
TPLP 22 (1): 1–36, 2022. © The Author(s), 2021. Published by Cambridge University

Press on behalf of Theory and Practice of Logic Programming. This is an Open

Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and

reproduction in any medium, provided the original work is properly cited.

doi:10.1017/S1471068421000016 First published online 15 February 2021

1

Probabilistic QoS-aware Placement
of VNF Chains at the Edge

STEFANO FORTI, FEDERICA PAGANELLI and ANTONIO BROGI
Department of Computer Science, University of Pisa, Pisa, Italy

(e-mails: stefano.forti@di.unipi.it, antonio.brogi@unipi.it, federica.paganelli@unipi.it)

submitted 5 July 2019; 10 January 2021; accepted 11 January 2021

Abstract

Deploying Internet of Things (IoT)-enabled virtual network function (VNF) chains to Cloud-
Edge infrastructures requires determining a placement for each VNF that satisfies all set de-
ployment requirements as well as a software-defined routing of traffic flows between consecutive
functions that meets all set communication requirements. In this article, we present a declarative
solution, EdgeUsher, to the problem of how to best place VNF chains to Cloud-Edge infrastruc-
tures. EdgeUsher can determine all eligible placements for a set of VNF chains to a Cloud-Edge
infrastructure so to satisfy all of their hardware, IoT, security, bandwidth, and latency require-
ments. It exploits probability distributions to model the dynamic variations in the available
Cloud-Edge infrastructure and to assess output eligible placements against those variations.

KEYWORDS: Edge computing, IoT, VNF chain placement, NFV, SDN, probabilistic logic
programming

1 Introduction

New Edge computing (Abbas et al . 2018) infrastructures aim at supporting Internet

of Things (IoT) applications, especially when applications must meet stringent Quality

of Service (QoS) requirements (e.g., latency, bandwidth, and security) or handle large

amounts of data. To achieve this goal, such new distributed infrastructures rely on com-

puting capabilities which are closer to the edge of the Internet and to where data are

produced and consumed (e.g., personal devices, access points, smart network gateways,

base stations, switches, and micro-datacenters). The fruitful interplay between Cloud

and Edge resources aims at realizing a Cloud-IoT continuum (Puliafito et al . 2019), also

commonly known as Fog computing (Yousefpour et al . 2019).

Meanwhile, the ongoing evolution of network technologies, namely software-defined

networking (SDN) (Nguyen et al . 2017) and network function virtualization (NFV)

(Mijumbi et al . 2015), is targeting a more effective usage of network resources for con-

taining deployment and operational costs while coping with dynamic traffic demands,

including requirements for delivering customized IoT-enabled services (Baktir et al .

2017).

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068421000016
https://orcid.org/0000-0002-4159-8761
mailto:stefano.forti@di.unipi.it
mailto:antonio.brogi@unipi.it
mailto:federica.paganelli@unipi.it
https://doi.org/10.1017/S1471068421000016


2 S. Forti et al.

On one hand, SDN decouples network control plane functions (e.g., routing decisions)

from data plane functions (i.e., actual packet forwarding). The SDN control plane can

leverage a logically centralized management view of network resources to make informed

control decisions, and the data plane Application Programming Interface (API) of net-

work devices to fully program packet forwarding. Thus, SDN permits defining policies for

more agile and cost-effective network operations, for example, on-demand and QoS-aware

traffic flow management, and optimized resource sharing/partitioning.

On the other hand, NFV permits realizing complex network services as chains of virtual

network functions (VNFs), having each function (e.g., firewall, NAT, video optimizer)

implemented as a software application that can be installed and run on commodity

hardware, virtual machines, or containers. Each VNF can be seen as an independently

deployable application service, which can be chained (viz. composed) with others so to

apply their functionalities over data flows steered through them by means of SDN-enabled

programmable forwarding devices.

In this context, to fully release the potential of combining Edge and Cloud computing

paradigms with new generation networks, novel models and methodologies should be

devised in support of decision-making when deploying VNF chains that enable IoT ap-

plications (Alhussein et al . 2018). The problem of placing VNF chains consists of jointly

determining:

– suitable VNF placements over the available infrastructure (viz. mapping from each

VNF to the node that will host it at run time), so to guarantee fulfilling all IoT

(i.e., sensors and actuators), hardware, and security requirements of each virtual

service function, and

– suitable routing of traffic flows from one function to the other (viz. between the

nodes that will host them at run time), so to satisfy end-to-end bandwidth and

latency constraints.

Both decisions concern what is known as VNF placement (Addis et al . 2015), or VNF

chaining and embedding (Alhussein et al . 2018), and the corresponding problems are

NP-hard (Sun et al . 2016). In order to solve these problems in Edge computing scenarios,

new peculiarities of Edge infrastructures should be considered that were not considered

in Cloud-only settings.

First and foremost, the edge of the Internet is characterized by the presence of resource-

constrained (sometimes battery-powered) and heterogeneously capable devices, which

communicate via wired and wireless communication technologies. This leads to a poten-

tially high uncertainty and to variations in the available infrastructure for what concerns

both the availability of resources (e.g., due to node workload variations) and the QoS of

the communication links (e.g., due to traffic variations).

Second, as an extension to the Cloud, Edge computing will inherit from it many

security threats, while including its peculiar ones (Farris et al . 2019). On one hand,

the number of security enforcement points will increase by allowing local processing of

private data closer to the IoT sources. On the other hand, new infrastructures will have

to face brand new threats for what concerns the physical vulnerability of devices. Indeed,

VNF deployments to Edge infrastructures will include accessible (Edge or IoT) devices

that may be easily hacked, stolen, or broken by malicious users (Ni et al . 2018). As

highlighted by Cziva et al . (2018), most of the existing work on VNF placement in Cloud

scenarios, as well as preliminary work targeting Edge computing, solved the problem only

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 3

considering static infrastructure conditions. For what concerns security aspects, to the

best of our knowledge, only a few works (Fischer et al . 2017; Dwiardhika and Tachibana

2019; Shameli Sendi et al . 2018) have been proposed that consider them when deciding on

VNF placement and SDN-enabled routing in Cloud-Edge scenarios (Farris et al . 2019).

In this article, we present a simple, yet general, probabilistic declarative methodology

and a (heuristic) backtracking strategy to model and solve the VNF placement problem

in dynamic Cloud-Edge computing scenarios, while considering hardware, IoT, security,

bandwidth, and end-to-end latency requirements of the VNF chain to be deployed. The

methodology has been open-sourced by means of the probabilistic logic programming lan-

guage ProbLog (De Raedt and Kimmig 2015) in the prototype EdgeUsher1 and also allows

to easily specifying and considering placement constraints (i.e., affinity and anti-affinity

among functions). The main novel contribution of this work, exploiting a probabilistic

declarative description of the VNF chain placement problem, is in that EdgeUsher permits

determining VNF chain placements that are likely to ensure high QoS guarantees, secu-

rity, and service reliability over dynamic Cloud-Edge infrastructures that will be needed

to achieve the ultimate NFV and SDN vision (Laghrissi and Taleb 2018).

Since it follows a declarative implementation, EdgeUsher is more concise, easier to un-

derstand, modify and maintain with respect to procedural solutions, and it shows a high

level of flexibility, being extensible and capable of accommodating the possibly evolving

needs of Cloud-IoT scenarios. Besides, EdgeUsher is intrinsically explainable as it derives

proofs for input user queries by relying on state-of-the-art resolution engines, and it can

be easily extended to justify why a certain management decision was taken at run time

in the spirit of explainable AI.

The rest of this article is organized as follows. After formulating the VNF chain place-

ment problem and highlighting the main features of the proposed solutions (Section 2),

the Prolog implementation of EdgeUsher is incrementally described by means of a series of

examples (Section 3). Then, the probabilistic heuristic version of EdgeUsher – exploiting

ProbLog capabilities – is described (Section 4) and shown at work over a lifelike moti-

vating example (Section 5). A discussion of related work (Section 6) and some lines for

future work (Section 7) conclude the article2.

2 VNF chain placement: problem statement

As aforementioned, the joint adoption of NFV and SDN technologies is considered by

many as a promising approach to support next-gen IoT applications in Edge and Fog envi-

ronments (Massonet et al. 2017; Farris et al . 2019). Indeed, those networking technologies

are expected to enable the flexible matching of diverse IoT traffic requirements, ranging

from low-latency and deployment costs minimization (Wang et al . 2018; Leivadeas et al .

2019) to security mechanisms coping with threats in dynamic distributed environments

(Farris et al . 2019; Puliafito et al . 2019).

In this context, our work aims at contributing to solve the problem of placing VNF

chains into VNF- and SDN-enabled Cloud-Edge infrastructures. Such a problem can be

generally stated as follows:

1 Available at: https://github.com/di-unipi-socc/EdgeUsher
2 Appendix A, available as online supplementary material, lists the whole EdgeUsher code and sketches
a proof of termination and correctness of the proposed solving strategies.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://github.com/di-unipi-socc/EdgeUsher
https://doi.org/10.1017/S1471068421000016


4 S. Forti et al.

Let C be a VNF chain with a set of deployment requirements RD on its composing

VNFs and a set of communication requirements RC to suitably support communica-

tion flows between VNFs, and let I be a distributed Cloud-Edge infrastructure made

of computational nodes and communication links.

Eligible solutions to the VNF chain placement problem are joint mappings:

(i) from each VNF of C to some infrastructure node in I, meeting all requirements

in RD, and

(ii) from each communication flow of C to a valid routing path across the links of I,

connecting consecutive VNFs mapped as per (i), and meeting all requirements

in RC .

Eligible solutions can include nodes hosting multiple VNFs and links supporting mul-

tiple communication flows, if the involved nodes and link capacities can meet cumu-

lative requirements of the VNFs and flows they have to support as per (i) and (ii),

respectively.

This work tackles the described problem following a probabilistic declarative methodol-

ogy, based on the logic programming paradigm. As we will show throughout this article,

the proposed EdgeUsher methodology and prototype input:

– a description of one (or more) VNF chain(s) along with its (their) hardware, IoT,

and security requirements (i.e., RD), and minimum bandwidth, maximum end-to-

end latency, and security requirements between consecutive VNFs in the specified

chain(s) (i.e., RC), and

– a probabilistic description of the corresponding hardware, IoT, security, bandwidth,

and latency capabilities offered by the available Cloud-Edge infrastructure (i.e., I).

Based on those, EdgeUsher outputs a ranking of all eligible solutions for the input instance

of the VNF chain placement problem. Solutions include the mapping of each chain VNF

to its deployment nodes and the routing of traffic flows between those deployment nodes.

The ranking of the eligible solutions considers how likely is a certain placement to satisfy

all chain requirements as the infrastructure state (probabilistically) varies.

3 EdgeUsher methodology

In this section, we incrementally describe our methodology to solve the VNF chain place-

ment problem, by following the declarative implementation3 of our Prolog prototype,

EdgeUsher. Working increments of the prototype are assessed against small running ex-

amples, excerpted from a lifelike motivating example on a university video surveillance

distributed application, which we fully describe and use to assess EdgeUsher in Section 5.

Such examples refer to a video surveillance application (consisting of various service

functions) to be deployed on a campus network connecting various buildings and, more

specifically, computing nodes with different hardware, IoT, and security capabilities.

3 Prototype and examples code is also available at: https://github.com/di-unipi-socc/EdgeUsher

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://github.com/di-unipi-socc/EdgeUsher
https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 5

3.1 Matching a VNF to an infrastructure node

3.1.1 Hardware requirements

In the first place, we consider a single VNF to deployed to a single infrastructure node by

matching only its hardware requirements. In this scenario, a VNF can be simply declared

as in:

1 service(FId , HWReqs).

where FId is an identifier of the considered function and HWReqs is an integer representing

the amount of a generic hardware unit needed by the function to run properly.

Specularly, an infrastructure node to match a VNF with can be easily declared as in:

1 node(NodeId , HWCaps).

where NodeId is an identifier of the considered node and HWCaps is an integer representing

the availability of hardware units at that node.

In these very simple settings, the matching of a VNF with a node that can support its

hardware requirements can be simply achieved as in:

1 servicePlacement(FId ,NId):- service(FId , HWReqs),

2 node(NId , HWCaps),

3 hwReqsOK(HWReqs , HWCaps).

4 hwReqsOK(HWReqs , HWCaps) :- HWCaps >= HWReqs.

Example. Consider a service function feature_extr that analyses video frames

streamed through it and extracts features for further analyses and requires 5 hardware

units to run properly. It can be declared as:

1 service(feature_extr , 5).

Now, consider an infrastructure made of the following two nodes (named after the build-

ing they are installed at):

1 node(studentCenter , 8).

2 node(briggsHall , 2).

Naturally, querying the predicate servicePlacement(feature_extr, N) will result in

the possibility of deploying feature_extr to the studentCenter node, which features

eight hardware units, but not to the briggsHall node, which only features two hardware

units. �

3.1.2 IoT requirements

We can extend the representation of a VNF by including its requirements in terms of IoT

devices it needs to sense data from or act upon in response to cyber-physical triggers. By

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


6 S. Forti et al.

assuming that IoT devices can be uniquely identified by a symbolic name, we can now

declare a VNF as in:

1 service(FId , HWReqs , TReqs).

where TReqs is a list [IoTId1, ..., IoTIdk] of all the identifiers of the IoT devices –

sensors and actuators – that need to be reachable by the deployment node of the function

identified by FId.

Analogously, we extend the representation of an infrastructure node as in:

1 node(NodeId , HWCaps , TCaps).

where TCaps is the list of the identifiers of the IoT devices – sensors and actuators – that

the node reaches out directly.

The servicePlacement/2 predicate defined before can be simply extended with a check

on the IoT requirements as in:

1 servicePlacement(FId ,NId):- service(FId , HWReqs , TReqs),

2 node(NId , HWCaps , TCaps),

3 hwReqsOK(HWReqs , HWCaps),

4 thingsReqsOK(TReqs , TCaps).

5 % hwReqsOK /2 definition

6 thingsReqsOK(TReqs , TCaps):- subset(TReqs , TCaps).

Example. Consider a service function cctv driver that requires one hardware unit

to run properly and to directly reach a CCTV system identified by video1. It can be

declared as:

1 service(cctv_driver , 1, [video1 ]).

Now, consider an infrastructure made of the following two nodes:

1 node(parkingServices , 2, [video1 ]).

2 node(briggsHall , 2, []).

Naturally, querying the predicate servicePlacement(cctv_driver, N) will result in the

possibility of deploying cctv driver to the parkingServices node, which reaches out the

required CCTV system and features enough hardware resources. �

3.1.3 Security requirements

The logic-based formulation of the VNF placement problem that we are giving permits to

naturally express security policies for a given VNF. To this end, we assume that different

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 7

Fig. 1. Security capabilities for Edge computing.

infrastructure nodes can feature different security capabilities, expressed in terms of a

common vocabulary of Edge computing security capabilities, as per the taxonomy4 of

Figure 1 (Forti et al . 2020).

Such a taxonomy can be used to express security policies for a given VNF as either a

list or an AND/OR composition of security properties, over a common dictionary.

Example. As an example, a security policy for a function collecting sensitive data at

the edge of the Internet, could be expressed as the list:

1 [ anti_tampering , access_control]

requiring both anti-tampering and access control capabilities to be available, as the de-

ployment node can be easily accessed, stolen, or broken by malicious users.

As another example, a video processing functionality that stores and analyses possibly

sensitive data for a long time might require enforcing the following AND/OR policy:

1 and(access_control , or(obfuscated_storage , encrypted_storage))

which ensures the presence of an access control mechanism and of at least one data

storage protection mechanism. �

4 The example taxonomy can be changed or extended so to include new security categories and third-
level security capabilities as soon as normative security frameworks will get established in Cloud-Edge
scenarios.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


8 S. Forti et al.

Building on top of this, we can now extend the representation of a VNF by including its

security requirements as in:

1 service(FId , HWReqs , TReqs , SecReqs).

where SecReqs is the security policy associated with the function identified by FId, rep-

resented as a list or an AND/OR composition of atomic security policies.

Analogously, we extend the representation of an infrastructure node as in:

1 node(NodeId , HWCaps , TCaps , SecCaps).

where SecCaps is the list of security capabilities featured by the node, expressed in terms

of a common dictionary.

Finally, the servicePlacement/2 predicate defined before can be simply extended with

a check on the security policies as in:

1 servicePlacement(FId ,NId):- service(FId , HWReqs , TReqs , SecReqs),

2 node(NId , HWCaps , TCaps , SecCaps),

3 hwReqsOK(HWReqs , HWCaps),

4 thingsReqsOK(TReqs , TCaps),

5 secReqsOK(SecReqs , SecCaps).

6

7 % hwReqsOK(HwReqs , HwCaps) definition

8 % thingsReqsOK(TReqs , TCaps) definition

9

10 secReqsOK ([],_).

11 secReqsOK ([SR|SRs], SecCaps) :- subset ([SR|SRs], SecCaps).

12 secReqsOK(and(P1 ,P2), SecCaps) :- secReqsOK(P1, SecCaps),

13 secReqsOK(P2, SecCaps).

14 secReqsOK(or(P1 ,P2), SecCaps) :- secReqsOK(P1, SecCaps);

15 secReqsOK(P2, SecCaps).

16 secReqsOK(P, SecCaps) :- atom(P), member(P, SecCaps).

Example. Consider a service function cctv driver that requires one hardware unit to

run properly to directly reach a CCTV system identified by video1, and the presence

of either anti-tampering capabilities or an access control mechanism at the deployment

node, or both. It can be declared as:

1 service(cctv_driver , 1, [video1], or(anti_tampering , access_control)).

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 9

Now, consider an infrastructure made of the following two nodes that reach out the same

CCTV system (video1) but feature different security capabilities:

1 node(parkingServices , 2, [video1],

2 [authentication , anti_tampering , wireless_security , obfuscated_storage ]).

3 node(parkingServices2 , 4, [video1],

4 [authentication , wireless_security , obfuscated_storage ]).

Querying the predicate servicePlacement(cctv_driver, N) will result in the possibility

of deploying cctv driver to the parkingServices node, as parkingServices2 do not

feature anti-tampering nor access control capabilities, despite satisfying all VNF require-

ments on hardware resources and IoT. �

3.2 Matching a VNF chain to infrastructure nodes

At this stage, it is possible to easily specify chains of virtual network service functions

and their hardware, IoT, network QoS, and security requirements. Indeed, a VNF chain

can be declared as:

1 chain(ChainID , ServiceFunctionIDs).

where ChainID uniquely identifies the chain and ServiceFunctionIDs lists the identifiers

of all VNF composing the chain.

In these settings, it is then possible to extend and exploit the servicePlacement pred-

icate so to determine the placement of an entire chain, by placing one-by-one all services

that compose it. This new behavior is achieved by the placement/2 predicate that follows

1 placement(Chain , Placement) :-

2 chain(Chain , Services),

3 servicePlacement(Services , Placement , []).

4

5 servicePlacement ([], [], _).

6 servicePlacement ([S|Ss], [on(S,N)|P], AllocatedHW) :-

7 service(S, HWReqs , TReqs , SecReqs),

8 node(N, HWCaps , TCaps , SecCaps),

9 HW_Reqs =< HW_Caps ,

10 thingReqsOK(TReqs , TCaps),

11 secReqsOK(SecReqs , SecCaps),

12 hwReqsOK(HWReqs , HWCaps , N, AllocatedHW , NewAllocatedHW),

13 servicePlacement(Ss , P, NewAllocatedHW).

14

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


10 S. Forti et al.

15 % thingReqsOK(TReqs , TCaps) definition

16 % secReqsOk(SecReqs , SecCaps) definition

17

18 hwReqsOK(HWReqs , _, N, [], [(N, HWReqs)]).

19 hwReqsOK(HWReqs , HWCaps , N, [(N,A)|As], [(N,NewA)|As]) :-

20 HWReqs + A =< HWCaps , NewA is A + HWReqs.

21 hwReqsOK(HWReqs , HWCaps , N, [(N1,A1)|As], [(N1,A1)|NewAs]) :-

22 N \== N1 , hwReqsOK(HWReqs , HWCaps , N, As , NewAs).

The new servicePlacement/2 predicate inputs the list of Services in the chain and

returns an eligible Placement of them to the available infrastructure. In doing so, not

only it checks that hardware (line 9), IoT (line 10), and security requirements (line 11)

of each VNF are satisfied, but also it checks that cumulative hardware requirements of

VNFs mapped to a same infrastructure node N do not exceed the overall capacity of the

node. To this end, the Prolog program relies on an extended version of the hwReqsOK

predicate (line 12, lines 18–22) to update the accumulator list AllocatedHW added as

a third parameter in the servicePlacement/3 predicate to keep track of the hardware

resources as per the placement being built.

Example. As an example, consider a simple chain made of three VNFs that streams

video footage from a CCTV system toward a feature extraction service function capable

of identifying events of interests such as unauthorized vehicles access or fire and sending

them to a lightweight analytics function for more accurate pattern recognition. Such a

chain can be declared as in:

1 chain(ucdavis_cctv , [cctv_driver , feature_extr , lw_analytics ]).

2 service(cctv_driver , 1,[video1],

3 or(anti_tampering ,access_control)).

4 service(feature_extr , 3,[],

5 and(access_control ,or(obfuscated_storage ,encrypted_storage))).

6 service(lw_analytics , 5,[],

7 and(access_control ,and(host_IDS ,or(obfuscated_storage ,encrypted_storage)))).

Then, consider an infrastructure declaration with the following three nodes, featuring

heterogeneous hardware, IoT, and security capabilities:

1 node(parkingServices , 1, [video1], [authentication , anti_tampering ,

wireless_security ,obfuscated_storage ]).

2 node(westEntry , 1, [], [authentication , anti_tampering ,wireless_security ,

obfuscated_storage ]).

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 11

3 node(lifeSciences , 4, [video4], [access_logs , authentication , access_control ,

iot_data_encryption , firewall , host_IDS , pki , wireless_security ,

encrypted_storage ]).

4 node(firePolice , 8, [video2 , alarm1], [access_logs , access_control ,

authentication , backup ,resource_monitoring , iot_data_encryption , firewall ,

host_IDS , pki , wireless_security , encrypted_storage ]).

Querying the predicate placement(cctv_driver, P) will output the following

placements:

placement(ucdavis_cctv,[on(cctv_driver,parkingServices),

on(feature_extr,firePolice),

on(lw_analytics,firePolice)])

placement(ucdavis_cctv,[on(cctv_driver,parkingServices),

on(feature_extr,lifeSciences),

on(lw_analytics,firePolice)])

where cctv_driver is always placed on the parkingServices so to reach out the required

CCTV system, while feature_extr and lw_analytics can be placed either both on the

firePolice node (which satisfies their cumulative hardware requirements of eight units),

or on the lifeSciences and firePolice nodes, respectively. �

3.3 Routing traffic flows

As the last step to complete the EdgeUsher prototype, we consider QoS requirements

related to bandwidth allocation and end-to-end latency along a VNF chain. To this end,

we extend the representation of a service with the information on its processing time as in:

1 service(FId , TProc , HWReqs , IoTReqs , SecReqs).

where TProc is the average time – expressed in milliseconds – elapsed between the instant

an input is received by function FId and the instant the corresponding output is ready

to be transmitted to the next function in the chain.

We also extend the representation of a chain so to include the possibility of specifying

bandwidth requirements as directed traffic flows between couple of functions, as in:

1 flow(FId1 , FId2 , BwReq).

where FId1 and FId2 are two VNF identifiers and BWReq is the bandwidth to be allocated

via SDN directives along the path that connects their deployment nodes.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


12 S. Forti et al.

Then, we permit specifying constraints on maximum tolerated latency for (directed)

service paths crossing the functions F1 → F2 → · · · → FN as:

1 maxLatency ([F1, F2 , ..., FN], LatReq).

where LatReq is the end-to-end latency (in ms) not to be exceeded, summing up network

and function processing delays.

Finally, a (point-to-point or end-to-end) link5 connecting NodeA to NodeB which is

available in the considered infrastructure can be declared as:

1 link(NodeA , NodeB , Latency , Bandwidth).

where Latency is the latency experienced over the link (in ms) and Bandwidth is the

transmission capacity it offers (in Mbps).

The definition of the placement predicate illustrated before can be now extended so

to check whether, for a given a Placement output by the service placement step, it is

possible to determine eligible Routes for the chain traffic flows across function services.

This is done by the flowPlacement(Placement, ServiceRoutes) predicate as in

1 placement(Chain , Placement , Routes) :-

2 chain(Chain , Services),

3 servicePlacement(Services , Placement , []),

4 flowPlacement(Placement , Routes).

5

6 % servicePlacement(S, P, AllHw) definition

7

8 flowPlacement(Placement , ServiceRoutes) :-

9 findall(flow(S1 , S2, Br), flow(S1, S2 , Br), ServiceFlows),

10 flowPlacement(ServiceFlows , Placement , [], ServiceRoutes , [],

S2S_latencies),

11 maxLatency(LChain , RequiredLatency),

12 latencyOK(LChain , RequiredLatency , S2S_latencies).

13

14 flowPlacement ([], _, SRs , SRs , Lats , Lats).

15 flowPlacement ([flow(S1 , S2, _)|SFs], P, SRs , NewSRs , Lats , NewLats) :-

16 subset ([on(S1,N), on(S2 ,N)], P),

17 flowPlacement(SFs , P, SRs , NewSRs , [(S1,S2 ,0)|Lats], NewLats).

5 EdgeUsher also permits specifying asymmetric links, for which upload and download QoS differ (e.g.,
like xDSL or 3/4G).

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 13

18 flowPlacement ([flow(S1, S2 , Br)|SFs], P, SRs , NewSRs , Lats , NewLats) :-

19 subset ([on(S1 ,N1), on(S2,N2)], P), N1 \== N2,

20 path(N1 , N2 , 2, [], Path , 0, Lat),

21 update(Path , Br, S1 , S2 , SRs , SR2s),

22 flowPlacement(SFs , P, SR2s , NewSRs , [(S1 ,S2 ,Lat)|Lats], NewLats).

23

24 path(N1 , N2 , Radius , Path , [(N1, N2 , Bf)|Path], Lat , NewLat) :-

25 Radius > 0, link(N1 , N2 , Lf, Bf), NewLat is Lat + Lf.

26 path(N1 , N2 , Radius , Path , NewPath , Lat , NewLat) :-

27 Radius > 0, link(N1 , N12 , Lf , Bf), N12 \== N2 , \+ member ((N12 ,_,_,_),

Path),

28 NewRadius is Radius -1, Lat2 is Lat + Lf ,

29 path(N12 , N2, NewRadius , [(N1 , N12 , Bf)|Path], NewPath , Lat2 , NewLat).

30

31 update ([],_,_,_,SRs ,SRs).

32 update ([(N1 , N2 , Bf)|Path], Br , S1 , S2 , SRs , NewSRs) :-

33 updateOne ((N1 , N2 , Bf), Br , S1 , S2 , SRs , SR2s),

34 update(Path , Br, S1 , S2 , SR2s , NewSRs).

35

36 updateOne ((N1, N2 , Bf), Br , S1 , S2 , [], [(N1 , N2, Br , [(S1 ,S2)])]) :-

37 Br =< Bf.

38 updateOne ((N1, N2 , Bf), Br , S1 , S2 , [(N1 , N2 , Bass , S2Ss)|SR], [(N1 , N2,

NewBa , [(S1,S2)|S2Ss])|SR]) :-

39 Br =< Bf -Bass , NewBa is Br+Bass.

40 updateOne ((N1, N2 , Bf), Br , S1 , S2 , [(X, Y, Bass , S2Ss)|SR], [(X, Y, Bass ,

S2Ss)|NewSR]) :-

41 (N1 \== X; N2 \== Y),

42 updateOne ((N1 , N2 , Bf), Br , S1 , S2 , SR, NewSR).

43

44 latencyOK(LChain , RequiredLatency , S2S_latencies) :-

45 chainLatency(LChain , S2S_latencies , 0, ChainLatency),

46 ChainLatency =< RequiredLatency.

47

48 chainLatency ([S], _, Latency , NewLatency) :-

49 service(S, S_Service_Time , _, _, _),

50 NewLatency is Latency + S_Service_Time.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


14 S. Forti et al.

51 chainLatency ([S1 ,S2|LChain], S2S_latencies , Latency , NewLatency) :-

52 member ((S1,S2,Lf), S2S_latencies),

53 service(S1, S1_Service_Time , _, _, _),

54 Latency2 is Latency+S1_Service_Time+Lf ,

55 chainLatency ([S2|LChain], S2S_latencies , Latency2 , NewLatency).

The program above first checks bandwidth requirements (line 10) and, afterward, la-

tency requirements (line 11–12). First, a routing satisfying bandwidth constraints is de-

termined by the predicate flowPlacement (line 10) which holds if:

– the services S1 and S2 in between which a flow is established have been placed

onto the same node N (lines 15–17), or

– the services S1 and S2 in between which the flow is established have been placed

onto different nodes N1 and N2 and there exists a path in between those nodes that

supports the bandwidth requirement of the flow (lines 18–22).

The path(N1, N2, Radius, [], Path, 0, NewLat) predicate determines an acyclic

Path of length at most Radius (i.e., maximum hop number) in between N1 and N2, which

features latency Lat (line 20). A path is either a direct infrastructure link between N1

and N2 (lines 24–25), or a route of links that connect them (lines 26–29). It is worth

noting that even when setting the value of Radius to low values K (i.e., 2−3), the found

routing will actually be able to spread a chain of length L over a path of length K × L,

thus extending the chain potential reach. Naturally, it is possible to relax the constraint

on the Radius – incurring in longer execution times – by setting Radius to values larger

than the default one (viz. 2) at line 20.

After a path is found, update checks if the bandwidth requirements of the considered

flow can be supported by such path (lines 31–34). Similarly to hardware allocation, a list

of elements of the form (N1, N2, Bf) is maintained to keep track of the bandwidth Bf

allocated on each link along a certain path and to check whether more flows mapped onto

the same link do not exceed its capacity. Particularly, updateOne scans the list of links

along a path and checks such requirements by accumulating the bandwidth consumed

by all flows routed onto the same link (lines 36–42).

Finally, latencyOK holds if the chain latency – which is computed by summing the

functions processing times of the traversed functions with the latency of the chosen path

(lines 48–55) – is less than or equal to the one required by the specified maxLatency

requirement.

Example. As an example, consider the chain of the previous example, extended with

the following requirements on traffic flows and end-to-end latency:

1 flow(cctv_driver , feature_extr , 15).

2 flow(feature_extr , lw_analytics , 8).

3

4 maxLatency ([ cctv_driver , feature_extr , lw_analytics], 50).

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 15

Then, consider the previous infrastructure declaration completed with the following

links:

1 link(parkingServices , westEntry , 15, 70).

2 link(westEntry , parkingServices , 15, 70).

3

4 link(parkingServices , lifeSciences , 15, 70).

5 link(lifeSciences , parkingServices , 15, 70).

6

7 link(westEntry , firePolice , 15, 70).

8 link(firePolice , westEntry , 15, 70).

Querying the predicate placement(cctv_driver, P, R) will output the following place-

ment and associated routing directives:

placement(ucdavis_cctv,

[on(cctv_driver,parkingServices),

on(feature_extr,firePolice),

on(lw_analytics,firePolice)],

[(westEntry, firePolice, 15, [(cctv_driver, feature_extr)]),

(parkingServices, westEntry, 15, [(cctv_driver, feature_extr)])])

where cctv_driver is placed on the parkingServices and feature_extr and

lw_analytics can only be placed on the firePolice node. Indeed, the previously de-

termined placement of feature_extr to the lifeSciences node is not eligible anymore

as the path that connects the lifeSciences node to the firePolice node cannot sup-

port the end-to-end latency of 50 ms. It is worth noting that the traffic flow of 15

Mbps between cctv_driver and feature_extr follows a path passing through westEntry,

which connects parkingServices to firePolice. On the other hand, as feature_extr

and lw_analytics are mapped onto the same node, no routing is output for the 8 Mbps

traffic flow in between them. �

3.4 (Anti-)affinity constraints and partial solutions

It is worth noting that EdgeUsher allows users to easily specify placement constraints in

the form of function affinity or anti-affinity requirements among functions. Affinity con-

sists in placing two or more functions in the same physical node, thus reducing latency

and communications costs between VNFs, while anti-affinity prevents two or more VNFs

from sharing the same resources (Oechsner and Ripke 2015). The possibility to add affin-

ity and anti-affinity constraints is useful since it allows specifying deployment location

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


16 S. Forti et al.

requirements needed for performance, economic, resilience, legislative, and privacy issues

(Bouten et al . 2016).

In the case of affinity constraints, the user can force the mapping of two (or more)

functions to the same node, as for instance in the query:

1 placement(Chain , [on(F1,N1), on(F2 ,N2), on(F3 ,N2)], Routes).

stating that F2 and F3 must be mapped on a same node N2. Analogously, anti-affinity

constraints can be specified by queries of the form:

1 placement(Chain , [on(F1,N1), on(F2 ,N2), on(F3 ,N3)], Routes), N2 \== N3).

imposing that F2 and F3 must be mapped on two different nodes N2 and N3.

Finally, users can specify partial deployments and/or routes and use EdgeUsher to

complete them. This is useful to quickly determine on-demand re-configurations of part

of a chain in case this is affected by infrastructure failures or malfunctioning (e.g., crash

of a node hosting a function service) without recomputing (and eventually migrating)

the whole chain.

3.5 Complexity analysis

EdgeUsher relies on logic programming backtracking mechanism to determine the eligible

VNF placement(s) and traffic routing(s) for a VNF chain to be deployed to an Edge

infrastructure.

The worst-case time complexity of servicePlacement is clearly O(ns), where n is the

number of nodes in the available infrastructure and s is the number of services in the input

service chain. The worst-case time complexity of flowPlacement is O(bRadius), where b

is the average out-degree of nodes in the infrastructure, and in any case it is bounded

by O(nRadius) (when dealing with fully connected network topologies). These hold both

in the case we aim at determining a single eligible placement or routing (and only one

exists, and it is the last one found via backtracking), and in the case in which we aim at

determining all eligible placements or routings (which naturally requires to fully explore

the placement and routing search spaces, independently of the number of existing eligible

solutions).

Now, the worst-case case for determining an eligible placement and routing happens

when a single eligible solution exists and it corresponds to combining the last found place-

ment with the last found routing. In such a case, the combination of servicePlacement

with flowPlacement incurs in a time complexity of O(ns × nRadius) = O(ns+Radius). As

per the above considerations, the worst-case time complexity of the approach described

until now is exponential, and so is the exhaustive exploration of the search space.

4 Probabilistic modeling

In this section, we first recapitulate on the probabilistic logic programming language

ProbLog (Section 4.1). Then, we illustrate how the probabilistic capabilities of ProbLog

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 17

permit enhancing the Prolog EdgeUsher prototype so to consider dynamic infrastructure

conditions when solving the VNF embedding problem (Section 4.2). Besides, we will

show how ProbLog meta-reasoning capabilities can be exploited to reduce the exp-time

complexity discussed before (Section 4.3).

4.1 Background: the ProbLog language

Probabilistic logic programming extends logic programming by enabling the representa-

tion of uncertain information. More specifically, logic programming allows representing

relations among entities, while probability theory can model uncertainty over attributes

and relations (Riguzzi 2018). To implement both the model and the matching strategy,

we used the ProbLog language (Kimmig et al . 2011; De Raedt and Kimmig 2015), a

probabilistic extension of Prolog.

Prolog programs are finite sets of rules of the form:

a :- b1, ... , bn.

stating that a holds when b1 ∧ · · · ∧ bn holds, where n≥0 and a, b1, ..., bn are atomic

literals. Rules with empty conditions (n=0) are also called facts.

ProbLog programs are logic programs in which some of the facts are annotated with

probabilities. A ProbLog fact, such as

p::a.

states that a holds with probability p. Non-annotated facts are assumed to always hold

with probability 1.

Problog also allows to use semicolons to express OR conditions in rules. For instance,

a :- b1; ... ; bn.

states that a holds when b1 ∨ · · · ∨ bn holds.

Finally, annotated disjunctions, like

p1::a1; p2::a2; ...; pK::aK.

state that at most one of the facts a1, ..., aK holds with the associated probability6.

Each ProbLog program defines a probability distribution over logic programs where a

fact p::a. is considered true with probability p and false with probability 1−p. The

6 If T =
∑K

i=1 pi < 1, ProbLog assumes the presence of an implicit null choice which states with
probability 1− T that none of the K options holds.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


18 S. Forti et al.

ProbLog engine (De Raedt and Kimmig 2015) determines the success probability of a

query q as the probability that q has a proof, given the distribution over logic programs.

Intuitively, a ProbLog program leverages input probability distributions to analyze

all possible Prolog programs (i.e., worlds) that could be generated according to them.

Assuming that Ω(q) is the set of possible worlds W that entail a valid proof for a certain

query q (i.e., Ω(q) = {W | W |= q}), the ProbLog engine computes the probability p(q)

that q holds as:

p(q) =
∑

W∈Ω(q)

∏

f∈W

p(f),

where f are facts within a possible world and p(f) is the probability they are labeled

with.

4.2 Probabilistic EdgeUsher

The usage of ProbLog permits to naturally specify probabilistic profiles of both nodes and

links by exploiting annotated disjunctions. Such language constructs permits to capture

the intrinsic dynamicity and uncertainty of Edge infrastructures by relying on probability

distributions based on historically monitored data.

An infrastructure node can then be declared as in:

1 P1::node(NId , HwP1 , IoTCapsP1 , SecCapsP1);

2 P2::node(NId , HWP2 , IoTCapsP2 , SecCapsP2);

3 ...;

4 Pk::node(NId , HWPk , IoTCapsPk , SecCapsPk).

where
∑k

i=0 Pi � 1 and Pi is the probability that a particular node configuration (with

respect to available hardware, IoT devices, and security capabilities) occurs.

Analogously, links between nodes can be specified as in:

1 P1::link(N1, N2 , LatP1 , BwP1);

2 P2::link(N1, N2 , LatP2 , BwP2);

3 ...;

4 Pk::link(N1, N2 , LatPk , BwPk)

where
∑k

i=0 Pi � 1 and Pi is the probability that a particular link QoS configuration

(with respect to end-to-end latency and available bandwidth) occurs.

It is worth noting that three different types of facts (and any mixture of them) can con-

stitute the input infrastructure description in the ProbLog version of EdgeUsher. Indeed,

a user can exploit

(a) non-probabilistic facts when using real-time monitoring or averaged monitoring

data (i.e., avoiding annotating facts), as shown in Section 3,

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 19

(b) a single-probability facts that are just annotated with an indication of their relia-

bility (e.g., 0.99::(cloudX, 30, [], [firewall]).), or

(c) a fully-probabilistic facts annotated with complete probability distributions describ-

ing the infrastructure dynamics based on aggregate historical monitoring data.

Naturally, running EdgeUsher in ProbLog with probabilistic input enhances output pre-

cision via ranking eligible VNF placements and traffic routings according to how well

they are expected to satisfy the chain requirements as the infrastructure state (proba-

bilistically) varies.

Example. As an example, consider the chain of the previous example, to be matched

to the following probabilistic infrastructure description:

1 0.2:: node(parkingServices , 2, [video1], [authentication , anti_tampering ,

wireless_security ,obfuscated_storage ]);

2 0.8:: node(parkingServices , 1, [video1], [authentication , anti_tampering ,

wireless_security ,obfuscated_storage ]).

3

4 0.2:: node(westEntry , 2, [], [authentication , anti_tampering ,wireless_security ,

obfuscated_storage ]);

5 0.8:: node(westEntry , 1, [], [authentication , anti_tampering ,wireless_security ,

obfuscated_storage ]).

6

7 0.2:: node(lifeSciences , 8, [video4], [access_logs , authentication ,

access_control , iot_data_encryption , firewall , host_IDS , pki ,

wireless_security , encrypted_storage ]);

8 0.8:: node(lifeSciences , 4, [video4], [access_logs , authentication ,

access_control , iot_data_encryption , firewall , host_IDS , pki ,

wireless_security , encrypted_storage ]).

9

10 0.2:: node(firePolice , 16, [video2 , alarm1], [access_logs , access_control ,

authentication , backup , resource_monitoring , iot_data_encryption , firewall

, host_IDS , pki , wireless_security , encrypted_storage ]);

11 0.8:: node(firePolice , 8, [video2 , alarm1], [access_logs , access_control ,

authentication , backup ,resource_monitoring , iot_data_encryption , firewall ,

host_IDS , pki , wireless_security , encrypted_storage ]).

12

13 0.98:: link(parkingServices , westEntry , 15, 70).

14 0.98:: link(westEntry , parkingServices , 15, 70).

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


20 S. Forti et al.

15 0.98:: link(parkingServices , lifeSciences , 15, 70).

16 0.98:: link(lifeSciences , parkingServices , 15, 70).

17 0.98:: link(westEntry , firePolice , 15, 70).

18 0.98:: link(firePolice , westEntry , 15, 70).

where nodes feature different hardware capabilities7 according to a probability distribu-

tion and links are assumed to be wireless links with an associated reliability of 98%.

Querying the predicate placement(cctv_driver, P, R) will output the following place-

ments, the associated routing directives, and a probability value ranking them as per how

well they can satisfy all chain requirements:

placement(ucdavis_cctv,

[on(cctv_driver,parkingServices),

on(feature_extr,firePolice),

on(lw_analytics,firePolice)],

[(westEntry, firePolice, 15, [(cctv_driver, feature_extr)]),

(parkingServices, westEntry, 15, [(cctv_driver, feature_extr)])]): 0.9604

placement(ucdavis_cctv,

[on(cctv_driver,parkingServices),

on(feature_extr,lifeSciences),

on(lw_analytics,lifeSciences)],

[(parkingServices, lifeSciences, 15, [(cctv_driver, feature_extr)])]): 0.196

where cctv_driver is placed on the parkingServices and feature_extr and lw_analy-

tics can be placed both on the firePolice node or on the lifeSciences node, that now

has a 20% probability of featuring enough resources to host them. The best choice for the

service chain deployer is still represented by the first output VNF chain placement and

routing. It is worth noting that additional outputs with lower probability values could

be kept as a backup deployments, when their associated probabilities exceed a desired

threshold. �

4.3 Complexity analysis and heuristics

As per the considerations we have made in Section 3.5, the algorithmic time complexity

of the approach described until now is exponential, that is, O(ns+Radius). Besides, the

7 For the sake of the example, we limit the probabilistic variations to hardware capabilities. Of course,
EdgeUsher allows to associate with each probability a different node configuration also for what concerns
IoT devices, that can temporarily fail or disconnect, and security countermeasures, that could be
activated/deactivated depending on contextual factors, for example, to save residual battery power.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 21

probabilistic reasoning on disjoint clauses requires running EdgeUsher over an exponential

number of possible worlds with a worst-case time complexity of O(kn+m) where k is the

average number of disjoint clauses per each of the n+m facts denoting the n infrastructure

nodes and the m infrastructure links, respectively. For instance, in the case k = 2, the

overall complexity increases to O(2n+m × ns+Radius). Naturally, such time complexity

becomes unbearable for very large infrastructures and for long service chains. Hence, we

extended the prototype with a heuristic based on the probabilistic modeling we gave for

the infrastructure capabilities.

The heuristic version of EdgeUsher allows users to specify two threshold values that are

used to prune the search space whenever the probability of satisfying the chain hardware

or bandwidth requirements, respectively, falls below them. Such pruning is implemented

via the ProbLog subquerying system which is used to evaluate the probabilities of the

servicePlacement (i.e., PHw) and the path (i.e., PQoS) goals during the search for eligible

placements, and to check them against the user-specified thresholds (i.e., THw and THw).

As soon as a candidate solution being built by the ProbLog engine is associated with

a probability lower than the user-set thresholds (and, thus, will not suitably satisfy the

VNF chain requirements), the heuristic version of EdgeUsher stops searching along the

corresponding path, hence reducing search times.

Particularly, the illustrated meta-reasoning behavior is implemented by simple exten-

sions of the placement and flowPlacement predicates, as in

1 placement(Chain , Placement , ServiceRoutes , THw , TQoS) :-

2 chain(Chain , Services),

3 subquery(servicePlacement(Services , Placement), PHw),

4 PHw >= THw , % meta -reasoning on servicePlacement /2

5 flowPlacement(Placement , ServiceRoutes , TQoS).

6

7 flowPlacement(Placement , ServiceRoutes , TQoS) :-

8 findall(flow(S1, S2 , Br), flow(S1 , S2 , Br), ServiceFlows),

9 flowPlacement(ServiceFlows , Placement , [], ServiceRoutes , [],

S2S_latencies , TQoS),

10 maxLatency(LChain , RequiredLatency),

11 latencyOK(LChain , RequiredLatency , S2S_latencies).

12

13 flowPlacement ([],_,SRs ,SRs ,Lats ,Lats ,TQoS).

14 flowPlacement ([flow(S1, S2 , _)|SFs],P,SRs ,NewSRs ,Lats ,NewLats ,TQoS) :-

15 subset ([on(S1 ,N), on(S2,N)], P),

16 flowPlacement(SFs ,P,SRs ,NewSRs ,[(S1 ,S2 ,0)|Lats],NewLats ,TQoS).

17 flowPlacement ([flow(S1, S2 , Br)|SFs],P,SRs ,NewSRs ,Lats ,NewLats ,TQoS) :-

18 subset ([on(S1 ,N1), on(S2 ,N2)], P),

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


22 S. Forti et al.

19 N1 \== N2,

20 subquery(path(N1 , N2 , 2, [], Path , 0, Lat), PQoS),

21 PQoS >= TQoS , % meta -reasoning on path/7

22 update(Path , Br, S1 , S2 , SRs , SR2s),

23 flowPlacement(SFs ,P,SR2s ,NewSRs ,[(S1 ,S2 ,Lat)|Lats],NewLats ,TQoS).

The new placement predicate exploits ProbLog built-in subquery/2 to check whether

historical variations in the behavior of deployment nodes might lead to insufficient (hard-

ware, IoT, and security) resource availability for a certain placement of the services

composing the VNF chain (lines 3–4). Similarly, the heuristic version of flowPlacement

checks whether the historical variations in the behavior of communication links might

intolerably affect the routing of traffic flows along a certain path (lines 20–21).

Example. Running the heuristic prototype over the previous example and requiring

that both deployment and communication requirements of output placement are met in

90% of the cases, that is, setting THw = TQoS = 0.9, we only obtain as a result the first

output placement which has an associated probability of 0.9604. �

5 EdgeUsher at work

In this section, we illustrate a lifelike motivating example (Section 5.1), and we discuss

the EdgeUsher prototype performance and the effectiveness of the proposed heuristics over

such motivating example (Section 5.2).

5.1 Motivating example

Hereinafter, we describe a lifelike example to better introduce the VNF placement prob-

lem and to highlight some of the related challenges. The example extends those that have

been used throughout the paper to illustrate the proposed approach. We consider a por-

tion of the topology of the Edge computing infrastructure deployed at UC Davis, inspired

from Ning et al . (2019), and sketched in Figure 2. Such infrastructure is a wireless-optical

broadband access network (WOBAN) and consists of ten heterogeneously capable edge

nodes.

We assume that available edge nodes feature either 2, 4, 8, or 16 hardware units8 and

that they are subject to workload variations as per the distributions reported in Figure

3. For instance, nodes with two hardware units are totally free in 20% of the cases, while

they only have one free hardware unit in the remaining 80%. We also assume that differ-

ent node types feature different security capabilities as reported in Figure 3, expressed in

terms of a common vocabulary of Edge computing security capabilities, as per the tax-

onomy of Figure 1. Last, but not least, the nodes featuring 16 GB of memory (viz., the

Fire & Police and the Student Centre devices) connect the Edge network to a Cloud data

center through the same Internet Service Provider (ISP) node (not shown in the figure).

8 For the sake of readability, we only consider generic hardware units. Extensions to account for different
resource types (e.g., RAM, CPU, storage) are straightforward.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 23

Fig. 2. Example Edge infrastructure at UC Davis (Ning et al . 2019).

Fig. 3. Example node types.

Analogously, we assume that network links have the bandwidth and latency profiles

listed in Figure 4. For instance, on-campus wireless connections may be not available in

2% of the cases, and feature 70 Mbps bandwidth and 15 ms latency in the remaining 98%.

We suppose that a new smart CCTV system has been installed at the Transportation

& Parking Services building, and that it continuously captures video footage and streams

it to a CCTV System Driver deployed to the edge node which is in physical proximity.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


24 S. Forti et al.

Fig. 4. Example link QoS profiles.

Fig. 5. Example VNF chain.

A VNF chain (Figure 5) must be deployed to support the video surveillance IoT sys-

tem with a running application. The chain application, when suitably deployed, permits

detecting events of interest (e.g., unauthorized access, fire, anomalous behavior) by ana-

lyzing video streams and by promptly notifying an alarm system installed at the Fire &

Police station on campus. Such a VNF chain includes

• a Feature Extraction service function that applies image processing techniques to

isolate potentially interesting video portions, and

• a Lightweight Analytics service function that further processes such video portions

by performing object recognition, by detecting anomalies or potentially dangerous

situations, and by sending appropriate notifications to the Alarm Driver deployed

at the Police Station.

To work as expected, the end-to-end latency from the CCTV System Driver to the Alarm

Driver must not exceed 150 ms latency, as shown in Figure 5. Additionally, for each link

between two VNFs, a minimum bandwidth requirement is specified, as shown in the fig-

ure. The traffic originated by the CCTV system is also collected by a WAN Optimizer

service function that improves video data delivery efficiency (e.g., compression) and for-

wards video data to a Storage service. Complex video analytics are then performed with

more relaxed latency constraints by a Video Analytics service function which updates,

when needed, the model used by the system to recognize potentially dangerous events.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 25

Fig. 6. Example of VNF requirements and processing times.

Figure 6 lists the requirements for the deployment of each VNF in terms of hardware

units, connection to IoT devices (sensors or actuators), and security policies, along with

the expected processing time of each chain function. As a further (soft) requirement,

VNF chain deployers at UC Davis would prefer the Video Analytics and Storage service

functions be placed on the same node (affinity) to reduce communication costs.

Overall, both the available Cloud-Edge infrastructure and the VNF chain to be de-

ployed on campus can be naturally declared in the input format exploited by EdgeUsher.

In fact, deploying the described chain to the infrastructure available at UC Davis implies

solving the VNF placement problem, that is, deciding how to map a VNF graph on top

of an infrastructure substrate made of heterogeneous Edge and Cloud nodes and com-

munication links, so that hardware, IoT, and end-to-end network QoS requirements are

all satisfied.

Furthermore, the infrastructure is a dynamic environment and we assume it being sub-

ject to node workload variations and changing network conditions as per the probability

distributions (possibly obtained from historical monitoring data (Forti et al . 2019)) we

described in this section. Such changes can indeed affect deployment performance and

turn momentarily optimal solutions into bad or unfeasible ones, potentially leading to

unsatisfactory application QoS, and application downtime or unavailability.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


26 S. Forti et al.

Fig. 7. Declaration of a link in the different input files.

As we will show in the next section, EdgeUsher methodology permits determining VNF

placement (i.e., function mappings and flow routes) and evaluating their performance

against probabilistic infrastructure variations in this scenario. In the next section, after

discussing solutions with this first VNF placement, we will illustrate how the deployers at

UC Davis can exploit our methodology to determine a further placement for the dashed

part of the chain in Figure 5, handling a video stream for the second CCTV system

deployed at the Mann Lab, and joining the first chain at the WAN Optimiser service

function.

5.2 Motivating example: experiments

We started by looking for eligible placements of the VNF chain supporting the CCTV

system installed at the Parking Services building. For the purpose of the experiments9,

we first run the non-heuristic EdgeUsher over three different inputs (of the types (a)–(c)

illustrated in Section 4.2) for the infrastructure description:

(a) a non-probabilistic description that only considers the most probable values of each

probability distribution without indicating the associated probabilities (i.e., for

both node hardware and link QoS profiles),

(b) a single-probability description of the infrastructure that accounts only for the high-

est probability value of each distribution (i.e., one probability value per each node

or link), and

(c) a complete fully-probabilistic description of the infrastructure that includes all prob-

ability distributions available for nodes and links.

Figure 7 shows an example of the same link fact in the non-probabilistic, single-probability,

and probabilistic infrastructure descriptions10.

Figure 8 shows the obtained results in terms of number of generated eligible place-

ments and computation time11 needed to obtain those. Figure 9 shows one of the best

placements obtained, which features 98% probability of complying to all hardware, IoT,

security, bandwidth, and end-to-end latency requirements of the input chain.

9 The experiments were run on a commodity laptop provided with an Intel Core i5-6200U CPU
(2.30GHz) and 8 GB of RAM, running Ubuntu 18.04.2 LTS, ProbLog 2.1.0.36, and Python 3.6.

10 The three input files are available at: https://github.com/di-unipi-socc/EdgeUsher/tree/master/infra
11 Timings obtained by averaging results over 15 executions for each case.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://github.com/di-unipi-socc/EdgeUsher/tree/master/infra
https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 27

Fig. 8. Results with EdgeUsher without heuristics.

Fig. 9. Best placement for the first chain (links are annotated with the bandwidth allocated to
chain traffic flows).

It is worth noting that the prototype runs fairly fast on the non-probabilistic12 and on

the single-probability infrastructure, which do not suffer from the additional combina-

torial complexity that ProbLog incurs in, when evaluating (the probability distributions

expressed as) annotated disjunctions in the fully-probabilistic infrastructure description.

We will use the results obtained by the non-heuristic prototype over the fully-probabilistic

description of the Edge infrastructure at UC Davis as a baseline to evaluate the perfor-

mance of the heuristic prototype.

Thus, we run the heuristic EdgeUsher over the fully-probabilistic description of the Edge

infrastructure at UC Davis. For the sake of simplicity, we set both thresholds (i.e., the

one on node requirements THW and the one on network QoS TQoS) to a value T that was

varied during the experiments in the range [0.1, 0.8] with a step of 0.1. Figure 10 shows

the obtained results in terms of number of generated eligible placements and execution

times10 needed to obtain those.

The results show that the employed heuristics considerably reduces the search space

and, thus, the execution time needed to determine eligible VNF placements and routing.

12 The non-heuristic prototype can be run also in traditional Prolog environments to determine eligible
placements in non-probabilistic infrastructure conditions. In this case, a first placement solution is
returned instantaneously.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


28 S. Forti et al.

Fig. 10. Results with EdgeUsher with heuristics.

Particularly, the fully-probabilistic description of the UC Davis infrastructure can be

handled in a time which shows a speed-up between 15 and 214 with respect to the

exhaustive prototype and still returns a subset of the optimal results. Besides, with

thresholds set to 0.8, EdgeUsher determines six eligible placements for the VNF chain

supporting the CCTV system. Four of such placement solutions have a probability of

meeting all set requirements of 96%, while the remaining two of 98%. All output solutions

fall within the best solutions generated also by the non-heuristic prototype, when it is

run over the complete infrastructure description.

We then included an affinity constraint between the Storage and the Video Analytics

service functions, and we run the prototype again over the fully-probabilistic input with

T = 0.8. As a result, execution time halved with respect to the execution without such

constraint, reaching around 24 s. The placement of Figure 9 is still output as one of

the best possible when forcing the affinity constraint. In this case, both the Storage and

the Video Analytics are deployed to the available Cloud node. The highlighted links –

along with their labels – show the routing path associated with the placement and the

bandwidth to be allocated to traffic flows mapped on each infrastructure link. Such piece

of information could be actually used to instruct the network (e.g., via SDN controllers)

so to allocate a suitable amount of bandwidth to each flow.

Afterward, assuming the first chain was deployed as in Figure 9, EdgeUsher was ex-

ploited to check whether it was possible to extend the deployment by placing anew the

dashed part of the chain for a second CCTV system installed at the Mann Lab. By

querying again the heuristic prototype, seven new possible VNF placements were ob-

tained in around 22 s. All output solutions featured a 96% probability of meeting all

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 29

Fig. 11. Alternative placements for the second chain (links are annotated with the bandwidth
allocated to chain traffic flows).

chain constraints. Four of such solutions placed services as sketched in Figure 11 (a),

the remaining three as in Figure 11 (b), other routings – which are not shown – were

possible. It is worth noting that the deployers might consider using one of the output

solutions and keep some of the others as possible backups to guarantee chain functioning

in case of device failures or overloading, or in case of network congestion.

6 Related work

SDN and NFV technologies are gaining increasing interest for their potential benefits

in hybrid Cloud-Edge environments (Mouradian et al . 2018) and in the IoT (Morabito

and Beijar 2017). Indeed, the concept of Service Function Chaining (i.e., the ordered

interconnection of service functions implemented as VNFs) is expected to enable the

offer of added-value services, like virtual reality or tactile Internet applications, over

next-generation telecommunication networks (Cziva et al . 2018) and in multi-access edge

computing (MEC) scenarios (Taleb et al . 2017; ETSI 2019). Hereinafter, we discuss main

related work in the area of SDN and NFV technologies applied in the IoT.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


30 S. Forti et al.

An SDN and NFV architecture for IoT network and application management is pro-

posed in Ojo et al . (2016). Morabito and Beijar (2017) propose an architecture and a

prototype implementation of an NFV/SDN framework enabling automated and dynamic

network service chaining across Edge (i.e., IoT gateway) and Cloud (i.e., central data

center) domains. SDN and NFV are jointly used in Rametta and Schembra (2017) to

assure service continuity of a video monitoring application deployed over a flying ad hoc

network built on a fleet of drones over rural areas. Drones are used as point of presence

that can host virtual network or application functions.

The problem of placing VNFs on a physical substrate for realizing service chains in a

hybrid Cloud-Edge infrastructure to support IoT applications has only recently emerged.

Previous work has focused on network service placement in VNF infrastructure, consider-

ing intra- and/or inter-DC networks (Pham et al . 2018; Luizelli et al . 2017). A survey on

resource allocation strategies for the network services deployment in VNF infrastructures

has been provided by Gil Herrera and Botero (2016).

Although converged approaches are emerging for managing NFV, Edge, and Fog com-

puting services (van Lingen et al . 2017), traditional VNF placement approaches do not

tackle challenges brought by Fog and Edge computing for IoT applications. These chal-

lenges include heterogeneity of computing nodes, dynamic changes of network, and node

conditions that may turn optimal or quasi-optimal solutions into unfeasible ones, and

security threats, just to mention the main ones. Recent work in the area of application

placement in the Fog have partially begun to tackle these aspects, but open research

problems still exist, such as placement approaches accounting for security aspects and

dynamic infrastructure variations, as discussed in the review by Brogi et al . (2020).

Only few works have addressed the problem of placing VNFs in a hybrid environment

made of Edge and Cloud computing nodes. Leivadeas et al . (2019) model the problem of

Service Function Chain (SFC) placement in hybrid MEC and Cloud environment consid-

ering location requirements posed by VNFs and targeting minimization of deployment

costs and delays. They propose a mixed integer programming formulation of the problem

and a suboptimal approach based on the tabu search meta-heuristic.

SFC placement in IoT scenarios, which demand for low-latency response, high-

throughput processing, and cost-effective resource usage, is tackled in Wang et al . (2018).

The work proposes a linear programming model and an approximation optimization al-

gorithm to achieve deadline and packet rate guarantees while avoiding resource idleness.

However, SFC orchestration is done within the Cloud domain and the availability of

computing resources at the Edge is not considered.

Yala et al . (2018) propose a VNF placement algorithm that optimizes access latency

and service availability in a mixed Edge and Cloud environment for ultra-reliable low-

latency communications (uRLLC) services. The multi-objective optimization problem

is solved by exploiting a genetic algorithm metaheuristic whose achieved performance

is compared against an exact algorithm implemented in CPLEX. Although a network

service is defined as a set of VNFs, chaining constraints are not considered.

Mouradian et al . (2018) tackle application component placement in NFV-based hybrid

Cloud-Edge systems and propose an Integer Linear Programming (ILP) formulation that

represents applications as non-deterministic VNF forwarding graphs. Graphs can be built

using sequence, parallel, selection and loop substructures, and probabilities are used to

model selection and loop iterations.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 31

Although all the above-mentioned works (Leivadeas et al . 2019; Wang et al . 2018; Yala

et al . 2018; Mouradian et al . 2018) consider latency requirements (either as minimization

objective or as constraint), none of them accounts for dynamic variations of network

status, which instead can influence the extent to which QoS requirements are satisfied in

the long run. Neither security aspects are taken into account.

Typically, VNF placement approaches that consider dynamic network conditions either

recompute placement (Cziva et al . 2018), enforce scaling and/or migration actions (Er-

amo et al . 2017; Jia et al . 2018), or try to find a solution that is robust against network

status variations (Cheng et al . 2018). Cziva et al . (2018) formulate the problem of Edge

VNF placement as an ILP to derive latency optimal deployments of VNFs. They also

define a dynamic scheduler that recomputes placement to account for latency variations

on links. This scheduling problem, which consists in selecting the time for placement

recalculation so that unnecessary VNF migrations are prevented and latency violations

are bound, is solved using optimal stopping theory. While Cziva et al . (2018) deals with

placement of single VNFs and infrastructure dinamicity is modeled only in terms of

network latency variation, EdgeUsher handles chains of VNFs and accounts for proba-

bilistic distributions of latency and available bandwidth of links as well as of resource

node capacity. In Cheng et al . (2018), network dynamics are taken into account to find

temporal robust placement solutions. The SFC placement is formulated as a stochastic

resource allocation problem that exploits both currently observed network information

and future variation. However, the work does not tackle latency-aware placement and

the network model does not represent variations of neither network latency nor node

resources, as our work does. Zhu and Huang (2018) formulate a stochastic programming

problem that minimizes the placement cost and aims at achieving high-availability appli-

cation deployments. The problem formulation thus accounts for probabilities of Virtual

Machine (VM), host, and link failures but does not consider latency constraints.

As analyzed in Farris et al . (2019), IoT environments introduce challenging security

threats, ranging from attacks to IoT devices, attacks in IoT-oriented clouds, and networks

to threats in the application layer, such as vulnerabilities in software, data leakage, and

phishing. Risks exist in executing VNFs over third-party infrastructures, and security and

trust criteria have to inform placement decisions (Farris et al . 2019). Indeed, the need

to consider security issues in virtual network embedding (VNE) and VNF placement

problems is gaining increasing interest. A classification of security requirements into

node, link, and topological requirements to be considered in VNE problems is provided

in Fischer et al . (2017). In Dwiardhika and Tachibana (2019), the problem of VNE is

formulated so to account for standard protection provided by substrate nodes and links

(quantitatively referred to as security level). If the level of security is lower than the

security demand, the VNE algorithm tries to place security VNFs (e.g., firewall, deep

packet inspection, and intrusion detection) to improve the offered security level. Optimal

placement of security SFCs is tackled in Shameli Sendi et al . (2018), where the placement

problem is formulated including deployment constraints derived from network security

patterns.

Figure 12 provides a comparative overview of the discussed related work and highlights

how, to the best of our knowledge, this is the first work aiming at addressing VNF chain

placement in a hybrid Cloud-Edge network with latency constraints while accounting

for network status variations and security requirements. In addition, while most related

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


32 S. Forti et al.

Fig. 12. Related work overview.

works rely on linear programming formulations, we adopt a probabilistic declarative

approach. Indeed, declarative approaches have been successfully applied to modeling

and reasoning on problems related to distributed systems other than VNF embedding –

as for instance in Lopes et al . (2010) and Ma et al . (2013).

Last but not least, our prototype is released as open-source software and the experiment

data are also made publicly available.

7 Conclusions and future work

In this article, we have proposed a logic programming approach for solving the problem

of placing VNF chains onto Cloud-Edge infrastructures. To achieve this objective, we

followed three main steps:

1. we gave a concise logic programming formulation (hence, a declarative solution) of

the considered VNF chain placement problem,

2. we extended it with a suitable probabilistic representation of variations in the

available infrastructure capabilities to assess the quality of eligible solutions against

those, and

3. we devised a heuristic to ensure scalability of our prototype and suitably high

quality of output solutions, by immediately pruning out low-quality solutions based

on user-specified thresholds for hardware and QoS requirements.

The obtained prototype, EdgeUsher, returns the eligible deployments of VNF chains to a

hybrid Cloud-Edge infrastructure that guarantee the fulfillment of a set of placement re-

quirements, namely hardware, IoT reachability, bandwidth, latency, and security policies.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 33

Thanks to the declarative approach, additional constraints, such as affinity, anti-affinity,

or placement into a specific node can be easily expressed. Moreover, EdgeUsher implemen-

tation has been fully provided in this paper (around 70 source lines of code) together with

some example of usage. Declarative programming also makes EdgeUsher more flexible and

extensible than procedural solutions, what makes it better suited to accommodate the

ever-changing needs of Cloud-Edge scenarios.

By leveraging ProbLog, EdgeUsher permits specifying and solving the VNF chain place-

ment problem while considering infrastructure variations, by assuming that probabilistic

distributions describing the behavior of computing nodes and infrastructure links are

available. Since probabilistic logic programming is a natural extension of plain logic pro-

gramming, it was straightforward to also consider dynamic infrastructure conditions by

suitably extending (the input of) the Prolog version of EdgeUsher. Such an extension

to account for dynamic settings would have required significantly more effort, if imple-

mented by means of other paradigms. It is worth noting that EdgeUsher could also be

used to quickly evaluate VNF placements computed by alternative placement algorithms

with respect to the infrastructure variability, by calculating their probability of satisfying

hardware and QoS requirements. In this work, we discussed and showcased the use of our

prototype over a lifelike reference scenario, which we also used to assess and epitomize

the performance of EdgeUsher.

Naturally, being the considered problem NP-hard, the worst-case time complexity of

our approach is exponential in the size of the input infrastructure. For larger scenarios,

we thus envision a hierarchical architecture of clusters of edge nodes (partitioned, for

instance, according to administration, application, or geographical criteria) where or-

chestration features are run by one head node and connected to a few Cloud nodes. We

intend to elaborate further on this vision by running EdgeUsher over a domain made by

a few clusters of edge nodes and their associated Cloud nodes. However, the potential

advantage of the probabilistic approach relies on the provisioning of solutions that are

resilient to infrastructure variations over time. Our effort goes toward the direction of

determining placements that are more likely to ensure high QoS guarantees, security, and

service reliability against dynamic infrastructure conditions, thus allowing amortizing the

cost of reasoning over an increased chain life time.

On the direction for future work, we plan to comparatively evaluate our approach

with state-of-the-art solutions that react to infrastructure changes by computing and

executing costly VNF migrations or scaling actions (e.g., (Eramo et al . 2017; Jia et al .

2018)), using simulation as well as testbed environments. The setting up of a small-scale

testbed is undergoing in our campus network, and it will be used to perform tests using

probabilistic distributions derived from real monitoring data (Forti et al . 2021).

EdgeUsher also allows specifying security requirements in terms of logical expressions

over security properties. It is worth noting that some security properties can be provided

exclusively as hardware capabilities (e.g., anti-tampering), while other ones could be im-

plemented also as software and deployed as VNFs (e.g., firewall). This option opens up

to the possibility of adaptively inserting required security VNFs when needed, which we

also plan investigating in the near future. Besides, we envision enhancing EdgeUsher with

continuous reasoning capabilities (Forti and Brogi 2020) to further tame exp-time com-

plexity at run time, automatic techniques to perform parameter tuning of the heuristic

thresholds (e.g., via machine learning), and a user-friendly GUI to ease user interactions

with the prototype.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000016


34 S. Forti et al.

Acknowledgments

This work has been partly supported by the project “DECLWARE: Declarative method-

ologies of application design and deployment”(PRA 2018 66), funded by University of

Pisa, Italy, and by the project “GIÒ: a Fog computing testbed for research & education”,

funded by the Department of Computer Science of the University of Pisa, Italy.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068421000016.

References

Abbas, N., Zhang, Y., Taherkordi, A. and Skeie, T. 2018. Mobile edge computing: A survey.
IEEE Internet of Things Journal 5, 1, 450–465.

Addis, B., Belabed, D., Bouet, M. and Secci, S. 2015. Virtual network functions placement
and routing optimization. In 2015 IEEE 4th International Conference on Cloud Networking
(CloudNet). IEEE, 171–177.

Alhussein, O., Do, P. T., Li, J., Ye, Q., Shi, W., Zhuang, W., Shen, X., Li, X. and Rao,

J. 2018. Joint VNF placement and multicast traffic routing in 5G core networks. In 2018
IEEE Global Communications Conference (GLOBECOM). IEEE, 1–6.

Baktir, A. C., Ozgovde, A. and Ersoy, C. 2017. How can edge computing benefit from
software-defined networking: A survey, use cases, and future directions. IEEE Communications
Surveys & Tutorials 19, 4, 2359–2391.

Bouten, N., Claeys, M.,Mijumbi, R., Famaey, J., Latré, S. and Serrat, J. 2016. Semantic
validation of affinity constrained service function chain requests. In IEEE NetSoft Conference
and Workshops, NetSoft 2016, Seoul, South Korea, June 6–10, 2016. IEEE, 202–210.

Brogi, A., Forti, S., Guerrero, C. and Lera, I. 2020. How to place your apps in the fog:
State of the art and open challenges. Software: Practice and Experience 50, 5, 719–740.

Cheng, X., Wu, Y., Min, G. and Zomaya, A. Y. 2018. Network function virtualization in
dynamic networks: A stochastic perspective. IEEE Journal on Selected Areas in Communica-
tions 36, 10, 2218–2232.

Cziva, R., Anagnostopoulos, C. and Pezaros, D. P. 2018. Dynamic, latency-optimal vNF
placement at the network edge. In IEEE INFOCOM 2018 – IEEE Conference on Computer
Communications. 693–701.

De Raedt, L. and Kimmig, A. 2015. Probabilistic (logic) programming concepts. Machine
Learning 100, 1, 5–47.

Dwiardhika, D. and Tachibana, T. 2019. Virtual network embedding based on security level
with VNF placement. Security and Communication Networks 2019. Article ID 5640134.

Eramo, V., Miucci, E., Ammar, M. and Lavacca, F. G. 2017. An approach for service
function chain routing and virtual function network instance migration in network function
virtualization architectures. IEEE/ACM Transactions on Networking 25, 4, 2008–2025.

ETSI. 2019. Multi-access Edge Computing (MEC); Framework and Reference Architecture.
Tech. Rep. ETSI GS MEC 003 V2.1.1, ETSI. January.

Farris, I., Taleb, T., Khettab, Y. and Song, J. 2019. A survey on emerging SDN and
NFV security mechanisms for IoT systems. IEEE Communications Surveys Tutorials 21, 1
(Firstquarter), 812–837.

Fischer, A., Kühn, R., Mandarawi, W. and de Meer, H. 2017. Modeling security re-
quirements for VNE algorithms. In Proceedings of the 10th EAI International Conference on

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

http://doi.org/10.1017/S1471068421000016
http://doi.org/10.1017/S1471068421000016
https://doi.org/10.1017/S1471068421000016


Probabilistic QoS-aware Placement of VNF Chains at the Edge 35

Performance Evaluation Methodologies and Tools. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium,
149–154.

Forti, S. and Brogi, A. 2020. Continuous reasoning for managing next-gen distributed appli-
cations. In Proceedings 36th International Conference on Logic Programming (Technical Com-
munications), ICLP Technical Communications 2020, (Technical Communications) UNICAL,
Rende (CS), Italy, 18–24th September 2020, F. Ricca, A. Russo, S. Greco, N. Leone, A. Ar-
tikis, G. Friedrich, P. Fodor, A. Kimmig, F. A. Lisi, M. Maratea, A. Mileo, and F. Riguzzi,
Eds. EPTCS, vol. 325, 164–177.

Forti, S., Ferrari, G.-L. and Brogi, A. 2020. Secure cloud-edge deployments, with trust.
Future Generation Computer Systems 102, 775–788.

Forti, S., Gaglianese, M. and Brogi, A. 2021. Lightweight self-organising distributed mon-
itoring of Fog infrastructures. Future Generation Computing Systems 114, 605–618.

Forti, S., Ibrahim, A. and Brogi, A. 2019. Mimicking fogdirector application management.
SICS Software-Intensive Cyber-Physical Systems 34, 2, 151–161.

Gil Herrera, J. and Botero, J. F. 2016. Resource allocation in NFV: A comprehensive
survey. IEEE Transactions on Network and Service Management 13, 3, 518–532.

Jia, Y., Wu, C., Li, Z., Le, F. and Liu, A. 2018. Online scaling of NFV service chains across
geo-distributed datacenters. IEEE/ACM Transactions on Networking 26, 2, 699–710.

Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S. and Rocha, R. 2011. On the imple-
mentation of the probabilistic logic programming language ProbLog. Theory and Practice of
Logic Programming 11, 2–3, 235–262.

Laghrissi, A. and Taleb, T. 2018. A survey on the placement of virtual resources and virtual
network functions. IEEE Communications Surveys & Tutorials 21, 2, 1409–1434.

Leivadeas, A., Kesidis, G., Ibnkahla, M. and Lambadaris, I. 2019. VNF Placement Opti-
mization at the Edge and Cloud. Future Internet 11, 3, 69.

Lopes, N. P., Navarro, J. A., Rybalchenko, A. and Singh, A. 2010. Applying prolog to
develop distributed systems. Theory and Practice of Logic Programming 10, 4–6, 691–707.

Luizelli, M. C., da Costa Cordeiro, W. L., Buriol, L. S. and Gaspary, L. P. 2017. A
fix-and-optimize approach for efficient and large scale virtual network function placement and
chaining. Computer Communications 102, 67–77.

Ma, J., Le, F., Wood, D., Russo, A. and Lobo, J. 2013. A declarative approach to dis-
tributed computing: Specification, execution and analysis. Theory and Practice of Logic Pro-
gramming 13, 4–5, 815–830.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F. and Boutaba, R.

2015. Network function virtualization: State-of-the-art and research challenges. IEEE Com-
munications surveys & tutorials 18, 1, 236–262.

Morabito, R. and Beijar, N. 2017. A Framework Based on SDN and Containers for Dy-
namic Service Chains on IoT Gateways. In Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems, HotConNet ’17. ACM, New York, NY, USA,
42–47.

Mouradian, C., Kianpisheh, S. and Glitho, R. H. 2018. Application component placement
in NFV-based hybrid cloud/fog systems. In 2018 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). IEEE, 25–30.

Nguyen, V.-G., Brunstrom, A., Grinnemo, K.-J. and Taheri, J. 2017. SDN/NFV-based
mobile packet core network architectures: A survey. IEEE Communications Surveys & Tuto-
rials 19, 3, 1567–1602.

Ni, J., Zhang, K., Lin, X. and Shen, X. 2018. Securing fog computing for internet of things
applications: Challenges and solutions. IEEE Comm. Surveys & Tutorials 20, 1, 601–628.
https://doi.org/10.1109/COMST.2017.2762345.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1109/COMST.2017.2762345
https://doi.org/10.1017/S1471068421000016


36 S. Forti et al.

Ning, Z., Kong, X., Xia, F., Hou, W. and Wang, X. 2019. Green and sustainable cloud
of things: Enabling collaborative edge computing. IEEE Communications Magazine 57, 1,
72–78.

Oechsner, S. and Ripke, A. 2015. Flexible support of VNF placement functions in openstack.
In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft). IEEE,
1–6.

Ojo, M., Adami, D. and Giordano, S. 2016. A SDN-IoT architecture with NFV implemen-
tation. In 2016 IEEE Globecom Workshops (GC Wkshps). IEEE, 1–6.

Pham, C., Tran, N. H., Ren, S., Saad, W. and Hong, C. S. 2018. Traffic-aware and energy-
efficient VNF placement for service chaining: Joint sampling and matching approach. IEEE
Transactions on Services Computing, 1–1.

Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A. and Rana, O. 2019. Fog comput-
ing for the internet of things: A survey. ACM Transactions on Internet Technology 19, 2,
18:1–18:41.

Rametta, C. and Schembra, G. 2017. Designing a softwarized network deployed on a fleet of
drones for rural zone monitoring. Future Internet 9, 1.

Riguzzi, F. 2018. Foundations of Probabilistic Logic Programming. River Publishers.

Shameli Sendi, A., Jarraya, Y., Pourzandi, M. and Cheriet, M. 2018. Efficient provi-
sioning of security service function chaining using network security defense patterns. IEEE
Transactions on Services Computing , 1–1.

Sun, Q., Lu, P., Lu, W. and Zhu, Z. 2016. Forecast-assisted NFV service chain deployment
based on affiliation-aware VNF placement. In 2016 IEEE Global Communications Conference
(GLOBECOM). IEEE, 1–6.

Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. and Sabella, D. 2017. On
multi-access edge computing: A survey of the emerging 5G network edge cloud architecture
and orchestration. IEEE Communications Surveys & Tutorials 19, 3, 1657–1681.

van Lingen, F., Yannuzzi, M., Jain, A., Irons-Mclean, R., Lluch, O., Carrera, D.,
Perez, J. L.,Gutierrez, A.,Montero, D.,Marti, J.,Maso, R. and Rodriguez, A. J. P.
2017. The Unavoidable Convergence of NFV, 5G, and Fog: A Model-Driven Approach to
Bridge Cloud and Edge. IEEE Communications Magazine 55, 8, 28–35.

Wang, J., Qi, H., Li, K. and Zhou, X. 2018. PRSFC-IoT: A performance and resource aware
Orchestration system of service function chaining for Internet of Things. IEEE Internet of
Things Journal 5, 30, 1400–1410.

Yala, L., Frangoudis, P. A. and Ksentini, A. 2018. Latency and availability driven VNF
placement in a MEC-NFV environment. In 2018 IEEE Global Communications Conference
(GLOBECOM), 1–7.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A.,
Kong, J. and Jue, J. P. 2019. All one needs to know about fog computing and related edge
computing paradigms: A complete survey. Journal of Systems Architecture 98, 289–330. ISSN
1383-7621. https://doi.org/10.1016/j.sysarc.2019.02.009.

Zhu, H. and Huang, C. 2018. Edgeplace: Availability-aware placement for chained mobile edge
applications. Transactions on Emerging Telecommunications Technologies 29, 11, e3504.

https://doi.org/10.1017/S1471068421000016 Published online by Cambridge University Press

https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1017/S1471068421000016

	Introduction
	VNF chain placement: problem statement
	EdgeUsher methodology
	Matching a VNF to an infrastructure node
	Matching a VNF chain to infrastructure nodes
	Routing traffic flows
	(Anti-)affinity constraints and partial solutions
	Complexity analysis

	Probabilistic modeling
	Background: the ProbLog language
	Probabilistic EdgeUsher
	Complexity analysis and heuristics

	EdgeUsher at work
	Motivating example
	Motivating example: experiments

	Related work
	Conclusions and future work
	References

