
TPLP 21 (2): 196–243, 2021. c© The Author(s), 2021. Published by Cambridge University Press

doi:10.1017/S1471068420000496 First published online 19 January 2021

196

Incremental and Modular Context-sensitive
Analysis∗

ISABEL GARCIA-CONTRERAS
IMDEA Software Institute, Madrid, Spain

Universidad Politécnica de Madrid (UPM), Madrid, Spain
(e-mail: isabel.garcia@imdea.org)

JOSÉ F. MORALES
IMDEA Software Institute, Madrid, Spain

(e-mail: josef.morales@imdea.org)

MANUEL V. HERMENEGILDO
IMDEA Software Institute, Madrid, Spain

Universidad Politécnica de Madrid (UPM), Madrid, Spain
(e-mail: manuel.hermenegildo@imdea.org)

submitted 20 July 2019; revised 12 December 2020; accepted 19 December 2020

Abstract

Context-sensitive global analysis of large code bases can be expensive, which can make its use
impractical during software development. However, there are many situations in which modifi-
cations are small and isolated within a few components, and it is desirable to reuse as much as
possible previous analysis results. This has been achieved to date through incremental global
analysis fixpoint algorithms that achieve cost reductions at fine levels of granularity, such as
changes in program lines. However, these fine-grained techniques are neither directly applicable
to modular programs nor are they designed to take advantage of modular structures. This pa-
per describes, implements, and evaluates an algorithm that performs efficient context-sensitive
analysis incrementally on modular partitions of programs. The experimental results show that
the proposed modular algorithm shows significant improvements, in both time and memory con-
sumption, when compared to existing non-modular, fine-grain incremental analysis techniques.
Furthermore, thanks to the proposed intermodular propagation of analysis information, our
algorithm also outperforms traditional modular analysis even when analyzing from scratch.

KEYWORDS: program analysis, incremental analysis, modular analysis, constrained Horn
clauses, abstract interpretation, fixpoint algorithms, logic and constraint programming

1 Introduction and motivation

Large, real-life programs typically have a complex structure combining a number of mod-

ules with system libraries. Context-sensitive global analysis of such large code bases can

be expensive, and this can be specially problematic in interactive uses of analyzers. An

∗ Research partially funded by MINECOMICINN PID2019-108528RB-C21 ProCode project, FPU grant
16/04811, and the Madrid M141047003 N-GREENS and P2018/TCS-4339 BLOQUES-CM programs.
We are also grateful to the anonymous reviewers, editors, and to Ignacio Fábregas for their comments.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core

https://doi.org/10.1017/S1471068420000496
https://orcid.org/0000-0001-6098-3895
mailto:isabel.garcia@imdea.org
https://orcid.org/0000-0001-9782-8135
mailto:josef.morales@imdea.org
https://orcid.org/0000-0002-7583-323X
mailto:manuel.hermenegildo@imdea.org
https://crossmark.crossref.org/dialog?doi=10.1017/S1471068420000496&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 197

example is detecting and reporting bugs as the program is being edited, by running the

analysis in the background at small intervals, for example, each time a set of changes

is made, when a file is saved, or when a commit is made in the version control system.

Other such scenarios include reanalyzing after performing source-to-source transforma-

tions and/or optimizations, or updating analysis results after dynamic program modifi-

cations (reanalysis at runtime). In these scenarios, triggering a complete reanalysis for

each change set is often too costly for larger programs. However, a key observation is

that very often changes in the program are small and isolated inside a small number of

components. Ideally, this characteristic can be taken advantage of to reduce the cost of

re-analysis in two ways: reusing as much information as possible from previous analyses,

and avoiding the maintenance of analysis information for unaffected components.

In the field of abstract interpretation, there have been proposals to deal with the

following two cases: (a) context-sensitive incremental fixpoint algorithms (Hermenegildo

et al . 1995, 2000; Puebla and Hermenegildo 1996; Kelly et al . 1997; Albert et al . 2012;

Arzt and Bodden 2014; Szabó et al . 2016), which reuse information but still need to

work with the program as a whole (incremental butmonolithic analyzers)and (b)modular

algorithms, aimed at reducing the memory consumption or working set size (Bueno et al .

2001; Cousot and Cousot 2002; Puebla et al . 2004; Correas et al . 2006; Cousot et al . 2009;

Fähndrich and Logozzo 2011), which work on a module at a time but do not support

changes in the program. Surprisingly, the combination of both techniques has not been

explored to date. The monolithic incremental analyzers are not directly applicable in the

modular setting due to two issues: first, these analyzers do not deal with code that is

partially available, that is, they have no provisions to make assumptions about code that

is external. Even though one could see built-in operations of the language as external

calls, as they are obviously not defined in the module, the semantics of these are typically

“hardwired” in the analyzer as transfer functions. This leads to the second issue: even

though the monolithic analyzers can make assumptions using this mechanism, these

algorithms are not prepared to deal in a correct and precise way with updates to these

assumptions.

In order to bridge this gap, using a monolithic incremental analysis algorithm as a

starting point, we develop a modular, incremental analyzer capable of performing fine-

grain incremental analysis across modular program partitions. Our algorithm is based

on computing local fixpoints on one module at a time, identifying, invalidating, and re-

computing only those parts of the analysis results that are affected by these fine-grain

program changes, and propagating the fine-grained analysis information across module

boundaries. Our contributions are extending the incremental (global) fixpoint algorithm

of Hermenegildo et al . (2000) with widening (Section 4.1), providing a formal descrip-

tion of the modular analysis algorithm of Puebla et al . (2004) with correctness results

(Section 4.2), and providing a new analysis algorithm that is modular and incremental,

also with correctness results (Sections 5 and 6). Additionally, we have implemented the

proposed approach within the Ciao/CiaoPP system (Hermenegildo et al . 2005, 2012) and

benchmarked it. The experimental results observed show good cost performance trade-

offs, in both time and memory consumption, and suggest that this is an interesting and

practically relevant approach.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

198 I. Garcia-Contreras et al.

2 Preliminaries and notation

CHCs as Intermediate Representation. For generality, we will formulate our algorithm

to work on a block-level intermediate representation of the program, encoded using (con-

strained) Horn clauses. A constrained Horn clause (CHC) program, or constraint logic

program (CLP), is a set of clauses of the form H :- A1, . . . , An, where A1, . . . , An are

literals and H is an atom said to be the head of the clause. For simplicity, and without

loss of generality, we assume that each head atom is normalized, that is, it is of the form

p(x1, . . . , xm) where p is an m-ary predicate symbol and x1, . . . , xm are distinct variables.

However, in the examples, we will sometimes show programs unnormalized for brevity.

A set of clauses with the same head is called a predicate (procedure). To refer to predi-

cates, we will use normalized atoms and sometimes will call them predicate descriptors.

A literal is an atom or a primitive constraint (which we will also refer to as a built-in). A

primitive constraint is defined by the underlying abstract domain(s) and is of the form

c(e1, . . . , ek) where c is a k-ary predicate symbol and the e1, . . . , ek are expressions. For

presentation purposes, the heads of the clauses of each predicate in the program will be

referred to with a unique subscript attached to their predicate name (the clause number),

and the literals of their bodies with dual subscripts (clause number, body position), for

example, Ak:-Ak,1, . . . Ak,nk
. The clause may also be referred to as clause k of predicate

A. For example, for the following predicate, p/3:

p(X,Y, Z) :- X =< 0, Y = Z.

p(X,Y, Z) :- X > 0, X1 = X-1, Y 1 = Y *X, p(X1, Y 1, Z).

p/31 denotes the head of the first clause of p/3, and p/32,1 denotes the first literal of the

second clause of p/3, that is, the constraint X > 0.

We assume that programs are converted to this Horn clause-based representation, on

a modular basis. The conversion itself is beyond the scope of the paper (and depen-

dent on the source language). It is trivially direct in the case of (C)LP programs or

(eager) functional programs, and for imperative programs we refer the reader to, for ex-

ample, Henriksen and Gallagher (2006), Méndez-Lojo et al . (2007), Albert et al . (2007),

Gallagher et al . (2020). In Navas et al . (2007), the base algorithms that we extend in

this work were shown to be directly applicable to Java bytecode. In fact, Horn clauses

have since been used successfully as intermediate representations for many different pro-

gramming languages and compilation levels (e.g., bytecode, llvm-IR, ISA, . . .), in a good

number of analysis and verification tools (Banda and Gallagher 2009; Navas et al . 2008,

2009; Grebenshchikov et al . 2012; Jaffar et al . 2012; Albert et al . 2012; Bjørner et al .

2013, 2015; Liqat et al . 2014, 2016; De Angelis et al . 2014; Gurfinkel et al . 2015; Mad-

sen et al . 2016; de Moura and Bjørner 2008; Kafle et al . 2016; Lopez-Garcia et al .

2018; Perez-Carrasco et al . 2020) (see Section 8 for other related work). We note that

some of these approaches use the bottom-up semantics on the CHC side, and then typ-

ically the small-step semantics in the translation, while others, including ours, exploit

the complementary approach of using the top-down semantics on the CHC side, and

then typically the big-step semantics in the translation, but some combine, for example,

big-step with bottom-up (Gurfinkel et al . 2015). Big-step and small-step are nicknames

often used to refer to, respectively, Kahn’s natural semantics (Kahn 1987) and Plotkin’s

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 199

structural operational semantics (Plotkin 1981, 2004). In the big-step semantics approach,

the clause-based encoding is equivalent to a block-based control flow graph, which is in

turn a well-established intermediate representation for program analysis. Each block is

represented by a clause, constraints or built-ins in a clause represent the primitives of

the language (bytecodes, machine instructions, commands, etc.), literals represent calls

to other blocks, and predicates with multiple clauses implement alternatives such as con-

ditionals, case statements, dynamic dispatch, etc. (see, e.g., Méndez-Lojo et al . 2007;

Lopez-Garcia et al . 2018). This approach is particularly well suited for programs with

structured control flow, although program transformations allow supporting other pro-

gram structures. See Gallagher et al . (2020) for a recent overview of the subject. In the

following, we revisit the top-down semantics and establish our baseline.

Selection of the Concrete Semantics. The semantics of CHC programs that we use as

starting point is goal-dependent (i.e., query-dependent or “top-down”), and based on

SLD resolution (Robinson 1965), and its generalization to CLP (Jaffar and Lassez 1987;

Marriott and Stuckey 1998), where constraint domains and constraint solving extend the

domain of Herbrand terms with unification. The traditional description of this resolu-

tion procedure (Lloyd 1987; Apt 1990; Jaffar and Lassez 1987) builds a tree structure

in which the nodes contain resolvents. However, when used as a basis for top-down pro-

gram analyses, this construction is typically adorned so that nodes in the resolution tree

include representations of the constraints both before and after completing the branch

in which they appear. These are then called the call and success states for that node.

This is because the aim of goal-directed, top-down program analysis is usually to ob-

tain information on the constraints before and after each program point. This idea of

storing call and success states is present, for example, in the notion of generalized and

trees of Bruynooghe (1991). However, such trees only describe the successful derivation

trees, that is, a query that eventually fails will have an empty tree. In practice, it is

useful to generalize this notion to collect also those parts of the execution trees that lead

to false, that is, the calls made to predicates in the program also during computations

that eventually fail or loop, as in Muthukumar and Hermenegildo (1990, 1992). We will

refer to these trees simply as and trees. It is also often interesting to consider trees

with also or nodes, that is, and-or trees, rather than considering sets of and trees,

to capture analyses such as determinacy (Lopez-Garcia et al . 2010; King et al . 2006),

cardinality (Braem et al . 1994), non-failure (Debray et al . 1997), etc., but for simplicity

we limit the discussion herein to semantics based on and trees.

Concrete Semantics. An and tree represents the execution of a query (corresponding to

one of more entry points to the program), and each node in such a tree represents a call

to a predicate, adorned on the left with the state for that call, and on the right with the

corresponding success state. The concrete semantics of a program P for a given set of

queries Q, �P �Q, is the set of and trees that represent the execution of the queries in Q

for P . Queries are of the form Q = 〈A, θc〉 where A is a normalized atom corresponding

to a predicate in the program and θc is the calling or initial constraint. Nodes in an and

tree are of the form 〈A, θc, θs〉, where A is the call to a predicate p in P , and θc and θs

are, respectively, the call and success constraints over the variables of A. Nodes that are

part of failing (or looping) branches (i.e., that never “return”) will have empty success

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

200 I. Garcia-Contreras et al.

fields: 〈A, θc, ∅〉. The calling context of a predicate given by the predicate descriptor

A defined in P for a set of queries Q is the set calling context(A,P,Q) = {θc | ∃T ∈
�P �Q s.t. ∃〈A′, θc, θs〉 in T ∧ ∃σA′ = σ(A)}, where σ is a renaming substitution over

variables in the program, that is, a substitution that replaces each variable in the term

it is applied to with distinct, fresh variables. In the following, we will use σ to denote

such renaming substitutions. We denote by answers(P,Q) the set of answers (success

constraints) computed by P for queries Q, that is, answers(P,Q) is {θs| s.t. ∃T ∈ �P �Q∧
〈A, θc, θs〉 = root(T)}.

Modular Partitions of Programs. A partition of a program is said to be modular when

its source code is distributed in several source units, each defining its interface with other

such units of the program. We will refer to these units as modules. The interface of a

module contains the names of the predicates it exports and the names of the modules

it imports. Modular partitions of programs may be synthesized or specified by the pro-

grammer, for example, via a strict module system, that is, a system in which modules

can only communicate via their interface. We will use M and M ′ to denote modules.

Given a module M :

• exports(M) denotes the set of predicate names exported by module M ,

• imports(M) is the set of modules which M imports, and

• mod(A) denotes the module in which the predicate corresponding to atom A is

defined. We sometimes abuse notation and denote the module of a query as mod(Q),

to refer to the module of the predicate called in the query, that is, if Q = 〈A, λc〉
then mod(Q) = mod(A).

3 Analysis graphs in goal-dependent abstract interpretation

In this section, we present the main abstraction object that is used in goal-dependent

abstract interpretation: the analysis graph. Later sections will address the procedures for

constructing such graphs.

Program Analysis by Abstract Interpretation. Abstract interpretation (Cousot and

Cousot 1977) is a technique for static program analysis in which the execution of the

program is simulated on an abstract domain (Dα) which is simpler than the concrete

domain (D). Values in the abstract domain and sets of values in the concrete domain are

related via a pair of monotonic mappings 〈α, γ〉: abstraction α : D → Dα, and concretiza-

tion γ : Dα→ D which form a Galois connection. An abstract value d ∈ Dα approximates

a concrete value c ∈ D if α(c)
 d where
 is the partial ordering on Dα. We refer to

these abstract values interchangeably as descriptions or patterns. The correctness of ab-

stract interpretation guarantees that the descriptions inferred (by computing a fixpoint

through a Kleene sequence) approximate all the actual values or traces which occur dur-

ing any possible execution of the program, and that this fixpoint computation process

will terminate given some conditions on the description domains (such as being finite, or

of finite height, or without infinite ascending chains) or by the use of a widening operator

∇ (Cousot and Cousot 1977).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 201

Abstract Domain Operations for the Algorithms. The abstract interpretation-based al-

gorithms that we will present are all parametric on the abstract domain, that is, they

are independent of the (data)abstractions used. Each such abstract domain is defined by

providing: the basic operations of the domain lattice mentioned above (
,�,
 and, op-

tionally, the widening ∇ operator); the abstract semantics (transfer functions, fα) of the

constraints (representing the built-ins, or basic operations of the source language); and

the following additional instrumental operations, following Hermenegildo et al . (2000):

• Aproj(λ,Vs) restricts the abstract constraint to the set of variables Vs.

• Aextend(Ak,n, λ
p, λs) propagates the information in the success abstract constraint

λs, which is defined over the variables of Ak,n, to an abstract constraint λp that

includes all the variables of the clause Ak.

• Acall(λ,A,Ak) performs the abstract unification (conjunction) of predicate de-

scriptor A with the head of clause Ak, including in the new constraint abstract

values for the variables in the body of clause Ak.

• Ageneralize(λ, {λi}) joins λ together with the set of abstract constraints {λi}.
To produce an abstract constraint that is greater or equal than λ. It will either

perform the least upper bound (
) or the widening operation over the set together

with λ, depending on termination or performance needs, typically determined by

the abstract domain.1

Graphs and paths. We denote by G = (V,E) a finite directed graph (henceforward called

simply a graph) where V is a set of nodes and E ⊆ V × V is an edge relation, denoted

with u → v. A path P is a sequence of edges (e1, . . . , en) and each ei = (xi, yi) is such

that x1 = u, yn = v, and for all 1 ≤ i ≤ n− 1 we have yi = xi+1. We also denote paths

with u� v ∈ G. We use n ∈ P and e ∈ P to denote, respectively, that a node n and an

edge e appear in a path P .

Analysis graphs. We perform goal-dependent abstract interpretation, whose result is an

abstraction of the and tree semantics, �P �Q. The discussion essentially follows the

PLAI algorithm (Muthukumar and Hermenegildo 1990, 1992), using the presentation

of Hermenegildo et al . (2000). The purpose of this abstraction is to represent as a finite

object the (possibly infinite) set of (possibly infinite) and trees in �P �Q. As mentioned

before, the abstract interpretation technique guarantees that this process terminates and

that the concretization of the resulting abstraction will be a safe (over-)approximation

of the and trees of the concrete semantics.

The input to this abstract interpretation process is a program P , an abstract domain

Dα, and a set of initial abstract queries Qα = {〈Ai, λ
c
i〉}, where each Ai is a normalized

atom, and λc
i ∈ Dα. Qα defines the (typically infinite) set of concrete queries Q that

the analysis will be valid for. With some abuse of notation, we represent this set as

γ(Qα), that is, Q = γ(Qα) = {〈A, θ〉 | θ ∈ γ(λ) ∧ 〈A, λ〉 ∈ Qα}. This also determines

the concrete semantics to be safely approximated, which is then the set of and trees

�P �Q = �P �γ(Qα).

1 The implementation of the classical algorithm includes options for activating or deactivating multi-
variance on calls and also on success. We leave the latter out herein for simplicity; however, our results
also apply since this is equivalent to turning the affected domains into power domains.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

202 I. Garcia-Contreras et al.

Fig. 1. A program that implements a parity function and a possible analysis result.

An analysis result is a call graph and a mapping function from predicate descriptors

and call descriptions to answer descriptions, both elements of Dα. We also call this

structure an analysis graph.

A node in an analysis graph represents that a call to a predicate (〈A, λc〉) is possibly
made, and it has an associated answer λs, through the mapping, 〈A, λc〉 �→ λs, with

λc, λs ∈ Dα. This represents that the answer pattern for calls to predicate A with calling

pattern λc is λs, and it implies that for any node in the concrete trees in �P �Q of the

form 〈A, θc, θs〉, there must exist a node 〈A, λc〉 �→ λs in the analysis graph such that

θc ∈ γ(λc) and θs ∈ γ(λs). Therefore, analysis graphs must capture all the call–success

pairs, that is, all the nodes in the and trees of the concrete semantics (these conditions

are formulated more precisely in Section 4.1.1). For a given predicate A, the analysis

graph may contain more than one node capturing different call situations. As usual, �
denotes the most general abstract description, which is equivalent to “I do not know,”

and ⊥ denotes the abstract description such that γ(⊥) = ∅. A call mapped to ⊥ (〈A,
λc〉 �→ ⊥) indicates that all calls to predicate A with description θ ∈ γ(λc) either fail or

loop, that is, they never succeed.

An edge in an analysis graph is of the form 〈A, λc〉 →k,i 〈B, λc′〉. This represents that
calling predicate A with calling pattern λc may cause predicate B to be called (via the

literal Ak,i) with calling pattern λc′. Correctness with respect to the concrete semantics

requires that if in any concrete tree in �P �Q the clause Ak is executed with a calling

pattern θc that causes predicate B (the literal Ak,i) to be called with some calling pattern

θc
′
, then there must be an edge in the graph 〈A, λc〉 →k,i 〈B, λc′〉 and θc ∈ γ(λc), θc

′ ∈
γ(λc′). These edges capture the dependencies between the immediate calls of a predicates,

that is, given a node in the tree, the immediately following nodes. For simplicity, in the

rest of the paper, we omit k, i when not relevant in the context.

Example 1

Figure 1 shows an analysis graph (center) for a program that computes the parity of

a message (left) with an abstract domain that infers for each variable whether it takes

values of 0 or 1 (right) and initial abstract query Qα = {〈main(Msg , P), (Msg/�, P/�)〉}.
In the examples, we will mark with a bold outline the initial nodes (i.e., the nodes in

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 203

Fig. 2. The analysis graph versus the AND-OR graph – compacting representation.

Qα). Node 1 (〈par(Msg , X, P), (Msg/�, X/z, P/�)〉 �→ (Msg/�, X/z, P/b)) captures

that par/3 may be called with X bound to any in γ(z) = {0} and, if it succeeds, the

third argument P will be bound to any of γ(b) = {1, 0}. Note that a different node (the

one below) captures that there are other calls to par where X/z holds. The edges in

the graph represent the 〈A, λc〉 →k,i 〈B, λc′〉 relation. For example, two such edges exist

starting at node 1 , denoting (right) that it may call xor/3 and (below) that it may call

itself with a different call description. Figure 2 illustrates for the example in Figure 1,

the evolution from and-or graphs (left) to the compact representation of the analysis

graphs: and nodes are made implicit (right) by keeping the references to the clauses and

literals. The information in the and-or graph can be reconstructed by renaming and

projecting abstract descriptions of the analysis graph, which keeps the information only

at the predicate and literal level. Last, please note that although in this simple example

we are using a domain with a simple structure of tuples of Variable/AbstractValue pairs,

the domain structure can be arbitrary and in particular includes relational domains.

Multivariance (a.k.a., context and path sensitivity). As seen in the example, these analy-

sis graphs allow representing the different call patterns encountered during the execution,

separating the cases in which such calls differ, even if some of them subsume others. This

feature is traditionally referred to as multivariance in the context of logic program anal-

ysis, and, in our context, it serves two purposes:

1. Precision: Different calling patterns to the same predicate are stored depending

from which exact clause and literal this predicate is called from and with which call

pattern. This idea of storing multiple calling contexts in this way is used in recent

implementations of context sensitivity in imperative program analyses (e.g., Khed-

ker and Karkare 2008; Thakur and Nandivada 2020) where it is referred to as

keeping multiple value contexts.

2. Efficiency: For the same literal and clause in the program, storing different calling

patterns allows keeping the fixpoint computation localized to only those patterns

that change.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

204 I. Garcia-Contreras et al.

Fig. 3. The program specialization implicit in the analysis, after version materialization.

While beyond the scope of this paper, note also that multivariance is a form of multi-

ple specialization of predicates. For example, the graph in Figure 1 contains two versions

of predicate par/3 and another two of xor/3 and implies the specialization shown in

Figure 3. This is referred to as materializing the versions in the analysis graph (Muthuku-

mar and Hermenegildo 1992).

Reconstructing the paths of concrete executions. The analysis graph, through the edges

(〈A, λc〉 →k,i 〈B, λc′〉) relation, also provides an abstraction of the paths explored by the

concrete executions through the program, represented by the concrete trees. In particular,

it is possible to reconstruct, for every node, all possible (and possibly infinite) execution

trees that lead to the call pattern described by the node, by following the edges of the

analysis graph. The analysis graph thus embodies two different abstractions (two different

abstract domains): the graph itself is a regular approximation of the paths through the

program, using a domain of regular structures. Separately, the abstract values (call and

success patterns) contained in the graph nodes are finite representations of the states

occurring at each point in the program paths, by means of the data abstract domain.

Note that the path abstraction implicit in the graph is more powerful than the call stack

representation in the well-known call strings method introduced of Sharir and Pnueli

(1978) (see, e.g., Khedker and Karkare 2008; Thakur and Nandivada 2020 for two recent

examples of use), as this method only keeps track of the callers of the abstracted call,

and typically as a limited-length sequence (Sharir and Pnueli 1978), whereas we infer,

as a regular tree, all the arbitrarily large sequences of procedures executed before that

call, that is, not only its direct callers or a limited-depth sequence. Note also that, as

mentioned before, our analysis includes also the call patterns and paths leading to failure

or non-termination in the concrete semantics (for all of which the answer pattern will be

⊥ (s.t. γ(⊥) = ∅).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 205

Fig. 4. Graph after the modification operations.

Notation for and operations on analysis results. The following operations defined over

an analysis result g allow us to inspect and manipulate analysis results.

〈A, λc〉 ∈ g : there is a node in the call graph of g with key 〈A, λc〉.
〈A, λc〉 �→ λs ∈ g : there is a node in g with key 〈A, λc〉 and the answer mapped

to that call is λs.

〈A, λc〉 → 〈B, λc′〉 ∈ g : there are two nodes (n = 〈A, λc〉 and n′ = 〈B, λc′〉) in g and

there is an edge from n to n′.
del(g, {ni}) : removes from g nodes ni and its incoming and outgoing edges

and unsets the element in the mapping function (it becomes

undefined for all ni).

upd(g, 〈A, λc〉 �→ λs) : overwrites the value of 〈A, λc〉 in the mapping function and, if

necessary, adds a node to g with key 〈A, λc〉.
upd(g, {n → n′}) : adds an edge from node n to node n′ if it did not exist.

upd(g, {ei}) : performs upd(g, ei) for each element of {ei}.

Example 2

To illustrate the graph operations, we show some examples of operations done to the

analysis graph of Figure 1, that we will refer to with A .

• Check if there is a call to par/3 with the second argument as 0:

〈par(M,X,P), (M/�, X/z, P/�)〉 ∈ A . This is true (node 1).

• Check if there is a call to main/2, that, if it succeeds the second argument is a bit :

〈main(M,P), λc〉 �→ (M/�, P/b) ∈ A . This is true (entry node).

• Check if there is a literal with xor/3 in any of the clauses of main/2:

〈main(M,P), 〉 → 〈xor(C,P0, P1), 〉 ∈ A . This is false, there is a path from main/2

to nodes containing xor/3 but there is not a direct call.

These operations do not modify the graph.

Example 3

To illustrate the graph modification operations, we show some examples of operations

done to the analysis graph of Figure 1, referred to again with A .

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

206 I. Garcia-Contreras et al.

• Remove the node for the abstract call 〈xor(C,P0, P1), (C/�, P0/z, P1/�)〉:
del(A , {〈xor(C,P0, P1), (C/�, P0/z, P1/�)〉}).

• Update the node for main/2 with a more general success pattern:

upd(A , 〈main(M,P), (M/�, P/�)〉 �→ (M/�, P/�)).

• Add an edge from node 1 to the remaining node for xor/3:

upd(A , {〈par(M,X,P), (M/�, X/z, P/�)〉 → 〈xor(C,P0, P1), (C/�, P0/

b, P1/�)〉}).
After these operations, the state of the analysis graph is depicted in Figure 4.

4 The baseline analysis algorithms

The analysis algorithms are the fixpoint-calculating procedures that infer the analysis

graphs, described in the previous section, so that they safely approximate the given

program semantics. Incremental algorithms are those that can modify and recalculate

such analysis graphs after program changes, without having to start the process from

scratch. Modular algorithms (in contrast to monolithic algorithms) are those that are

capable of analyzing a modular partition of a program (see Section 2) without having to

load or treat the whole program at any given step.

In this section, we present our baseline algorithms, which already include some im-

provements with respect to previous descriptions, while in Section 5 we will present the

incremental and modular algorithm that is our main contribution.

4.1 The monolithic and incremental fixpoint algorithm

We now present our first baseline, the monolithic incremental analysis algorithm of

Hermenegildo et al . (2000), extended with widening to ensure termination in the pres-

ence of infinite abstract domains. This algorithm (Figure 5) takes as input a program

P , a set of initial abstract queries Qα, the differences Δ of P with respect to a previous

version P ′, and an analysis result that is correct for P ′. We will refer to this algorithm

with A = IncAnalyze(P,Qα,Δ,A 0). Note that if the algorithm is called with A 0 an

empty analysis, that is, from scratch, then it is the same as the traditional PLAI al-

gorithm (Muthukumar and Hermenegildo 1992). As mentioned before, we will refer to

these to algorithms as monolithic because they assume that all the predicates executed

in the target program P are provided to the analyzer, that is, these algorithms treat only

whole programs.

Operation of the algorithm. The algorithm is centered around processing two kinds of

events: newcall events, which control which predicates and clauses of the program that

need reanalysis, and arc events, which process the body of one clause for a call pattern,

starting at a certain literal. The algorithm starts by queueing a newcall event for each of

the call patterns that need to be (re)computed. This triggers process(newcall(〈A, λc〉)),
which processes all the clauses of predicate A. For each of them, the abstract call is

performed (Acall, which includes the renaming) and an arc event is added for the first

literal. The initial-guess function returns a guess of the answer, λs, to 〈A, λc〉. If pos-
sible, it reuses the results in A , otherwise returns ⊥. Procedure reanalyze updated

propagates the information of new computed answers across the analysis graph by

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 207

Fig. 5. The monolithic, context-sensitive, incremental fixpoint algorithm.

creating arc events with the literals from which the analysis has to be restarted.

process(arc(〈Ak, λ
c〉 →k,i 〈B, λc〉)) performs a single step of the left-to-right traver-

sal of a clause body. Since the algorithm is multivariant, an infinite number of different

call patterns may be encountered, even if the domain has finite height. In this case, the

call patterns are generalized, via a widening operator, denoted by the Ageneralize op-

eration. Then, if the literal Ak,i is a built-in, its transfer function is applied; otherwise,

an edge is added to A and the λs is looked up, which includes creating a newcall event

for 〈A, λc〉 if the answer is not in the analysis graph. The answer is combined with the

description λp from the literal immediately before Ak,i to obtain the description (return)

for the literal after Ak,i. This is used either to generate an arc event to process the next

literal or to update the answer of the predicate in insert answer info. This function

combines the new answer with the semantics of the previous answers. To ensure termi-

nation when analyzing with abstract domains with infinite ascending chains, this answer

needs to be generalized, also with a widening operator (Ageneralize). Lastly, the new

answer is propagated if needed.

Procedure add clauses adds arc events for each of the new clauses. These trigger the

analysis of each clause and the later update of A using the edges in the graph.

The delete clauses function selects the information to be kept in order to obtain the

most precise semantics of the program, by removing all information which is potentially

inaccurate (all the dependent nodes in the graph).

Differences w.r.t. the original incremental algorithm. The algorithm presented in

Figure 5 differs from the one described in Hermenegildo et al . (2000) only in lines 40

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

208 I. Garcia-Contreras et al.

and 41, which perform the widening of the encountered call patterns for the cases in which

the abstract domain has infinite width, and in line 55, that performs the widening on

the success for the cases in which the abstract domain is of infinite height. The abstract

interpretation technique guarantees that generalization with a widening operation pre-

serves soundness and guarantees termination at the expense of losing of precision. Since

widening may not be necessary for all domains, it may be disabled in the algorithm by:

• removing line 40,

• replacing line 41 by “λc := λc
1”,

• and replacing line 55 by “λs
1 := λs
 λs

0”.

4.1.1 Correctness

We now formulate the correctness results of the algorithm with generalization, that is, as

presented in Figure 5.

Definition 1 (Correctly approximated calls)

Let P be a program, Q a set of initial concrete queries, and A an analysis graph. We say

that A correctly approximates the calls in �P �Q if all encountered call patterns during

the concrete execution are contained in A . That is, for all predicates A in P :

∀θc ∈ calling context(A,P,Q).∃〈A, λc〉 �→ λs ∈ A s.t. θc ∈ γ(λc).

Definition 2 (Correctly approximated answers)

Let P be a program, Q a set of initial concrete queries, and A an analysis graph. We say

that the answers in A correctly approximate the answers in �P �Q if they abstract all

the answer patterns to the encountered call patterns. That is, for all predicates A of P :

∀〈A, λc〉 �→ λs ∈ A , ∀θc ∈ γ(λc) if θs ∈ answers(P, {〈A, θc〉}) then θs ∈ γ(λs).

Definition 3 (Correct global analysis)

Let P be a program, Q a set of initial concrete queries, and A an analysis graph. A is

correct for P,Q if

(a) A correctly approximates the calls for P , Q (Definition 1) and

(b) A correclty approximates the answers for P , Q (Definition 2).

Given these definitions, the following Theorems 1, 2, and 3 from Hermenegildo et al .

(2000) hold, because, as stated earlier, generalization via a widening guarantees correct-

ness:

Theorem 1 (Correctness of IncAnalyze from scratch)

Let P be a program and Qα a set of abstract queries. The analysis result A =

IncAnalyze(P,Qα, ∅, ∅) for P with Qα is correct for P and γ(Qα).

Theorem 2 (Correctness of IncAnalyze adding clauses)

Let P and P ′ be two programs such that s.t. Δ = (Cadd, ∅), P = (P ′ ∪ Cadd), and Qα

a set of abstract queries. If A 0 = IncAnalyze(P ′, Qα, ∅, ∅), then the analysis result

A = IncAnalyze(P,Qα,Δ,A 0) for P with Qα correct for P and γ(Qα).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 209

Theorem 3 (Correctness of IncAnalyze deleting clauses)

Let P and P ′ be two programs such that s.t. Δ = (∅, Cdel), P = P ′ \ Cdel, and Qα

a set of abstract queries. If A 0 = IncAnalyze(P ′, Qα, ∅, ∅), then the analysis result

A = IncAnalyze(P,Qα,Δ,A 0) for P with Qα correct for P and γ(Qα).

We introduce a new theorem that generalizes Theorems 1, 2, and 3.

Theorem 4 (Correctness of IncAnalyze starting from a partial analysis)

Let P be a program, Qα a set of abstract queries, and A 0 any analysis graph. Let

A = IncAnalyze(P,Qα, ∅,A 0). A is correct for P and γ(Qα) if for all concrete queries

Q ∈ γ(Qα) all nodes N from which there is a path in the concrete execution Q� N in

�P �Qthat are abstracted in the analysis A 0 are included in Qα, that is:

∀Q,N.Q ∈ γ(Qα) ∧Q� N ∈ �P �Q, ∀Nα ∈ A 0.N ∈ γ(Nα)⇒Nα ∈ Qα.

Intuitively, the algorithm is correct for any query Q not already abstracted in A 0.

If A 0 contains already information about Q, it needs to be rechecked by recomputing

the analysis of all the nodes in which Q depends by including them in Qα. Theorem 4

is a generalization because, implicitly, procedures add clauses and delete clauses are

doing exactly, this: either removing the analysis so that it is computed from scratch again

or adding the necessary queries (directly by creating the corresponding newcall events)

to guarantee that the analysis is correct.

Proof

This follows from the creation of a newcall event for each of the queries Qα. The pro-

cessing of the events trigger the recomputation and later update of all the nodes of the

analysis graph that are potentially under the fixpoint.

Note that A 0 is not assumed to be the (correct) output of a previous analysis, it can

be any analysis (below, above, or incomparable with the fixpoint). Also note that if all

nodes in the analysis graph are included, together with the original queries, in Qα, the

result is guaranteed to be correct.

4.1.2 Precision

If generalization is removed from the algorithm, as indicated in Section 4.1, and assume

that initial-guess returns a value below the least fixed point, the following precision result

from Hermenegildo et al . (2000) is preserved when analyzing with finite abstract domains:

Theorem 5 (Precision of IncAnalyze)

Let P and P ′ be programs, such that P differs from P ′ by Δ, let Qα a set of abstract

queries, and A 0 = IncAnalyze(P ′, Qα, ∅, ∅) an analysis graph. The following hold

• If A = IncAnalyze(P,Qα, ∅, ∅), then A is the least program analysis graph for P

and γ(Qα), and

• IncAnalyze(P,Qα,Δ,A 0) = IncAnalyze(P,Qα, ∅, ∅).
That is, when analyzing from scratch, always the most precise result is produced, and

when reusing a least program analysis graph in the incremental analysis, the new result

is the least program analysis graph as well. This means that there is no analysis graph

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

210 I. Garcia-Contreras et al.

with smaller call or answer patterns that correctly over-approximates the behavior of the

program.

Theorem 5 shows that, if the A 0 is a correct and precise analysis, then the incremental

analysis result is correct and precise. However, the conditions on A 0 can be relaxed if

we strengthen the conditions on the queries and still guarantee the same precision/cor-

rectness results. The following new theorem states the general condition for guaranteeing

precision when (re)starting from a partial analysis result.

Theorem 6 (Precision of IncAnalyze starting from a partial analysis)

Let P be a program, Qα a set of abstract queries, and A 0 an analysis graph below the

least fixed point (lfp), that is, ∀〈A, λc〉 �→ λs
0 ∈ A 0.〈A, λc〉 �→ λs ∈ A ∧ λs

0
 λs, and

the conditions on Qα of Theorem 4 hold then:

IncAnalyze(P,Qα, ∅, ∅) = IncAnalyze(P,Qα, ∅,A 0).

Proof

The abstract interpretation technique (Cousot and Cousot 1977) guarantees that the

fixed point of a set of monotonic equations can be computed by repeatedly applying

each of the equations in a chaotic iteration manner. If the iteration is started at ⊥, it is

guaranteed that the least fixed point of the equations is found. In our case, the equations

are the Horn clauses that encode the (concrete) semantics of the program P . Let fP (X)

be one step of the chaotic iteration, that is, applying semantics of one clause of P to the

current value of the sequence. When starting from an empty analysis, IncAnalyze will

compute the lfp by applying fP (X) a number of times:

⊥
 fP (⊥)
 fP (fP (⊥))
 f3
P (⊥)
 . . .
 fk

P (⊥) = . . . = fk+n
P (⊥) = lfp(P).

In the sequence above, the fixpoint value is reached in the k-th step of the iteration.

However, this value is not confirmed yet to be the fixpoint. The chaotic iteration process

needs to continue until all the equations have been exhaustively applied and the value

of the fixpoint is kept, and this is represented by the n steps after fk
P . Note that the

number of steps k and n will depend highly on the strategy for the chaotic iteration. In

our case, we safely reduce them by keeping the dependencies between clauses.

Starting from a partial analysis is equivalent to computing the Kleene fixpoint of the

original program including a new equation, which is a constant, representing the initial

results. Let us call this equation A 0. Our goal is to prove that chaotic iteration of fP
with A 0 also results in the lfp(P) if A 0
 lfp(P).

By definition, for any k-th step of the iteration fk
P (⊥)
 lfp(P), also, by hypothesis,

A 0
 lfp(P). Therefore, for any k and applying any random clause, A 0
fk
P (⊥)
 lfp(P).

So, if we “plug in” the initial analysis A 0 at any point of the chaotic iteration over fP ,

because the equations of P are monotonic, for any k, fP (A 0
 fk
P (⊥))
 fP (lfp(P)), and

precision is preserved. Concretely, this also implies that precision is preserved if we start

from fP (A 0).

The condition imposed on the set of queries guarantees that the chaotic iteration

includes all the equations that the iteration needs to be rerun with (see Theorem 4).

This justifies not reprocessing the equations that are not affected by the changes in the

algorithm, since the corresponding steps can be skipped safely.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 211

Note that these precision results imply also correctness since the lfp is obtained, which

was already proved in Section 4.1.1. Nevertheless, precision has been included separately

because it does not hold in the presence of generalization: using widening, as required

for dealing with infinite domains, implies not being able to guarantee that the least fixed

point is obtained, and given that this operator is not only assumed to be associative but

also does not guarantee the analysis result will be the same (i.e., that the same imprecision

is obtained), as this depends on how the processing of the events is scheduled.

4.2 The modular fixpoint algorithm

We now present the reference algorithm for analyzing modular programs, described

in Puebla et al . (2004). As expected, the approach consists in analyzing partitions of

programs making assumptions about the code that is external to each partition. Several

possibilities were proposed in that work for making such assumptions, including, for ex-

ample, assuming that nothing is known about the answer (�), computing the “topmost”

abstraction of the call (as before but taking into account any local information available),

or strategies with better precision but, in general, more costly, such as assuming ⊥ tem-

porarily for the unknown answers and later reanalyzing whenever a better abstraction

of the answer is available. In this work, we fix the strategy to the latter one in order to

obtain the best precision. Also, module analysis order may affect the speed at which the

fixpoint computation converges. Some scheduling policies were studied in Correas et al .

(2006). We provide a new pseudocode for the algorithm of Puebla et al . (2004), special-

ized for the case in which the maximum precision is aimed for. Then, we provide new

formal results about correctness and precision of this algorithm. Also, both for generality

and reusability, although not required for our results, we propose a formulation of the

algorithm that is parametric on the analysis used within each modular partition, which

in our case is instantiated to IncAnalyze.

Modular analysis results. To store the overall analysis result of the program and keep

track of fine-grain dependencies between modules, we propose to use also an analysis

graph structure at the intermodular level. One can see this as a sort of “projection”

of the monolithic analysis graph, described in Section 3, in which only the information

about the predicates in the boundaries of the modules is kept. Nodes represent calls to

predicates and edges capture the relations between the predicates in the boundaries of

the partitions (exported/imported predicates) with arcs 〈A, λc〉 → 〈B, λc′〉 meaning a

call to A in mod(A) with description λc may cause a call to B with description λc′ and
mod(B) ∈ imports(mod(A)). From this point on, we will use G to denote the modular

(global) analysis graph and L to denote the analysis of a single module (local analysis

graph).

Figure 6 shows a modular version of the program and analysis results of Figure 1. The

nodes of this (global) analysis graph encode that calling the exported predicate main/1

of module main may cause a call to xor/3 exported by module bitops with two different

call descriptions (two edges).

Operation of the algorithm. The algorithm takes as input a (partitioned) program P =

{Mi}, some initial queries Qα to any exported predicate of the program, that is, any

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

212 I. Garcia-Contreras et al.

Fig. 6. Modular version of Figure 1 with a possible modular analysis result.

〈A, λc〉 ∈ Qα, A ∈ exports(mod(A)). If there are recursive dependencies between modules,

the modules in each clique will be grouped and analyzed as a whole module (after doing

the necessary renamings). This decision is based on the observation that, if we choose

to not group modules that are in the same recursive clique, then, after program changes

within the clique, we will have to delete all the internal analysis information, as we will

see later, and this is essentially equivalent to considering the clique a single module.

Alternatively, it would be possible in principle to pass more detailed information across

modules, but then again this is essentially equivalent to doing monolithic incremental for

the clique.

The pseudocode of the algorithm is detailed in Figure 7. Each of the modules in

the program will be analyzed independently, and possibly several times. The algorithm

keeps a queue of all the call patterns that need to be (re)analyzed for each module. To

distinguish between the queries defined by the user and the intermediate queries done

internally by the modular analysis algorithm, we will call the latter entries and they will

be referred to with E. The queue is initialized with an entry for each of the abstract

queries. Modular analysis is controlled by this queue that contains the call patterns

with possibly incomplete answers (added with procedure add-entries). At each iteration

of the loop, a module is reanalyzed independently for its set of annotated entries (E)

extracted from the queue. This is done by procedure next-entries which extracts from the

queue entries that are reachable from the initial Qα in G. In every iteration, modules

are analyzed from scratch. This means that, in principle, the analysis of module M with

entries E should be performed by L = IncAnalyze(M,E, ∅, ∅). However, IncAnalyze

assumes that all code is available for analysis. Since this is not so in this modular case,

IncAnalyze needs to be provided with an abstraction of the predicates imported by M .

To this end, in line 5 (PreloadImported), the nodes and answers of the global graph G
of predicates imported byM are added to L . After this, G is updated, by propagating the

newly computed answers (StoreAnswers), provided that a generalization is made before

to ensure termination and updating the dependencies of the predicates in the boundary

of the modules (UpdateDependencies), adding entries for the newly encountered call

patterns (ScheduleNewCalls), and also generalizing them if necessary.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 213

Fig. 7. Modular fixpoint algorithm.

4.2.1 Correctness

We now formalize the notion of correct modular analysis. Let first ext calls

(E, �P �Q) be a function that, given a set of execution trees �P �Q, returns the set of

calls reachable from any e ∈ E that are the first reachable predicate that is imported by

mod(e), together with E. That is:

{C |∃e ∈ E and (e� C) ∈ �P �Q.∀l ∈ (e� C).mod(l) = mod(e)∧mod(C) �= mod(e)}∪E.

Definition 4 (Correctly approximated intermodular calls)

Let P be a program and Q a set of concrete queries, G an analysis graph, and E a set of

entries, and let I be the transitive closure of first ext calls(E, �P �Q). We say that G
correctly approximates the intermodular calls of �P �Q, if it abstracts all the call patterns

in the transitive closure of I. That is:

∀〈A, θc〉 ∈ I.∃〈A, λc〉 ∈ G ∧ θc ∈ γ(λc).

That is, G contains all the calls of the exported predicates that were originated from a

different module in which they are defined, and that are reachable from Q. Note that

this set in the concrete execution may be infinite, for example, in the case in which an

imported predicate is called inside a loop.

Definition 5 (Correct modular analysis)

Given a program P , split in modules Mi, and initial concrete queries Q, we say a modular

analysis graph G is correct for P,Q if:

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

214 I. Garcia-Contreras et al.

(a) it approximates the intermodular calls correctly (see Definition 4) and

(b) it approximates the answers correctly (see Definition 2).

As mentioned earlier, IncAnalyze assumes that either the procedures executed by a

program are defined in the clauses provided to the analyzer or they are basic, built-in

operations of the language, that is, they are interpreted applying their corresponding

transfer function. This is not the case when analyzing programs module by module, and

assumptions need to be made about the imported code. The following lemma states that

the analysis graph inferred by IncAnalyze is correct assuming the answers of L0 if it

only contains abstractions of the imported predicates. In other words, if L0 correctly

over-approximates the behavior of the imported predicates, then the analysis of the

module is correct.

Lemma 1 (Correctness of IncAnalyze modulo imported predicates)

Let M be a module of program P and E a set of abstract queries. Let L0 be an analysis

graph such that ∀〈A, λc〉 ∈ L0.mod(A) ∈ imports(M). The analysis result:

L = IncAnalyze(M,E, ∅,L0)

is correct (see Definition 3) for M and γ(E) assuming L0.

Proof

By Theorem 1, IncAnalyze produces a correct analysis whenever the initial analysis

graph is empty. Since, L0 contains only information about the imported predicates, the

analysis graph inferred is correct for all the predicates in M , assuming that the original

information in L0 is correct.

Theorem 7 (Correctness of ModAnalyze)

Let P be a modular program and Qα a set of abstract queries. The modular analysis

graph:

G = ModAnalyze(P,Qα)

is correct (Definition 5) for P and γ(Qα).

Proof

By induction on the number of modular partitions, if there is only one partition, the

conditions in Definition 4 hold trivially because the only intermodular call patterns are

the Qα (added in line 1). Since L is correct by Theorem 1 and the results are updated

in line 9, the conditions in Definition 2 hold. And no further iteration is required.

If the program P is partitioned into n modules, we need to prove that if analyzing n−1

modules finishes, then analyzing all n modules also finishes. Assuming that the analysis

of the first n− 1 modules finishes and is correct, the result of these n− 1 modules could

be seen as one module, reducing this general case to the case of two modules. To prove

this, the following invariant of the algorithm is used:

Before extracting from the queue via next-entries (line 2), either the results in G are

correct, or the queue is not empty.

This invariant trivially holds immediately after initializing the queue with the queries

in line 1. Then, at each iteration of the while loop, since there are only two modules, when

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 215

one is extracted from the queue, the queue is empty. After analyzing (line 4), we know L

is correct if G was correct. If no answers changed w.r.t. G, no modules are added and the

fixed point was reached. If the results change, every answer that changed is generalized

and updated in G, which results in adding an entry to it (line 9). Then, since there are

only two modules, there can be at most one module in the queue, since the one being

processed is extracted. If after processing one module, the nodes and answers (excluding

the answers to Qα) stay the same, no new events will be added to the queue. In this case,

then the analysis is already correct, by Lemma 1, because IncAnalyze was performed

assuming already correct information. Else, if new answers were encountered it means

that the previous information was incomplete, these answers are stored (line 9), and the

entries that depend on these answers are added to the queue, so the invariant holds. If

new call patterns were encountered, then it means that the analysis was not completed

yet. The algorithm, after generalization, schedules them to be reanalyzed (line 17), and

therefore the invariant holds as well.

As mentioned earlier, the goal of this algorithm was not to perform incremental analysis

but rather to reduce the working set of the basic (monolithic) analyzer. In fact, in Puebla

et al . (2004), the authors neither provide a clear strategy of how to tackle the problem

of reusing the analysis result after making modifications to the program nor perform

experiments.

4.2.2 Precision

We now show the precision guarantees when analyzing with finite abstract domains if

the generalization step is removed, that is, by:

• replacing line 8 by λs := λs
l
 λs

g,

• removing line 14, and

• replacing line 15 by λc := λs
t.

Lemma 2 (Precision of IncAnalyze modulo imported predicates)

Let M be a module of program P and E a set of abstract queries. Let L0 be an analysis

graph such that ∀〈A, λc〉 ∈ L0.mod(A) ∈ imports(M) if L0 contains the least fixed point

as defined in Theorem 6. The analysis result:

L = IncAnalyze(M,E, ∅,L0)

is the least program analysis graph for M and γ(E) assuming L0.

Proof

Since all values reused are the least fixed point, no imprecision is introduced by L0.

Correctness follows from Lemma 1.

Theorem 8 (Precision of ModAnalyze)

Let P be a modular program and Qα a set of abstract queries. The modular analysis

result:

G = ModAnalyze(P,Qα)

is the least modular analysis graph for P and γ(Qα).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

216 I. Garcia-Contreras et al.

Fig. 8. A modular version of Figure 1 keeping a local analysis graph per module.

Proof

Since no imprecision is introduced during the modular processing, and all answers are

started assuming ⊥ (line 1), each of the calls to IncAnalyze will produce results that

are below or exactly the least fixed point. Correctness follows from Theorem 7.

5 The algorithm for incremental and modular context-sensitive analysis

We now propose an algorithm that performs a goal-directed, top-down, incremental ab-

stract interpretation of modular Horn clause programs. The analyzer takes a program

(target), a set of initial call states, and, optionally, analysis results of a previous version of

the program, and information about the changes w.r.t. the target program. The analyzer

will annotate the program with information about the current state of the variables at

each clause and literal whenever they are reached when executing the calls described by

the initial call states, reusing as much of the provided analysis results as possible.

Analysis graphs for modular and incremental analysis. To have an algorithm that pro-

cesses partitions of programs modularly but, at the same time, is able to update localized

information we propose to keep, in addition to G, a local analysis graph per modular

partition M , referred to with LM . The analysis result then consists on a set of graphs

{G, {Li}}. An example of an analysis result of this shape is depicted in Figure 8. The

information of the local analysis graphs is drawn in black and with nodes as ellipses. The

left box corresponds to the main module, Lmain, and the box on the left to the bitops

module, Lbitops. The nodes in blue, dashed, and with rectangles show the information

in the global analysis graph G, which coincides with Figure 6.

5.1 Operation of the algorithm

The algorithm takes as input a (partitioned) program P = {Mi}, some initial queries Qα,

a previous correct analysis result {G, {Li}}, and a set of program edits in the form of

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 217

Fig. 9. Incremental and modular fixpoint algorithm.

additions and deletions (ΔMi
), which collect the differences w.r.t. the previous state for

each module. The pseudocode of the algorithm is detailed in Figure 9. The steps required

to perform local analysis incrementally are presented in blue, that is, those steps that

were added or modified in the modular, non-incremental algorithm depicted in Figure 7.

Before starting the analysis process, the entries of edited modules and new queries are

marked to be (re)analyzed. Each of the scheduled modules will be analyzed independently,

and possibly several times. Modular analysis is, again, controlled by a queue to which

entries with possibly incomplete answer descriptions are added (with the procedure add-

entries). At each iteration of the loop, a module is reanalyzed independently for its set

of annotated entries (E) extracted from the queue. This is done by procedure next-

entries which extracts from the queue entries that are reachable from the initial Qα in G.
Incrementally analyzing a module consists of updating the information about the calls

to imported predicates in LM , by removing possibly inaccurate results and adding the

newly computed ones, and calling IncAnalyze. Finally, G is updated, which includes

updating the newly computed answers, updating the dependencies of the predicates in the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

218 I. Garcia-Contreras et al.

Fig. 10. Enhanced modular deletion strategy.

boundary of the modules, and adding to the queue to reanalyze the dependent predicates

and call patterns. The operations performing local incremental analysis are

AnalyzeOutdated: Adds to the analysis queue the entries of modules that changed,

that is, those whose diff (Δ) is not empty.

AnalyzeNew: Adds to the analysis queue the entries that have not been analyzed yet.

Imported: Collects the current approximations made about the predicates imported by

the module to be analyzed.

IncorrectImported: Collects in Ic the nodes of the LM that are incorrect (below the

fixpoint), that is, the ones whose approximation in the LM was smaller than in the

G to reanalyze them later.

ImpreciseImported: Collects in Ip all the imported nodes that are potentially impre-

cise, that is, those in which in the abstraction LM that are bigger than the current

stored in G.
DelImprecise: Deletes from LM the nodes that relied on assumptions that depend on

Ip, because they are potentially imprecise.

Analyze: The IncAnalyze function is called with entries for: the calls scheduled by

the modular analyzer (E), the nodes that depended on imported information that

may be below the fixpoint (Ic). Note that no entries will be added for the nodes

that were imprecise as its information will be removed up to the entries that they

were triggered by, which guarantees that the analysis will be correct and precise

for those entries.

RemoveUnused Removes the call patterns of the imported predicates that were not

reached, that is, if there are no edges in the call graph to them.

For the remaining operations, we refer the reader to the description of Figure 7.

Enhancing the deletion strategy. The proposed deletion strategy is quite pessimistic. Up-

dating imprecise information about imported predicates most of the times means reusing

only a few answers that did not depend on the changes per module. However, it may occur

that the analysis does not change after these changes occur, or that some nodes/edges

are still correct and precise. A solution is to partially reanalyze the program without re-

moving these potentially useful results. Our proposed algorithm allows performing such

a partial reanalysis, by partitioning the desired module into smaller partitions, for exam-

ple, using information on strongly connected components. This can be achieved within the

algorithm by replacing line DelImprecise with Figure 10. This runs the algorithm with

a partition of the current module as input program, which is split using the (static) SCCs

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 219

Fig. 11. Different program states.

of the clauses (split-sources-scc). This includes also partitioning the results (split-in-scc)

to initialize G using LM , and setting as Qα the initial E of this modular analysis. The

reanalysis of this partitioned module will be given in a modular form, so it has to be

flattened back for it to be compatible with the rest of the analysis results. This process

consists in merging all the graphs in which the analysis was performed into one graph

that contains all the nodes and edges except the edges in G ′′.

5.2 Running examples of the algorithm

To show the algorithm in action, we now analyze incrementally different versions of the

program that computes the parity (some of which are incomplete). The different states of

the sources are shown in Figure 11. Initially, we have the analysis result of P0 = {M,B0},
A 0 in Figure 12. This was the result of running the algorithm from scratch A 0 = Mod-

IncAnalyze(P0, Qα, ∅, (∅, ∅)), with initial query Qα = {〈main(M,P), (M/�, P/�)〉}. In
this version, it was inferred that if main(M, P) succeeded, then P is 0 (γ(z)).

Example 4 (Adding clauses)

If some clauses are added to bitops resulting in B1, the program to be

(re)analyzed becomes P1 = {M,B1}. Incremental analysis by running ModIncAna-

lyze(P,Qα,A 0, ({xor2, xor3, xor4}, ∅)) proceeds as follows. The entries of bitops are

added to the queue and it is analyzed with E = {〈xor(C,P0, P1), P0/z〉} and the analysis

result changes to (C/b, P0/z, P1/b) (shown in A ′
0). This change needs to be propagated to

module main, which is analyzed next in the queue. Following the steps of the algorithm:

AnalyzeOutdated The entries to the module main are added.

AnalyzeNew No entries are added because there are no new queries.

Imported I = {〈xor(C,P0, P1), P0/z〉}
IncorrectImported Ic = {〈xor(C,P0, P1), P0/z〉}
ImpreciseImported Ip = ∅ since the only imported node was below the fixed point.

Analyze The analyzer is called with E = {〈main(M,P), (M/�, P/�)〉} and Ic as

described.

RemoveUnused All imported call patterns in Lmain are reached (there is an edge to

them) and nothing is removed.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

220 I. Garcia-Contreras et al.

Fig. 12. Analysis results in several reanalysis steps.

StoreAnswers 〈main(M,P), (M/�, P/�)〉 �→ (M/�, P/z)} is updated in G, no

(parent) entries need to be added to the queue because it is the initial query.

UpdateDependencies All the edges of G from nodes of main to bitops are removed.

R = {〈main(M,P), (M/�, P/�)〉 → 〈xor(C,P0, P1), (C/�, P0/z, P1/�)〉,
〈main(M,P), (M/�, P/�)〉 → 〈xor(C,P0, P1), (C/�, P0/b, P1/�)〉}

ScheduleNewCalls A newly encountered call description is added in add-entries,

〈xor(C,P0, P1), (C/�, P0/b, P1/�〉, and all the edges in R are added to G.
Next, module bitops needs to be analyzed again, only for the pending call description

〈xor(C,P0, P1), (C/�, P0/b, P1/�)〉, the new answer (C/b, P0/b, P1/b) will be updated in

G, adding again an entry for predicate main. For the next iteration of the analysis loop,

the answer will be updated but it will not imply any changes in the analysis result of the

module, therefore the algorithm reached a fixed point (A 1 in Figure 12).

Example 5 (Deleting clauses)

The bitops module is edited from B1 to B2, and the program to be analyzed

is P2 = {M,B2}. Incremental analysis by ModIncAnalyze(P2, Qα,A 1, (∅, {xor4}))
proceeds as follows. Module bitops was changed, so it is analyzed with E =

{〈xor(C,P0, P1), (C/�, P0/z, P1/�)〉, 〈xor(C,P0, P1), (C/�, P0/b, P1/�)〉}. The answers
are recomputed from scratch; however, the overall result of the module does not change,

so nothing needs to be done in G, and it is not necessary to recompute the analysis graph

of module main, and A 2 = A 1.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 221

6 Fundamental results of the algorithm

In this section, we provide the correctness and precision guarantees of the proposed

algorithm. We first provide some notation that will be instrumental in the proofs of

the theorems. We build the domain of analysis results (parametric on Dα) as sets of

(pred name, Dα, Dα). The set of predicate names may be infinite in general but in each

program it is finite. We do not represent the dependencies (edges in the graph), as they are

needed only for efficiency. We define the partial order in this domain AG that compares

the answer patterns to the call patterns abstracted by the analysis graph. That is:

g1, g2 ∈ AG , g1
AG g2 if ∀k �→ λs
1 ∈ g1.∃k �→ λs

2 ∈ g2 ∧ λs
1
 λs

2.

For simplicity, Dα in the following represents this domain of analysis results, and all

domain operators refer to this domain.

The incremental analysis of a module within the algorithm (in the body of the while

loop in the pseudocode lines 5 to 12) is denoted with the function:

LM ′ = LocIncAnalyze(M ′, E,G,LM ,ΔM),

where M ′ is a module, LM is the analysis result of M for E, ΔM are the differences

between M ′ and M , to which LM corresponds, to get LM ′ , the analysis result of M ′,
and G contains the (possibly temporary) information for the predicates imported by M ′.
Lastly, we represent performing an iteration of the while loop (lines 5 to 25) as the

high-level operation of updating the newly computed information in G:
MA(M ′, E,G,LM ,ΔM) = upd(G,LocIncAnalyze(M ′, E,G,LM ,ΔM)).

Note that, after a number of (chaotic) iterations, MA is monotonic, and ultimately sta-

tionary due to the use of the widening operator.

6.1 Correctness

The following lemma shows that if a module M is analyzed for entries E assuming

some G obtaining LM , if the assumptions change to G ′, incrementally updating these

assumptions produces an analysis graph L ′
M that is correct assuming G ′.

Lemma 3 (Correctness updating L modulo G)
Let M be a module of program P and E a set of entries. Let G be a previous state of

the global analysis graph, if LM is correct for M and γ(E) assuming G. If G changes to

G ′, the analysis result

L ′
M = LocIncAnalyze(M,E,G ′,LM , ∅)

is correct (see Definition 3) for M and γ(E) assuming G.

Proof

To prove this, we need to show that all the answers that differ from G to G ′ for the calls

to predicates imported by M are included in E. Since these are the requisites in Theo-

rem 4 to guarantee that the result is correct. The ImpreciseImported are collected and

removed, therefore it is guaranteed that all the entries in E that depended on these will

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

222 I. Garcia-Contreras et al.

be correct (the analysis is empty). When collecting the IncorrectImported, only those

nodes are added to the entries. However, because LM was assumed to be correct, it is

guaranteed that adding these entries is enough, because LM correctly over-approximates

the parts of �P �Q that were already in LM and the ones that are missing are guaranteed

to be correct because they are missing.

The following Theorem 9 captures the correctness of the algorithm when starting from

an empty analysis result, that is, starting with an empty G and LMi
. Note that this is

not the same as running the traditional modular analysis, as information is reused when

iterating between modules, whereas in ModAnalyze every iteration the L ’s are clean.

Theorem 9 (Correctness of ModIncAnalyze from scratch)

Let P be a modular program and Qα a set of abstract queries. Then, if:

{G, {LMi
}} = ModIncAnalyze(P,Qα, ∅, ∅)

G is correct (see Definition 5) for P and γ(Qα).

Proof

Correctness follows using the same argument as in Theorem 7, with the difference

that instead of applying Lemma 1 to IncAnalyze, we apply Lemma 3 to LocInc-

Analyze.

Theorem 10 (Correctness of ModIncAnalyze)

Let P and P ′ be modular programs that differ by Δ, Qα a set of queries, and A =

ModIncAnalyze(P,Qα, ∅, (∅, ∅)), then if:

{G ′, {L ′
Mi

}} = ModIncAnalyze(P ′, Qα,A ,Δ)

G ′ is correct (see Definition 3) for P and γ(Qα).

Proof

By induction on the number of modular partitions, it is true for any partition of program

P in n modules with no recursive dependencies on predicates between modules. This

condition ensures that if removing for some clause in LM is needed, all the dependent

information for recomputing is indeed removed (nothing imprecise is reused from some

other LM ′).

• If program P has one module, it is the same case as having one module in the

modular analysis. So it follows from Theorem 7.

• As in the proof of Theorem 7, if program P is partitioned into n modules, we need

to prove that if we finish analyzing n − 1 modules, then we finish analyzing all n

modules. Assuming that the analysis of the first n − 1 modules finishes and it is

correct, this n− 1 result could be seen as one module, reducing this general case to

the case of two modules.

• If program P = {Ma,Mb} is partitioned into two modules, let us assume that Ma

imports Mb. Let us assume that we reanalyze Mb first. We study the reanalysis

cases of G ′ = MA(Mb, E,G,LMb
,ΔMb

):

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 223

1. If G ′ = G, the procedure is equivalent if program P has one module.

2. If G � G ′, then analysis results need to be propagated to A. Once the results

of A are updated, the analysis iterations of A and B will be equivalent as

when analyzing from scratch, only new call patterns may appear.

3. If G ′ � G, these analysis results need to be propagated to the analysis of A,

which will be reanalyzed. Once A and B have updated their incompatible

information, the further (re)analyses can only become smaller, but since MA

is monotonic and Dα is finite, a fixpoint is reached, which is correct for P ,

since the computation of each of the modules is correct.

4. Else, the information is incompatible. This can only happen if there were

additions and deletions. This information needs to be propagated to Ma and

the reanalysis of Ma will only lead to cases 1, 2, or 3.

Note that the correctness of the proposed enhanced deletion strategy follows from

Theorem 10.

6.2 Precision

As in the previous sections, we now show the precision properties of the algorithm when

analyzing with finite abstract domains, if we remove the generalization via widening

as stated in Sections 4.1 and 4.2.2. First note that for the MA function, since the lfp

is monotonic w.r.t. the initial assumptions and upd is monotonic, if generalization is

disabled then G will be the least program analysis graph, as the lfp of each of the individual

modules was computed.

The following lemma shows that if a module M is analyzed for E assuming some

G obtaining LM , then if the assumptions change to G ′, incrementally updating these

assumptions will produce an analysis graph L ′
M that is the same as analyzing M with

assumptions G from scratch. That is, the least analysis graph for module M .

Lemma 4 (Precision updating L modulo G)
Let M be a module contained in program P and E a set of entries. Let G be a previous

state of the global analysis graph, if LM = LocIncAnalyze(M,E,G, ∅, ∅). If G changes

to G ′, the analysis result:

LocIncAnalyze(M,E,G ′,LM , ∅) = LocIncAnalyze(M,E,G ′, ∅, ∅)
is the same as analyzing from scratch, that is, the lfp of M and E.

Proof

The proof of this lemma follows from the proof of Lemma 3 and the guarantee that

LM is the least analysis graph if the generalization is removed from IncAnalyze

(Theorem 6).

Theorem 11 (Precision of ModIncAnalyze from scratch)

Let P be a modular program and Qα a set of abstract queries. The analysis result

A = ModIncAnalyze(P,Qα, ∅, ∅) = ModAnalyze(P,Qα)

such that A = {G, {LMi
}}, then G = G ′.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

224 I. Garcia-Contreras et al.

Proof

Since the lfp is monotonic w.r.t. the initial assumptions and upd is monotonic, MA is

monotonic. Therefore, chaotic iteration of MA with the different modules of a program

will reach a fixpoint which is the least fixed point because the separated lfp of each of the

modules is computed. Chaotic iteration is guaranteed in the same way as correctness in

Theorem 9. Termination is guaranteed because MA is monotonic and Dα is finite.

If P is changed to P ′ by editions Δ and it is reanalyzed incrementally, the algorithm

will return a G that encodes the same global analysis result as if P ′ is analyzed from

scratch. That is, the least program analysis graph.

Theorem 12 (Precision of ModIncAnalyze)

Let P and P ′ be modular programs that differ by Δ, Qα a set of queries, and A =

ModIncAnalyze(P,Qα, ∅, (∅, ∅)), then
ModIncAnalyze(P ′, Qα, ∅, (∅, ∅)) = ModIncAnalyze(P ′, Qα,A ,Δ).

Proof

This is proved by following the same strategy as in Theorem 10, replacing the termination

condition that relied on the widening operator with the guarantees that the abstract

domain is finite and that MA is monotonic, and the guarantee of Lemma 4 that no

imprecision is introduced analyzing each individual module.

7 Experiments

We have implemented the proposed algorithm within the Ciao/CiaoPP system

(Hermenegildo et al . 2012, 2005), which can be found in https://github.com/

ciao-lang/ciaopp. We use a selection of well-known benchmarks from previous studies

of incremental analysis, for example, ann (a parallelizer) and boyer (a theorem prover

kernel) are programs with a relatively large number of clauses located in a small number

of modules. In contrast, for example, bid is a more modularized program (see Table 1

for more details, and https://github.com/ciao-lang/ciaopp_tests/tree/master/

tests/incanal for the source code of the benchmarks). We used the original modular

structure as modular partition and evaluated five strategies:

• mon: the baseline non-modular, non-incremental algorithm (Muthukumar and

Hermenegildo 1992), that is, IncAnalyze described in Section 4.1 with initial

results always empty.

• mon-inc: the monolithic incremental algorithm (Hermenegildo et al . 2000) as de-

scribed in Section 4.1.

• mon-scc: the monolithic incremental algorithm (Hermenegildo et al . 2000) as de-

scribed in Section 4.1 with the bottom-up deletion strategy of Hermenegildo et al .

(2000).

• mod: as a coarse-grained modular algorithm, which consists on our proposed algo-

rithm, without keeping each of the local analysis graphs. Note that this is not the

same as the algorithm of Section 4.2, as it did not consider modifying the modules.

• mod-inc: our proposed algorithm that is modular and incremental (Section 5).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://github.com/ciao-lang/ciaopp
https://github.com/ciao-lang/ciaopp
https://github.com/ciao-lang/ciaopp_tests/tree/master/tests/incanal
https://github.com/ciao-lang/ciaopp_tests/tree/master/tests/incanal
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 225

Table 1. Benchmark characteristics sorted by lines of code

Bench # Modules # Predicates # Clauses LOC

hanoi 2 4 6 46
aiakl 4 8 15 71
qsort 3 8 17 49
progeom 2 10 18 73
bid 7 21 48 207
rdtok 5 15 57 293
cleandirs 3 36 81 528
read 3 25 94 352
warplan 3 37 114 281
boyer 4 29 145 279
peephole 3 33 169 377
witt 4 69 176 618
ann 3 69 229 641
manag proj 8 105 143 805
check links 4 220 504 2042

• mod-scc: for the experiments that include deleting clauses, the alternative strat-

egy for updating the analysis following the strongly connected components of the

program (Section 5.1).

We performed experiments with four different abstract domains: a simple reachabil-

ity domain (pdb), a groundness domain (gr), a dependency tracking via propositional

clauses domain (Dumortier et al . 1993) (def), and the sharing and freeness abstract do-

main (Muthukumar and Hermenegildo 1991) (pointer sharing and uninitialized pointers,

shfr). We use the exported predicates from the main module (with � call pattern) as

the set of initial queries (i.e., no additional information is provided in the program).

We ran all experiments on a Linux machine (kernel 4.9.0-8-amd64) with Debian 9.0,

a Xeon Gold 6154 CPU, and 16 GB of RAM. However, running the test in a standard

laptop shows similar performance.

Analyzing from scratch. We first study the analysis from scratch of all the benchmarks

for all approaches, to observe the overhead introduced by the bookkeeping of the algo-

rithms. The analysis times in milliseconds are shown in Table 2. For each benchmark,

four rows are shown, corresponding to the four analysis algorithms mentioned earlier:

monolithic (mon), monolithic incremental (mon-inc), modular (mod), and, lastly, modu-

lar incremental (mod-inc), that is, the proposed approach. In the monolithic setting, the

overhead introduced is negligible. Interestingly, the incremental modular analysis per-

forms better overall than simply modular even in analysis from scratch. This is due to

the reuse of local information specially in complex benchmarks such as ann, peephole,

warplan, or witt. In the best cases (e.g., witt, cleandirs, or check links analyzed

with shfr), the performance of incremental modular competes with monolithic thanks

to the incremental updates, dropping from 20 to 3 s, from 1.2 to 0.8 s, and from 2.5 to

1.2 s, respectively.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

226 I. Garcia-Contreras et al.

Table 2. Analysis times from scratch (ms)

Benchmark pdb gr def shfr

hanoi

mon 5.2 2.9 2.2 10.7
mon-inc 5.3 3.0 2.2 10.2
mod 12.3 7.2 5.8 22.1
mod-inc 10.0 6.2 4.6 18.3

aiakl

5.9 6.4 4.6 7.9
7.6 7.3 5.8 8.4

15.0 18.9 14.0 18.0
16.0 15.5 13.0 16.4

qsort

7.8 8.3 4.0 9.5
8.0 8.5 4.3 10.5

21.7 21.6 13.5 24.9
19.5 20.3 10.0 20.1

progeom

5.4 5.4 5.1 6.4
6.1 5.4 5.4 7.1

24.1 23.6 21.6 28.7
18.4 18.7 14.8 20.3

bid

18.8 14.8 9.9 22.9
17.7 15.4 10.2 26.8
61.0 55.1 39.1 68.3
42.4 42.1 32.4 55.7

rdtok

33.5 44.0 15.7 63.3
51.3 29.2 17.8 66.0
85.1 61.3 40.2 122.0
52.3 53.5 36.6 90.9

cleandirs

33.2 27.6 26.2 384.1
31.7 29.1 27.7 389.0

145.5 123.8 140.3 1189.2
93.8 77.2 80.5 778.3

Benchmark pdb gr def shfr

read

217.5 116.5 47.8 399.0
172.3 105.0 35.0 400.7
192.0 118.4 45.1 422.4
189.9 126.9 45.5 472.4

warplan

46.0 24.5 20.1 63.3
41.0 26.6 16.6 64.3
71.7 52.7 35.8 180.7
57.0 37.1 24.1 102.9

boyer

38.3 24.1 14.9 50.0
37.0 31.5 17.4 51.5
48.3 39.3 21.5 68.2
44.9 37.3 19.1 65.4

peephole

67.0 43.2 19.2 157.6
64.1 45.6 21.2 156.4

155.8 75.6 43.6 392.8
115.1 62.4 40.2 267.0

witt

183.4 11.6 33.5 2490.4
186.0 16.4 38.8 2491.2

1134.6 6.7 120.8 20550.3
414.8 9.8 71.1 3222.9

ann

84.5 58.4 35.0 120.5
85.4 64.1 38.5 123.7

264.1 174.5 89.7 296.6
145.3 127.0 60.6 241.5

manag proj

111.0 24.1 51.3 18049.2
98.3 28.3 48.8 17967.3

291.3 54.7 150.3 37184.9
221.8 44.4 104.7 34595.0

check links

701.7 301.6 167.5 803.3
678.9 251.5 178.5 819.2

1292.6 680.8 600.5 2530.3
776.1 360.8 267.2 1162.5

Note that a smaller program does not necessarily imply that the analyzer will run

faster, and it depends on the structure of the code and the kind of data that the program

operates with. Also, the cost of performing a modular analysis highly depends on the

module scheduling policy, and whether the modular partitions were correctly produced, in

this case, if the programmer divided the program in a reasonable manner. For example,

analyzing boyer (with any domain) modularly comes at no cost, while in the case of

cleandirs it is three times slower than doing it monolithically.

Clause addition/deletion experiment. As a stress test for the proposed algorithm, we

measured the cost of re-analyzing the program incrementally adding (or removing) one

clause at a time, until the program is completed (or empty). That is, for the addition

experiment, the analysis was first run for the first clause only. Then the next clause

was added and the resulting program (re)analyzed. This process was repeated until all

the clauses in all the modules were added. For the deletion experiment, starting from

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 227

Fig. 13. Analysis time (ms) for warplan with def for both experiments.

an already analyzed program, the last clause was deleted and the resulting program

(re)analyzed. This process was repeated until no clauses were left. The experiment was

performed for all the approaches using the initial (top-down) deletion strategy (mod-inc)

and the SCC partition deletion strategy of Section 5.1 (mod-scc).

7.1 Discussion

In our experiments, we observed that the analyses performed with the gr and def do-

mains were the most relevant to evaluate the usefulness of the algorithm. This is due to

the domain operations being fairly simple (when compared with the cost of executing the

fixpoint algorithm), so that the complexity of the algorithm is not completely hidden by

the complexity of the domain operations (e.g., shfr). At the same time, they are complex

enough that there is some fixpoint iteration (which does not occur in, e.g., pdb, since � is

assumed for every call pattern). Therefore, in this section, we focus mainly in the analysis

with the def domain but include as well some discussion about gr. Nevertheless, for the

results for the remaining domains, we refer the reader to the Appendix A pp. (2–11).

Figure 13 shows the addition and deletion experiments for the warplan benchmark

analyzed with def. Each point represents the time taken to reanalyze the program after

incrementally adding/deleting one clause. The horizontal axis denotes the number of

clauses added/deleted at that point of the experiment. We observe that the proposed

incremental algorithm outperforms overall the non-incremental settings when the time

needed to reanalyze is large. We find that for smaller benchmarks, our algorithm performs

up to eight times faster than the traditional monolithic, non-incremental algorithm, and,

in the worst cases performs as fast as the traditional modular algorithm. The detailed

analysis times per iteration for the remaining benchmarks are available in Figures A1,

A2, and A3 pp. (2–4).

We observe that, even when analyzing takes less time, that is, when the program has

fewer clauses, the analysis time of the algorithm proposed is faster overall. Moreover, as

the analysis grows in complexity, the cost of our approach grows significantly slower than

that of the traditional algorithm. In the case of the deletion experiments, we observe also

clear advantages, specially when using the strategy of partitions in SCC presented in

Section 5.1.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

228 I. Garcia-Contreras et al.

Table 3. Analysis times (ms) per action of the clause addition experiment with def

mon mon-inc mod mod-inc

bench mean max min mean max min mean max min mean max min

aiakl 2.2 5.6 1.0 1.8 5.9 1.3 1.8 14.9 0.5 1.7 14.1 0.5
ann 7.2 76.8 1.1 3.3 51.8 1.6 2.5 156.8 0.3 2.3 133.9 0.6
bid 3.4 18.1 1.5 2.6 11.9 1.9 2.5 32.7 0.3 2.3 26.6 0.5
boyer 21.5 46.4 1.5 3.2 13.0 1.4 6.0 15.1 0.4 1.9 14.8 0.5
check links 29.3 608.6 2.6 14.5 571.5 5.5 21.6 889.4 0.4 7.1 664.1 0.8
cleandirs 9.1 28.9 1.5 4.5 18.6 1.9 6.2 96.5 0.9 3.7 63.4 0.9
hanoi 2.4 4.7 0.7 1.8 5.3 1.1 2.9 11.5 0.4 2.1 10.0 0.4
manag proj 19.7 100.8 4.4 8.3 35.2 4.8 6.9 97.7 0.3 4.6 69.5 0.4
peephole 9.6 64.8 1.5 2.7 30.2 1.6 2.1 95.8 0.4 1.9 76.5 0.6
progeom 2.3 5.4 1.1 1.6 3.4 0.7 2.3 10.2 0.8 2.2 9.7 0.8
read 38.9 177.4 1.1 13.4 151.3 1.3 18.5 214.2 0.8 9.9 165.2 0.6
qsort 2.8 11.0 1.1 1.8 4.4 1.1 2.8 10.5 0.4 2.4 9.5 0.5
rdtok 8.2 31.1 1.2 6.2 57.6 1.3 6.0 27.2 0.3 6.0 59.3 0.4
warplan 10.2 35.0 0.8 4.2 18.5 1.5 5.4 30.7 0.7 2.5 21.3 0.9
witt 15.2 177.7 1.5 5.5 142.0 2.2 11.1 653.2 0.3 4.8 323.4 0.4

Analysis time per action. In order to get an overall idea of the cost in terms of the time

taken by analysis, we have included Tables 3 and 4 for the addition and deletion experi-

ment, respectively. They show, split by benchmark and analysis configuration, the mean,

maximum, and minimum analysis times after each modification made in the experiment,

for each program. The objective is to provide intuition for the “response times” of the

analyses after each such modification. We center our attention on the costlier instances

of the benchmarks, that is, the (re)analysis runs which take the longest after a modifi-

cation is performed in the program for the traditional, monolithic analysis. In absolute

terms, these are check links, with the largest analysis time (608.6ms), followed by witt

(177.7ms), read (177.4ms), and manag proj (100.8ms). In terms of overall cost (mean)

of the reanalysis, we have read (38.5ms), check links (29.3ms), and boyer (21.5ms).

These high differences between the mean and maximum analysis times are due to the

very small values for the first additions, in which the program is very small and there

are no iterations. The analysis times for the remaining experiments that are available

in detailed analysis times for each step are provided in Section A.2 pp. (5–6). These

should be in principle the benchmarks that we should focus on incrementalizing, as more

time is saved. This applies not only to the monolithic analysis but also to the modular

analysis. To observe the increase in performance obtained, Table 5 shows the speedup

of our algorithm with respect to: mon-inc, in the case of the addition experiments, and

mod-scc, in the case of the deletion experiment. The analysis times for the remaining

speedups are provided in Section A.3 pp. (7–8).

Accumulated analysis time. To observe in a more detailed manner how the analyzers

behave, we present in Figures 14 and 15 the accumulated analysis times, that is, the

analysis time of all the experiments aggregated by benchmark, divided by how much time

was spent in the different parts of the algorithm. The results are for the gr and def

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

In
crem

en
ta
l
a
n
d
m
od
u
la
r
co
n
text-sen

sitive
a
n
a
lysis

229

Table 4. Analysis times (ms) per action of the clause deletion experiment with def.

mon mon-inc mon-scc mod mod-inc mod-scc

bench mean max min mean max min mean max min mean max min mean max min mean max min

aiakl 2.6 7.2 1.3 1.9 6.9 1.3 1.4 6.1 0.9 2.0 15.2 0.5 1.8 13.4 0.4 1.5 13.7 0.3
ann 7.9 85.8 1.2 4.0 80.4 1.8 3.3 80.3 1.5 8.8 197.1 0.3 3.4 153.6 0.6 2.8 153.1 0.6
bid 3.0 17.1 1.6 2.5 19.4 1.6 1.9 18.3 1.4 3.4 59.8 0.5 2.9 53.1 0.4 2.6 50.3 0.4
boyer 21.1 51.5 1.3 11.4 35.3 1.3 2.2 36.2 1.1 6.3 44.9 0.4 5.3 45.3 0.6 1.6 45.1 0.3
check links 29.0 635.6 1.5 28.3 674.8 6.4 20.9 598.2 5.5 22.6 946.0 0.3 17.0 720.1 0.7 13.3 716.0 0.5
cleandirs 9.2 27.5 1.6 5.6 32.1 1.7 3.3 30.1 1.4 6.2 128.9 0.9 4.4 90.8 0.7 3.5 86.5 0.6
hanoi 2.6 5.3 0.8 1.8 5.6 0.9 1.5 5.9 0.7 3.5 13.8 0.5 2.7 12.4 0.7 2.5 12.6 0.5
manag proj 20.9 103.6 4.5 9.3 98.3 4.5 7.7 90.1 4.1 7.9 259.3 0.3 5.7 212.1 0.3 5.8 217.7 0.3
peephole 10.3 100.6 1.7 3.4 67.4 1.5 2.3 65.4 1.3 5.6 138.6 1.1 3.7 113.4 1.0 2.7 116.2 0.9
progeom 2.3 5.3 1.1 1.8 5.5 1.0 1.2 6.3 0.9 2.7 22.0 0.7 2.5 19.3 0.7 2.1 18.6 0.6
read 39.0 184.7 1.1 33.8 189.1 1.1 3.9 171.9 1.0 17.9 185.7 0.7 19.4 191.3 0.7 5.8 187.2 0.6
qsort 2.5 7.5 1.1 2.2 8.5 1.2 1.4 9.3 0.8 3.6 22.3 0.4 3.4 20.4 0.6 3.1 20.8 0.5
rdtok 8.2 29.7 1.5 7.3 31.8 1.3 2.2 31.8 1.1 6.6 61.8 0.3 8.2 54.1 0.6 4.8 54.8 0.3
warplan 11.1 52.7 1.0 6.2 40.2 1.3 2.0 39.3 1.0 5.5 63.2 0.8 4.1 56.0 1.0 2.7 53.7 0.7
witt 14.6 174.8 1.2 7.1 179.3 2.1 4.5 185.2 1.9 15.0 1, 021.7 0.3 7.9 461.3 0.4 7.1 423.9 0.4

available at https://w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/S1471068420000496

D
ow

nloaded from
 https://w

w
w

.cam
bridge.org/core. U

niversidad Politecnica de M
adrid, on 15 M

ar 2022 at 10:20:02, subject to the Cam
bridge Core term

s of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

230 I. Garcia-Contreras et al.

Table 5. Speedups of the clause addition (left) and deletion (right) experiments

with def

mod-inc mod-scc

vs. vs. vs. vs. vs. vs. vs. vs.
bench mon mon-inc mod mon mon-inc mon-scc mod mod-inc

aiakl 1.3 1.1 1.0 1.7 1.2 0.9 1.3 1.2
ann 3.1 1.4 1.1 2.9 1.4 1.2 3.2 1.2
bid 1.5 1.1 1.1 1.2 1.0 0.7 1.3 1.1
boyer 11.6 1.7 3.2 13.0 7.1 1.4 3.9 3.3
check links 4.1 2.1 3.1 2.2 2.1 1.6 1.7 1.3
cleandirs 2.5 1.2 1.7 2.6 1.6 1.0 1.8 1.3
hanoi 1.2 0.9 1.4 1.1 0.7 0.6 1.4 1.1
manag proj 4.3 1.8 1.5 3.6 1.6 1.3 1.4 1.0
peephole 5.0 1.4 1.1 3.8 1.3 0.9 2.1 1.4
progeom 1.1 0.7 1.1 1.1 0.9 0.6 1.3 1.2
read 3.9 1.4 1.9 6.8 5.9 0.7 3.1 3.4
qsort 1.2 0.7 1.2 0.8 0.7 0.5 1.2 1.1
rdtok 1.4 1.0 1.0 1.7 1.5 0.5 1.4 1.7
warplan 4.1 1.7 2.2 4.2 2.3 0.8 2.1 1.6
witt 3.1 1.1 2.3 2.1 1.0 0.6 2.1 1.1

abstract domains, and each of the bars shows of the full set of addition and deletion

experiments.

Figure 14 shows the accumulated analysis time for the addition experiments. As men-

tioned before, the bars are split to show the time taken in each operation: analyze is the

time spent in the module analyzer, incAct is the time spent updating the local analysis

results, preProc is the time spent processing clause relations (e.g., calculating the SCCs),

updG is the time spent updating G, and procDiff is the time spent applying the changes

to the analysis. This last parameter only appears in the incremental settings. The bars

are normalized with respect to the monolithic non-incremental (mon) algorithm, which

always takes “1” to execute. For example, if analyzing rdtok with the gr domain for

the monolithic non-incremental setting is taken as 1, the modular incremental (mod-inc)

setting takes approx. 0.6, so it is approx. 1.67 times faster.

As before, the benchmarks are sorted by number of LOC. Because of this, it can be

observed that the incremental analysis does tend to be more useful as program size

grows. Overall, the incremental settings (mon-inc, mod-inc) are always faster than the

corresponding non-incremental settings (mon, mod). Furthermore, while the traditional

modular analysis is sometimes slower than the monolithic one (for the small bench-

marks: hanoi and qsort), our modular incremental algorithm always outperforms both,

obtaining 10× overall speedup over monolithic in the best cases (boyer analyzed with

def or peephole analyzed with shfr). Furthermore, in the larger benchmarks, modular

incremental outperforms even the monolithic incremental approach.

Figure 15 shows the results of the deletion experiment. The analysis performance of

the incremental approaches is in general better than the non-incremental approaches,

except some cases for small programs. Again, our proposed algorithm shows very good

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 231

Fig. 14. Accumulated analysis time (normalized w.r.t mon) adding clauses. The order inside
each set of bars is |mon|mon-inc|mod|mod-inc|.

performance, in the best case 10× speedup (read analyzed with shfr), and overall 5×
speedup (ann, peephole, and witt), competing with monolithic incremental scc and

outperforming in general monolithic incremental td. The SCC-guided deletion strategy

seems to be more efficient than the top-down deletion strategy. This confirms that the

top-down deletion strategy tends to be quite pessimistic when deleting information, and

modular partitions limit the scope of deletion. For the accumulated analysis time of the

remaining domains, please see Figures A4 and A5 pp. (9–10).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

232 I. Garcia-Contreras et al.

Fig. 15. Accumulated analysis time (normalized w.r.t mon) deleting clauses. The order inside
each set of bars is |mon|mon-inc|mon-scc|mod|mod-inc|mod-scc|.

Distribution of analysis times. Next, we study how the analysis time of the experiments

is distributed. Figures 16 and 17 show histograms that illustrate the number of analyzed

instances of the experiments with respect to the analysis time, regardless of the order in

which the experiments were performed, and for each configuration. In the vertical axis,

we plot the number of tests, that is, how many different instances of the addition or

deletion experiment that were performed could be analyzed in that time or less. In the

horizontal axis, we represent the analysis time. For example, on the left-hand side of

Figure 16, for 5ms in the vertical axis, starting from the bottom of the graph, we first

find the red line corresponding to the monolithic analysis (mon). This means that approx.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 233

Fig. 16. Distribution over time of instances of the addition (left) and deletion (right)
experiments for warplan with def.

Fig. 17. Distribution over time of instances of the addition (left) and deletion (right)
experiments for boyer with def.

55 of the analyses performed in warplan finished in 5ms or less. Then we find the yellow

line (mod analysis): for this setting, 70 of the instances of the addition experiment were

analyzed in 5ms or less. The next line that we find is the purple line, corresponding

to the mon-inc configuration. In this case, 78 instances were analyzed in 5ms or less.

Finally, we have our configuration, mod-inc, that was able to analyze 99 instances of the

addition experiment in 5ms. Figures 16 and 17 show that, overall, the analysis time of

the proposed algorithm is faster than that of the previous configurations.

Correlations to benchmark and analysis graph characteristics. We also looked for corre-

lations between benchmark characteristics and the speedups observed. While this topic

would require a study of its own, we have observed some correlations with benchmark-

related analysis characteristics. Figures 18 and 19 show scatter plots of the speedup

obtained with respect to two such characteristics: the number of nodes in the analysis

graph and the number of calls to �. The plots show that there is some correlation between

the size of the analysis graph and the speedup obtained: we observed that the incremental

and modular analysis proposed is beneficial for larger analysis graphs. The sizes of the

analysis graphs depend themselves on the complexity of the abstract domain (due to the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

234 I. Garcia-Contreras et al.

Fig. 18. Speedup versus monolithic depending on the number of nodes in the analysis graph.

Fig. 19. Speedup versus modular depending on the number of calls to �.

algorithm being multivariant), the size of the program, and the size of the strongly con-

nected components of the program. Also, we observed that the slowdowns encountered

correspond to very small runtimes of the algorithms, for example, for smaller programs,

which are likely to be due to the overhead of the additional bookeeping required by the

algorithm, which is not very concerning, as they are small.

Memory Usage. We also studied the memory usage for the structures needed for analysis,

that is, the analysis graphs, and the other structures needed for memoizing. Table 6

contains the maximum memory needed for these structures for any of the modifications

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 235

Table 6. Maximum memory usage for the edition experiments with def in bytes

reduction
bench mon mon-inc mod mod-inc (mon-inc vs mod-inc)

hanoi 16K 16K 12K 12K 0.75 (25%)
aiakl 28K 28K 8K 16K 0.57 (43%)
qsort 28K 32K 12K 16K 0.50 (50%)
progeom 24K 32K 20K 20K 0.63 (37%)
bid 80K 80K 36K 40K 0.50 (50%)
rdtok 100K 112K 68K 80K 0.71 (29%)
cleandirs 200K 204K 144K 152K 0.75 (25%)
read 304K 308K 260K 268K 0.87 (13%)
warplan 144K 156K 116K 128K 0.82 (18%)
boyer 140K 144K 76K 80K 0.55 (44%)
peephole 200K 208K 108K 116K 0.56 (44%)
witt 504K 524K 352K 364K 0.69 (30%)
ann 316K 324K 120K 132K 0.41 (59%)
manag proj 464K 460K 248K 268K 0.58 (42%)
check links 2.3M 2.3M 1.8M 1.8M 0.78 (22%)

analyzed for each benchmark, that is, the Memory High-Water Mark. For the monolithic

case, this is the maximum memory necessary to keep the analysis results, and for the

modular case, the maximum size of the analysis results of a module and the intermodular

information. We do not show any distinction between the different deletion strategies of

the incremental algorithm as the necessary bookkeeping of both is the same.

First, note that, since the incremental algorithms (mon-inc and mod-inc) need to

perform additional bookkeeping, they always need more memory than the corresponding

non-incremental ones (mon and mod). However, this difference is small and arguably a very

reasonable price to pay for the significant reductions in analysis times. Also note that the

modular analyses (mod and mod-inc) always bring a reduction in the memory required

to be able to complete every analysis instance. This is of course important because, while

it is always possible to wait a bit longer for an analysis result, if the analysis does not fit

in the available memory, either the performance will be much worse, due to swapping,

or the analysis simply cannot be completed, if virtual memory is depleted.

More importantly, we observe that we obtain a reduction in the memory use of the

proposed modular incremental algorithm, mod-inc, with respect to the original mono-

lithic incremental algorithm, mon-inc. This is shown in the last column of Table 6. The

memory usage reduction obtained ranges between 59% for the ann benchmark and 13%

for the read benchmark. Ideally, we would like to achieve a reduction of memory propor-

tional to the number of modules in which the program is distributed, but on one hand

there is overhead due to the fact that each module needs to keep information for the

calls to predicates imported from other modules, and in addition a very large reduction

in maximum memory usage requires the partitions to be of similar size, quite indepen-

dent, and with similarly sized analysis graphs. Our benchmarks instead typically contain

a module with the main functionality and some libraries with simpler code, so that the

distribution of code among the modules is not even, and so the correlation between mem-

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

236 I. Garcia-Contreras et al.

ory usage reduction and number of modules in the program is not direct. However, we

expect that in actual applications, which tend to have a much larger number of modules

and use a good number of libraries, the memory usage reduction will be much larger.

8 Related work

Classical data flow analysis: Since the first algorithm for incremental analysis was

proposed by Rosen (1981), there has been considerable research and proposals in this

topic (see the bibliography of Ramalingam and Reps 1993). Depending on how data flow

equations are solved, these algorithms can be separated into those based on variable elim-

ination, which include Burke (1990), Carroll and Ryder (1988), and Ryder (1988); and

those based on iteration methods which include Cooper and Kennedy (1984) and Pollock

and Soffa (1989). A hybrid approach is described in Marlowe and Ryder (1990). Our al-

gorithms are most closely related to those using iteration. Early incremental approaches

such as Cooper and Kennedy (1984) were based on restarting iteration. That is, the fix-

point of the new program’s data flow equations is found by starting iteration from the

fixpoint of the old program’s data flow equations. This is always safe but may lead to

unnecessary imprecision if the old fixpoint is not below the lfp of the new equations (Ry-

der et al . 1988). Reinitialization approaches such as Pollock and Soffa (1989) improve

the accuracy of this technique by reinitializing nodes in the data flow graph to bottom,

if they are potentially affected by the program change. Thus, they are as precise as if the

new equations had been analyzed from scratch. These algorithms are generally not based

on abstract interpretation. Reviser (Arzt and Bodden 2014) extends the more generic

IFDS (Reps et al . 1995) framework to support incremental program changes. However

IFDS is limited to distributive flow functions (related to condensing domains), while our

approach does not impose any restriction on the domains.

Other work on CHCs and CLPs: Apart from the work that we extend (Hermenegildo

et al . 1995, 2000; Puebla and Hermenegildo 1996), incremental analysis was proposed

(just for incremental addition) in the Vienna abstract machine model (Krall and Berger

1995a,b). It was studied also in compositional analysis of modules in (C)LP (Codish

et al . 1993; Bossi et al . 1994), but it did not consider incremental analysis at the level of

clauses. More recently, FLIX (Madsen et al . 2016) uses a bottom-up semi-näıve strategy

to solve Datalog programs extended with lattices and monotone transfer functions. This

approach is similar to CLP analysis via bottom-up abstract interpretation. However, it

has not been extended to support incremental updates. Incremental tabling (Swift 2014)

offers a straightforward method to design incremental analyses (Eichberg et al . 2007),

when they can be expressed as tabled logic programs. However, while these methods are

much closer to our incremental algorithm, they may suffer similar problems than generic

incremental computation due to the lack of fine-grained control.

Other work on modular analysis: Cousot and Cousot (2002) is based on splitting

large programs into smaller parts (e.g., based on the source code structure). Exploit-

ing modularity has proved essential in industrial-scale analyzers (Cousot et al . 2009;

Fähndrich and Logozzo 2011; Calcagno and Distefano 2011). Despite the fact that sep-

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 237

arate analysis provides only coarse-grained incrementality, there have been surprisingly

few results studying its combination with fine-grained incremental analysis.

Verification. Incremental algorithms have also been proposed to perform formal verifi-

cation of programs. They reuse results of prior verification, given some properties to be

verified (Conway et al . 2005; Fedyukovich et al . 2016; Rothenberg et al . 2018), which do

not take advantage of modular structures of programs. Sery et al . (2012) use a composi-

tional approach to obtain properties for each procedure, checking whether each property

holds for the successive versions of the program. These approaches are not directly com-

parable with the work that we have presented, since we do not rely on any specifications

of the program behavior to run the analysis.

Generic incremental computation frameworks: Obviously, the possibility exists of

using a general incrementalized execution algorithm. Incremental algorithms compute an

updated output from a previous output and a difference on the input data, which the

hope that the process is (computationally) cheaper than computing from scratch a new

output for the new input. The approach of Szabó et al . (2016) takes advantage of an

underlying incremental evaluator, IncQuery, and implements modules via the monolithic

approach. There exist other frameworks such as self-adjusting computation (Acar 2009)

that provides libraries for incrementalizing non-incremental algorithms. Although in some

cases (like tree contraction) it can reproduce the performance of specialized incremental

algorithms, experiments show that in general there is a significant overhead (between 4

and 10) over non-incremental algorithms. We believe that it is a promising approach but

not yet ready for replacing incremental algorithms designed, proved, and implemented

from scratch.

9 Conclusions

We have described, implemented, and evaluated a context-sensitive, fixpoint analysis

algorithm that performs efficient context-sensitive analysis incrementally on modular

partitions of programs. We provided a unified view of the algorithms that we built upon,

providing a formal description of their correctness and precision guarantees that also

covers widening. Our algorithm takes care of propagating the fine-grain change infor-

mation across module boundaries and implements all the actions required to recompute

the analysis fixpoint incrementally after additions and deletions in the program. We

have shown that the algorithm is correct and computes the most precise analysis for

finite abstract domains, while supporting widening for dealing with infinite domains. We

have also provided some new results for the baseline algorithms. We have also imple-

mented and benchmarked the proposed approach within the Ciao/CiaoPP system. Our

preliminary results show promising speedups for programs of medium and larger size

when compared with existing non-modular, fine-grain incremental analysis techniques,

as well as improvements in memory consumption. In addition, the finer granularity of

the proposed modular incremental fixpoint algorithm also brings improvements with re-

spect to modular analysis alone (which only preserved analysis results at the module

boundaries), producing better results even in the limit case of analyzing the whole pro-

gram from scratch. Finally, we have also observed some correlations between obtainable

speedups and certain benchmark-related analysis characteristics, such as the number of

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

238 I. Garcia-Contreras et al.

nodes in the analysis graph and the number of calls to � abstractions. Going deeper in

this direction is a clear avenue for future work.

Conflict of interest

The authors declare none.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1017/

S1471068420000496.

References

Acar, U. A. 2009. Self-adjusting computation: (an overview). In Proceedings of the 2009
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipu-
lation, PEPM 2009, Savannah, GA, USA, 19–20 January 2009, G. Puebla and G. Vidal,
Eds. ACM, 1–6.

Albert, E., Arenas, P., Genaim, S., Puebla, G. and Zanardini, D. 2012. Cost analysis of
object-oriented bytecode programs. Theoretical Computer Science (Special Issue on Quanti-
tative Aspects of Programming Languages) 413, 1, 142–159.

Albert, E., Correas, J., Puebla, G. and Román-D́ıez, G. 2012. Incremental resource usage
analysis. In Proceedings of the 2012 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM 2012, Philadelphia, Pennsylvania, USA, 23–24 January 2012.
ACM Press, 25–34.

Albert, E., Gómez-Zamalloa, M., Hubert, L. and Puebla, G. 2007. Verification of Java
bytecode using analysis and transformation of logic programs. In Ninth International Sympo-
sium on Practical Aspects of Declarative Languages (PADL 2007), LNCS, vol. 4354. Springer-
Verlag, 124–139.

Apt, K. R. 1990. Introduction to logic programming. In Handbook of Theoretical Computer
Science, J. van Leeuwen, Ed. Elsevier, 493–576.

Arzt, S. and Bodden, E. 2014. Reviser: Efficiently updating IDE-/IFDS-based data-flow anal-
yses in response to incremental program changes. In 36th International Conference on Software
Engineering, ICSE’14, Hyderabad, India - May 31–June 07, 2014, P. Jalote, L. C. Briand and
A. van der Hoek, Eds. ACM, 288–298.

Banda, G. and Gallagher, J. P. 2009. Analysis of linear hybrid systems in CLP. In Logic-
Based Program Synthesis and Transformation, 18th International Symposium, LOPSTR 2008,
Valencia, Spain, 17–18 July 2008, M. Hanus, Ed. Lecture Notes in Computer Science, vol.
5438. Springer, 55–70.

Bjørner, N., Gurfinkel, A., McMillan, K. L. and Rybalchenko, A. 2015. Horn clause
solvers for program verification. In Fields of Logic and Computation II - Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday, L. D. Beklemishev, A. Blass, N. Der-
showitz, B. Finkbeiner and W. Schulte, Eds. Lecture Notes in Computer Science, vol. 9300.
Springer, 24–51.

Bjørner, N.,McMillan, K. L. and Rybalchenko, A. 2013. On solving universally quantified
Horn clauses. In SAS, F. Logozzo and M. Fähndrich, Eds. LNCS, vol. 7935. Springer, 105–125.

Bossi, A., Gabbrieli, M., Levi, G. and Meo, M. 1994. A compositional semantics for logic
programs. Theoretical Computer Science 122, 1, 2, 3–47.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://doi.org/10.1017/S1471068420000496
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 239

Braem, C., Charlier, B. L., Modart, S. and Hentenryck, P. V. 1994. Cardinality analysis
of Prolog. In Proceedings of International Symposium on Logic Programming. MIT Press,
Ithaca, NY, 457–471.

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic programs.
Journal of Logic Programming 10, 91–124.

Bueno, F., de la Banda, M. G., Hermenegildo, M. V., Marriott, K., Puebla, G. and

Stuckey, P. 2001. A model for inter-module analysis and optimizing compilation. In Logic-
based Program Synthesis and Transformation. LNCS, vol. 2042. Springer-Verlag, 86–102.

Burke, M. 1990. An interval-based approach to exhaustive and incremental interprocedu-
ral data-flow analysis. ACM Transactions on Programming Languages and Systems 12, 3,
341–395.

Calcagno, C. and Distefano, D. 2011. Infer: An automatic program verifier for memory
safety of C programs. In NASA Formal Methods - Third International Symposium, NFM
2011, Pasadena, CA, USA, 18–20 April 2011. Proceedings, M. G. Bobaru, K. Havelund, G. J.
Holzmann and R. Joshi, Eds. Lecture Notes in Computer Science, vol. 6617. Springer, 459–465.

Carroll, M. and Ryder, B. 1988. Incremental data flow analysis via dominator and attribute
updates. In 15th ACM Symposium on Principles of Programming Languages (POPL). ACM
Press, 274–284.

Codish, M., Debray, S. and Giacobazzi, R. 1993. Compositional analysis of modular logic
programs. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
POPL’93. ACM, Charleston, South Carolina, 451–464.

Conway, C. L., Namjoshi, K. S., Dams, D. and Edwards, S. A. 2005. Incremental algo-
rithms for inter-procedural analysis of safety properties. In Computer Aided Verification, 17th
International Conference, CAV 2005, Edinburgh, Scotland, UK, 6–10 July 2005, K. Etes-
sami and S. K. Rajamani, Eds. Lecture Notes in Computer Science, vol. 3576. Springer,
449–461.

Cooper, K. and Kennedy, K. 1984. Efficient computation of flow insensitive interprocedural
summary information. In ACM SIGPLAN Symposium on Compiler Construction (SIGPLAN
Notices, vol. 19(6)). ACM Press, 247–258.

Correas, J., Puebla, G., Hermenegildo, M. V. and Bueno, F. 2006. Experiments in
context-sensitive analysis of modular programs. In 15th International Symposium on Logic-
based Program Synthesis and Transformation (LOPSTR’05). LNCS, vol. 3901. Springer-
Verlag, 163–178.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In ACM Symposium on
Principles of Programming Languages (POPL’77). ACM Press, 238–252.

Cousot, P. and Cousot, R. 2002. Modular static program analysis, invited paper. In Eleventh
International Conference on Compiler Construction, CC 2002. LNCS, vol. 2304. Springer,
159–178.

Cousot, P., Cousot, R., Feret, J., Miné, A., Mauborgne, L. and Rival, X. 2009. Why
does Astrée scale up? Formal Methods in System Design (FMSD) 35, 3, 229–264.

De Angelis, E., Fioravanti, F., Pettorossi, A. and Proietti, M. 2014. VeriMAP: A tool
for verifying programs through transformations. In Tools and Algorithms for the Construction
and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, 5–13 April 2014. Proceedings, E. Ábrahám and K. Havelund, Eds. Lecture Notes in
Computer Science, vol. 8413. Springer, 568–574.

de Moura, L. M. and Bjørner, N. 2008. Z3: An efficient SMT solver. In Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, C. R. Ramakrishnan and J. Rehof, Eds. Lecture Notes in Computer Science, vol. 4963.
Springer, 337–340.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

240 I. Garcia-Contreras et al.

Debray, S., Lopez-Garcia, P. and Hermenegildo, M. V. 1997. Non-failure analysis for logic
programs. In 1997 International Conference on Logic Programming. MIT Press, Cambridge,
MA, Cambridge, MA, 48–62.

Dumortier, V., Janssens, G., Simoens, W. and Garćıa de la Banda, M. 1993. Combining
a definiteness and a freeness abstraction for CLP languages. In Workshop on Logic Program
Synthesis and Transformation.

Eichberg, M., Kahl, M., Saha, D., Mezini, M. and Ostermann, K. 2007. Automatic In-
crementalization of Prolog Based Static Analyses. Springer, Berlin, Heidelberg, 109–123.

Fähndrich, M. and Logozzo, F. 2011. Static contract checking with abstract interpretation.
In Proceedings of the 2010 International Conference on Formal Verification of Object-oriented
Software, FoVeOOS’10. Lecture Notes in Computer Science, vol. 6528. Springer-Verlag, Berlin,
Heidelberg, 10–30.

Fedyukovich, G., Gurfinkel, A. and Sharygina, N. 2016. Property directed equivalence via
abstract simulation. In International Conference on Computer Aided Verification. Springer,
433–453.

Gallagher, J., Hermenegildo, M. V., Kafle, B., Klemen, M., Lopez-Garcia, P. and

Morales, J. 2020. From big-step to small-step semantics and back with interpreter spe-
cialization (invited paper). In Proceedings of the Eighth International Workshop on Verifica-
tion and Program Transformation (VPT 2020). Electronic Proceedings in Theoretical Com-
puter Science (EPTCS). Open Publishing Association (OPA), 50–65. Co-located with ETAPS
2020.

Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C. and Rybalchenko, A. 2012.
HSF(C): A software verifier based on Horn clauses - (competition contribution). In TACAS,
C. Flanagan and B. König, Eds. LNCS, vol. 7214. Springer, 549–551.

Gurfinkel, A., Kahsai, T., Komuravelli, A. and Navas, J. A. 2015. The SeaHorn verifica-
tion framework. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, 18–24 July 2015, Proceedings, Part I. LNCS, vol. 9206. Springer,
343–361.

Henriksen, K. S. and Gallagher, J. P. 2006. Abstract interpretation of PIC programs
through logic programming. In SCAM’06, Proceedings of the Sixth IEEE International Work-
shop on Source Code Analysis and Manipulation. IEEE Computer Society, 184–196.

Hermenegildo, M. V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J.

and Puebla, G. 2012. An overview of Ciao and its design philosophy. Theory and Practice
of Logic Programming 12, 1–2, 219–252.

Hermenegildo, M. V., Puebla, G., Bueno, F. and Lopez-Garcia, P. 2005. Integrated
program debugging, verification, and optimization using abstract interpretation (and the Ciao
system preprocessor). Science of Computer Programming 58, 1–2, 115–140.

Hermenegildo, M. V., Puebla, G., Marriott, K. and Stuckey, P. 1995. Incremental
analysis of logic programs. In International Conference on Logic Programming. MIT Press,
797–811.

Hermenegildo, M. V., Puebla, G., Marriott, K. and Stuckey, P. 2000. Incremental
analysis of constraint logic programs. ACM Transactions on Programming Languages and
Systems 22, 2, 187–223.

Jaffar, J. and Lassez, J.-L. 1987. Constraint logic programming. In ACM Symposium on
Principles of Programming Languages. ACM, 111–119.

Jaffar, J., Murali, V., Navas, J. A. and Santosa, A. E. 2012. TRACER: A symbolic exe-
cution tool for verification. In Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, 7–13 July 2012 Proceedings, P. Madhusudan and S. A. Seshia,
Eds. Lecture Notes in Computer Science, vol. 7358. Springer, 758–766.

Kafle, B., Gallagher, J. P. and Morales, J. F. 2016. RAHFT: A tool for verifying Horn
clauses using abstract interpretation and finite tree automata. In Computer Aided Verifica-
tion - 28th International Conference, CAV 2016, Toronto, ON, Canada, 17–23 July 2016,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 241

Proceedings, Part I, S. Chaudhuri and A. Farzan, Eds. Lecture Notes in Computer Science,
vol. 9779. Springer, 261–268.

Kahn, G. 1987. Natural semantics. In F. Brandenburg, G. Vidal-Naque and M. Wirsing, Eds.
Lecture Notes in Computer Science, vol. 247. Springer, 22–39.

Kelly, A., Marriott, K., Søndergaard, H. and Stuckey, P. 1997. A generic object ori-
ented incremental analyser for constraint logic programs. In Proceedings of the 20th Aus-
tralasian Computer Science Conference, 92–101.

Khedker, U. P. and Karkare, B. 2008. Efficiency, precision, simplicity, and generality in
interprocedural data flow analysis: Resurrecting the classical call strings method. In Com-
piler Construction, 17th International Conference, CC 2008, Budapest, Hungary, March 29–
April 6, 2008, L. J. Hendren, Ed. Lecture Notes in Computer Science, vol. 4959. Springer,
213–228.

King, A., Lu, L. and Genaim, S. 2006. Detecting determinacy in Prolog programs. In Logic
Programming, 22nd International Conference, ICLP 2006, Seattle, WA, USA, 17–20 August
2006, Proceedings, S. Etalle and M. Truszczynski, Eds. Lecture Notes in Computer Science,
vol. 4079. Springer, 132–147.

Krall, A. and Berger, T. 1995a. Incremental global compilation of Prolog with the vienna
abstract machine. In International Conference on Logic Programming. MIT Press.

Krall, A. and Berger, T. 1995b. The VAMAI - An abstract machine for incremental global
dataflow analysis of Prolog. In ICLP’95 Post-Conference Workshop on Abstract Interpretation
of Logic Languages, M. G. de la Banda, G. Janssens, and P. Stuckey, Eds. Science University
of Tokyo, Tokyo, 80–91.

Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M. V., Gal-

lagher, J. P. and Eder, K. 2016. Inferring parametric energy consumption functions at
different software levels: ISA vs. LLVM IR. In Foundational and Practical Aspects of Resource
Analysis: 4th International Workshop, FOPARA 2015, London, UK, 11 April 2015. Revised
Selected Papers, M. V. Eekelen and U. D. Lago, Eds. Lecture Notes in Computer Science, vol.
9964. Springer, 81–100.

Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech, N.,
Hermenegildo, M. V. and Eder, K. 2014. Energy consumption analysis of programs based
on XMOS ISA-level models. In Logic-Based Program Synthesis and Transformation, 23rd In-
ternational Symposium, LOPSTR 2013, Revised Selected Papers, G. Gupta and R. Peña, Eds.
Lecture Notes in Computer Science, vol. 8901. Springer, 72–90.

Lloyd, J. 1987. Foundations of Logic Programming, 2nd extended edition. Springer.

Lopez-Garcia, P., Bueno, F. and Hermenegildo, M. V. 2010. Automatic inference of de-
terminacy and mutual exclusion for logic programs using mode and type analyses. New Gen-
eration Computing 28, 2, 117–206.

Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F. and Hermenegildo,

M. V. 2018. Interval-based resource usage verification by translation into Horn clauses and
an application to energy consumption. Theory and Practice of Logic Programming, Special
Issue on Computational Logic for Verification 18, 2, 167–223. arXiv:1803.04451.

Madsen, M., Yee, M. and Lhoták, O. 2016. From Datalog to FLIX: A declarative lan-
guage for fixed points on lattices. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA,
13–17 June 2016, C. Krintz and E. Berger, Eds. ACM, 194–208.

Marlowe, T. and Ryder, B. 1990. An efficient hybrid algorithm for incremental data flow
analysis. In 17th ACM Symposium on Principles of Programming Languages (POPL). ACM
Press, 184–196.

Marriott, K. and Stuckey, P. J. 1998. Programming with Constraints: an Introduction. MIT
Press.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

http://arxiv.org/abs/1803.04451
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

242 I. Garcia-Contreras et al.

Méndez-Lojo, M., Navas, J. and Hermenegildo, M. 2007. A flexible (C)LP-based approach
to the analysis of object-oriented programs. In 17th International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR 2007). Lecture Notes in Computer Science,
vol. 4915. Springer-Verlag, 154–168.

Muthukumar, K. and Hermenegildo, M. 1990. Deriving A Fixpoint Computation Algorithm
for Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90,
Microelectronics and Computer Technology Corporation (MCC), Austin, TX 78759. April.

Muthukumar, K. and Hermenegildo, M. 1991. Combined determination of sharing and
freeness of program variables through abstract interpretation. In International Conference on
Logic Programming (ICLP 1991). MIT Press, 49–63.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time derivation of variable depen-
dency using abstract interpretation. Journal of Logic Programming 13, 2/3, 315–347.

Navas, J., Méndez-Lojo, M. and Hermenegildo, M. 2008. Safe upper-bounds inference
of energy consumption for Java bytecode applications. In The Sixth NASA Langley Formal
Methods Workshop (LFM 08), 29–32. Extended Abstract.

Navas, J., Méndez-Lojo, M. and Hermenegildo, M. V. 2007. An efficient, context and path
sensitive analysis framework for Java programs. In 9th Workshop on Formal Techniques for
Java-like Programs FTfJP 2007.

Navas, J., Méndez-Lojo, M. and Hermenegildo, M. V. 2009. User-definable resource usage
bounds analysis for Java bytecode. In Proceedings of the Workshop on Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE’09). Electronic Notes in Theoretical
Computer Science, vol. 253. Elsevier - North Holland, 65–82.

Perez-Carrasco, V., Klemen, M., Lopez-Garcia, P., Morales, J. and Hermenegildo,

M. V. 2020. Cost analysis of smart contracts via parametric resource analysis. In Proceedings
of the 27th Static Analysis Symposium (SAS 2020). LNCS. Springer-Verlag.

Plotkin, G. 1981. A Structural Approach to Operational Semantics. Technical report DAIMI
FN-19, Computer Science Department, Aarhus University, Denmark.

Plotkin, G. D. 2004. A structural approach to operational semantics. The Journal of Logic
and Algebraic Programming 60–61, 17–139.

Pollock, L. and Soffa, M. 1989. An incremental version of iterative data flow analysis. IEEE
Transactions on Software Engineering 15, 12, 1537–1549.

Puebla, G., Correas, J., Hermenegildo, M. V., Bueno, F., Garćıa de la Banda, M.,
Marriott, K. and Stuckey, P. J. 2004. A generic framework for context-sensitive analysis
of modular programs. In Program Development in Computational Logic, A Decade of Research
Advances in Logic-Based Program Development, M. Bruynooghe and K. Lau, Eds. LNCS, vol.
3049. Springer-Verlag, Heidelberg, Germany, 234–261.

Puebla, G. and Hermenegildo, M. V. 1996. Optimized algorithms for the incremental anal-
ysis of logic programs. In International Static Analysis Symposium (SAS 1996). Lecture Notes
in Computer Science, vol. 1145. Springer-Verlag, 270–284.

Ramalingam, G. and Reps, T. 1993. categorized bibliography on incremental computation.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages POPL’93.
ACM, Charleston, South Carolina.

Reps, T. W., Horwitz, S. and Sagiv, S. 1995. Precise interprocedural dataflow analysis via
graph reachability. In POPL, 49–61.

Robinson, J. A. 1965. machine oriented logic based on the resolution principle. Journal of the
ACM 12, 23, 23–41.

Rosen, B. 1981. Linear cost is sometimes quadratic. In Eighth ACM Symposium on Principles
of Programming Languages (POPL). ACM Press, 117–124.

Rothenberg, B., Dietsch, D. and Heizmann, M. 2018. Incremental verification using trace
abstraction. In Static Analysis - 25th International Symposium, SAS 2018, Freiburg, Germany,
29–31 August 2018, A. Podelski, Ed. Lecture Notes in Computer Science, vol. 11002. Springer,
364–382.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

Incremental and modular context-sensitive analysis 243

Ryder, B. 1988. Incremental data-flow analysis algorithms. ACM Transactions on Programming
Languages and Systems 10, 1, 1–50.

Ryder, B., Marlowe, T. and Paull, M. 1988. Conditions for incremental iteration: Examples
and counterexamples. Science of Computer Programming 11, 1, 1–15.

Sery, O., Fedyukovich, G. and Sharygina, N. 2012. Incremental upgrade checking by means
of interpolation-based function summaries. In Formal Methods in Computer-Aided Design,
FMCAD 2012, Cambridge, UK, 22–25 October 2012, G. Cabodi and S. Singh, Eds. IEEE,
114–121.

Sharir, M. and Pnueli, A. 1978. Two Approaches to Interprocedural Data Flow Analysis. New
York University. Courant Institute of Mathematical Sciences.

Swift, T. 2014. Incremental tabling in support of knowledge representation and reasoning.
Theory and Practice of Logic Programming 14, 4–5, 553–567.

Szabó, T., Erdweg, S. and Voelter, M. 2016. Inca: A DSL for the definition of incremental
program analyses. In Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2016, Singapore, 3–7 September 2016, D. Lo, S. Apel and
S. Khurshid, Eds. ACM, 320–331.

Thakur, M. and Nandivada, V. K. 2020. Mix your contexts well: Opportunities unleashed
by recent advances in scaling context-sensitivity. In Proceedings of the 29th International
Conference on Compiler Construction. CC 2020. Association for Computing Machinery, New
York, NY, USA, 27–38.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068420000496
Downloaded from https://www.cambridge.org/core. Universidad Politecnica de Madrid, on 15 Mar 2022 at 10:20:02, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068420000496
https://www.cambridge.org/core

	Introduction and motivation
	Preliminaries and notation
	Analysis graphs in goal-dependent abstract interpretation
	The baseline analysis algorithms
	The monolithic and incremental fixpoint algorithm
	The modular fixpoint algorithm

	The algorithm for incremental and modular context-sensitive analysis
	Operation of the algorithm
	Running examples of the algorithm

	Fundamental results of the algorithm
	Correctness
	Precision

	Experiments
	Discussion

	Related work
	Conclusions
	References

