two kinds of representations of unknown elements.
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nesting depth, which we call k-cycles (k > 0), with the databases, which we call restricted critical
databases, to define a hierarchy of classes of the finite restricted chase.

In addition, we show how to extend δ-bounded ontologies, which were introduced in the con-
text of the skolem chase variant (Zhang et al. 2015), uniformly to δ-bounded rule sets under the
restricted chase variant, where δ is a bound function for the maximum depth of chase terms in a
chase sequence. Furthermore, as a concrete case of δ, we consider functions constructed from an
exponential tower of the length κ (called expκ in this paper), for some given integer κ, and then
we obtain the membership as well as reasoning complexities with these rule sets.

The main contributions of this paper are as follows:

1. We show that while the traditional critical database technique (Marnette 2009) does not
work for the restricted chase, a kind of “critical databases” exist by which any finite re-
stricted chase sequence can be faithfully simulated. This is shown by Theorem 1 for rules
whose body contains no repeated variables (called simple rules) and by Theorem 2 for
arbitrary rules.

2. As the above results provide sufficient conditions to identify classes of the finite restricted
chase, we define a hierarchy of such classes, which can be instantiated to a concrete class
of finite chase, given an acyclicity condition. This is achieved by Theorem 5 based on
which various acyclicity conditions under the skolem chase can be generalized to introduce
classes of finite chase beyond finite skolem chase.

3. We show that the hierarchy of δ-bounded rule sets under the skolem chase (Zhang et al.
2015) can be generalized by introducing δ-bounded sets under the restricted chase.

4. Our experimental results on a large set of ontologies collected from the web show prac-
tical applications of our approach to real-world ontologies. In particular, in contrast with
the current main focus of the field on acyclicity conditions for termination analysis, our
experiments show that many ontologies in the real-world involve cycles of various kinds
but indeed fall into the finite chase.

The paper is organized as follows. The next section provides the preliminaries of the paper,
including notations, some basic definitions, and a motivating example. Section 3 describes pre-
vious work on chase termination, which allows us to compare with the work of this paper during
its development. Then Section 4 sets up the foundation of this work, namely on how to simulate
restricted chase for any database by restricted chase with restricted critical databases. We then
define in Section 5 a hierarchy of classes of the finite restricted chase, called k-safe(Φ) rule sets
for a given cycle function Φ, by testing cycles of increasing nesting depths. In Section 6 we
apply a similar idea to δ-bounded rule languages of (Zhang et al. 2015) and study membership
checking and reasoning complexities. We implemented membership checking and a reasoning
engine for k-safe(Φ) rule sets and conducted experiments. These are reported in Section 7. We
then provide a further discussion on related work in Section 8. Finally, Section 9 concludes the
paper with future directions.

This paper is a substantial revision and extension of a preliminary report of the work that
appeared in (Karimi et al. 2018).

2 Preliminaries

We assume the disjoint countably infinite sets of constants C, (labelled) nulls N, function symbols
F, variables V and predicates P. A schema is a finite set R of relation (or predicate) symbols.
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Each predicate or function symbol Q is assigned a positive integer as its arity which is denoted
by arity(Q). Terms are elements in C∪N∪V. An atom is an expression of the form Q(t), where
t ∈ (C∪V∪N)arity(Q) and Q is a predicate symbol from R. A general instance (or simply an
instance) I is a set of atoms over the schema R; term(I) denotes the set of terms occurring in I.
A database is a finite instance I where terms are constants from C. A substitution is a function
h : C∪V∪N→ C∪V∪N such that (i) for all c ∈ C, h(c) = c; (ii) for all n ∈ N, h(n) ∈ C∪N,
and (iii) for all v ∈ V, h(v) ∈ C∪N∪V. Let S 1 and S 2 be sets of atoms over the same schema. A
substitution h : S 1→ S 2 is called a homomorphism from S 1 to S 2 if h(S 1) ⊆ S 2 where h naturally
extends to atoms and sets of atoms. In this paper, when we define a homomorphism h : S 1→ S 2,
if S 1 and S 2 are clear from the context, we may just define such a homomorphism as a mapping
from terms to terms.

A rule (also called a tuple-generating dependency) is a first-order sentence r of the form:
∀x∀y (φ(x,y)→∃z ψ(x,z)), where x and y are sets of universally quantified variables (in writing,
we often omit the universal quantifier) and φ and ψ are conjunctions of atoms constructed from
relation symbols from R, variables from x∪ y and x∪ z, and constants from C. The formula
φ (resp. ψ) is called the body of r, denoted body(r) (resp. the head of r, denoted head(r)). In
this paper, a rule set is a finite set of rules. These rules are also called non-disjunctive rules as
compared to studies on disjunctive rules (see, e.g., (Bourhis et al. 2016; Carral et al. 2017)).

We implicitly assume all rules are standardized apart so that no variables are shared by more
than one rule, even if, for convenience, we reuse variable names in examples of the paper.A rule
is simple if variables do not repeat locally inside the body of the rule. A simple rule set is a finite
set of simple rules.

Given a rule r = φ(x,y)→∃zψ(x,z), a skolem function symbol fz is introduced for each variable
z ∈ z, where arity( fz) = |x|. This leads to consider complex terms, called skolem terms, built from
skolem functions and constants. However, in this paper, we will regard skolem terms as a special
class of nulls (i.e., skolem terms will be seen as a way of naming nulls).

Ground terms in this context are constants from C or skolem terms, and atoms in a general
instance may contain skolem terms as well. A ground instance in this context is a general instance
involving no variables. The functional transformation of r, denoted sk(r), is the formula obtained
from r by replacing each occurrence of z ∈ z with fz(x). The skolemized version of a rule set R,
denoted sk(R), is the set of rules sk(r) for all r ∈ R.

Given a rule r = φ(x,y)→∃zψ(x,z), we use varu(r), var f r(r), varex(r), and var(r), respectively,
to refer to the set of universal (x∪ y), frontier (x), existential (z), and all variables appearing in
r. Given a rule set R, the schema of R is denoted by sch(R). Given a ground instance I and a rule
r, an extension h′ of a homomorphism h from body(r) to I, denoted h′ ⊇ h, is a homomorphism
from body(r)∪head(r) to I, that assigns, in addition to the mapping h, ground terms to existential
variables of r. A position is an expression of the form P[i], where P is an n-ary predicate and i
(1 ≤ i ≤ n) is an integer. We are interested only in positions associated with frontier variables - for
each x ∈ var f r(r), posB(x) (resp. posH(x)) denotes the set of positions of body(r) (resp. head(r))
in which x occurs.

We further define: a path (r1,r2, . . . ) (based on R) is a nonempty (finite or infinite) sequence
of rules from R; a cycle (r1, . . . ,rn) (n ≥ 2) is a finite path whose first and last elements coincide
(i.e., r1 = rn); a k-cycle (k ≥ 1) is a cycle in which at least one rule has k + 1 occurrences and all
other rules have k+1 or less occurrences. Given a path π, Rule(π) denotes the set of distinct rules
appearing in π.
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For a set or a sequence W, the cardinality |W | is defined as usual. The size of an atom p(x) is
|x| and given a rule set R, with ||R||, we denote the sum of the sizes of atoms in R.

2.1 Skolem and Restricted Chase Variants

The chase procedure is a construction that accepts as input a database I and a rule set R and adds
atoms to I. In this paper, our main focus is on the skolem and the restricted chase variants.

We first define triggers, active triggers, and their applications. The skolem chase is based on
triggers, while the restricted chase applies only active triggers.

Definition 1
Let R be a rule set, I an instance, and r ∈ R. A pair (r,h) is called a trigger for R on I (or simply
a trigger on I, as R is always clear from the context) if h is a homomorphism from body(r) to I.
If in addition there is no extension h′ ⊇ h, where h′ : body(r)∪ head(r)→ I, then (r,h) is called
an active trigger on I.

An application of a trigger (r,h) on I returns I′ = I∪h(sk(head(r))). We write a trigger appli-

cation by I〈r,h〉I′, or alternatively by I
〈r,h〉
−−−→ I′. We call atoms in h(body(r)) the triggering atoms

w.r.t. r and h, or simply triggering atoms when r and h are clear from the context.

Intuitively, a trigger (r,h) is active if given h, the implication in r cannot be satisfied by any
extension h′ ⊇ h that maps existentially quantified variables to terms in I.

Definition 2
Given a database I and a rule set R, we define the skolem chase based on a breadth-first fixpoint
construction as follows: we let chase0

sk(I,R) = I and, for all i > 0, let chasei
sk(I,R) be the union of

chasei−1
sk (I,R) and h(head(sk(r))) for all rules r ∈ R and all homomorphisms h such that (r,h) is a

trigger on chasei−1
sk (I,R). Then, we let chasesk(I,R) be the union of chasei

sk(I,R), for all i ≥ 0.

Sometimes we need to refer to a skolem chase sequence, which is a sequence of instances
that starts from a database I0 and continues by applying triggers for the rules in a given path on
the instance constructed so far. The term skolem chase sequence in this case is independent of
whether such a sequence can be extended to an infinite sequence or not.We can also distinguish
the two cases where the chase is terminating or not.

A finite sequence of rule applications from a path (r1, . . . ,rn) produces a finite sequence of
instances I0, I1, . . . , In such that (i) Ii−1〈ri,hi〉Ii, where (ri,hi) is a trigger on Ii−1 for all 1 ≤ i ≤ n,
(ii) there is no trigger (r,h) on In such that (r,h) < {(ri,hi)}0≤i≤n−1, and (iii) for each 1 ≤ i < j ≤ n,
assuming that Ii−1〈ri,hi〉Ii and I j−1〈r j,h j〉I j, ri = r j implies hi , h j (i.e., homomorphism hi is
different from h j). The result of the chase sequence is In.

An infinite sequence I0, I1, . . . of instances is said to be a non-terminating skolem chase se-
quence if (i) for all i ≥ 1, there exists a trigger (ri,hi) on Ii−1 such that Ii−1〈ri,hi〉Ii, (ii) for each
i, j ≥ 1 such that i , j, assuming that Ii−1〈ri,hi〉Ii and I j−1〈r j,h j〉I j, ri = r j implies hi , h j.4 In this
case, the result of the chase sequence is

⋃
i≥0 Ii.

From (Marnette 2009), we know that if some skolem chase sequence of a rule set R and a

4 In the literature, in addition to (i) and (ii), another condition known as the fairness condition for the skolem chase
is imposed: for each i ≥ 0, and each trigger (ri,hi) on Ii−1, there exists some j ≥ i such that I j−1〈ri,hi〉I j. This last
condition guarantees that all the triggers are eventually applied. We remove this requirement, as for the case of the
skolem chase, this condition is immaterial, cf. (Gogacz et al. 2019).
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database I0 terminates, then all instances returned by any skolem chase sequence of I0 and R are
terminating, and are the same.

On the other hand, the restricted chase is known to be order-sensitive. For this reason, it is
defined only on sequences of rule applications.

Similar to a skolem chase sequence, the main idea of a restricted chase sequence (based on a
given rule set R) is starting from a given database and applying triggers for the rules in a path
based on R on the instance constructed so far. However, unlike the skolem chase sequence, only
active triggers are applied. Similar to the case of the skolem chase, we distinguish the two cases
where the chase is terminating or not.

Definition 3
Let R be a rule set and I0 a database.

• A finite sequence I0, I1, . . . , In of instances is called a terminating restricted chase sequence
(based on R) if (i) for each 1 ≤ i ≤ n there exists an active trigger (ri,hi) on Ii−1 such that
Ii−1〈ri,hi〉Ii; and (ii) there exists no active trigger on In. The result of the chase sequence
is In.

• An infinite sequence I0, I1, . . . is called a non-terminating (or infinite) restricted chase se-
quence (based on R) if

(i) for each i ≥ 0, there exists an active trigger (ri,hi) on Ii−1 such that Ii−1〈ri,hi〉Ii; and
(ii) it satisfies the fairness condition: for all i ≥ 1 and all active triggers (ri,hi) on Ii−1,

where ri ∈ R, there exists j ≥ i such that either I j−1〈ri,hi〉I j or the trigger (ri,hi) is
not active on I j−1.

The result of the chase sequence is
⋃

i≥0 Ii.

Example 1
Let us consider instance I = {P(a,b),P(b,c),P(c,a),Q(a,b)} and rule r:

r : P(x,y),P(y,z),P(z, x)→∃u Q(x,u)

Homomorphism h1 = {x/a,y/b,z/c} maps body(r) to I. The pair (r,h1) is a trigger on I and
I〈r,h1〉I∪{Q(a, fu(a))} where fu is a skolem function constructed from u. However, (r,h1) is not
active for I. On the other hand, homomorphism h2 = {x/c,y/a,z/b} maps body(r) to I and (r,h2)
is an active trigger on I since there is no extension h′2 of h2 such that h′2(head(r)) ⊆ I. So, we
have I〈r,h2〉I∪{Q(c, fu(c))}. Therefore, (r,h1) can be applied for the skolem chase but not for the
restricted chase while (r,h2) can be applied for both chase variants.

Note that the fairness condition essentially says that any active trigger is eventually either
applied or becoming inactive. Furthermore, an infinite restricted chase sequence I cannot be
called non-terminating if the fairness condition is not satisfied for I. Recently, in (Gogacz et al.
2019), it has been shown that for rules with single heads (i.e., where the head of a rule consists
of a single atom), the fairness condition can be safely neglected.

A rule set R is said to be (all-instance) terminating under the restricted chase, or simply re-
stricted chase terminating if it has no infinite restricted chase sequence w.r.t. all databases; oth-
erwise, R is non-terminating under the restricted chase; this is the case where there exists at least
one non-terminating restricted chase sequence w.r.t. some database.

The classes of rule sets whose chase terminates on all paths (all possible derivation sequences
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of chase steps) independent of the given databases (thus all instances) are denoted by CT4∀∀,
where 4 ∈ {sk, res} (sk for the skolem chase and res for the restricted chase).

Since a chase sequence is generated by a sequence of rule applications, sometimes it is conve-
nient to talk about a chase sequence in terms of a sequence of rules that are applied. On the other
hand, to each path can be assigned a chase sequence (which is not unique).

For convenience, given a finite path π = (r1, . . . ,rn) based on R and database I0, we say that π
leads to a weakly restricted chase sequence (of R and I0) if there are active triggers (ri,hi) on
Ii−1 (1 ≤ i ≤ n) such that Ii−1〈ri,hi〉Ii. Note that the condition is independent of whether there
exists an active trigger on In or not; so, we do not qualify the sequence I0, I1, . . . , In as terminating
or non-terminating. Furthermore, the condition only requires the existence of active triggers and
does not mention whether the fairness condition is satisfied or not in case the sequence can be
expanded to an infinite one. By abuse of terminology, we will drop the word weakly in the rest
of this paper when no confusion arises; this is not a technical concern related to deciding on the
finite restricted chase in our approach since our approach is based on certain types of terminating
restricted chase sequences.

Finally, a conjunctive query (CQ) q is a formula of the form q(x) := ∃yΦ(x,y), where x and y
are tuples of variables and Φ(x,y) is a conjunction of atoms with variables in x∪ y. A Boolean
conjunctive query (BCQ) is a CQ of the form q(). It is well-known that, for all BCQs q and for all
databases I, I∪R |= q (under the semantics of first-order logic) if and only if q is entailed by the
result of the chase on R and I for either the semi-oblivious or the restricted chase variant (Fagin
et al. 2005).

2.2 A Concrete Example

To illustrate the practical relevance of the restricted chase and also use it as a running example,
let us consider modeling a secure communication protocol where two different signal types can
be transmitted: type A for inter-zone communication and type B for intra-zone communication.
Let us consider a scenario where a transmitter from one zone requests to establish secure com-
munication with a receiver from another zone in this network. There is an unknown number of
trusted servers. Before a successful communication between two users can occur, following a
handshake protocol, the transmitter must send a type A signal to a trusted server in the same zone
and receive an acknowledgment back. Then, that trusted server sends a type B signal to a trusted
server in the receiver zone.

Figure 1 illustrates the above data transmission scenario where there are just two cells in each
of which there are several users (solid dark circles) and base stations (under blue boxes). If a
transmitter t in cell 1 requests to transmit a data message to a receiver r in cell 2, then t must
establish a handshake protocol to some base station (e.g., b1) in the same cell (sending and
receiving to/from b1). After a handshake protocol is established, b1 sends a data message to
some base station in cell 2 (b2 in the figure) to complete the required communication before t
sends a data message to r.

Below, we use existential rules to model the required communication protocol (the modeling
here does not include the actual process of transmitting signals). Let us assume by default that
every server is trusted.

Example 2
Consider the rule set R1 = {r1,r2} below and its skolemization, where TypeA(x,y) denotes a
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Figure 1: Data transmission scenario.

request to send a type A signal from x to y and TypeB(x,y) a request to send a type B signal from
x to y.

r1 : TypeB(x,y)→∃uTypeA(x,u),TypeA(u, x)
r2 : TypeB(x,y),TypeA(x,z),TypeA(z, x)→∃vTypeB(z,v)

sk(r1) : TypeB(x,y)→ TypeA(x, fu(x)),TypeA( fu(x), x)
sk(r2) : TypeB(x,y),TypeA(x,z),TypeA(z, x)→ TypeB(z, fv(z))

where fu and fv are skolem functions constructed from u and v, respectively.
With database I0 = {TypeB(t,r)}, after applying sk(r1) and sk(r2) under the restricted chase,

we get:

I0 = {TypeB(t,r)}
〈sk(r1),{x/t,y/r}〉
−−−−−−−−−−−−→

I1 = I0∪{TypeA(t, fu(t)),TypeA( fu(t), t)}
〈sk(r2),{x/t,y/r,z/ fu(t)}〉
−−−−−−−−−−−−−−−−−→

I2 = I1∪{TypeB( fu(t), fv( fu(t)))}

That is, path π1 = (sk(r1), sk(r2)) leads to a restricted chase sequence. But this is not the case for
the path π2 = (sk(r1), sk(r2), sk(r1)), since the trigger for applying the last rule on the path is not
active - with TypeB( fu(t), fv( fu(t))) as the triggering atom for the body of rule sk(r1), its head can
be satisfied by already derived atoms in I2, namely, TypeA( fu(t), t) and TypeA(t, fu(t)) (i.e., the
existential variable u in sk(r1) can be instantiated to t so that the rule head is satisfied by I2).

To illustrate more subtleties, let us consider a slightly enriched rule set R2 = {r3,r4}. The dif-
ference from R1 is that here we use a predicate TrustedServer(a) to explicitly specify that a is a
trusted server.

r3 : TypeB(x,y)→∃uTrustedServer(u),TypeA(x,u),TypeA(u, x)
r4 : TypeB(x,y),TypeA(x,z),TypeA(z, x)→∃vTrustedServer(v),TypeB(z,v)

sk(r3) : TypeB(x,y)→ TrustedServer( fu(x)),TypeA(x, fu(x)),TypeA( fu(x), x)
sk(r4) : TypeB(x,y),TypeA(x,z),TypeA(z, x)→ TrustedServer( fv(z)),TypeB(z, fv(z))

With the same input database I0, we can verify that any non-empty prefix of the 2-cycle σ =
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(sk(r3), sk(r4), sk(r3), sk(r4), sk(r3)) leads to a restricted chase sequence except σ itself. Let us
provide some details.

I0 = {TypeB(t,r)}
〈sk(r3),{x/t,y/r}〉
−−−−−−−−−−−−→

I1 = I0∪{TypeA(t, fu(t)),TypeA( fu(t), t)}
〈sk(r4),{x/t,y/r,z/ fu(t)}〉
−−−−−−−−−−−−−−−−−→

I2 = I1∪{TypeB( fu(t), fv( fu(t)))}

Observe that at this stage, since t is not known as a trusted server (i.e., we do not have TrustedServer(t)
in the given database), unlike the case of R1, we are not able to instantiate the existential variable
u to t to have the rule head satisfied. Thus, the restricted chase continues:

I3 = I2∪{TrustedServer( f 2
u (t)),TypeA( fu(t), f 2

u (t)),TypeA( f 2
u (t), fu(t))}

〈sk(r4),{x/ fu(t),y/ fv( fu(t)),z/ f 2
u (t)}〉

−−−−−−−−−−−−−−−−−−−−−−−−−−→

I4 = I3∪{TrustedServer( fv( f 2
u (t)),TypeB( f 2

u (t)), fv( f 2
u (t)))}

Now, the pair (sk(r3), {x/ f 2
u (t),y/ fv( f 2

u (t))}) is a trigger on I4. However, since the existential vari-
able u in r3 can be instantiated to the skolem term fu(t) so that the head of r3 is satisfied, the
trigger is not active on I4 and thus the chase terminates.

Figures 2 and 3 illustrate the skolem and the restricted chase on the rule set R2, where an arrow
over a relation symbol indicates a newly derived atom, or an existing atom used to satisfy the rule
head so that the restricted chase terminates. In contrast, while R2 is non-terminating under the
skolem chase, it can be shown that it is all-instance terminating under the restricted chase.

Figure 2: Skolem chase on R2 Figure 3: Restricted chase on
R2

3 Previous Development and Related Work

Since our technical development is often related to, or compared with, the state-of-the-art, let
us introduce some key classes of the finite chase here and comment on the latest developments
related to our work. Note that all acyclicity conditions that are given below ensure the termination
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of the skolem chase, and therefore, of the restricted chase, except for RMFA and RJA which
ensure the termination of the restricted chase and allow to identify more terminating rule sets.

Weakly-acyclic (WA) (Fagin et al. 2005), roughly speaking, tracks the propagation of terms
in different positions. A rule set is WA if there is no position in which skolem terms including
skolem functions can be propagated cyclically, possibly through other positions.

Joint-acyclic (JA) (Krötzsch and Rudolph 2011) generalizes WA as follows. Let R be a rule
set. For each variable y ∈ varex(R), let Move(y) be the smallest set of positions such that (i)
posH(y) ⊆ Move(y); and (ii) for each rule r ∈ R that varex(r) , ∅ and for all variables x ∈ varu(r),
if posB(x) ⊆ Move(y), then posH(x) ⊆ Move(y). The JA dependency graph JA(R) of R is defined
as: the set of vertices of JA(R) is varex(R), and there is an edge from y1 to y2 whenever the rule that
contains y2 also contains a variable x ∈ varu(R) such that posH(x) , ∅ and posB(x) ⊆ Move(y1).
R ∈ JA if JA(R) does not have a cycle.

A rule set R belongs to the acyclic graph of rule dependencies (aGRD) class of acyclic rules
if there is no cyclic dependency relation between any two (not necessarily different) rules of
R, possibly through other dependent rules of R. To define the rule dependency graph (Baget
2004; Baget et al. 2011) of a rule set R, we introduce the rule dependency relation ≺⊆ R×R as
follows. Consider two rules r1,r2 ∈ R such that r1 = body(r1)→∃z1 head(r1) and r2 = body(r2)→
∃z2 head(r2). Let sk(r1) = body(r1)→ sk(head(r1)) and sk(r2) = body(r2)→ sk(head(r2)). Then,
r1 ≺ r2 if and only if there exists an instance I, substitutions θ1 (resp. θ2), for all variables in sk(r1)
(resp. sk(r2)) such that θ1(body(r1))⊆ I, θ2(body(r2))⊆ I∪θ1(sk(head(r1))), and θ2(body(r2))* I.
R has an acyclic graph of rule dependencies if ≺ on R is acyclic. In this case, R is called aGRD.

Note that the original definition of aGRD in (Baget 2004) considers fresh nulls as opposed to
skolem terms, which based on (Grau et al. 2013) does not change the resulting relation ≺.5

Model-faithful acyclic (MFA) (Cuenca Grau et al. 2013) is a semantic acyclicity class of the
skolem chase which generalizes all the skolem acyclicity classes mentioned above. A rule set R is
MFA if in the skolem chase of R w.r.t. the critical database of R (i.e., the database which contains
all possible ground atoms based on predicates of R and the single constant symbol ∗ without any
occurrence in R), there is no cyclic skolem term (a term with at least two occurrences of some
skolem function).

Also, restricted model-faithful acyclicity (RMFA) (Carral et al. 2017) generalizes MFA as fol-
lows. Let R be a non-disjunctive rule set. For each rule r ∈ R and each homomorphism h such that
h is a homomorphism on body(r), Ch,r is defined as the union of h(body(r)), where each occur-
rence of a constant is renamed so that no constant occurs more than once, and Ft for each skolem
term t in h(body(r)), where Ft is the set of ground atoms involved in the derivation of atoms con-
taining t. Let RMFA(R) be the least set of ground atoms such that it contains the critical database
of R and let r ∈ R be a rule and h a homomorphism from body(r) to RMFA(R). Let v ∈ varex(r) be
some existential variable of r. If ∃v.h(head(r)) is not logically entailed by the exhaustive applica-
tion of non-generating (Datalog) rules on the set of atoms Ch,r, then h(sk(head(r))) ⊆ RMFA(R).
We define R∈RMFA if RMFA(R) contains no cyclic skolem terms.

In (Carral et al. 2017), a notion known as restricted model-faithful acyclicity (RMFC) has
been introduced which provides a sufficient condition for deciding non-termination of the re-
stricted chase of a given rule set for all databases. Intuitively, RMFC is based on detecting cyclic
functional terms in the result of the exhaustive application of unblockable rules on the grounded

5 We will have more remarks on rule dependency and the important role it plays in our approach, after Definition 4.
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version of body(r)∪ sk(head(r)) for some generating rule r, such that in the mapping used for
the grounding, each variable x is replaced by some fresh constant cx.

To characterize a sufficient condition of termination of a given rule set for arbitrary databases,
for any chase variant, it would be useful to have a special database that can serve as a witness for
proving termination. Let us refer to it as a critical database I∗. Having such a critical database
in place guarantees that given a rule set R, if there is some database that witnesses the existence
of an infinite chase derivation of R, then I∗ is already such a witness database. If we know that
such a critical database exists for some chase variant, then we can focus on sufficient conditions
to decide the chase termination of a rule set w.r.t. I∗.

From (Marnette 2009), it is known that such a critical database exists for the oblivious and
skolem chase variants. The construction of such a critical database for those chase variants is
also easy: Let R be a rule set. Let C denote the set of constants appearing in R and let ∗ be
a special constant with no occurrence in R. A database is a (skolem) critical database if each
relation in it is a full relation on the domain C ∪ {∗}. With this measure in place, it is then easy
to show why all the known classes of terminating rule sets under skolem and oblivious chase
variants (such as the aforementioned acyclicity conditions) work well. The reason is that they
rely on this critical database.

However, for the restricted chase, no critical database exists. Note that for the terminating
conditions of RJA and RMFA (Carral et al. 2017) that are the only known concrete criteria for
the termination of restricted chase rules, the introduced “critical databases” are ad-hoc in a way
that they do not provide a principled way to construct such a database that may lead to more
general classes of terminating rule sets under the restricted chase. In fact, due to the nature of
the problem, which is not recursively-enumerable (Grahne and Onet 2018), as also pointed out
in (Gogacz et al. 2019), finding such a critical database even for subsets of rules with syntactic
(or semantic) restrictions is very challenging. More recently, termination of linear rules under
the restricted chase has been considered in (Leclère et al. 2019), where the body and the head of
rules are composed of singleton atoms (called single-body and single-head rules). As part of this
work, the existence of such a critical database is proved by simply showing a database consisting
of a single atom.

Also, for single-head guarded and sticky rules, the same problem has been considered in
(Gogacz et al. 2019), where the authors characterize non-termination of restricted chase se-
quences constructed from the aforementioned rule sets using sophisticated objects known as
chaseable sets which are infinite in size. For this purpose, they show that the existence of an
infinite chaseable set characterizes the existence of an infinite restricted chase derivation. In par-
ticular, for guarded rule sets, the latter can be strengthened with the fact that we can focus on
acyclic databases to show the decidability of restricted chase termination for guarded TGDs.

Furthermore, for sticky TGDs, this is shown via the existence of a finitary caterpillar which
is an infinite path-like restricted chase derivation of some database the existence of which can be
checked via a deterministic Bchi automaton. Their work is focused only on single-head rules and,
to the best of our knowledge, no characterization exists for multi-head rules. This is unlike the
skolem chase for which the notion of δ-bounded ontologies have been defined uniformly using
the (skolem) critical database technique (Zhang et al. 2015).

The decision problem of termination of the oblivious and the skolem chase variants have been
considered for linear and guarded rules in (Calautti et al. 2015), and this problem is shown to
be PSpace-complete and 2ExpTime-complete, respectively, for linear and guarded rules. More
recently, the same problem has been considered for sticky rules in (Calautti and Pieris 2019), and
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it has been shown to be PSpace-complete. This shows that for these rules, sufficient and necessary
conditions can be established to decide termination.

It is worthy to mention that similar to our work, in (Baget et al. 2014a), a tool was introduced
to extend different (skolem) acyclicity conditions ensuring chase termination. However, unlike
our approach, their extension never extends a skolem chase terminating rule set to a terminating
one under the restricted chase. Their extension is also without increasing the complexity upper
bound of the membership checking problem of the original rules.

Also related to this work, the notion of k-bounded rules was introduced in (Delivorias et al.
2018) for oblivious, skolem and restricted chase variants. The k-boundedness problem they con-
sidered in that work checks whether, independently from any database, there is a fixed upper
bound of size k on the number of breadth-first chase steps for a given rule set, where k is an
integer. For arbitrary values of k, this problem is already known to be undecidable for Datalog
rules (TGDs without existential variables, also known as range-restricted TGD (Abiteboul et al.
1995)), as established in (Hillebrand et al. 1995; Marcinkowski 1999).

The breadth-first chase procedure in (Delivorias et al. 2018) refers to chase sequences in
which rule applications are prioritized. Their prioritization is in a way that those rule applica-
tions which correspond to a particular breadth-first level occur before those that correspond to a
higher breadth-first level. Under the assumption that k is excluded from the input, and only the
rule set is given as the input, they prove an ExpTime upper bound for checking k-boundedness for
the oblivious and the skolem chase variants and 2ExpTime upper bound for the restricted chase.6

Notice that as discussed in (Delivorias et al. 2018), TGDs with k-boundedness property are
union of conjunctive queries-rewritable (or UCQ-rewritable, also known to belong to finite uni-
fication sets of TGDs (or fus) (Baget et al. 2011)). It is worth mentioning that this latter work
has a different scope from ours in that, unlike k-bounded TGDs of (Delivorias et al. 2018), the
k-safe(Φ∆) rule sets that result from the current paper, where ∆ is some skolem acyclicity con-
dition, already generalize Datalog rule sets (for any value of k ≥ 0), and therefore, are not UCQ-
rewritable. Besides, there is no characterization of any critical database for the restricted chase
variant in (Delivorias et al. 2018) which is a key issue and the focus of the current paper.

4 Finite Restricted Chase by Activeness

In this section, we tackle the question of what kinds of tests we can do to provide sufficient con-
ditions to identify classes of the finite restricted chase. With this goal in mind, we present the
notion of the restricted critical database for a given path and show that any “chained” restricted
chase sequence for a given path w.r.t. an arbitrary database can be simulated by using the re-
stricted critical database for simple rules and by using an updated restricted critical database via
renaming for arbitrary rules.

4.1 Restricted Critical Databases and Chained Property

A primary tool for termination analysis of the skolem chase is the technique of critical database
(Marnette 2009). Recall that, given a rule set R, if C denotes the set of constants which occur in R,

6 Note, however, that if k is part of the input, i.e., when the problem is: given a rule set R and a unary-encoded integer
k, whether R is k-bounded for the considered chase, the complexity of the problem is in 2ExpTime and 3ExpTime for
the aforementioned chase variants, respectively.
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the critical database (or skolem critical database) of R, denoted IR, is a database defined in a way
that each relation in IR is a full relation on the domain C ∪ {∗}, in which ∗ is a special constant
with no occurrence in R. The critical database can be used to faithfully simulate termination
behavior of the skolem chase - a rule set is all-instance terminating if and only if it is terminating
w.r.t. the skolem critical database. However, this technique does not apply to the restricted chase.

Example 3
Given a rule set R = {E(x1, x2)→∃z E(x2,z)} and its critical database IR = {E(∗,∗)}, where ∗ is a
fresh constant, the skolem chase does not terminate w.r.t. IR, which is a faithful simulation of the
termination behavior of R under the skolem chase. But the restricted chase of R and IR terminates
in zero step, as no active triggers exist. However, the restricted chase of R and database {E(a,b)}
does not terminate.

The above example is not at all a surprise, as the complexity of membership checking in the
class of rule sets that have a finite restricted chase, namely whether a rule set is in CTres

∀∀
, is

coRE-hard (Grahne and Onet 2018), which implies that in general there exists no effectively
computable (finite) set of databases which can be used to simulate termination behavior w.r.t. all
input databases, as otherwise the membership checking for CTres

∀∀
would be recursively enumer-

able, a contradiction to the coRE-hardness result of (Grahne and Onet 2018).
To check for termination, one natural consideration is the notion of cycles based on a given rule

set. Firstly, a chase that terminates w.r.t. a database I on all k-cycles implies chase terminating
w.r.t. I on all k′-cycles, for all k′ > k. This is because a chase that goes through a k′-cycle must go
through at least one k-cycle. Secondly, since a non-terminating chase must apply at least one rule
infinitely many times, if the termination is guaranteed for all k-cycles for a fixed k, then an infinite
chase becomes impossible. Thus, testing all k-cycles can serve as a means to decide classes of the
finite chase. Furthermore, cycles are recursively enumerable with increasing lengths and levels of
nesting. We can test (k +1)-cycles for a possible decision of the finite restricted chase when such
a test failed for k-cycles. We, therefore, may find larger classes of terminating rule sets with an
increased computational cost. We have demonstrated this approach in Example 2, where the rule
set R2 is terminating on all 2-cycles but not on some 1-cycles. However, a challenging question
is which databases to check against. In the following, we tackle this question.

Given a path, our goal is to simulate a sequence of restricted chase steps with an arbitrary
database by a sequence of restricted chase steps with a fixed database. On the other hand, since
in general we can only expect sufficient conditions for termination, such a simulation should at
least capture all infinite derivations by a rule set with an arbitrary database. On the other hand, we
only need to consider the type of paths that potentially lead to cyclic applications of the chase.
In the following, we will address this question first.

Example 4
Consider the singleton rule set R with rule r : T (x,y),P(x,y) → ∃zT (y,z) and its skolemiza-
tion sk(r) : T (x,y),P(x,y) → T (y, fz(y)). With I0 = {T (a,b),P(a,b)}, we have: chasesk(I0,R) =

I0 ∪ {T (b, fz(b))}. After one application of r, no more triggers exist and thus the skolem chase
of R and I0 terminates (so does the restricted chase of R and I0). This is because the existential
variable z in the rule head is instantiated to the skolem term fz(b), which is passed to variable y
in the body atom P(x,y). As the skolem term fz(b) is fresh, no trigger to P(x,y) may be available
right after the application of r.

Note that r in Example 4 depends on itself based on the classic notion of unification. To rule
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out similar false dependencies, we consider a dependency relation under which the cycle (r,r) in
the above example is not identified as a dangerous one. Towards this goal, let us recall the notion
of rule dependencies (Baget 2004)7 and contrast it with its strengthened version for this section.

Definition 4
Let r and r′ be two arbitrary rules. Recall that sk(r) and sk(r′) denote their skolemizations.

(i) Given an instance I, we say that r′ depends on r w.r.t. I if there is a homomorphism
h : varu(r)→ term(I) and a homomorphism g : varu(r′)→ term(I)∪ term(h(head(sk(r)))),
such that g(body(r′)) * I.

(ii) We say that r′ depends on r if there is an instance I such that r′ depends on r w.r.t. I.

If the condition in (ii) is not satisfied, we then say that r′ does not depend on r, or there is no
dependency from r′ to r. Similarly, if the condition in (i) is not satisfied, we then say that r′ does
not depend on r w.r.t. I, or there is no dependency from r′ to r w.r.t. I.

The definition in (ii) is adopted directly from (Baget 2004), which is what a general notion
of rule dependency is expected, independent of any instance: r′ depends on r if there is a way
to apply r to derive some new atoms that are used as part of a trigger to r′. That g is not a
homomorphism from body(r′) to I requires at least one new atom derived by r, given I. Since
instance I can be arbitrary while satisfying the stated condition, no dependency from r′ to r
means that no matter what the initial database is and what the sequence of derivations is, up to
the point of applying r, such I that satisfies the stated condition does not exist.

By employing an extended notion of unification, the notion of piece-unification allows removal
of a large number of k-cycles as irrelevant. We will discuss the details in Section 7 when we
present our experimentation.

The technical focus of rule dependency in this section is the definition in (i), which is strength-
ened from (ii) by fixing instance I. This is needed because our simulations of the restricted chase
are generated from some particular, fixed databases.

Next, we extend the relation of rule dependency to a (non-reflexive) transitive closure. This is
needed since a termination analysis often involves sequences of derivations where rule depen-
dencies yield a transitive relation. Given a path π = (r1, . . . ,rn), we are interested in a chain of
dependencies among rules in π such that the derivation with rn ultimately depends on a derivation
with r1, possibly via some derivations from rules in between. As a chase sequence may involve
independent derivations from other rules in between, in the following, we define the notion of
projection to reflect this.

Terminology: Given a tuple V = (v1, . . . ,vn) (n ≥ 2), a projection of V preserving end points,
denoted V′ = (v′1, . . . ,v

′
m), is a projection of V (as defined in usual way), with the additional

requirement that the end points are preserved (i.e., v′1 = v1 and v′m = vn). By abuse of terminology,
V′ above will simply be called a projection of V .

Definition 5
Let R be a rule set, π = (r1, . . . ,rn) (n ≥ 2) a path, and I0 a database. Suppose I : I0, I1, . . . , In is
a sequence of instances and H = (h1, . . . ,hn) is a tuple of homomorphisms such that Ii−1〈ri,hi〉Ii

(1 ≤ i ≤ n). I is called chained for π if there exists a projection I′ : I0, I′1, . . . , I
′
m of I, along with

the corresponding projections H′ = (h′1, . . . ,h
′
m) of H and π′ = (r′1, . . . ,r

′
m) of π, such that for all

7 which was provided earlier for the definition of aGRD in Section 3
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1≤ i<m, r′i+1 depends on r′i w.r.t. I, where I = I0 if i = 1 and I = I′i \h
′
i (head(sk(r′i ))), otherwise. If

I is chained for π, we also say that I has the chained property; for easy reference, we sometime
also associate the chained property with the corresponding H and say H is chained, or H is a
chained tuple of homomorphisms, w.r.t. I0.

Note that in the definition above, by I = I′i \h′i (head(sk(r′i ))), the triggering atoms to r′i+1 must
include at least one new head atom derived from r′i .

We now address the issue of which databases to check against for termination analysis of the
restricted chase. For this purpose, let us define a mapping ei : V∪C→ 〈V, i〉∪C, where constants
in C are mapped to themselves and each variable v ∈ V is mapped to 〈v, i〉.

Definition 6
Given a path π = (r1,r2, . . . ,rn) of a simple rule set, we define: Iπ = {ei(body(ri)) : 1 ≤ i < n + 1},
which is called a restricted critical database of π.

A pair 〈x, i〉 in Iπ is intended to name a fresh constant to replace variable x in the body of a
rule ri. The atoms in Iπ that are built from these pairs and the constants already appearing in the
body of a rule are independent of any given database. The goal is to use these atoms to simulate
triggering atoms when necessary, in a derivation sequence from a given database. Let us call
these pairs indexed constants and atoms with indexed constants indexed atoms. Let us use the
shorthand vi for 〈v, i〉.

Note that due to the structure of Iπ, a trigger for each rule in π is automatically available and
therefore, without the notion of chained property, a path can rather trivially lead to a restricted
chase sequence. To see this, we can construct a restricted chase sequence I0, I1, . . . , In based on
R as follows. For each 1 ≤ i ≤ n, we construct a trigger (ri,hi), where for each variable v ∈
var(body(ri)), hi : v→ 〈v, i〉. Since indexed constants are fresh, such a trigger is active.

Example 5
Consider the rule set R of Example 4 and a path π= (r,r). For this rule set we have: Iπ = {T (x1,y1),
P(x1,y1),T (x2,y2),P(x2,y2)}. We see that there does not exist any chained tuple of homomor-
phisms for π w.r.t. Iπ. In fact, the claim holds for any instance I since there is no rule dependency
from r to r (cf. Definition 4).

In a restricted critical database that we have seen so far, each body variable is bound to a
distinct constant indexed in the order in which rules are applied. Later on, we will motivate and
introduce the notion of updated restricted critical databases, where distinct indexed constants
may be collapsed into the same indexed constant.

4.2 Activeness for Simple Rules

We are ready to define the notion of activeness and show its role in termination analysis for
simple rules.

Definition 7
(Activeness) Let R be a rule set and I0 a database. A path π = (r1 . . . ,rn) based on R is said to be
active w.r.t. I0, if there exists a chained restricted chase sequence I : I0, . . . , In for π.

The activeness of a path π requires two conditions to hold. First, π must lead to a restricted
chase sequence and second, the sequence must have the chained property. In other words, if π is
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not active w.r.t. I0, either some rule in π does not apply due to lack of an active trigger, or the last
rule in π does not depend on the first in π transitively in all possible derivations from I0 using
rules in π in that order.

Our goal is to simulate a given chained restricted chase sequence w.r.t. an arbitrary database
by a chained restricted chase sequence w.r.t. some fixed databases, while preserving rule depen-
dencies. Such a simulation is called tight or dependency-preserving. For presentation purposes,
we will present the results in two stages, first for simple rules for which the restricted critical
database Iπ for a path π is sufficient. Then, in the next subsection, we present the result for
arbitrary rules using updated restricted critical databases.

Theorem 1
Let R be a rule set with simple rules and π = (r1, . . . ,rn) a path based on R. Then, π is active w.r.t.
some database if and only if π is active w.r.t. the restricted critical database Iπ.

Proof
(⇐) Immediate since Iπ is such a database.
(⇒) Let I be a database w.r.t. which π is active, i.e., there exists a chained tuple of homo-
morphisms H = (h1, . . . ,hn) for π such that (ri,hi) (0 < i ≤ n) is an active trigger on Ii−1 and
Ii−1〈ri,hi〉Ii. So, there exists a sequence

A : I = I0, I1, . . . , In (1)

satisfying the condition: for all 1 ≤ i ≤ n, there is a homomorphism hi : varu(ri)→ term(Ii−1),
where ri ∈ R, such that

hi(body(ri)) ⊆ Ii−1, (2)

∀h′i ⊇ hi : h′i (head(ri)) * Ii−1, and (3)

Ii = Ii−1∪h′i (head(ri)). (4)

We will construct a chained restricted chase sequence of R w.r.t. Iπ based on a simulation of
derivations inA. Let us denote this sequence by

B : Iπ = I∗0 , I
∗
1 , . . . , I

∗
n . (5)

Then, we need to have properties (2), (3) and (4) for B with hi and Ii−1 replaced by some homo-
morphism gi and instance I∗i−1 respectively, for all 1 ≤ i ≤ n.

To show the existence of such a sequence B, we show how to construct a tuple of homomor-
phisms G = (g1,g2, . . . ,gn) inductively, such that I∗i−1〈ri,gi〉I∗i , for all 1 ≤ i ≤ n. This ensures that
B is a skolem chase sequence. We will then show that all the triggers are active, and along the
way, show that G is a chained sequence. We then conclude that B is, in fact, a chained restricted
chase sequence.

Note that instances Ii contain constants from the given database I and instances I∗i contain
indexed constants. Both may contain some constants appearing in rules in π.

We construct gi along with the construction of a many-to-one function h that maps indexed
constants appearing in gi to constants appearing in hi. This provides a relation between gi and hi.
For any atom a ∈ body(ri), we call atom hi(a) an image of gi(a). The function h is many-to-one
because distinct indexed constants in gi may need to be related to a constant in hi in simulation (in
generating sequence A, distinct variables may be bound to the same constant; but in generating
sequence B, distinct variables can only be bound to distinct indexed constants).
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For i = 1, we let g1(body(r1)) ⊆ Iπ with the index in indexed constants being 1. Such g1

uniquely exists. As (r1,g1) is clearly a trigger, we have I∗0〈r1,g1〉I∗1 under the skolem chase.
For function h, clearly we can let h be such that h(g1(a)) = h1(a) for each atom a ∈ body(r1).

For any 1 < i ≤ n, we construct gi as follows. Let a ∈ body(ri). If hi(a) ∈ I, i.e., the triggering
atom hi(a) is from database I, then we let gi map a to the corresponding indexed atom in Iπ with
index i. If hi(a) < I, i.e., hi(a) is a derived atom, we then let gi(a) be any atom whose image is
hi(a).8 Then, we can extend function h by h(gi(a)) = hi(a). Note that this is always possible for
simple rules since body(ri) has no repeated variables. By construction, that (ri,hi) is a trigger on
Ii−1 implies that (ri,gi) is a trigger on I∗i−1.

We now show that all triggers (ri,gi) (1 ≤ i ≤ n) are active, i.e.,

∀g′i ⊇ gi : g′i (head(ri)) * I∗i−1, 1 ≤ i ≤ n (6)

To relate homomorphisms gi with B to hi with A, from above we have h(gi(x)) = hi(x), for all
x ∈ varu(ri). Then, it follows

h(I∗i−1) ⊆ Ii−1, 1 ≤ i ≤ n (7)

which can be shown by induction: for the base case, we have h(I∗0) ⊆ I0 by definition, and for
the induction step, for each k ≥ 1, that h(I∗k−1) ⊆ Ik−1 implies h(I∗k ) ⊆ Ik is by the construction of
homomorphism gk in B.

To prove (3), for the sake of contradiction, assume that it does not hold, i.e., ∃g′i ⊇ gi s.t.
g′i (head(ri)) ⊆ I∗i−1. This together with (12) implies h(g′i (head(ri))) ⊆ h(I∗i−1) ⊆ Ii−1. Now let
h′i (x) = h(g′i (x)). It follows h′i (head(ri)) ⊆ Ii−1, a contradiction to (3). Therefore, all triggers ap-
plied in B are active and π thus leads to a restricted chase sequence of R and Iπ.

Finally, B is chained because the depends-on relation in A is preserved for B. For the path
π = (r1, . . . ,rn), assume that r j depends on ri w.r.t. Ii−1 (1 ≤ i < j ≤ n). As A is a restricted chase
sequence, we have homomorphisms hi : body(ri)→ Ii−1 and h j : body(r j)→ I j−1. That r j depends
on ri w.r.t. Ii−1 ensures that h j is not a homomorphism from body(r j) to I j−1 \ hi(head(sk(ri))).
We have already shown the existence of homomorphisms gi : body(ri)→ I∗i−1 and g j : body(r j)→
I∗j−1. Since h j is not a homomorphism from body(r j) to I j−1 \hi(head(sk(ri))), it follows by con-
struction that g j is not a homomorphism from body(r j) to I∗j−1 \ gi(head(sk(ri))). We, therefore,
conclude that r j depends on ri w.r.t. I∗i−1 (1 ≤ i < j ≤ n). We are done.

4.3 Activeness for Arbitrary Rules

For non-simple rules, a tight simulation using the restricted critical database Iπ for a given path
π is not always possible. The following example demonstrates that not all active paths can be
simulated.

Example 6
Consider the following rule set R = {r1,r2,r3}, where

r1 : P(x,y)→ Q(x,y)
r2 : R(x,y)→ T (x,y)
r3 : Q(x,y),T (x,y)→∃z P(z, x),R(z, x)

8 Recall that h is in general many-to-one. So, we may have multiple atoms whose image is hi(a). Since the rules are
assumed to be simple, choosing any of these atoms can lead to the construction of a desired tuple of homomorphisms
G as well as the function h.
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R is not all-instance terminating since for database I = {P(a,b),R(a,b)}, there is a non-terminating
restricted chase sequence starting from I (assuming that the existential variable z is skolemized
to fz(x)):

I0 = I I1 = I0∪{Q(a,b)}
I2 = I1∪{T (a,b)} I3 = I2∪{P( fz(a),a),R( fz(a),a)}
......

where the corresponding active triggers (r1,h1), (r2,h2), (r3,h3) can be easily identified. However,
as illustrated below, a tight simulation for any path π= (r1,r2, . . . ) is not possible for the restricted
critical database Iπ. For example, given π1 = (r1,r2,r3), with restricted critical database Iπ1 =

{P(x1,y1),R(x2,y2),Q(x3,y3),T (x3,y3)}, it is easy to verify that π1 is not active w.r.t. Iπ1 . To see
why this is the case, consider the following derivation which is obtained after having applied the
triggers (r1,g1) and (r2,g2) to produce

I∗0 = Iπ1 , I∗1 = I∗0 ∪{Q(x1,y1)}, I∗2 = I∗1 ∪{T (x2,y2)}

The reason that π1 is not active w.r.t. Iπ1 is that multiple occurrences of constants a and b in
the triggering atoms on I2, i.e., Q(a,b) and T (a,b), are originated from the given database from
different sources (atoms). For termination analysis, we must provide a simulation of any restricted
chase sequence. Below, we discuss two possible solutions using the above example.

• Solution 1: Trigger (r3, {x/x3,y/y3}) on I∗2 is already available since Q(x3,y3),T (x3,y3) ∈ I∗2 ,
which can be applied to continue the chase.

• Solution 2: Let rn be a renaming function that renames indexed constants x2 and y2 appear-
ing in Iπ1 to x1 and y1 respectively, i.e., rn(Iπ1 ) = {P(x1,y1),R(x1,y1),Q(x3,y3),T (x3,y3)},
so that (r3, {x/x1,y/y1}) is a trigger on rn(I∗2).

Solution 1 is rather weak since it allows the simulation of a chained sequence to be “broken”
without preserving rule dependency, whereas Solution 2 leads to a tight simulation, i.e., a simu-
lation that preserves the dependency relation of the sequence being simulated. In this paper, we
formalize and develop results for Solution 2.

Given a path π and critical database Iπ, let ΠIπ be the set of indexed constants appearing in
Iπ. We define a renaming function for Iπ to be a mapping from ΠIπ to ΠIπ . For technical clarity,
we eliminate symmetric renaming functions by imposing a restriction: an indexed constant with
index i can only be renamed to an indexed constant with index j, where 1 ≤ j < i. In other words,
an indexed constant with index i in Iπ can only be renamed to one which appears in a rule in π
earlier than ri.

Theorem 2
Let R be a rule set and π = (r1, . . . ,rn) a path based on R. Then, π is active w.r.t. some database if
and only if there exists a renaming function rn∗ for Iπ such that π is active w.r.t. rn∗(Iπ), where
rn∗ is composed of at most n renaming functions.

Proof
(⇐) Immediate since rn∗(Iπ) is such a database.
(⇒) The proof follows the same structure as for Theorem 1 except for the case where the tight
simulation of a chase step fails to provide a trigger due to repeated variables in a rule body.

As in the proof of Theorem 1, we assume that path π = (r1, . . . ,rn) is active w.r.t. some database
I, so that there is a chained restricted chase sequence

A : I = I0, I1, . . . , In (8)
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generated by active triggers (r1,h1), . . . , (rn,hn). We show that there exist a renaming function rn∗

for Iπ and a chained restricted chase sequence w.r.t. rn∗(Iπ)

B : rn∗(Iπ) = rn∗(I∗0),rn∗(I∗1), . . . ,rn∗(I∗n). (9)

generated by active triggers (r1,rn∗ ◦g1), . . . , (rn,rn∗ ◦gn)). We prove the existence of B by con-
structing gi’s (and its renamed counterparts) along with the construction of a many-to-one func-
tion h that relates indexed constants in gi (and its renamed counterparts) to constants in hi. We
apply the same argument repeatedly to show the existence of a composed renaming function rn∗.
Let us start by constructing the first renaming function, rn1.

The construction of g1 is the same as in the proof of Theorem 1 - we let g1(body(r1)) ⊆ Iπ with
the index in indexed constants being 1 and let h(g1(body(r1))) = h1(body(r1)). For the inductive
case (1 < i ≤ n), we construct gi as follows. Let a ∈ body(ri). If hi(a) ∈ I, i.e., the triggering atom
hi(a) is from database I, then we let gi map a to a corresponding indexed atom in Iπ with index
i. If hi(a) < I, i.e., hi(a) is a derived atom, we then consider all body atoms of ri including a
that form a connected component in that any two of which share at least one variable. There
are in general one or more such connected components in body(ri). For simplicity and w.l.o.g.,
let us assume that body(ri) consists of only one such connected component. If body(ri) for some
1 ≤ i ≤ n consists of more than one connected component, then we can apply the same techniques
used below to construct a sequence of renaming functions - as long as the required properties for
the construction of these functions are met for each component (cf. Case (ii) below), the same
argument is applicable.

Now let us attempt to construct a mapping gi by letting gi(body(ri)) be the set of atoms whose
images are precisely those in hi(body(ri)). There are two cases.

Case (i) gi is a homomorphism from body(ri) to I∗i−1. In this case, function h can be extended
by h(gi(body(ri))) = hi(body(ri)). By construction, (ri,gi) is a trigger on I∗i−1, and the proof that
(ri,gi) is active remains the same as for Theorem 1.

Case (ii) Otherwise gi fails to be a homomorphism from body(ri) to I∗i−1. Assume gi is the first
such failure in the construction of sequence B so far. Note that the failure is because gi con-
structed this way must be a one-to-many mapping - gi must map a variable to distinct indexed
constants because multiple occurrences of a variable in body(ri) are instantiated to a common
constant by hi but to simulate that, gi must map the same variable to distinct indexed constants.

The failure can be remedied by a renaming function for Iπ, denoted rn1, by which some dif-
ferent indexed constants are renamed to the same one so that (ri,rn1 ◦gi) is a trigger on rn1(I∗i−1).
Clearly, such a renaming function exists. We require that rn1 be minimal in that the number of
indexed constants that are renamed to different ones is minimized.9 It is easy to see that the ex-
istence of a renaming function for Iπ implies the existence of such a minimal renaming function
for Iπ. We now want to show that the sequence

rn1(Iπ) = rn1(I∗0),rn1(I∗1), . . . ,rn1(I∗i−1),rn1(I∗i ) (10)

is a chained restricted chase sequence generated by triggers (r1,rn1 ◦ g1), . . . , (ri,rn1 ◦ gi). The
function h that relates indexed constants to constants in h j (1 ≤ j ≤ i) is updated correspondingly
as h(rn1 ◦g j(body(r j))) = h j(body(r j)).

That (ri,rn1 ◦gi) is a trigger on rn1(I∗i−1) is by the construction of rn1. For each rn1 ◦g j (1≤ j<

9 In other words, that an indexed constant is renamed to a different one only when it is necessary.
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i), since for rn1 ◦ g j the only update of g j is that some different indexed constants are replaced
by the same one; that g j is a homomorphism from body(r j) to I∗j−1 implies that rn1 ◦ g j is a
homomorphism from body(r j) to rn1(I∗j−1). We now show that triggers (r j,rn1 ◦ g j) (1 ≤ j ≤ n)
are all active.

The intuition behind this part of the proof is that in case (i) when we use distinct indexed
constants for distinct variables, we do not introduce any possibility of “recycled” atoms (i.e.,
atoms which can also be used in later derivations). Therefore, the activeness of (r j,h j) implies
activeness of (r j,g j). On the other hand, although the above statement may not hold for case (ii),
a renaming function that is minimal ensures that we do not introduce more than what is needed,
i.e., rn1 ◦ g j requires no more mappings to the same constants than h j. This again ensures that
the activeness of trigger (r j,h j) implies activeness of trigger (r j,rn1 ◦g j).

More formally, the activeness of (r j,rn1 ◦g j) (1 ≤ j ≤ n) means that the following conditions
hold: for each 1 ≤ j ≤ n

∀g′j ⊇ rn1 ◦g j : g′j(head(r j)) * rn1(I∗j−1), 1 ≤ j ≤ i (11)

We let h(rn1 ◦g j(x)) = h j(x), for all x ∈ varu(r j). Then, by induction we show that

h(rn1(I∗j−1)) ⊆ I j−1, 1 ≤ j ≤ i (12)

For the base case, we have h(rn1(I∗0)) ⊆ I0, which holds due to the minimality of rn1. For
the induction step, for each k ≥ 1, let us assume h(rn1(I∗k−1)) ⊆ Ik−1. Then we need to show
h(rn1(I∗k )) ⊆ Ik. The latter can be done by the construction of rn1 ◦gk in (10).

We then proceed to prove (11). For this purpose, assume that it does not hold, i.e., ∃g′j ⊇ rn1◦g j

s.t. g′j(head(r j)) ⊆ rn1(I∗j−1). This together with (12) implies h(g′j(head(r j))) ⊆ h(rn1(I∗j−1)) ⊆
I j−1. Now let h′j(x) = h(g′j(x)). It follows h′j(head(r j)) ⊆ I j−1, which is a contradiction to our
assumption that (r j,h j) for 1 ≤ j ≤ i active. This shows that all triggers applied in (10) are active.

We then apply the same argument to continue the construction of sequence B of (9):

rn1(Iπ) = rn1(I∗0),rn1(I∗1), . . . ,rn1(I∗i−1),rn1(I∗i ), . . . (13)

generated by active triggers (r j,rn1 ◦g j) (1 ≤ j ≤ i) from the updated restricted critical database
rn1(Iπ). If case (i) applies for the simulation of a chase step in A, then let us use the identity
renaming function (which is minimal by definition). Thus, the simulation of each chase step
results in a minimal renaming function. It follows that rn∗ = rnn ◦ · · · ◦ rn1 and, as the chained
property immediately holds by construction, sequence B is indeed a chained restricted chase
sequence. We then conclude that π is active w.r.t. the updated restricted critical database rn∗(Iπ).
We are done.

In the sequel, given a path π, Iπ and rn∗(Iπ) for all renaming functions rn∗ are all called a
restricted critical database. For clarity, we may qualify the latter as an updated restricted critical
database.

The development of this section leads to the following conclusion, which can be considered
the foundation of our approach to defining classes of the finite restricted chase in the paper.

Theorem 3
Let R be a rule set. For any k > 0, if no k-cycle σ is active w.r.t. rn∗(Iσ), for all renaming functions
rn∗ for Iσ, then R is all-instance terminating under the restricted chase.
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Proof
Assume that R is not all-instance terminating under restricted chase. Then for some database I0

there is a non-terminating restricted chase sequence I : I0, . . . , I j, .... Since I0 is finite, there can
only be a finite number of independent applications of any rule. It follows that I must contain
one chained restricted chase sequence for some k-cycle σ. W.l.o.g., assume that σ appears im-
mediately after an initial, finite segment of I, say I0, . . . , Ii. It follows that the non-terminating
sequence I without this initial finite segment I′ : Ii, . . . , I j, ... is a non-terminating chained re-
stricted chase sequence.

By the contraposition of the only if statement of Theorem 2, the assumption that σ is not active
w.r.t. rn∗(Iσ) for all renaming function rn∗ for Iσ, implies that σ is not active w.r.t. any database,
i.e., a chained restricted chase sequence for σ does not exist, for any database, which results in a
contradiction.

As we have seen up to this point that renaming enables a tight simulation for termination
analysis based on testing k-cycles. A question is whether renaming is a necessary condition in
general for our termination analysis. The question is raised due to the following observation.

Example 7
Consider Example 6 again. We have seen that path π1 = (r1,r2,r3) requires renaming in order to
obtain a tight simulation. Now consider π2 = (r3,r2,r1), which is a permutation of π1. It can be
shown that unlike π1 which is not active w.r.t. restricted critical database Iπ1 , π2 is active w.r.t.
restricted critical database Iπ2 . According to Theorem 3, as long as there is one k-cycle that is
active, we do not conclude that the given rule set is all-instance terminating. For this example,
since the 1-cycle σ = (r3,r2,r1,r3) is active w.r.t. the restricted critical database Iσ, there is no
conclusion that R is all-instance terminating. This may suggest that if we test all k-cycles, the
mechanism of renaming may be redundant. However, the next example shows that this is not the
case in general.

Example 8
Consider the following rule set R′ = {r1,r2,r3} modified from rule set R of Example 6, where

r1 : P(x,y,z),K(z)→ Q(x,y,z)
r2 : R(x,y,z)→ T (x,y,z)
r3 : Q(x,y,z),T (x,y,z)→∃v P(v, x,z),R(v, x,z)

R′ is not all-instance terminating which can be verified using the database

I0 = {P(a,b,c),K(c),R(a,b,c)}

We have the following chase sequence starting from database I0 (assuming that fv is used to
skolemize the existential variable v) by applying the rules in the path (r1,r2,r3) repeatedly.

I1 = I0∪{Q(a,b,c)}, I2 = I1∪{T (a,b,c)},
I3 = I2∪{P( fv(a,c),a,c),R( fv(a,c),a,c)}, I4 = I3∪{Q( fv(a,c),a,c)},
......

The question is: by testing all 1-cycles, can we capture this non-terminating behavior without
using renaming? As we show below, the answer is negative.

Similar to the rule set of Example 6, a tight simulation is not possible for any path of the form
π = (r1,r2, . . . ) w.r.t. the restricted critical database Iπ. However, unlike the rule set of Example 6,
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no permutation π′ of π may lead to a tight simulation for π′ w.r.t. the restricted critical database
Iπ
′

. For example, consider the path π2 = (r3,r2,r1) which is a permutation of π1 = (r1,r2,r3). The
restricted critical database of π2 is as follows:

Iπ2 = {Q(x1,y1,z1),T (x1,y1,z1),R(x2,y2,z2),P(x3,y3,z3),K(z3)}

and we derive the following restricted chase sequence:

I∗0 = Iπ2 , I∗1 = I∗0 ∪{P( fv(x1,z1), x1,z1),R( fv(x1,z1), x1,z1)}, (14)

I∗2 = I∗1 ∪{T ( fv(x1,z1), x1,z1)}, I∗3 = I∗2 ∪{Q(x3,y3,z3)}

It is easy to check that after derivation of I∗2 , no trigger for r1 exists that uses atoms derived in
I∗2 . Therefore, to derive I∗3 , we have no choice but to pick homomorphism h = {x/x3,y/y3,z/z3}

to construct trigger (r1,h) to derive Q(x3,y3,z3). Therefore, the restricted chase terminates since
there is no trigger from I∗3 . A similar argument applies to other permutations of π1. If we conclude
that R′ is all-instance terminating based on testing all 1-cycles without renaming, we would get
a wrong conclusion.

On the other hand, given a (finite) path π, if it leads to a chained restricted chase sequence,
starting from the updated restricted critical database rn∗(Iπ) for some renaming function rn∗,
then there is a tight simulation so that π is shown to be active. For example, for π2 = (r3,r2,r1)
above we can find an updated restricted critical database of π2 as follows:

rn∗(Iπ2 ) = {Q(x1,y1,z1),T (x1,y1,z1),R(x2,y2,z2),P(x1,y1,z1),K(z1)}

where indexed constants with index 3 are renamed to those with index 1, so that π2 is active w.r.t.
rn∗(Iπ2 ).

5 K-Safe(Φ) Rule Sets

We now apply the results of the previous section to define classes of the finite restricted chase.
The idea is to introduce a parameter of cycle function to generalize various acyclicity notions in
the literature, and we will test a path only when it fails to satisfy the given acyclicity condition.

Definition 8
Let R be a rule set and Σ the set of all finite cycles based on R. A cycle function is a mapping
ΦR : Σ→ {T,F}, where T and F denote true and f alse, respectively.

Let Φ be the binary function from rule sets and cycles such that Φ(R,σ) = ΦR(σ), where R is
a rule set and σ is a cycle. By overloading, the function Φ is also called a cycle function.

We now address the question of how to obtain a cycle function for an arbitrary rule-based
acyclicity condition of finite skolem chase e.g., JA (Krötzsch and Rudolph 2011), aGRD (Baget
2004), MFA (Cuenca Grau et al. 2013), etc.

Definition 9
Let ∆ denote an arbitrary acyclicity condition of finite skolem chase (for convenience, let us also
use ∆ to denote the class of rule sets that satisfy the acyclicity condition expressed by ∆). We
define a cycle function Φ∆ as follows: for each rule set R and each cycle σ based on R, if the
acyclicity condition ∆ holds for rules in Rule(σ),10 then Φ∆ maps (R,σ) to T ; otherwise Φ∆ maps
(R,σ) to F.

10 Recall that Rule(C) is the set of distinct rules in C.
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That is, Φ∆ maps (R,σ) to T whenever the acyclicity condition ∆ for the rule set Rule(σ) is
satisfied and to F otherwise. Since any non-terminating restricted chase sequence must involve
a cycle of rules, any sufficient condition for acyclicity by definition already guarantees restricted
chase termination.

In the sequel, we will use RS (∆) to denote the class of rule sets that satisfy the acyclicity
condition ∆. Also, because of Definition 9, we will feel free to write Φ∆(R,Rule(σ)) for Φ∆(R,σ).

Example 9
Consider the rule set R1 from Example 2 and assume ∆ = aGRD in Definition 9. Recall that a
rule set R belongs to aGRD (acyclic graph of rule dependencies) if there is no cyclic dependency
relation between any two (not necessarily different) rules from R, possibly through other depen-
dent rules of R. Clearly, the corresponding cycle function Φ∆ maps both cycles σ1 = (r1,r2,r1)
and σ2 = (r2,r1,r2) to T .

We are ready to present our hierarchical approach to defining classes of the finite restricted
chase. In the following, we may just write Φ for Φ∆ as a parameter for cycle functions, or as some
fixed cycle function, in particular in a context in which an explicit reference to the underlying
acyclicity condition ∆ is unimportant.

Definition 10
(k-safe(Φ) rule sets) Let R be a rule set and σ a k-cycle (k ≥ 1). We call σ safe if for all databases
I, σ is not active w.r.t. I. Furthermore, R is said to be in k-safe(Φ), or to belong to k-safe(Φ)
(under cycle function Φ), if for every k-cycle σ which is mapped to F under ΦR, σ is safe.

For notational convenience, for k = 0 we may write 0-safe(Φ∆) for RS (∆). For example, it can
be verified that the rule set R1 in Example 2 is in k-safe(Φ∆) for any k ≥ 1 and any cycle function
Φ∆ based on some skolem acyclicity condition ∆ in the literature such as weak-acyclicity (WA)
(Fagin et al. 2005), Joint-acyclicity (JA) (Krötzsch and Rudolph 2011), and MFA (Cuenca Grau
et al. 2013), etc. It is also not difficult to see that the rule set R2 in the same example belongs
to 2-safe(ΦaGRD) as well as 2-safe(ΦWA) (but note that they do not belong to 1-safe(ΦaGRD)
or 1-safe(ΦWA)). However, we stress that R2 does not belong to any known class of acyclicity,
including RMFA and RJA. That is, rule sets like R2 are recognized as a finite chase only under
the hierarchical framework proposed in this paper.

By Theorem 2, k-safe(Φ) can be equivalently defined in terms of restricted critical databases.

Proposition 4
For any cycle function Φ, a rule set R is in k-safe(Φ) if and only if every k-cycle σ which is
mapped to F under φR is not active w.r.t. rn∗(Iσ), for all renaming functions rn∗.

We are now in a position to show the following theorem.

Theorem 5
Let Φ∆ be a cycle function. For all k ≥ 1, (k−1)-safe(Φ∆) ⊆ k-safe(Φ∆) ⊆ CTres

∀∀
.

Proof
For the first subset relation, let us first consider the base case where k = 1. Since any non-
terminating skolem chase goes through at least one 1-cycle based on R, if none of the 1-cycles
on R violates the corresponding acyclicity condition, i.e., Φ∆ maps any 1-cycle σ to T , then
R trivially belongs to RS (∆). Thus, RS (∆) = 0-safe(Φ∆) ⊆ 1-safe(Φ∆). Then, for all renaming
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functions rn∗, if there is no chained restricted chase sequence of R and rn∗(Iσ) for a k-cycle σ,
then there is no chained restricted chase sequence of R and rn∗(Iσ

′

) for any (k+1)-cycle σ′, since
the latter goes through at least one k-cycle. This shows the first subset relation.

To show the second subset relation, let R ∈ k-safe(Φ∆), for any fixed k ≥ 1. For all k-cycle
σ, if (R,σ) is mapped to T by Φ∆ for every k-cycle σ, then by definition R ∈ CTsk

∀∀
⊂ CTres

∀∀
.

If for some k-cycle σ such that (R,σ) is mapped to F by Φ∆, then by Proposition 4, R ∈ k-
safe(Φ∆) implies that σ is not active w.r.t. rn∗(Iσ) for all renaming functions rn∗ for Iσ. It then
follows from inactiveness (Definition 7) and Proposition 4 that there are no chained restricted
chase sequences of R and rn∗(Iσ). Thus, by Theorem 3, R is restricted chase terminating w.r.t.
rn∗(Iσ). By the first subset relation, for all k′ > k, all k′-cycles are terminating. Therefore, we
have k-safe(Φ∆) ⊆ CTres

∀∀
.

Finally, we present Algorithm 1 to determine whether a rule set belongs to the class k-safe(Φ∆).
The procedure returns true if it is and f alse otherwise.

Algorithm 1 k-safe Algorithm
Input: A set of rules R; An integer k ≥ 0; A cycle function Φ

Output: Boolean value IsAcyclic;
1: procedure k-safe(R,Φ)
2: bool IsAcyclic← true;
3: for each k-cycle σ based on R do
4: if Φ(R,Rule(σ)) = F then
5: Find the restricted critical database Iσ;
6: for each renaming function rn∗ do
7: if σ is active w.r.t. rn∗(Iσ) then
8: return ¬IsAcyclic;
9: return IsAcyclic;

Proposition 6
Given a rule set R, a cycle function Φ∆ and an integer k ≥ 1, R belongs to k-safe(Φ∆) if and only
if Algorithm k-safe returns true.11

Proof
(⇒) Based on Definition 10, if R is in k-safe(Φ∆), then for all k-cycles σ either Φ(R,Rule(σ)) =

T , or for all renaming functions rn∗ for Iσ, σ is not active w.r.t. restricted critical database
rn∗(Iσ). Therefore, Algorithm 1 returns T .
(⇐) By Proposition 4, for all k-cycles σ and for all renaming functions rn∗ for Iσ, if σ is not
active w.r.t. restricted critical database rn∗(Iσ), then the given rule set belongs to k-safe(Φ∆), and
by Theorem 5, is all-instance terminating.

Theorem 7
Let R be a given rule set and k ≥ 0 be a unary-encoded integer. Assuming that checking ∆ can be
done in PTime, the complexity of checking membership in k-safe(Φ) is in PSpace.

11 The algorithm can be improved by considering only minimal renaming functions, which however would not lower the
complexity upper bound. For this reason, we do not pursue the improvement at this level of abstraction.
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Proof
Given a rule set R and an acyclicity condition ∆, let us first guess a k-cycleσ= (σ1, . . . ,σ(k+1)×|R|−1)
based on R, and then check whether Rule(σ) < ∆. The guessing part can be done using a non-
deterministic algorithm. Furthermore, based on our assumption, the checking part can be done
in PTime.

For the guessed k-cycle σ, we then proceed by guessing a renaming function rn∗ and a re-
stricted chase sequenceI : rn∗(Iσ), . . . , I(k+1)×|R|−1 constructed fromσ using a tuple of chained ho-
momorphisms H = (h1, . . . ,h(k+1)×|R|−1), and verifying whether I is chained by checking whether
σ is active w.r.t. rn∗(Iσ), which gives us the complement of the desired membership checking
problem.

An iterative procedure is required to construct I. In each step i > 0 of this procedure we need
to remember each instance Ii−1 in the constructed sequence, guess a homomorphism hi, and
proceed to derive I(k+1)×|R|−1. For this purpose, we need NSpace(((k + 1)× |R| − 1)× β) memory
space to remember intermediate instances, where β is the maximum number of head atoms of
rules in σ. In addition, guessing each homomorphism hi can be done using an NP algorithm
and having access to an NP-oracle, verifying if hi can be extended a homomorphism h′i and
leads to a chained tuple of homomorphisms is NP-complete (Rutenburg 1986). All these tasks
can be maintained within the same NSpace(((k + 1)× |R| −1)×β) complexity bound, giving us a
coNSpace(((k + 1)× |R| −1)×β) upper bound for the complexity of membership checking.

As a corollary to Savitch’s theorem (Savitch 1970), we have PSpace=NPSPace. Also, based on
ImmermanSzelepcsnyi theorem (Immerman 1988), non-deterministic space complexity classes
are closed under complementation. Therefore, based on the above analysis, the complexity upper
bound for the membership checking problem is in PSpace.

Remark 1
Based on Theorem 7, it can be seen that for ∆ ∈ {WA,JA,SWA},12 the complexity of checking
k-safe(Φ∆) is in PSpace. This shows that our conditions, when considering skolem acyclicity
criteria for which membership checking can be done in PTime, are easier to check than even
the easiest known condition of the restricted chase in the literature (i.e., RJA) for which the
complexity of membership checking is ExpTime-complete.

In addition, for semantic conditions of terminating skolem chase, such as MSA (respectively,
MFA), checking ∆ cannot be done in PTime and a worst-case complexity of ExpTime-complete
(respectively, 2ExpTime-complete) can be computed (Grau et al. 2013). It follows that for the
membership checking problem of k-safe(Φ∆), where ∆ is MSA (respectively, MFA), an Exp-
Time-complete (respectively, 2ExpTime-complete) complexity can be computed. The hardness
proof can be established from the membership checking problem of the corresponding class with
terminating skolem chase since this problem cannot be easier than that in general.

6 Extension of Bounded Rule Sets

In (Zhang et al. 2015), a family of existential rule languages with finite skolem chase based on
the notion of δ-boundedness is introduced and the data and combined complexities of reasoning
with those languages for k-exponentially bounded functions are obtained. Utilizing a parameter
called bound function, our aim in this section is to show how to extend bounded rule sets from

12 SWA denotes the super-weak acyclicity condition of skolem chase terminating rule sets (Marnette 2009).
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the skolem to restricted chase. In particular, we show that for any class ∆ of terminating rule
sets under the skolem chase, there exists a more general class of terminating rule sets under the
restricted chase that extends ∆. We show how to construct such an extension, and we analyze
the membership and reasoning complexities for extended classes. First, let us introduce some
terminologies.

A bound function is a function from positive integers to positive integers. A rule set R is
called δ-bounded under the skolem chase for some bound function δ, if for all databases I,
ht(chasesk(I,R)) ≤ δ(||R||), where ||R|| is the number of symbols occurring in R. Given an instance
I, ht(I) denotes the height (maximum nesting depth) of terms that have at least one occurrence in
I, if it exists, and∞ otherwise. In this paper, when we mention δ as a bound function, we assume
that δ is computable.

Let us denote by δ-Bsk the class of δ-bounded rule sets under the skolem chase. For the re-
stricted case, the definition is similar.

Definition 11
Given a bound function δ, a rule set R is called δ-bounded under the restricted chase,13 denoted
δ-Bres, if for all databases I and for any restricted chase sequence I of R and I, ht(I) ≤ δ(||R||).

Example 10
For the rule set R1 of Example 2, it can be seen that the height of skolem terms in any restricted
chase sequence is no more than 3. Therefore, R1 is δ-bounded under the restricted chase variant
for some bound function δ for which δ(||R1||) = 3. It is worth noting that R1 does not belong to
δ-bounded rule sets for any computable bound function δ under the skolem chase.

Before diving into more details, let us first demonstrate the relationship between δ-bounded
rule sets and k-safe(Φ∆) rule sets as given in Proposition 8 below.

Proposition 8
Let R be a k-safe(Φ) rule set in which k is a unary encoded integer computable in O(P(n)), for
some function P(n). Then R is δ-bounded under the restricted chase for some function δ that is
computable in O(P(2× log ||R||)).14

Proof
Let R be k-safe(Φ). Based on Definition 10, for each k-cycle σ which is mapped to F under Φ, σ
is safe (i.e., for all databases I,σ is not active w.r.t. I). Each rule application in a chained sequence
can increase the depth of a skolem term at most by one. Henceforth, the longest possible chained
sequence provides an upper bound for the term depth. We show this upper bound is k× (k + 2).

This is because the length of the longest such sequence for a k-cycle is upper bounded by
k×(k+1), and therefore, any sequence of length k×(k+2) must contain at least one k-cycle. Since
no k-cycle is active w.r.t. any database, the depth of any skolem term generated by the longest
chained sequence is less than k× (k + 2). Thus R is k× (k + 2)-bounded, which gives a quadratic
bound in k. Since k is computable in O(P(n)) and it is unary represented, then k2 is computable in
O(P(2× log ||R||)), where log ||R|| is the size of binary representation of ||R||. Based on the above

13 Note that by definition, the fairness condition is a requirement for a non-terminating restricted chase sequence.
14 Here n denotes the size of representation for the parameter of k. We say that k can be computed in DTime(P(n)) if:

There is a deterministic Turing machine M such that, given an integer l > 0, M outputs k(l) in P(log l) stages. Note that
log l is the size of binary representation of l.
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argument, we conclude that such a bound function always exists, and O(P(2× log ||R||)) is an
upper bound for the cost of computing the bound function.

In what follows, we present our results on the membership of δ-bounded rule sets under the
restricted chase variant. Before we proceed, let us define what we mean by membership in the
context of this chase version. The problem of membership for the skolem chase is to check
if all skolem chase sequences halt (terminate) before the maximum height of skolem terms in
each sequence reaches δ(||R||) for all databases. As described in (Zhang et al. 2015), checking
membership for δ-bounded rules under the skolem chase can be precisely characterized using
only one chase sequence and utilizing the Marnette’s critical database technique (Marnette 2009),
on a single database which is constructed from the given rule set only once.

On the other hand, one can not determine the membership in the δ-bounded rules under the
restricted chase using a single chase sequence. For this purpose, all possible restricted chase
sequences need to be considered. Furthermore, restricted critical databases introduced in Defini-
tion 6 can help us determine whether a possible chase sequence constructed from a given rule set
witnesses the non-terminating status of the rule set under the restricted chase.

In what follows, we propose a procedure for membership checking of δ-bounded rule sets un-
der the restricted chase. Given a rule set R and a bound function δ, the procedure MembCheck(R, δ)
is defined as follows:

• Check whether R is δ-bounded under the skolem chase using the (skolem) critical database
constructed from R, denoted IR. If true, returns T .

• Otherwise, for some i > 0, the height of chasei
sk(IR,R) is δ(||R||)+1; for each skolem chase

sequence generated by a path π = (r1, . . . ,rn) that reaches the height of δ(||R||)+1, we check
whether π is active w.r.t. the restricted critical database rn∗(Iπ) for all renaming functions
rn∗. If the answer is no for all such paths π, then the procedure returns T , otherwise it
returns F (false).

A T answer means that R is δ-bounded under the restricted chase and an F answer means that
it is unknown whether R is δ-bounded under the restricted chase or not. The reason for the latter
case is that when the skolem chase reaches the height of δ(||R||) + 1 by a path π = (r1, . . . ,rn),
although we can check activeness of π w.r.t. restricted critical databases, we may not be able to
determine whether such a path leads to at least one fair sequence.

Proposition 9
Given a bound function δ and an arbitrary rule set R, MembCheck(R, δ) is sound, i.e., if it returns
T , then R is δ-bounded under the restricted chase. Furthermore, if R consists of rules with single-
head, then MembCheck(R, δ) is sound and complete.

Note that the completeness problem is as follows: MembCheck(R, δ) is complete if for any
given rule set R and bound function δ, if MembCheck(R, δ) = F, then R is not δ-bounded under
the restricted chase.

Proof
Let δ be a bound function. By (Marnette 2009), it suffices to use the skolem critical database IR

to capture all skolem chase sequences w.r.t. any database I, so that ht(chasesk(I,R)) ≤ δ(||R||) only
if ht(chasesk(IR,R)) ≤ δ(||R||). Consequently, if R is δ-bounded under the skolem chase w.r.t. IR,
it is δ-bounded under the skolem chase w.r.t any database I, and by the relationship between the
skolem and restricted chase, R is δ-bounded under the restricted chase w.r.t any database I.
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Otherwise, for each path π that leads to some skolem chase sequence that reaches the height
of δ(||R||) + 1, π being not active w.r.t. rn∗(Iπ) for all renaming function rn∗ for Iπ implies, by
Theorem 2, that π is not active w.r.t. any database. When all chained sequences of path π fail to
reach the height of δ(||R||)+1, no restricted chase sequence of π can reach that height because an
unchained sequence does not expand skolem terms cumulatively throughout. It follows that the
largest height by any database is bounded by δ(||R||). This gives the desired conclusion for the
soundness of MembCheck for arbitrary rules.15

For any single-head rule set R, from (Gogacz et al. 2019), we know that the fairness condition
can be safely neglected, i.e., the existence of a (possibly unfair) infinite restricted chase sequence
implies the existence of a fair one. Therefore, R is not δ-bounded.

Proposition 10
Let R be a rule set and δ a bound function computable in DTime(P(n))16 for some function P(n).
Then, it is in

coNTime(Cδ + ||R||||R||
O(δ(||R||))

)

to check if MembCheck(R, δ) returns T , where Cδ = P(log ||R||)O(1).

Proof
For the skolem chase with skolem critical database, from Proposition 6 of (Zhang et al. 2015)
we know that using the critical database technique of (Marnette 2009), the maximum number of
atoms generated in a skolem chase sequence is bounded by ||R||||R||

O(δ(||R||))
, which is also an upper

bound for the number of atoms generated in a restricted chase sequence.
From (Marnette 2009) we know that in the case of the skolem chase if any sequence terminates

on a rule set R and a database I, then the instances returned by all sequences are isomorphically
equivalent. So, for δ-boundedness for the skolem chase, it suffices to consider only one sequence.
But for the case of the restricted chase, we need to consider all such sequences.

Given a rule set R and a bound function δ, the procedure MembCheck(R, δ) first checks whether
R is δ-bounded under the skolem chase.

For the complexity of this check, we need to consider the size of each skolem chase sequence
to produce the height of O(δ) that is upper bounded by ||R||||R||

O(δ(||R||))
, which can be computed in

DTime(||R||||R||
O(δ(||R||))

). In addition, an upper bound for the chase of size ||R||||R||
O(δ(||R||))

can be com-
puted in DTime

(
(||R||+ P(log ||R||))O(1)). Therefore, according to (Zhang et al. 2015), the overall

complexity of this check is: DTime
(
(P(log ||R||))O(1) + ||R||||R||

O(δ(||R||)))
.

If the above condition is not satisfied (i.e., some R is not δ-bounded under the skolem chase),
for some i ≥ 1, the height of chasesk(IR,R) is δ(||R||) + 1. So, for each skolem chase sequence that
is generated by a path π = (r1, . . . ,rn) which reaches the height of δ(||R||) + 1, for all renaming
functions rn∗ for Iπ, we check whether π is active w.r.t. rn∗(Iπ). A no answer to the above check
yields a T output from MembCheck(R, δ).

15 If there exists such a path π that is active and leads to a restricted chase sequence, which by default must be fair, then
we can decide that R is not δ-bounded under the restricted chase (again, the fairness condition must be satisfied). In
this case, the procedure is complete by returning F. On the other hand, if all such paths π lead only to unfair restricted
chase sequences (i.e., infinite chase sequences generated by active triggers in Definition 3 without requiring the fairness
condition), then no restricted chase sequence has reached beyond the bound and in this case, that our procedure returns
F shows its incompleteness. But in general, the problem of whether such a π leads only to unfair chase sequences may
be undecidable.

16 The class of complexity languages decidable in time P(n) using a deterministic Turing machine. NTime is defined
similarly but using a non-deterministic Turing machine.
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Based on the above argument, to proceed, using a non-deterministic algorithm we first guess a
sequence of triggers

⋃N
i=1(ri,hi), where N is upper bounded by ||R||||R||

O(δ(||R||)+1)
= ||R||||R||

O(δ(||R||))
that

can lead to the construction of a skolem chase sequence I, and a renaming function rn∗.
Then we need to verify if I is active w.r.t. rn∗(Iπ), where π is the path constructed from the

guessed ri’s. For the latter, for each projection π′ of π, first, to verify the chained property, we
determine if each rule in π′ depends on some previous rule in the path. The complexity of this
latter verification task is quadratic in the size of the guessed chase sequence.

Furthermore, given path π, the maximum number of chained restricted chase sequences is
bounded by ||R||O(δ(||R||)), and since the length of the guessed sequence is bounded byO(||R||||R||

O(δ(||R||))
),

verifying if I is active w.r.t. rn∗(Iπ) is at most polynomial in ||R||||R||
O(δ(||R||))

which can be imple-
mented in NTime(||R||||R||

O(δ(||R||))
). Similar to the proof of Theorem 7, the construction of renaming

functions can take at most polynomial in the size of π which can be done in NTime(||R||||R||
O(δ(||R||))

).
So, clearly, all the above tasks can be maintained in NTime

(
(P(log ||R||))O(1) + ||R||||R||

O(δ(||R||)))
.

The membership is complement to the above problem, and therefore, belongs to coNTime(Cδ+

||R||||R||
O(δ(||R||)

) as desired.

Next, we investigate membership and reasoning complexities of bounded rule sets under what
is called exponential tower functions, which are defined as follows:

expκ(n) =

n κ = 0

2expκ−1(n) κ > 0

Since the complexity of checking δ-bounded property of Proposition 10 is dominated by the
second term inside coNTime, if δ(n) = expκ(n), then its overall complexity increases by two
exponentials. We thus have

Corollary 11
Given a rule set R checking if MembCheck(R,expκ) returns T is in coN(κ+ 2)-ExpTime.

Example 11
Based on the observation made in Example 10, the rule set R1 in Example 2 is exp0-bounded
under the restricted chase, however it does not belong to expκ-bounded ontologies under the
skolem chase for any computable κ.

Data and Combined Complexity:
Now, let us investigate the reasoning complexities. The problem under consideration is Boolean

Conjunctive Query (BCQ) answering which is defined as follows. Given rule set R, a database
I and a Boolean query q, decide if I ∪R |= q. The complexity of this problem is also known as
combined complexity since the input size is the combined size of all I, R, and q. In the BCQ
answering problem if R and q are fixed and only I changes, then it is called data complexity.
Focusing on expκ-bounded rule sets under the restricted chase variant, we have the following
results on reasoning complexities.

Theorem 12
The problem of Boolean conjunctive answering for expκ-bounded rule sets under the restricted
chase variant is in (κ+ 2)-ExpTime-complete for combined complexity and PTime-complete for
data complexity.
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Proof
Let R be an expκ-bounded rule set under the restricted chase variant and I be a database. Then,
let us guess a restricted chase sequence I, non-deterministically. With an argument similar to
that of the proof of Proposition 10 in which δ(n) = expκ(n), we know that the number of atoms
of I is bounded by ||R||||R||

expκ(||R||)
= O(expκ+2(||R||)).

Membership follows since the entailment of a BCQ q can be shown by finding such a sequence
I : I = I0, . . . , In based on R such that In satisfies q according to the following fact from (Fagin
et al. 2003): Let J and K be two finite instances returned by the restricted chase of an expκ-
bounded rule set R and a database I. Then K and J are homomorphically equivalent. Based
on the above fact and the homomorphic equivalence classes, in the rest of this proof, we let
chaseres(I,R) denote one representative of the equivalence class for all results of the restricted
chase of R and I. In addition, based on (Fagin et al. 2003), it is known that chaseres(I,R) |= R,
and also there is a homomorphism from I to chaseres(I,R). Furthermore, I∪R |= q if and only if
chaseres(I,R) |= q.

Let k and n denote the number of relation symbols and the maximal arity of relation symbols
appearing in R, respectively. Let further l and m represent the number of function symbols, and
the maximal arity of function symbols appearing in sk(R), respectively. In addition, let c denote
the number of constants appearing in I, and Q(t) be a fact in chaseres(I,R). It is easy to verify that
the number of symbols in each constituent t ∈ t is upper bounded by

∑expκ(||R||)
i=0 mi = mO(expκ(||R||)).

Also, it is clear that each symbol is either a constant or a function symbol. Therefore, the number
of facts in chaseres(I,R) is upper bounded by (c + l)mO(expκ(||R||))×n × k. Since k,n, l,m ≤ ||R||, and
c = |dom(I)|, the following upper bound is derived for the number of facts in chaseres(I,R):
(|dom(I)|+ ||R||)||R||

O(expκ(||R||))×||R||O(1)
, which can be computed in DTime

(
(|dom(I)|+ ||R||)||R||

O(expκ(||R||)))
.

To compute the reasoning complexity involving a BCQ q, it is now sufficient to evaluate q on
chaseres(I,R) directly.17 To continue the analysis, we only need the number of existential vari-
ables occurring in q, which we denote by v. Then we need to check whether there is a substitution
h which maps every existential variable in q to a ground term of height less than expκ(||R||), such
that h(q) ⊆ chaseres(I,R). From the previous analysis is clear that (|dom(I)|+ ||R||)||R||

O(expκ(||R||))×v

substitutions need to be checked. Since v ≤ ||q||, the evaluation of checking whether h(q) ⊆
chaseres(I,R) can be done in

DTime
(
(|dom(I)|+ ||R||)||R||

(expκ(||R||)×||q||O(1))
Hence, a (κ+2)-ExpTime upper bound can be computed for the combined complexity, as desired.

We can use a construction similar to that of (Zhang et al. 2015) for the hardness proof. We
briefly sketch it here. Let us consider a deterministic Turing machine M which terminates in
expκ+2(n) number of steps on any input of length n. Let us assume that the query and data schema
is a singleton set {Accept} and ∅, respectively, where Accept is a nullary relation symbol. We need
to show that for each input x that is a binary string of length n, there is an expκ-bounded rule set
under the restricted chase variant such that M terminates on x if and only if ∅∪R |= Accept. To
construct the rule set R we need to define a linear order of length expκ+2(n) on integers which are
represented in binary strings from 0 to expκ+2(n). Once a linear order is defined, we can construct
a set of existential rules to encode the Turing machine M and the input x. Once we have such a
construction, we can establish the lower bound on the combined complexity of reasoning with

17 Without loss of generality, we assume that q is in prenex normal form.
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existential rules under the restricted chase. This lower bound combined with the upper bound
derived above provides the exact bound for the combined complexity of expκ-bounded rule sets
under the restricted chase.

Furthermore, the data complexity of query answering with expκ-bounded rule sets under re-
stricted chase is PTime-complete. The PTime upper bound for the data complexity can be derived
from the above analysis, and the hardness follows from the PTime-completeness of data com-
plexity of Datalog, cf. (Dantsin et al. 2001).

7 Experimentation

To evaluate the performance of our proposed methods for termination analysis, we implemented
our algorithms in Java on top of the Graal rule engine (Baget et al. 2015). Our goal was twofold:
1) to understand the relevance of our theoretical approach with real-world applications, and 2)
to understand the computational feasibility - even though the problem of checking semantic
acyclicity conditions, such as checking activeness of all k-cycles w.r.t. restricted critical databases
have a high theoretical worst-case complexity, it may still be a valuable addition to the tools of
termination analysis in real-world scenarios.

We looked into a random collection of 700 ontologies from The Manchester OWL Corpus
(MOWLCorp) (Matentzoglu and Parsia 2014), which is a large corpus of ontologies on the web.
This corpus is a recent gathering of ontologies through sophisticated web crawls and filtration
techniques. After standard transformation into rules (see (Cuenca Grau et al. 2013) for details),18

based on the number of existential variables occurring in transformed ontologies, we picked
ontologies from two categories of up to 5 and 5-200 existential variables with equal probability
(350 from each). We ran all tests on a Macintosh laptop with 1.7 GHz Intel Core i7 processor,
8GB of RAM, and a 512GB SSD, running macOS Catalina.

7.1 Implementation Setup

Here, we provide the details on our implementation to identify k-safe(Φ∆) rule sets.
For a given k ≥ 0 and a class ∆ (which also denotes the corresponding acyclicity condition) of

finite skolem chase, to start, the candidate pool of ontologies which is considered for k-safe(Φ∆)
is the collection of all ontologies. The ontologies that fail our tests for k-safe(Φ∆) will be re-
moved. Then at the end of this process, we obtain a set of terminating ontologies.

For each given ontology, we transform it to a rule set R. In our experiments, we consider ex-
tending four classes of finite skolem chase, Ψ = {WA,JA,aGRD,MFA}. For each k-cycle σ based
on R, first by using the technique of piece-unification, we may eliminate R from the candidate
pool. If not removed, we then check whether Rule(σ) satisfies the acyclicity condition ∆ ∈ Ψ. If
not, we run experiments to check whether σ is active w.r.t. its restricted critical databases.

Let us first introduce the technique based on piece-unification.

Definition 12
(Piece-unification (Baget et al. 2009)) Given a pair of rules (r1,r2), a piece-unifier of body(r2)
and head(r1) is a unifying substitution θ of var(B)∪var(H) where B⊆ body(r2) and H ⊆ head(r1)
which satisfies the following conditions:

18 Due to limitations of this transformation, our collection does not include ontologies with nominals, number restrictions
or denial constraints.
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(a) θ(B) = θ(H), and
(b) variables in varex(H) are unified only with those occurring in B but not in body(r2) \B.

Condition (a) gives a sufficient condition for rule dependency, but it may be an overestimate,
which is constrained by condition (b). Note that in Example 4, condition (a) holds for B =

{T (x,y)} and H = {T (y,z)} where θ = {x/y,y/z}, and condition (b) does not, since varex(H) = {z}
and z unifies with y which occurs in both B and body(r)\B = {P(x,y)}. Therefore, no piece-unifier
of body(r) and head(r) exists.

Piece-unification is known to provide a necessary condition for rule dependencies in that for
any two rules r and r′, if body(r) and head(r′) are not piece-unifiable, then no trigger (r,h)
exists that relies on some atom derived from head(r′) (cf. Property 18 of (Baget et al. 2011)).
Below, given a substitution θ, dom(θ) denotes the domain of θ, which is the set of substituted
variables in θ, and codom(θ) denotes the co-domain of θ, which is the set of substitutes in θ.
For technical reasons, if θ is a piece-unifier of body(r) and head(r′), then dom(θ) refers to the
subset of substituted variables which also appear in body(r) and codom(θ) refers to the subset of
substitutes which appear in body(r) as well.

If the set of all sequences of piece-unifiers that can be constructed from a path π is non-empty,
then for each sequence of piece-unifiers that can be formed in π, we need to check whether this
sequence leads to a restricted chase sequence or not.

To show whether each sequence of piece-unifiers leads to a sequence of rules which are
transitively-dependent, checking if they only satisfy conditions (a) and (b) above is not sufficient.
Indeed, as shown in (Baget et al. 2011), given two rules r1 and r2, r2 depends on r1 if and only if
there is a piece-unifier θ of body(r2) with head(r1) such that θ satisfies the following conditions:
(i) atom-erasing, and (ii) productive (a.k.a. useful, cf. (Baget et al. 2014b)). The former condi-
tion checks that θ(body(r2)) is not included in θ(body(r1)). In addition, the productivity condition
for θ means that θ(head(r2)) is not included in θ(body(r1))∪ θ(head(r1))∪ θ(body(r2)). Note that
the above two conditions can naturally be extended to sequences of piece-unifiers. Therefore, in
order to show that each path π does not lead to a chained sequence, it suffices to show that each
sequence of piece-unifiers constructed from π (if any), does not satisfy either atom-erasing or
productive condition.

The goal of this part is to present how we can eliminate the irrelevant k-cycles in our analysis.
For this purpose, we utilize the notion of piece-unification as follows, for a given k > 0.

• For each k-cycle σ, if the set of sequences of piece-unifiers is ∅, then σ will be removed
from consideration of further checks since σ trivially leads to a terminating skolem chase
before all the rules in σ are applied (and therefore, a terminating restricted chase).

• For each k-cycle σ, if none of the sequences of piece-unifiers that can be constructed from
σ satisfy both conditions of atom-erasing and productive, then σ is removed from our
analysis.

We call each k-cycle which has not been removed during the abovementioned steps, relevant.19

In our experiments, we performed the following steps:

1. Transforming ontologies in the considered corpus into the normal form using standard

19 Note that the notion of compatible unifiers is introduced in (Baget et al. 2014a) in which piece-unification has been
relaxed to take into account arbitrary long sequences of rule applications. This is similar to our goal. In fact, compatible
unifiers provide a tighter notion which can help in removing more irrelevant k-cycles.
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normalization techniques (cf. (Carral et al. 2014)). This will ensure that concepts do not
occur nested in other concepts and also each functional symbol introduced during normal-
ization depends on as few variables in the rule as possible. It takes an input ontology path
that can be parsed by the OWL API (which is in OWL/XML, OWL Functional Syntax,
OBO, RDF/RDFS or Turtle format) (cf. (Horridge and Bechhofer 2011)) and produces a
normalized ontology; Note that we filter out the following axioms of input ontology: those
that are not logical axioms and those containing datatypes, datatype properties, or built-in
atoms as the conventional normalization methods are unable to handle them;

2. Rewriting axioms to get first-order logic rules and writing them in the dlgp format (for
“Datalog+” (Baget et al. 2015));

3. Forming all relevant k-cycles Σ constructed from each transformed rule set and for each
σ ∈ Σ, where σ = (r1, . . . ,rn), we check if Rule(σ) ∈ ∆, for each ∆ from {WA, JA, aGRD,
MFA};

4. For each ∆ from {WA, JA, aGRD, MFA} and for each relevant k-cycleσ such that Rule(σ) <
∆, we check the activeness of σ w.r.t. Iσ, i.e., we check if there exists a chained tuple of
homomorphisms H = (h1, . . . ,hn) for σ at each step (1 ≤ i ≤ n). We implemented a chained
homomorphism checker to accomplish this task;

• During the above check, whenever a relevant k-cycle σ is determined to be active
w.r.t. Iσ, the rule set R is removed from the candidate pool;

• If every k-cycle σ is not active w.r.t. Iσ, we check the reason for the failure, say
for rule ri (1 ≤ i ≤ n). If the failure is due to lack of a trigger which is caused by
mapping multiple occurrences of a body variable of ri to distinct indexed constants,
then we know, by Theorem 2, that for some minimal renaming function rn for Iσ,
a trigger exists so that there is a chained restricted chase sequence from rn(Iσ) up
to (and including) ri. However, we examined all the cases of failure and did not find
any failure was caused this way. Therefore, there is no need to continue experiments
using the updated restricted critical database as laid out in Theorem 2. This is to say
that the phenomenon illustrated in Example 8 did not show up in our collection of
practical ontologies.

5. Ontologies in the remaining candidate pool are decided to be terminating.

7.2 Experimental Results

For each ontology, we allowed 2.5 hours to complete all of these tasks. In case of running out
of time or memory, we report no terminating result. For the first experiment, we considered
k-safe(Φ∆) rule sets for four different cycle functions Φ∆ based on WA, JA, aGRD and MFA
conditions, respectively, for different values of k.

We consider WA since its acyclicity condition is the easiest to check. We consider three pop-
ular syntactic acyclicity conditions WA, JA, and aGRD because the main cost of checking k-
safe(Φ∆) is then on the extension provided in this paper. Additionally, we consider MFA, a
well-known semantic condition for checking the skolem chase termination, which is based on
forbidding cyclic functional terms in the chase. Note that all other (syntactic) conditions con-
sidered in this paper are subsets of MFA. Besides, it is known that WA ⊂ JA and aGRD is not
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Table 1: Membership among 700 ontologies in the collected corpora

k k-safe(ΦaGRD) k-safe(ΦWA) k-safe(ΦJA) k-safe(ΦMFA)
k = 0 163 248 299 483
k = 1 171 258 310 495
k = 2 177 264 316 501
k = 3 182 269 321 506
k = 4 187 274 326 511
k = 5 190 277 329 514
k = 6 192 279 331 516

comparable to either WA or JA. We are interested to know whether the high worst-case complex-
ity of our extension prohibits applications in the real-world.20

In Table 1, the results of these experiments are summarized where the values of columns 2-5
denote numbers of ontologies with properties provided in their first row.

Average time analysis for k = 6

Classes Avg. time (s) T.W.A.T. (#) Terminating (%)
6-safe(ΦaGRD) 4139 125 27.4
6-safe(ΦWA) 3556 164 39.8
6-safe(ΦJA) 3231 183 47.2

6-safe(ΦMFA) 4923 282 73.7

Table 2: Average time analysis for membership testing of terminating ontologies

Consider the case k = 0. This is the case where we identify rule sets that are skolem chase
terminating under three acyclicity conditions aGRD, WA, and JA as well as under the MFA
condition. First, it is not surprising to observe that among 700 ontologies, the first three syntactic
conditions identify only a small subset of terminating ontologies. However, when considering
the MFA condition, we are able to capture many more rule sets as terminating in this collection.
Second, for our collection of practical ontologies, the gap between the terminating classes under
aGRD and WA conditions is indeed non-trivial. Interestingly, this appears to be the first time that
these three syntactic classes of terminating rule sets are compared for practical ontologies. This
shows that the theoretical advance from aGRD to WA may have significant practical implications.

As can be seen in Table 1, in all of the considered classes, by increasing k, the number of
terminating ontologies increases. This is consistent with Theorem 5. Our experiments stopped at
k = 6 as we did not find more terminating rule sets by testing k = 7.

We considered some optimizations in our implementation. Before proceeding further, let us
define some notions. Given a rule set R, consider the graph of rule dependencies GR of R in
which the set of nodes is R, and there is an edge from some node ri to a node ri if r j depends on
ri. If there is a path from some rule ri to a rule r j, then ri is called to be reachable from r j. If each
node in GR is reachable from each other node, then GR is connected. A component of GR is a
maximal connected subgraph of GR (i.e., a connected subgraph of GR with node set X for which
no larger set Y containing X is connected).

20 For both MFA and RMFA, the complexity of membership checking is already higher than that of Algorithm 1 (assum-
ing checking ∆ is in PTime, cf. Remark 1 in Section 5).
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For each rule set R, we find the maximal connected subgraphs of GR defined as above. Given
an acyclicity condition ∆, for each maximal connected subgraph S of GR, we check whether
S ∈ ∆ returns true. If that is the case, then we do not need to check any path based on any non-
empty subset of S for activeness. The reason is that if S ∈∆, then any subset S′ of S also satisfies
∆. Therefore, any cycle σ based on S′ is safe. This helped us remove irrelevant subsets of rules
in 83 (11.8%) of ontologies in our collection.

Given an acyclicity condition ∆, by Φ∆ let us denote the cycle function constructed from ∆.
Then a notable subclass of 1-safe(Φ∆) rules is called ∆≺ introduced in (Grau et al. 2013) which
is defined as the set of rules R in which each simple cycle in the graph of rule dependencies GR

of R belongs to ∆. In our collection, it can be seen that only one ontology is WA≺ (and therefore,
JA≺), which belongs to 1-safe(ΦWA) but not in 1-safe(ΦaGRD) in Table 1.

When k grows from 0, an interesting observation is that for each pair of acyclicity conditions
∆1 and ∆2 such that ∆1 ⊂ ∆2, the rate of increase in the number of terminating rules under Φ∆2

is faster than that of terminating rules under Φ∆1 when k grows from k = 0 to k = 1. Then, for
all k > 1 the increase of terminating rules from (k−1)-safe(Φ∆i ) to k-safe(Φ∆i ) returns the same
result for the case when either i = 1 or i = 2.

Let us see what happens for k = 1. Let R be a rule set and ∆1 and ∆2 be any pair of acyclicity
conditions where ∆1 ⊂ ∆2. Then there may be some active k-cycles σ based on R such that
Rule(σ) ∈ ∆2 \∆1. If for all such cycles based on R the above condition holds, then R is in 1-
safe(Φ∆2 ) but not in 1-safe(Φ∆1 ). Hence, for different columns we see some differences between
the numbers added to the first row of Table 1 in a way that for any pair of acyclicity conditions
∆1 and ∆2 such that ∆1 ⊂ ∆2, more rules are added as terminating to k-safe(Φ∆2 ) compared to
k-safe(Φ∆1 ), when k increases from 0 to 1.

When k > 1, we observe an interesting phenomenon - the same number of terminating rule
sets, in fact, the same rule sets, are added. Consider any pair of acyclicity conditions ∆1 and
∆2 such that ∆1 ⊂ ∆2. For any rule set R, assume it is determined to be terminating by ∆2. In
general, more k-cycles based on R need to be checked for the analysis of Algorithm 1 in the
case of ∆1 than ∆2, due to the weaker acyclicity condition in ∆1. For each such k-cycle σ, since
Rule(σ) ∈ ∆2, it cannot be active w.r.t. rn∗(Iσ) for any renaming function rn∗ (otherwise it would
contract Theorem 2). Therefore, it must pass the activeness checking of Line 7 in Algorithm
1. Consequently, just like how R is determined to be terminating by ∆2, R is determined to be
terminating by ∆1. Conversely, since the set of k-cycles tested for ∆1 is a superset of those tested
for ∆2, a rule set R which is determined to be terminating by ∆1 must also be determined to
be terminating by ∆2. This explains why the number of increases of terminating rule sets for
different acyclicity conditions is a constant.

This observation leads to a choice of strategy for testing for k-safe(Φ∆) for an expensive
acyclicity condition ∆. After failing the check of 1-safe(Φ∆), we can check k-safe(Φ∆′ ) for
k > 1, for a weaker by each-to-check acyclicity condition ∆′ in the understanding that the same
rule sets will be added, with likely more k-cycles to be tested.

Also, it is clear that if ∆1 ⊂ ∆2 then for all k ≥ 0, k-safe(Φ∆1 ) ⊂ k-safe(Φ∆2 ). In Table 1, since
WA ⊂ JA ⊂MFA, the same inclusion relation holds for k-safe(Φ∆) rules constructed from each
acyclicity condition ∆ for all integers k ≥ 0.

In order to compare our results with those of (Carral et al. 2017), we checked the set of termi-
nating ontologies under our conditions for membership in RMFA introduced therein. As a result,
it was observed that all the tested rule sets, except for 2 of them already belong to RMFA. In fact,
those 2 rule sets belong to 6-safe(ΦMFA).
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Additionally, we checked the tested corpora for membership in RMFC (cf. (Carral et al.
2017)). It was observed that 165 (23.6%) of the ontologies belong to RMFC (i.e., for each rule in
this category, there is a database I0 for which the restricted chase of R and I0 is infinite). Based
on the above results we find that the termination status of 19 (2.71%) ontologies in the collection
is open (i.e., they do not belong to 6-safe(ΦMFA) or RMFC or RMFA). We conducted our tests
for membership in RMFA and RMFC using VLog (Carral et al. 2019).

For the second experiment, we performed time analysis for the tested ontologies for different
cycle functions by fixing k to 6. The results are reported in Table 2, where the average running
time, as well as the number of ontologies terminating within the average running time (abbrevi-
ated as T.W.A.T.) for that particular cycle function, are reported. It can be seen that in all tested
conditions more than half of the terminating ontologies can be determined within the average
time. Note that the average times of the table are in seconds.

From our experiments we can see that there is no one-number-fits-all k for which any ontology
belongs to k-safe(Φ∆). However, as observed in our experiments, for real-world ontologies, this
number can be indeed small.
TGD generator: For adequately evaluating our approach and also for scalability testing, we
implemented a TGD generator on top of (Benedikt et al. 2017). Our goal was to check the per-
formance of implemented classes on large instances with large sets of chase atoms. Our generator
can generate custom TGDs while controlling their complexity. It supports an arbitrary number
of body atoms. Also, a parameterized total number of predicates and arity of atoms is defined.
Furthermore, a parameter is used to control the maximum number of repeated relations in the
formula. Each TGD is generated by creating conjunctions and then selecting the subset of atoms
that form the head of each TGD.

In our experiments, we generated 500 linear source-to-target TGDs, and 200 linear target
TGDs. The reason that we picked linear rules was to control one parameter at a time and also to
take the complexities of membership checking under control by focusing on the head atoms to
have a better analysis on the restricted chase, as checking activeness of paths is the key here.

For the generated scenarios we precomputed restricted critical databases for the source in-
stance generated by our TGD generator and then, to manage the structure of our TGDs, we
tested 2 different forms of TGD heads: 1) those that have three relations joined in a chain (i.e.,
the last variable of an atom is joined with the first variable of the next atom which we refer to as
chained TGDs); 2) those in which three relations of the head do not share variables (which we
refer to as discrete TGDs).

In all experiments, each atom has arity 4 and each TGD can have up to 3 repeated relations.
The 3 head predicates and the body predicate have been chosen randomly out of a space of
20 predicates. After the generation of each TGD, we check its membership in k-safe(ΦWA) for
k = {0,1,2}; keep only those TGDs for which this test returns true and discard the rest. Results of
different properties in the tested TGDs have been recorded in Tables 3 and 4.

The results of Tables 3 and 4 demonstrate that the average running times of membership check-
ing in k-safe(ΦWA) for chained TGD generator is more than that of discrete TGD generator. The
reason could be in the activeness checking module which takes more time in the rules in which
(derived) atoms share variables. In addition, in both TGD generators, there are far lesser memory
failures than timeout failures.

We performed the same check as detailed in the previous subsection regarding the need for
utilizing updated restricted critical databases for rules outputted from our TGD generator, and
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Statistics of chained TGD generator for membership in k-safe(ΦWA)

k Avg. time (s) Terminating (%) Timeout failure (%) Memory failure (%)
k = 0 54 81 4 0
k = 1 135 83.3 6 0.2
k = 2 474 86.2 7 0.3

Table 3: Statistical results of chained TGD generator for k-safe(ΦWA) membership

Statistics of discrete TGD generator for membership in k-safe(ΦWA)

k Avg. time (s) Terminating (%) Timeout failure (%) Memory failure (%)
k = 0 43 89 2 0
k = 1 94 92 4 0.11
k = 2 341 92 4.2 0.16

Table 4: Statistical results of discrete TGD generator for k-safe(ΦWA) membership

similar to ontologies in the considered corpora in that section, we did not find any ontology for
which we need to run experiments to check activeness with updated restricted critical databases.

8 Discussion

In this section, we introduce some more recent papers in this area and then show how to leverage
them to extend our proposed k-safe(Φ) classes uniformly. In (Krötzsch et al. 2019) it is shown
that there are examples of TGDs for which the data complexity of the restricted chase can reach
non-elementary upper bounds. Note, however, that as shown in (Zhang et al. 2015), given any κ >
0, for any expκ-bounded rule set R under the skolem chase variant, the Boolean query answering
problem is PTime-complete for the data complexity. Therefore, the restricted chase can realize
queries which are out of the reach for the skolem chase variant.

Let us define the notion of a strategy as a plan of choosing paths based on a given rule set.
Utilizing this notion allows us to focus on a concrete plan for path selection in the course of
our termination analysis for the restricted chase to extend the set of terminating rules under the
restricted chase. Exploiting the above terminology, CTres

∀∀
can be alternatively defined to be the

set of rules with terminating restricted chase for all strategies and all instances.
On the other hand, from (Onet 2013) it is known that CTres

∀∀
⊂ CTres

∀∃
, where CTres

∀∃
denotes the

class of rule sets R such that for all instances I there exists at least one restricted chase sequence
of I and R that is finite. Similarly, we can define CTres

∀∃
to be the set of rules with terminating

restricted chase for some strategy and all instances.
Recently, a chase variant known as the Datalog-first chase has been introduced in (Carral

et al. 2017) and subsequently in (Krötzsch et al. 2019), which extends all-path restricted chase
by focusing on a particular class of strategies that priorities the application of non-generating
(Datalog) rules in any considered restricted chase sequence. Let CTdlf

∀∀
denote the set of rules

with a terminating Datalog-first chase for all strategies (paths) and all instances.21 Then we have

21 Note that by strategy in the Datalog-first chase we mean a plan for choosing the application order of Datalog rules
which must always occur before the application of generating rules (i.e., non-full TGDs).
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CTres
∀∀
⊂ CTdlf

∀∀
⊆ CTres

∀∃
. Note that although the first inclusion is strict, at the time of writing this

paper it is not known whether the second inclusion above is also strict or not.
Based on what was discussed above, we can extend the set of δ-bounded rules under the

restricted chase variant as well as k-safe(Φ) rules for a given bound function δ, integer k and
cycle function Φ by considering the Datalog-first chase. For this purpose, we only need to focus
on cycles in which Datalog rules appear before non-Datalog rules (except for the last rule of
each path). Given a bound function δ, let us call any rule set R that is δ-bounded under the above
condition δ-bounded under the Datalog-first chase. We can define k-safe(Φ) rules under the
Datalog-first chase similarly.22

Example 12

Let R = {r1,r2} (adopted from (Gogacz et al. 2019)), where

r1 : Q(x,y,y)→∃uQ(x,u,y),Q(u,y,y)
r2 : Q(x,y,z)→ Q(z,z,z)

Note that in this rule set the fairness condition requires application of r2 in any (fair) sequence
of the restricted chase and after r2 is applied, the next application of r1 is not active and therefore,
any (fair) restricted chase sequence terminates. The following derivation starting from {Q(a,b,b)}
demonstrates such a sequence in which fresh nulls zi are used to instantiate the existential variable
u:

I0 =
{
Q(a,b,b)

} 〈r1,{x/a,y/b}〉
−−−−−−−−−−→

I1 = I0∪
{
Q(a,z1,b),Q(z1,b,b)

} 〈r1,{x/z1,y/b}〉
−−−−−−−−−−−→

I2 = I1∪
{
Q(z1,z2,b),Q(z2,b,b)

} 〈r1,{x/z2,y/b}〉
−−−−−−−−−−−→

I3 = I2∪
{
Q(z2,z3,b),Q(z3,b,b)}

〈r1,{x/z3,y/b}〉
−−−−−−−−−−−→

. . .

I j−1 = I j−2∪
{
Q(z j−2,z j−1,b),Q(z j−1,b,b)}

〈r2,{x/a,y/b,z/b}〉
−−−−−−−−−−−−−→

I j = I j−1∪
{
Q(b,b,b)}

Note that in the above sequence of derivations, the following step: I j〈r1, {x/z j−1,y/b}〉I j+1 does
not exist, and any valid restricted chase sequence terminates. However, the fairness condition
needs the existence of some j to apply some active trigger involving r2 (i.e., 〈r2, {x/a,y/b}〉 in
this example). But due to the non-deterministic nature of this process, j can be chosen anywhere
in the sequence.

As discussed above, rule set R in this example is not δ-bounded under the restricted chase
for any computable bound function δ. However, starting from any database I, no (fair) infinite
restricted chase sequence can be constructed from R and I.

On the other hand, it is not hard to see that R belongs to 1-safe(ΦWA) under the Datalog-first
chase. The reason is that this chase variant requires the application of r2 before r1 in any valid
chase sequence. Therefore, all 1-cycles in which the application of Datalog rules are prioritised

22 In this case, R is said to be in k-safe(Φ) under the Datalog-first chase, or to belong to k-safe(Φ) under the Datalog-first
chase (given a cycle function Φ and an integer k), if for every k-cycle σ which prioritises Datalog rules (except the last
rule of the cycle), and is mapped to F under ΦR, σ is safe.
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(i.e., (r2,r1,r2)) are safe. The following sequence of derivations shows why this is the case.

I′0 =
{
Q(a,b,c)

} 〈r2,{x/a,y/b,z/c}〉
−−−−−−−−−−−−−→

I′1 = I′0∪
{
Q(b,b,b)

} 〈r1,{x/b,y/b}〉
−−−−−−−−−−→

I′2 = I′1∪
{
Q(b,z1,b),Q(z1,b,b)

} θ={z1/b}
======⇒ θ(I′2) ⊆ I′1

Notice that as recently shown in (Gogacz et al. 2019), if the given rule set is single-head (i.e.,
all rules in it are single-head), then the fairness for the restricted chase termination is irrele-
vant. However, unlike the skolem chase variant for which there is a straightforward termination-
preserving translation from any rule set to a single-head rule set (cf. (Baget et al. 2011)), no such
termination-preserving translation exists for the restricted chase.

Clearly, given an integer k and a cycle function Φ, any rule set that is k-safe(Φ) under the
restricted chase is also k-safe(Φ) under the Datalog-first chase. Example 12 shows that this in-
clusion relation is indeed strict. The same argument holds for δ-bounded rules under the restricted
vs. the Datalog-first chase using the same example to demonstrate that the inclusion is strict.

9 Conclusion and Future Work

In this work, we introduced a general framework to extend classes of chase terminating rule sets.
We formulated a technique to characterize finite restricted chase which can be applied to extend
any class of finite skolem chase identified by a condition of acyclicity. The main strength of our
work, which is also the main distinction from almost all previous work on chase termination,
is its generality. Then, we showed how to apply our techniques to extend δ-bounded rule sets.
Our theoretical results for complexity analyses showed that in general this extension indeed in-
creases the complexities of membership checking and the complexity of combined reasoning
tasks for δ-bounded rule sets under the restricted chase compared to the skolem chase. However,
by implementation and experimentation, we showed the relevance of our work in real-world
ontologies. Our experimental results discovered a growing number of practical ontologies with
finite restricted chase by increasing computational cost as well as changing the underlying cy-
cle function. Our experimentation also showed evidence that existential rules provide a suitable
modeling language for ontological reasoning.

We will next investigate conditions for subclasses with a reduction of cost for membership
testing. One idea is to find syntactic conditions under which triggers to a rule are necessarily
active.

The current implementation of our system is relatively slow, particularly for non-linear rules.
It often requires long chase times to check membership in k-safe(Φ) even for small values of k.
In order to tackle this problem, we can consider two options which can also be combined towards
a more efficient implementation. The first option is considering k-safe(Φ) under a particular path
selection strategy such as the Datalog-first approach. This way, we can filter out a subset of paths
in our membership analysis. Alternatively, we can conduct our implementations in MapReduce
model.
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