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Abstract

Precondition inference is a non-trivial problem with important applications in program analysis
and verification. We present a novel iterative method for automatically deriving preconditions
for the safety and unsafety of programs. Each iteration maintains over-approximations of the
set of safe and unsafe initial states, which are used to partition the program’s initial states
into those known to be safe, known to be unsafe and unknown. We then construct revised
programs with those unknown initial states and iterate the procedure until the approximations
are disjoint or some termination criteria are met. An experimental evaluation of the method on a
set of software verification benchmarks shows that it can infer precise preconditions (sometimes
optimal) that are not possible using previous methods. It is ”under consideration for acceptance
in TPLP”.

1 Introduction

Precondition analysis infers input conditions that establish runtime properties of inter-

est (for example, a sufficient precondition for safety is a set of initial states, each of

which is guaranteed to be safe with respect to given safety properties). Applications in-

clude program verification, symbolic execution, debugging, and program comprehension.

Derivation of exact preconditions (excluding no good runs and including no bad runs) is

undecidable, so the aim is to derive preconditions that are general enough to be useful

in practice. We approach the problem by iteratively refining over-approximations of safe

and unsafe states. For this, constrained Horn clauses (CHCs) are convenient, as they

can model imperative programs and assertions in a uniform way (Peralta et al. 1998;

Grebenshchikov et al. 2012; Gurfinkel et al. 2015; De Angelis et al. 2017).

Consider the program in Fig. 1. The left box shows a fragment in C, the right box shows

its CHC representation, encoding reachable states. C variables are represented by logical

variables (capital letters). The clause c1 specifies the initial states of the program via the

predicate init which is always reachable. Similarly, c2 and c3 encode the reachability of

the while loop via the predicate wh. Clause c2 states that the loop is reachable if init is
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int main(int a, int b) {
while (a ≥ 1) {
a = a− 1; b = b− 1;
}
assert (b ≥ 0);
}

c1. init(A, B).
c2. wh(A, B)← init(A, B).
c3. wh(A, B)← A0 ≥ 1, A = A0 − 1,

B = B0 − 1, wh(A0, B0).
c4. error← A < 1, B < 0, wh(A, B).
c5. exit0← A < 1, B ≥ 0, wh(A, B).

Fig. 1: Running example: (left) original program, (right) translation to CHCs

reachable while c3 states that the loop is (re-)reachable from the end of its own body

(recursive case). The last two clauses represent the properties of the program. Clause

c4 states that an “unsafe or error” state is reached if B < 0 upon loop exit (encoded by

error), and the clause c5 states that the program terminates gracefully or reaches a safe

state if B ≥ 0 (encoded by exit0). The program is unsafe if it reaches error for some

input and is safe if none of the input reaches error. (The semantics of assert(c) is if(c)

SKIP else ERROR.)

Clearly the program terminates. Its assertion is violated if the initial conditions on a

and b entail the disjunction (b < 0 ∧ a ≤ 0) ∨ (a ≥ 1 ∧ a > b). It terminates gracefully

if (b ≥ 0 ∧ a ≤ 0) ∨ (a ≥ 1 ∧ b ≥ a). Automatic derivation of these preconditions is chal-

lenging for at least three reasons:

(i) The desired result is a disjunction of linear constraints—to reach it, we need the

ability to express disjunctive information.

(ii) Invoking an abstract interpreter using forward analysis on the original program

derives a ≥ 1 as invariant for predicate wh, while an abstract interpreter working

backward from a goal such as exit0 derives b ≥ 1 as invariant for the same predi-

cate. That is, without a more sophisticated approach, we lose critical information

about a and b in backward and forward analysis, respectively.

(iii) We need to reason simultaneously about the safe and unsafe states; one type of

information cannot simply be obtained by complementing the other. For example,

the formula (b ≥ 0 ∧ a ≤ 0) ∨ (a ≥ 1 ∧ b ≥ a) that implies safe termination cannot

be obtained by negating the formula (b < 0 ∧ a ≤ 0) ∨ (a ≥ 1 ∧ a > b) that implies

violation of the assertion. Previous approaches (Howe et al. 2004; Moy 2008; Miné

2012; Bakhirkin et al. 2014; Kafle et al. 2018) fail to infer the desired preconditions,

either because they can only infer conjunctive information, or because they rely on

an abstract operation of complementation that comes with some loss of precision.

The method we present addresses the challenges as follows. Challenge (i) is addressed

via partial evaluation that creates a finite number of versions of each predicate, which

is essential for deriving disjunctive invariants. Many loops in typical program patterns,

such as our example, require disjunctive invariants to be established. While there are

techniques that are capable of inferring precise invariants (Sankaranarayanan et al. 2004;

Gulwani et al. 2009; Gupta and Rybalchenko 2009; Beyer et al. 2007), we argue that they

are significantly more complicated, less efficient, and less widely-used than standard ab-

stract interpretation-based techniques for generating conjunctive invariants (Karr 1976;

Cousot and Halbwachs 1978; Miné 2006). In this article we use the standard invariant

generation tools in conjunction with program transformations with the aim of raising

their precision level to that of disjunctive invariant generation tools. Challenge (ii) is
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Fig. 2: Precondition inference: Reality (left), initial approximations (middle), one step

refinement of approximations using Algorithm 1 (right). Arrows represent preconditions

flowing from safe or unsafe final states (bottom) back to corresponding initial states

(top).

addressed via forward and backward abstract interpretation, together with constraint

specialisation. Using this, one can infer a ≥ 1, b ≥ a as invariant for predicate wh, as de-

scribed in Section 3. Challenge (iii) is addressed by concurrently maintaining and refining

approximations of both safe and unsafe states, until the approximations are disjoint or

some termination criterion is met.

Fig. 2 sketches the idea. The leftmost panel reflects reality, showing the set of con-

crete safe and unsafe states, along with the corresponding sets of initial states. Given

a program and a description of the sets of interest (safe and unsafe states), precondi-

tion analysis infers a set of initial states that lead to these sets of interest. Or rather,

it finds over-approximations of the initial sets of states—so these may overlap. Over-

approximations are shown as ellipses in the middle panel, coloured appropriately for safe

and unsafe initial states. Because of approximation, there may be witness traces from

the left ellipse to Unsafe (the dotted arrows) and vice versa. The algorithm aims to re-

duce the ellipses progressively to the point where the ellipses no longer overlap. A single

refinement step that focuses our attention only on the intersection is illustrated in the

rightmost panel.

Our work builds upon the transformation-guided framework of Kafle et al. (2018) and

incorporates a number of program transformations known from the literature, including

• Partial evaluation (Jones et al. 1993): PE wrt. a goal specialises a program for the

given goal; preserving only those derivations that are relevant for deriving the goal.

• Constraint Specialisation (Kafle and Gallagher 2017a) via forward and backward

abstract interpretation (Bakhirkin and Monniaux 2017): This strengthens con-

straints in clauses by exploiting generated invariants, while preserving derivations

of a goal. The effect is to prune paths that are not relevant for deriving the goal.

• Trace Elimination (Kafle and Gallagher 2017b): This eliminates a set of traces from

a program while preserving the rest of traces and serves to refine a program.

Our contribution is to combine these techniques into an iterative framework that can

control the quality of the preconditions for both safety and unsafety. Kafle et al. (2018)

iteratively apply CHC transformations to a program wrt. error, approximating the unsafe

states whose complement yields sufficient preconditions for the safety. A disadvantage of

this is the blind refinement of unsafe states without knowing its frontier with the safe
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states. This misses opportunities to avoid redundant computation as well as to guide the

refinement process at an early stage. We extend that work in a number of directions:

• We model both the safe and unsafe program states, and refine them concurrently,

allowing us to derive preconditions for both safety and unsafety. In addition, we

show how to derive preconditions for both safety and unsafety either from the

original program or one obtained via a sequence of transformations (§3).

• We present an iterative algorithm to refine approximations of these states, each

iteration focusing only on states yet to be shown safe or unsafe (the intersection of

safe and unsafe over-approximations), thus reducing the search space. It has refined

termination criteria to control precision and detect optimality of the preconditions.

• Reasoning simultaneously about safe and unsafe states allows us to derive precon-

dition for non-termination as a complement of necessary preconditions for safety

and unsafety (§4).

• Evaluation shows that we not only infer non-trivial preconditions in slightly more

cases but also infer optimal ones in some cases (§5).

2 Preliminaries

An atom is a formula p(x) where p is a predicate symbol and x a tuple of argu-

ments. A constrained Horn clause (CHC) is a first-order formula written as p0(x0) ←
ϕ, p1(x1), . . . , pk(xk) following Constraint Logic Programming (CLP) standard, where

ϕ is a finite conjunction of quantifier-free constraints on variables xi with respect to

some constraint theory T, pi(xi) are atoms. A constrained fact is a clause of the form

p0(x0)← ϕ, where ϕ is a constraint. We assume the theory T is equipped with a decision

procedure and a projection operator, and that it is closed under negation.

The notation ϕ|V represents the constraint formula ϕ projected onto variable set V

and ϕ |=T ψ (or equivalently |=T ϕ → ψ) to represent ϕ entails ψ over T. Similarly, we

write P `T A when an atom A is derivable from the program P wrt. the theory T.

We use CHCs to encode control flow of C-like programs. Two special predicates, exit0

and error, encode safe and unsafe (error) states, respectively. So exit0 indicates a normal

return; error indicates abnormal termination. The predicate init encodes the set of initial

states. We assume users specify all states of interest by appropriate constructs provided

by the language (e.g., assert(c), return 〈n〉 of C). States not specified by the user (e.g.,

buffer-overflow, floating point exceptions) are not taken into account while generating

CHCs. Hence correctness of the preconditions depends on the user specified set of states.

From here on, when talking about a program, we refer to its CHC representation.

Definition 1 (AND-tree (Gallagher and Lafave 1996))

An AND-tree for a CHC program P is a tree whose nodes are labelled as follows.

1. Each non-leaf node corresponds to a (renamed) clause in P of the form A←
ϕ,A1, . . . , Ak where k > 0. The clause is renamed so that any variables not

appearing in A are fresh. The node is labelled by (A,ϕ). The node has k child

nodes where the ith child corresponds to a clause in P of the form Ai ← ϕi, Bi
where Bi may be empty and is labelled by (Ai, ϕi).

2. Each leaf node corresponds to a (renamed) clause in P of the form A ← ϕ

and is labelled as (A,ϕ).
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Given an AND-tree t, constr(t) is the conjunction of the constraints appearing in the

tree. The tree t is feasible if and only if constr(t) is satisfiable over T.

Definition 2 (Initial clauses and nodes)

Let P be a program with a distinguished predicate pI which we call the initial predicate.

The constrained facts {(pI(x) ← θ) | (pI(x) ← θ) ∈ P} are the initial clauses of P . Let

t be an AND-tree for P . A node labelled by pI(x)← θ is an initial node of t. We extend

the term “initial predicate” and use the symbol pI to refer also to renamed versions of

the initial predicate that arise during clause transformations.

In Fig. 1 the initial predicate is init and the initial clause is init(A, B).

3 Program transformations and preconditions

We now show how to find preconditions for safety and unsafety for a program (original

or obtained via transformation). We limit attention to sets of clauses for which every

AND-tree for exit0 and error (whether feasible or infeasible) has at least one initial node.

Definition 3 (Program with initial states ϕ (P Iϕ) and replaced states ϕ (PRϕ ))

Let P be a program and ϕ a constraint over T. Let P Iϕ be the clauses obtained from P by

replacing the initial clauses {(pI(x)← θi) | 1 ≤ i ≤ k} by {(pI(x)← ϕ∧ θi) | 1 ≤ i ≤ k}.
Similarly, let PRϕ be the set of clauses obtained from P by replacing the initial clauses

{(pI(x)← θi) | 1 ≤ i ≤ k} by {(pI(x)← ϕ)}.

Definition 4 (Necessary/sufficient precondition for safety)

Let P be a program and ϕ a constraint over T. Then

• a constraint ϕ is a necessary precondition (NP) for the safety of P if P `T exit0

entails PRϕ `T exit0. In words, ϕ (possibly true) is an over-approximation of the set

of initial states of P that can reach exit0.

• a constraint ψ is a sufficient precondition (SP) for the safety of P if P Iψ 6`T error.

In words, ψ (possibly false) is an under-approximation of the set of initial states of

P that cannot reach error.

Thus an SP for safety is a constraint that suffices to block derivations of error (given we

assume clauses for which pI is essential for any derivation of error). In practice we would

like to consider SP for safety as a constraint that allows derivations of exit0 and blocks

derivations of error. We define NP (necu(P )) and SP (sufu(P )) for unsafety analogously.

In the following, we show how an NP and an SP can be derived from a set of clauses.

Definition 5 (NP extracted from CHC program P )

Let P be a set of clauses encoding reachable states of a program. The formula∨
{θ | (pI(x)← θ) ∈ P}.

is an NP for both safety and unsafety. We refer to it as necs(P ) when talking about safety

and as necu(P ) when talking about unsafety.

The reason why necs(P ) is an NP for safety is that any feasible AND-tree for P must use

at least one initial clause of P and so the disjunction of constraints from the initial clauses

(although imprecise) is a sound NP for the safety, as well as the unsafety, of P . Using
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this definition, the NPs for the program P in Fig. 1 are necs(P ) = necu(P ) = true (the

set of initial states of the program). Given NPs for a program P , we can find sufficient

preconditions for the safety and unsafety as follows.

Definition 6 (SP extracted from CHC program P )

Let P be a set of clauses encoding reachable states of a program. We define

sufs(P ) = necs(P ) ∧ ¬necu(P )

sufu(P ) = necu(P ) ∧ ¬necs(P )

The former is a sufficient precondition for safety, the latter for unsafety, of P . In the

sequel, we represent necessary and sufficient preconditions by Greek letters ϕ and ψ,

respectively, possibly with subscript u for unsafety and s for safety.

Let ϕc be necs(P ) ∧ necu(P ), denoting the shared region between the (approximate)

safe and unsafe states. A precondition is separating (optimal) if ϕc is unsatisfiable (the

safe and unsafe regions are separated). Then we have sufs(P ) = necs(P ) since necs(P ) |=T
¬necu(P ). That is, necessary and sufficient conditions are the same for the validity of the

assertion. Analogously, we have sufu(P ) = necu(P ).

The shared region characterised by ϕc indicates imprecision of over-approximations—

which we attempt to reduce as much as possible. We achieve this reduction as follows:

1. Construct a revised program P Iϕc
(Def. 3) from P focusing only on the shared region

such that its SP is a valid SP for P (Lemma 3.1).

2. Shrink either of the regions via iterative strengthening of the initial clauses of the

program from where necessary preconditions are derived.

For this we utilize well-known CHC transformations, from the literature on CLP and

Horn clause verification, as outlined below.

Proposition 3.1

Let P be a program, ϕ a constraint and P Iϕ as defined in Def. 3. Let ψ be any SP for the

safety (unsafety) of P Iϕ. Then ψ is also an SP for the safety (unsafety) of P .

1. Partial Evaluation (PE). The PE algorithm we use (Gallagher 2019) produces a poly-

variant specialisation, that is, a finite number of versions of each predicate, which is

essential for deriving disjunctive information as well as for refining the control-flow of

the program (Doménech et al. 2019). The result of applying PE to the example program

in Fig. 1 wrt. error and exit0 is shown in Fig. 3. For details we refer to Gallagher (2019).

A key point is that, owing to polyvariant specialisation, init and wh are split into two

different versions, leading to more precise preconditions as in Eq. (1) (using Def. 5).

ϕu = (B < 0 ∧ A ≤ 0) ∨ A ≥ 1 ≡ B < 0 ∨ A ≥ 1

ϕs = (B ≥ 0 ∧ A ≤ 0) ∨ (A ≥ 1 ∧ B ≥ 0) ≡ B ≥ 0
(1)

2. Constraint Specialisation (CS). CS (Kafle and Gallagher 2017a) of program P wrt.

goal A specialises each constraint ϕ in a clause of P to a constraint ϕ∧ψ while preserving

the derivation of A. Fig. 4 shows application of CS to Fig. 3 (left) wrt. error, and to Fig. 3

(right) wrt. exit0. Note that only clauses that got specialised are shown, and the newly

derived constraints are underlined for readability. The underlined constraints in Fig. 4
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error← B < 0, A ≤ 0, wh 2(A, B).
wh 2(A, B)← B < 0, A ≤ 0, init 2(A, B).
wh 2(A, B)← B < 0, A = 0, C = 1,

B− D = −1, wh 1(C, D).
wh 1(A, B)← A ≥ 1, init 1(A, B).
wh 1(A, B)← A ≥ 1, A− C = −1,

B− D = −1, wh 1(C, D).
init 1(A, B)← A ≥ 1.
init 2(A, B)← A ≤ 0, B < 0.

exit0← B ≥ 0, A ≤ 0, wh 2(A, B).
wh 2(A, B)← B ≥ 0, A ≤ 0, init 2(A, B).
wh 2(A, B)← B ≥ 0, A = 0, C = 1,

B− D = −1, wh 1(C, D).
wh 1(A, B)← A ≥ 1, B ≥ 0, init 1(A, B).
wh 1(A, B)← B ≥ 0, A ≥ 1, A− C = −1,

B− D = −1, wh 1(C, D).
init 1(A, B)← A ≥ 1, B ≥ 0.
init 2(A, B)← B ≥ 0, A ≤ 0.

Fig. 3: Partially evaluated programs: wrt. error (left) and wrt. exit0 (right)

wh 1(A, B)← A > B, A ≥ 1, init 1(A, B).
wh 1(A, B)← A > B, A ≥ 1, A− C = −1,

B− D = −1, wh 1(C, D).
init 1(A, B)← A > B, A ≥ 1.
init 2(A, B)← B < 0, A ≤ 0.

wh 1(A, B)← A ≥ 1, B ≥ A, init 1(A, B).
wh 1(A, B)← B ≥ A, A ≥ 1, A− C = −1,

B− D = −1, wh 1(C, D).
init 1(A, B)← A ≥ 1, B ≥ A.
init 2(A, B)← B ≥ 0, A ≤ 0.

Fig. 4: Constraint specialised programs: wrt. error (left) and wrt. exit0 (right)

(left) are obtained by recursively propagating B < 0, A ≤ 0 top-down from the goal error

and A ≥ 1 bottom-up from the initial clause using program transformation and abstract

interpretation over the domain of convex polyhedra. In more detail, we first compute

the query-answer transformed version (Codish and Søndergaard 2002) of the program

in Fig. 3 (left) wrt. the goal error (thus simulating the top-down computation), then

apply abstract interpretation. An excerpt of the query-answer transformed program (just

enough to show the provenience of the constraint A > B) is shown in Fig. 5.

Since wh 1 q is the only recursive predicate, the rest can be unfolded away, leaving

two clauses: wh 1 q(A, B)← A = 1, B ≤ 0 and wh 1 q(C + 1, D + 1)← wh 1 q(C, D), C ≥ 1.

Abstract interpretation using the polyhedral domain derives A ≥ 1, A > B as invariant for

wh 1 q(A, B) since we have the constraint A = 1, B ≤ 0 in the base case, while A and B are

incremented in lockstep in the recursive case.

The computed invariant A > B for wh 1 q(A,B) in derivations of error is conjoined to

each call of wh 1, since the invariant holds in each such call. The underlined constraint

B ≥ A in Fig. 4 (right) is obtained in similar way. Using these specialised programs, we

derive the necessary preconditions:

ϕu = (B < 0 ∧ A ≤ 0) ∨ (A ≥ 1 ∧ A > B)

ϕs = (B ≥ 0 ∧ A ≤ 0) ∨ (A ≥ 1 ∧ B ≥ A)
(2)

3. Trace Elimination (TE). TE refines a program P by eliminating a set of AND-trees

from P while preserving the rest of its AND-trees. While the elimination of infeasible trees

does not have any effect on preconditions, extra care must be taken while eliminating

feasible ones. Lemma 3.2 allows us to derive a safe precondition in this case.

Definition 7 (θt)

Let P be a program and t a feasible AND-tree derived from P for exit0 or error. Let pI(x)

be the atom label of an initial node of t. Then θt = constr(t)|x is a necessary condition

for t to be feasible.
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wh 2 q(A, B)← B < 0, A ≤ 0.
wh 1 q(A, B)← D < 0, C = 0, A = 1, B = D + 1, wh 2 q(C, D).
wh 1 q(A, B)← C ≥ 1, A = C + 1, B = D + 1, wh 1 q(C, D).

Fig. 5: Excerpt of query clauses corresponding to the program in Fig. 3 (left) starting

from the goal (query) error; the suffix q denotes a query predicate.

Lemma 3.2 (Adapted from Kafle et al. (2018) for AND-tree of exit0)

Let P ′ be the result of eliminating a feasible AND-tree t for exit0 (resp. error) from P .

Then necs(P ) = necs(P
′) ∨ θt (resp. necu(P ) = necu(P

′) ∨ θt), where θt is a constraint

extracted from t (Def. 7).

Observe that the elimination of feasible traces acts as program decomposition. Transfor-

mations such as PE, CS and TE (when used to remove infeasible trees) not only preserve

the goal but also the initial clauses. This allows us to construct a sequence of clauses

P0, P1, . . . , Pm where P = P0 and each element of the sequence is more specialised than

its predecessor wrt. derivations of exit0 (error). As a consequence, the NPs are more

precise. We write P =⇒A P ′ when P ′ is a goal-preserving transformation of P wrt. an

atom A, that is, P |= A iff P ′ |= A. TE (eliminating feasible trees) is a little different,

in that it does not preserve the goal. We abuse the notation and write P =⇒tA P ′ for

transformation of P by eliminating a feasible tree rooted at A, yielding P ′. Lemma 3.2

ensures soundness of preconditions in this case.

Let us now wrap these transformations and their combinations. Let tr and tr-seq be

any functions satisfying the following:

trA〈P,ϕ〉 =


〈P ′, ϕ〉 where P =⇒A P

′

or

〈P ′, ϕ′〉 where P =⇒tA P ′ and ϕ′ = ϕ ∨ θtA(Def. 7)

tr-seqA〈P,ϕ〉 = trnA〈P,ϕ〉 for n ≥ 1

where fn = fn−1 ◦f , with f1 = f . tr-seq allows us to combine the above transformations

in any order and Proposition 3.3 allows us to derive more precise preconditions.

Proposition 3.3

Let P be a program, 〈Ps, ϕs〉 = tr-seqexit0〈P, false〉. Then |=T (necs(Ps) ∨ ϕs)→ necs(P ).

Similarly, if 〈Pu, ϕu〉 = tr-seqerror〈P, false〉, then |=T (necu(Pu) ∨ ϕu)→ necu(P ).

4 An algorithm for precondition inference

We now give an algorithm for computing SPs for safety and unsafety as Algorithm 1

based on the transformations described previously. Input is a set of CHCs (involving

clauses for exit0, error and init) and a sequence of transformations tr-seq. Output is a

pair of SPs for safety and unsafety. The SPs ψs and ψu are initialised to false. The

algorithm aims to weaken these SPs as far as it can. ϕold keeps track of the set of initial

states that are yet to be proven safe or unsafe. Ps and Pu respectively keep track of the

transformations of P with respect to exit0 and error.

In the algorithm, the following operations are carried out in an iterative manner and

possibly in parallel (within the while loop). The instructions on two sides of the boxes can
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Algorithm 1 Inferring sufficient preconditions

1: Input: Program P with clauses for exit0, error and init; and trans. seq. tr-seq.

2: Output: Pair of SPs for the safety and unsafety of P (wrt. exit0 and error).

3: Initialisation: ψs ← false; ψu ← false; Ps ← P ; Pu ← P ;

4: ϕold ← necs(P ) (Definition 4); itr← 0;

5: while true do

6:
〈Ps, θs〉 ← tr-seqexit0〈Ps, false〉 〈Pu, θu〉 ← tr-seqerror〈Pu, false〉
ϕs ← necs(Ps) ∨ θs ϕu ← necu(Pu) ∨ θu

7: ϕnew ← ϕs ∧ ϕu
8: if ϕnew ≡ false then . separating condition reached

9: ψs ← ψs ∨ ϕs ψu ← ψu ∨ ϕu
10: return 〈ψs, ψu〉
11: if ϕold |=T ϕnew then . approximation was not strengthened

12: ψs ← ψs ∨ (ϕs ∧ ¬ϕu) ψu ← ψu ∨ (ϕu ∧ ¬ϕs)
13: return 〈ψs, ψu〉

. refine programs by constraining initial clauses with ϕnew (Def. 3)

14:
ψs ← ψs ∨ (ϕs ∧ ¬ϕu) ψu ← ψu ∨ (ϕu ∧ ¬ϕs)
Ps ← Ps

I
ϕnew

Pu ← Pu
I
ϕnew

15: ϕold ← ϕnew; itr + +;

be executed in parallel. One or more of the transformation of Ps and Pu with respect to

exit0 and error, respectively, are carried out and the NPs are extracted from the resulting

programs (line 6 ). The algorithm terminates and returns an SP if the conjunction of these

NPs is unsatisfiable (line 10, separating) or it is not stronger (wrt. |=T) than ϕold (line

13 ). Otherwise, the algorithm iterates with revised programs obtained by constraining

their initial clauses with the conjunction ϕnew (line 14 ). For this, ϕnew needs to be

converted to DNF that may blow up the number of resulting initial clauses. In our

experiments, the largest size of DNF discovered was 11. Even if all transformations in

the algorithm terminate, it may still not terminate since ϕnew can infinitely be decreased.

But it makes a progress, that is, it explores a strictly smaller set of initial states in each

iteration that have not yet been known safe or unsafe. This is formalised in Proposition

4.1. Observe that each iteration computes valid SPs for the safety and unsafety of the

original program (e.g., line 14 ) and combines them disjunctively with the previous SPs.

Proposition 4.2 ensures that the combination yields valid SPs for the original program.

Proposition 4.1 (Progress and Termination of Algorithm 1)

Algorithm 1 either progresses or terminates.

Proposition 4.2 (Composing Preconditions)

Let Φ be a set of formulas such that each ϕ ∈ Φ is an SP for (un)safety of P . Then
∨

Φ

is also an SP for (un)safety of P .

Proposition 3.3 ensures the correctness of the transformations sequence, Proposition 3.1

ensures that the precondition of P Iϕ is also that of P , and Proposition 4.2 allows us to

combine the preconditions derived in the separate iterations. Together they ensure the

soundness of Algorithm 1:
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error← A < 0, B = 0, wh 2(B, A).
wh 2(A, B)← B < 0, A = 0, C = 1,

B− D = −1, wh 1(C, D).
wh 1(A, B)← A > B, B ≥ 0, A ≥ 1, init 1(A, B).
wh 1(A, B)← A > B, A ≥ 1, A− C = −1,

B− D = −1, wh 1(C, D).
init 1(A, B)← A > B, B ≥ 0.

exit0← A ≥ 0, B = 0, wh 2(B, A).
wh 2(A, B)← B ≥ 0, A = 0, C = 1,

B− D = −1, wh 1(C, D).
wh 1(A, B)← B ≥ A, A ≥ 1, init 1(A, B).
wh 1(A, B)← B ≥ A, A− C = −1,

A ≥ 1, B− D = −1, wh 1(C, D).
init 1(A, B)← B ≥ A, A ≥ 1.

Fig. 6: Constraint specialised programs: wrt. error (left) and wrt. exit0 (right)

Theorem 4.3 (Soundness of Algorithm 1)

Let P be a program annotated with the predicates exit0 (set of safe terminating states),

error (set of unsafe terminating states) and init (set of initial states). If Algorithm 1 returns

a tuple 〈S,U〉, then S and U are the SPs for safety and unsafety of P , respectively, with

respect to the predicates exit0, error and init.

Impact of transformation sequence on preconditions. Let us apply the algorithm

to the program P in Fig. 1. Initially, ϕold = true, the initial state of P . First, we choose

to apply PE wrt. error and wrt. exit0, obtaining the set of CHCs shown in Fig. 3. The

corresponding NPs are given in Eq. (1), from which ϕnew = ϕs∧ϕu ≡ B ≥ 0 ∧ A ≥ 1. Since

ϕnew is satisfiable, the preconditions are not separating. Neither is condition ϕold |=T
ϕnew satisfied, so the algorithm progresses to refinement (line 14-16 ). At this point, we

compute SPs for both the safety and unsafety as below.

ψu = false ∨ ((B < 0 ∨ A ≥ 1) ∧ ¬(B ≥ 0)) ≡ B < 0

ψs = false ∨ (B ≥ 0 ∧ ¬(B < 0 ∨ A ≥ 1)) ≡ B ≥ 0 ∧ A ≤ 0

As the next step, we refine P to P Iϕnew
, in which the clause for init 1 in Fig. 3 gets

strengthened to init 1(A, B)← A ≥ 1, B ≥ 0. The clause for init 2 gets eliminated due to

an unsatisfiable constraint in its body. The refined programs are trivial and are omitted.

In the next iteration, we apply CS with respect to error and exit0, respectively, obtaining

the clauses shown in Fig. 6. Note that the clause wh 2(A, B)← B < 0, A ≤ 0, init 2(A, B)

is removed since it is no longer feasible without the initial clause for init 2.

From these we derive: ϕu = (B ≥ 0 ∧ A > B) and ϕs = (B ≥ A ∧ A ≥ 1). Since we now

have ϕu ∧ ϕs ≡ false, the preconditions are separating and the algorithm terminates.

The final SPs are derived as the disjunction of SPs over the iterations, as follows: ψu =

B < 0 ∨ (B ≥ 0 ∧ A > B) and ψs = (B ≥ 0 ∧ A ≤ 0) ∨ (B ≥ A ∧ A ≥ 1).

If instead we apply CS◦PE to the original program at line 6 (rather than applying

single transformation in each iteration), we obtain separating preconditions in a single

iteration as shown in Eq. (2), where ϕs ∧ ϕu is unsatisfiable. This suggests that a well

chosen transformation sequence may reduce refinement iterations and also avoid the

costly DNF conversion needed at line 14. Based on this, we fix tr-seq to be TE◦CS◦PE

during the experiments. Our experience shows that CS is most effective when performed

after PE which not only performs control-flow refinement of the program but also brings

polyvariant specialisation. TE on the other hand helps decompose problem in addition

to splitting predicates. But since it is an expensive operation, we apply it at last.

Non-termination. The SPs derived by our method may include non-terminating inputs,

that neither lead to safe nor unsafe. Popeea and Chin (2013) treat such inputs as unsafe
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whereas Seghir and Schrammel (2014) ignore them, as do we. However, the modelling

of safe and unsafe terminating states and their over-approximations allow us to reason

about a limited form of non-termination as suggested by Popeea and Chin (2013): Any

input state that is neither in the over-approximation of safe nor unsafe leads to non-

termination assuming we model all terminating (un)safe states.

void main(int a) {
while (a ≥ 0) {
if (a ≤ 9) a++;
else if (a == 10)

a = 5;
else return;
}
assert (false);
}

Fig. 7: Non-termination

We demonstrate this with Fig. 7. The program

does not terminate if a ∈ [0, 10]. We derive ϕu =

a < 0 and ϕs = a ≥ 11 as NPs. Thus the con-

dition satisfying ¬(ϕu ∨ ϕs), that is, a ∈ [0, 10] is

a sufficient precondition for non-termination (which

happens to be the exact condition in this case). It

is obtained as a byproduct of our method; we leave

the primary analysis of non-termination for future

work.

5 Experimental evaluation

Since we model both the safe and unsafe program states and successively refine them to

be able to detect separating or more precise preconditions for the safety and unsafety of

programs, the experiments were designed to better answer the following questions.

• Q1. Does the algorithm allow us to derive separating preconditions in practice?

• Q2. Does refinement allow us to derive more non-trivial or separating preconditions?

• Q3. How does our approach compare to that of state-of-the-art tools for precondi-

tion inference in terms of the quality of the preconditions and performance?

Experimental Setup. We implemented Algorithm 1 (a sequential version) in PI-Horn.1

The implementation applies the sequence TE◦CS◦PE. The tool is written in Ciao Prolog

(Hermenegildo et al. 2012), using PPL (Bagnara et al. 2008) and Yices2 (Dutertre 2014).

Input is a set of CHCs, with exit0, error and init as distinguished predicates. PI-Horn

outputs a pair of SPs for safety and unsafety and are classified as: (i) optimal : the

precondition is both necessary and sufficient (exact); (ii) non-trivial : the precondition is

different from false (but not optimal) and (iii) trivial : the precondition is false.

Experiments were conducted on a MacBook Pro, running OSX 10.11 with 16GB

memory and 2.7 GHz Intel Core i5 processor. We tested our approach with 261 inte-

ger programs (available from https://github.com/bishoksan/PI-Horn/tree/master/

benchmarks) sourced as follows: (i) 150 integer programs from the loop (69) and recur-

sive (81) subcategories of the Integers and Control Flow category of SV-COMP (Beyer

2021); (ii) 83 programs from the DAGGER (Gulavani et al. 2008) and TRACER tools

(Jaffar et al. 2012) and (iii) 28 programs from the literature on precondition inference

and backwards analysis (Bakhirkin et al. 2014; Miné 2012; Moy 2008; Bakhirkin and

Monniaux 2017; Cassez et al. 2017). We are unable to include some benchmarks used

by Kafle et al. (2018) owing to unavailability of their C sources which are needed to

model the exit states. Benchmark set (i) was designed for verification competitions, (ii)

1 “Precondition Inferrer for Horn clauses”, available at https://github.com/bishoksan/PI-Horn.

https://github.com/bishoksan/PI-Horn/tree/master/benchmarks
https://github.com/bishoksan/PI-Horn/tree/master/benchmarks
https://github.com/bishoksan/PI-Horn
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iter opt ntS (Sw) ntU (Uw) ntSU tSU PI-Horn
total/iter

WP-Rahft
total/iter

0 58 0 (0) 0 (0) 0 0 58 197
1 87 9 (7) 5 (3) 2 20 99 20
2 21 20 (15) 7 (2) 5 0 43 0
3 5 6 (3) 3 (0) 3 0 11 0
4 2 3 (1) 2 (0) 2 0 5 0
5 2 0 (0) 0 (0) 0 0 2 1
6 1 0 (0) 0 (0) 0 0 1 0

#total 176 38 (26) 17 (5) 12 20 219 218

Table 1: Experimental results on 261 programs, with a timeout of 300 seconds

and (iii) to demonstrate particular tools and techniques. We adapt these C programs

for precondition inference as follows. They are translated to CHCs of the required form

based on specialisation approach of De Angelis et al. (2017) using VeriMap (De Angelis

et al. 2014). We then replace the generated init(x)← ϕ(x) clause by init(x)← true. This

allows analyses to infer preconditions in terms of x, starting from an unrestricted set of

initial clauses.

Results and Discussion. Table 1 shows the results. The columns 2-7 show results for

PI-Horn and the last column for WP-Rahft (Kafle et al. 2018). The first column

iter indicates the number of refinement iterations for both. The columns show opt (#

programs with separating preconditions), ntS (Sw) (# programs with non-trivial SPs for

safety excluding separating cases, and, in parentheses, the difference with trivial SPs for

unsafety), ntU (Uw) (same, for unsafety), ntSU (# programs with non-trivial SPs for both

safety and unsafety), tSU (# programs with trivial SPs for both safety and unsafety),

total/iter (# programs with non-trivial (either for safety or unsafety) plus separating

SP per iteration), WP-Rahft total/iter (# programs with non-trivial SP per iteration

for WP-Rahft). For example, the entry 9 (7) in column 3 indicates that there were 9

non-trivial SPs for safety, of which 7 had trivial SPs for unsafety. In other words, the

number in the parentheses counts the pairs of the form 〈ntS, tU〉 where tU means trivial

precondition for unsafety. Each row corresponds to an iteration and contains the number

of instances solved in that iteration, excluding those solved in the previous.

The results answer Q1 and Q2 positively. PI-Horn infers non-trivial preconditions for

83% and optimal ones for 67% of the programs. Interestingly, it infers optimal precon-

ditions for 58 programs owing to specialisation transformations alone (see row #1, iter

0), whereas it infers non-trivial preconditions for 99 programs (of which 87 are optimal)

after the first refinement. More non-trivial preconditions are derived when refinement

progresses. This indicates that both the preprocessing and refinement significantly in-

crease the number of optimal (non-trivial) cases. However, for 63 out of 261 programs,

refinement did not progress towards optimality (that is, it did not further shrink the

approximations of safe and unsafe states). We also observe that it timed out on 9% and

failed to infer any meaningful preconditions for 8%.

As for Q3 we could not meaningfully compare our tool against the work of Seghir

and Schrammel (2014), or Bakhirkin et al. (2014), in the first case because of tool issues

(discovered together with the authors), and a lack of automation (confirmed by the

authors via email) for the second. We do compare with WP-Rahft (Kafle et al. 2018),
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but note that, while some of the components of the tools are identical, the results are

not directly comparable. The success of PI-Horn depends on its ability to refine both

the approximations simultaneously unlike WP-Rahft. For example, we might obtain a

tight bound ϕ for safe states but if the approximation of unsafe states is ψ such that

ϕ |=T ψ,ψ 6≡ true then PI-Horn returns trivial SP for safety whereas WP-Rahft

returns non-trivial. On the other hand, WP-Rahft cannot detect optimality and does

not derive preconditions for unsafety. The two tools provide almost the same number of

programs with non-trivial SPs (219 vs 218), but they differ in the quality (e.g., optimality)

of preconditions. Since WP-Rahft cannot detect optimality, limited information about

it can be obtained by checking sufPI-Horn |=T sufWP-Rahft on all those instances that

are known to be optimal, where sufx represents the sufficient precondition derived by

the tool x. From this, we report that WP-Rahft derives optimal preconditions for

58 programs (# of successful checks), far less than PI-Horn (176). Every refinement

yields improvements for PI-Horn but refinement beyond the second yields negligible

improvements for WP-Rahft. This affirms that focusing attention on the intersection

of approximations of safe and unsafe states is a good refinement strategy and shows the

benefit of concurrently approximating these states. Thanks to the refined termination

criteria of PI-Horn that the average time in seconds per instance is 30.72 (22 timeouts),

while for WP-Rahft it goes from 28.14 (iter 1, 20 timeouts) to 41.86 (iter 6, 30 timeouts).

In summary for Q3, PI-Horn infers better preconditions than WP-Rahft and shows

reasonable performance.

6 Related work

Over-approximation techniques (forward/backward abstract interpretations or their com-

bination (Cousot and Cousot 1992; Cousot et al. 2013; Bakhirkin and Monniaux 2017))

inherently derive NPs, and complementation supplies SPs at a cost of precision (due

to approximation of the complement). Howe et al. (2004) use a pseudo-complemented

domain (Pos) domain (Marriott and Søndergaard 1993) to infer SPs; Bakhirkin et al.

(2014) exchange an abstract complement operation for abstract logical subtraction. Our

method neither assumes an abstract domain is (pseudo-) complemented nor apply com-

plementation of abstract elements during analysis. It applies to any abstract domain, and

complementation is carried out externally to abstract interpretation, storing the result

as a formula without any loss of precision.

Little work has been done that inherently computes SPs without complementation.

The notable exception is the work by Miné (2012), who designs all required purpose-

built backward transfer functions for intervals, octagons and convex polyhedra domains.

The downside is that the purpose-built operations, including widening, can be rather

intricate and require substantial implementation effort. Moy (2008) employs weakest-

precondition reasoning and forward abstract interpretation to generalise conditions at

loop heads to infer SPs. The derived conditions offer limited use except for a theorem

prover. Our method, on the other hand, uses standard techniques and off-the-shelf tools.

Output from PI-Horn can be consumed by other analysis and verification tools.

In a verification context, the dual-analysis approach of Popeea and Chin (2013) uses

over-approximations, as we do, to concurrently infer NPs for safety and unsafety; from

that, SPs are derived. No attempt is made to weaken those preconditions (by refining the
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approximations or focusing the analysis, as we do); we suspect such SPs are overly strong.

Dillig et al. (2013) use Hoare style reasoning with abduction iteratively, to infer loop

invariants that are sufficient to show validity of assertions. The success of their method

relies on guessing good abducibles whereas computing precise inductive invariants is too

hard to achieve for realistic programs (due to undecidability).

Program transformation approaches that preserve the goal can be used to derive pre-

conditions, as our approach. These include the forward/backward iterative specialisation

by De Angelis et al. (2014), for verifying program properties. The transformation ap-

proach uses a constraint generalisation instead of abstract interpretation. Similarly, the

multivariant top-down analyzer by Puebla and Hermenegildo (1999; Muthukumar and

Hermenegildo (1990) produces polyvariant specializations, as in the classical algorithms,

performing backwards analysis using abstract interpretation. These methods are comple-

mentary to ours and we leave a comparative study with our method for future work.

Seghir and Schrammel (2014) use a CEGAR approach to derive exact necessary and

sufficient preconditions for safety. Like us, they model safe and unsafe states of a program

and refine their approximations until they are disjoint. Their algorithm may diverge due

to (i) the lack of a suitable generalisation of the counterexamples (an inherent limitation

of CEGAR) and (ii) the termination condition (disjointness) that is too hard to achieve

for realistic programs (due to undecidability). Padhi et al. (2016) attempt to derive

optimal preconditions using machine learning approaches. The success of their approach

relies on learning good heuristics to separate good runs from bad runs. We, in contrast,

use abstract interpretation and program transformation, so each step of the algorithm

terminates and a sound precondition can be derived from the resulting programs. Besides,

optimality is not the end goal for us and it is a by-product of precision refinement.

The work of Kafle et al. (2018) is orthogonal to those above, combining a range of

established techniques such as abstract interpretation, CEGAR and program transfor-

mations in a profitable way. The iterative nature of their approach allows them to derive

more precise preconditions for safety, however the termination criterion, the maximum

number of iterations supplied by the user, is rather weak and cannot be used to opti-

mality of the preconditions. The current work offers several advantages. We model both

safe and unsafe states that enables us to detect optimality and also infer NP and SP

for both safety and unsafety. In addition, it allows reasoning about a limited form of

non-termination and provides more refined termination criteria. Unlike many methods

in the literature (Seghir and Schrammel 2014; Bakhirkin et al. 2014), our method can

uniformly handle programs with procedures and recursive programs.

7 Concluding remarks

We have presented an iterative method for automatically deriving sufficient preconditions

for the safety and unsafety of programs. It maintains over-approximations of the set of

safe and unsafe initial states. Each iteration of the algorithm considers only states that

are common to these approximations as they are yet to be classified as safe or unsafe. The

method terminates when the common set of states is empty or it fails to shrink in succes-

sive iterations. In experiments, the method generated separating preconditions in 67% of

test cases and solved problems which fail to resolve using only approximation of unsafe

states (as done in previous work). Owing to over-approximation, the sufficient precondi-
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tions may include some non-terminating states, which hinders the derivation of optimal

preconditions. Our method can only infer preconditions that are expressible as boolean

combinations of (quantifier free) linear integer constraints and the prototype implemen-

tation mostly ignores simplification of preconditions, possibly leaving redundancies. In

future work, we intend to augment our method with non-termination analysis, extend it

to infer quantified preconditions and work on simplifying the preconditions.
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Miné, A. 2006. The octagon abstract domain. High. Order Symb. Comput. 19, 1, 31–100.
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