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Abstract

This paper explores the integration of hypothetical reasoning into an efficient implementation of the fuzzy

logic language Bousi∼Prolog. To this end, we first analyse what would be expected from a logic infer-

ence system, equipped with what is called embedded implication, to model solving goals with respect to

assumptions. We start with a propositional system and incrementally build more complex systems and im-

plementations to satisfy the requirements imposed by a system like Bousi∼Prolog. Finally, we propose an

inference system, operational semantics, and the translation function to generate efficient Prolog programs

from Bousi∼Prolog programs. This paper is under consideration for acceptance in TPLP.

KEYWORDS: Fuzzy Logic Programming, Fuzzy Prolog, Bousi∼Prolog, Hypothetical Reasoning, System

Implementation

1 Introduction

Hypothetical reasoning allows deductions to be made in terms of assumed data. Applications in-

clude planning and scheduling (Wilson and Nuzzolo 2008), logistics (Calantone et al. 2017), be-

haviour (Bosse and Gerritsen 2009), healthcare (Minutolo et al. 2016), law (Bench-Capon and Prakken 2010)

and everything related to decision making in the scenarios envisioned. This so-called ‘what-if’

analysis (Rizzi 2009) plays an important role in saving resources, time and money. For example,

designing the pipe network of a gas company includes an assessment of the appropriateness of

conversion stations and pipes in terms of gas production, sourcing and expected client demand.

In addition, real-world applications must typically handle not-yet-known data, foreseeing sce-

narios for which it is necessary to handle vague information. Fuzzy logic is suitable for such

imprecise and subjective knowledge, and has been successfully applied to such different fields

as process control (e.g., UAV flight control (Moreno and Vázquez 2014), Japan Sendai Subway
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under the grant S2018/TCS-4339 (BLOQUES-CM), co-funded by EIE Funds of the European Union.
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with its ATC/ATO security system, domestic appliances such as Samsung dishwashers. . . ), de-

ductive databases (FSQL (Galindo 2005), a fuzzy version of SQL), and fuzzy expert systems

(such as (Kunhimangalam et al. 2013) in the healthcare domain).

Combining features from both hypothetical reasoning and fuzzy logic thus seems a reasonable

field to study. This paper deals with such a combination for the inclusion of hypothetical reason-

ing (with features derived from intuitionistic logics) in the Bousi∼Prolog (BPL) fuzzy logic sys-

tem (Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017). In par-

ticular, we focus on embedded implications, as in (Bonner 1994). Assumptions can be reused

throughout proofs in this kind of logic, in contrast to substructural logics (Lopez and Pimentel 1999).

Basically, the following inference rule, which uses so-called embedded implication ‘⇒’ (Bonner 1994),

captures the fact that hypothesis R (a rule) is used (as many times as needed) to derive the proof

for goal φ in the context of program Π:

Π∪{R} ⊢ φ

Π ⊢ R⇒ φ

This inference rule means that if the inference expression above the line can be inferred, then the

one below the line can be inferred too. However, this inference rule, linked to the deduction the-

orem of classical logic, only models a small part of the characteristics and power of hypothetical

reasoning.

This paper explores a path to an efficient implementation of hypothetical reasoning in Bousi∼

Prolog. As developed for SWI-Prolog (Wielemaker et al. 2012), this Prolog system is considered

here for implementations. Firstly, Sections 2 to 3 incrementally develop a hypothetical logic in-

ference system. Specifically, Sections 3.2 and 3.3 introduce the requirements that Bousi∼Prolog

imposes on hypothetical reasoning that need to be tackled and how they can be addressed in the

hypothetical logic inference system. Section 4 recalls the formalisation of Bousi∼Prolog and

adapts it to efficiently include hypothetical reasoning in this language and system. Finally, Sec-

tion 5 gives the conclusions and sets out further work to be addressed. Three appendices contain

a performance analysis, formal proofs and a discussion on related work.

2 Implementing a hypothetical propositional logic inference system

As a first step, we study how to introduce hypothetical reasoning in a propositional logic frame-

work where a program Π comprises rules of the form A← Q1 ∧ . . .∧Qn, where A is a proposi-

tional letter, called the head of the rule; and Qi are propositional letters or embedded implications

which form the body. A rule A← true is written as A. An embedded implication is an expression

of the form Ri⇒ Ai where Ri is a rule (possibly with embedded implications in its body) and Ai

is a propositional letter. Embedded implications cannot appear as the head of a rule. Note also

that embedded implications can be nested. That is, the expression R1 ⇒ (. . .⇒ (Rn ⇒ Ai) . . .)

is a well-formed expression of this language. In the following, we shall write nested embedded

implications as R1⇒ . . .⇒ Rn⇒ Ai, omitting the parentheses.

2.1 Hypothetical propositional SLD resolution

A basic hypothetical propositional logic transition system is first defined, to determine the oper-

ational semantics of the language.

Let Π be a program. Let E be a set of tuples 〈G,Π〉 (goal, program), each representing a state
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of a computation. Let ⇒HPSLD⊆ (E ×E) be the transition relation as now defined in Definition

2.1. A successful inference sequence for a given state is a sequence ending in the state 〈�,Π〉,

where � represents the empty clause.

Definition 2.1

Hypothetical Propositional SLD (HPSLD) resolution is defined as a transition system 〈E,⇒HPSLD

〉, and whose transition relation⇒HPSLD is the smallest relation satisfying:

Rule 1: if R≡ (A←Q) ∈Π: 〈(←A∧Q′),Π〉 ⇒HPSLD 〈(←Q∧Q′),Π〉

Rule 2: if 〈(← A),Π′〉
∗
⇒HPSLD 〈�,Π′〉, with Π′ = Π∪{R}, is a successful inference sequence:

〈(←(R⇒A)∧Q),Π〉 ⇒HPSLD 〈(←Q),Π〉 �

The following simple program, adapted from (Bonner 1994), illustrates this definition.

Example 1

Given the program Π = {a← (d ⇒ b)∧ e,b← c,c← d,e} and the goal ← a, the successful

derivation 〈← a,Π〉⇒HPSLD 〈← (d⇒ b)∧e,Π〉 ⇒HPSLD 〈← e,Π〉 ⇒HPSLD 〈�,Π〉 is possible thanks

to the hypothetical query associated derivation: 〈← b,Π∪{d}〉⇒HPSLD 〈← c,Π∪{d}〉⇒HPSLD 〈←

d,Π∪{d}〉⇒HPSLD 〈�,Π∪{d}〉 where the initial program Π is expanded with the hypothesis d.

This definition of hypothetical propositional resolution can be neatly implemented in Prolog

with a meta-interpreter keeping track of the current program, which can be augmented as needed

by the embedded implication. Proposals of other logic systems (Bonner 1994; Lopez and Pimentel 1999)

also suggest this kind of implementation (passing the program as an argument). The solving of

an embedded implication can be implemented in a meta-interpreter with the clause: solve((R⇒

φ),Π)← solve(φ , [R|Π]) (cf. Appendix A). But passing the program as an argument in Prolog

requires that its data structure be built in the heap, a costly operation. Another alternative is to use

the dynamic database to assert the program rules. In contrast to other Prolog implementations,

SWI-Prolog does not differentiate between compiling and asserting, producing a similar code

for both operations which, in particular, retains multi-argument and deep indexing. In this way,

accessing data in dynamic memory is typically faster than in the heap, even using techniques

such as Key-Value associations implemented as a balanced binary tree (AVL tree).

A first approach to dealing with the embedded implication is to consult the program as a

normal Prolog program with a definition for the embedded implication with the operator ⇒:

(X ⇒ Y )← assertz(X)∧ call(Y )∧ retract(X). Thus, it is possible to answer goal← p for pro-

gram {p← q⇒ q}: solving p amounts to asserting q and subsequently solving goal← q. When

q has been proved, the assumption is retracted. However, this approach is not correct because

alternatives can be lost. Consider the program {p← (q← r)⇒ q, r, r}. Clearly, there should be

two answers for goal p but, after solving q for the first answer, the hypothesis is retracted, so that

further answers are lost.

Simply removing the retraction does not fix the issue because the hypothesis would then be

beyond the scope of the implication. For example, in the program {p← (q⇒ q)∧ q}, the goal

← p would succeed when it should fail because the second call to q is outside the scope of the

embedded implication. Instead, a plausible approach is to attach each hypothesis to the program

context it belongs to, and allow its selection only in that context, which is the technique explained

in the next section.
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2.2 Program contexts to implement embedded implications

Rule 2 in Definition 2.1 constructs a proof for the consequent A in the context of Π∪{R}, where

Π is the current program and R is the antecedent of the embedded implication (hypothesis).

Thus, each assumption builds a new program which can be understood as a program context for

the proof of a consequent.

Definition 2.2

Given a program Π and an embedded implication query R⇒ A, the hypothetical context (or

simply a context) of a proof for A is the program Π′ = Π∪{R}.

Because embedded implication queries can be nested, R1⇒ R2⇒ . . .Rn⇒ A, also hypothetical

contexts can be chained Π0 ⊆ Π1 ⊆ Π2 ⊆ . . . ⊆ Πn, where Πi+1 = Πi ∪ {Ri+1}. Hypothetical

contexts are partially ordered by the set inclusion relation ⊆. For pragmatic reasons, contexts

can be identified by a sequence of unique symbols, one for each new context in the inference

sequence. For the chain of contexts Π0 ⊆Π1 ⊆Π2 ⊆ . . .⊆Πn, the sequence of symbols i1 . . . i j,

1≤ j ≤ n, identifies the context Π j, where Π0 stands for the initial user program (for which the

empty sequence is assumed as its context identifier).

More formally, given a (possibly total ordered) set of indexes I, a context Π j can be identified

by a univocal sequence of indexes s j = i1 . . . i j, 1≤ j ≤ n, called a context identifier, and alterna-

tively denoted by Πs j
. For a context Πs, with context identifier s, and an embedded implication

query R⇒ A, a new context Πs.i is built, where the context identifier s.i is the concatenation of a

fresh index i ∈ I to the sequence s. The initial user program Π0 is denoted by Πε , where ε is the

empty sequence.

The set of context identifiers S is a prefix-ordered set, where the prefix relation � on S is

defined as follows: for two context identifiers s1 and s2, s1 � s2 if and only if s1 is a prefix of

s2; that is, there exists a sequence of indexes s such that s2 = s1.s. The prefix relation is re-

flexive ((∀s ∈ S) s � s), anti-symmetric ((∀s1,s2 ∈ S)s1 � s2 ∧ s2 � s1 → s1 = s2), transitive

((∀s1,s2,s3 ∈ S)s1 � s2∧ s2 � s3→ s1 � s3) and downward total ((∀s1,s2,s3 ∈ S) s1� s3∧ s2 �

s3→ (s1 � s2 ∨ s2 � s1)) (Cuijpers 2013). The first three properties classify a prefix order as a

partial order. Only the downward totality is special, meaning that, although the future evolution

of a computation may be branching, from a given point of execution, the past is always totally or-

dered. In our framework, where the set of sequences has a minimum element (the empty sequence

ε), the evolution of a computation can be abstracted by a tree structure, where the branches are

sequences representing a context identifier and each prefix in the sequence, a previous context

identifier. By construction, for all context identifiers s1 and s2, if s1 � s2 then Πs1
⊆Πs2

.

As contexts are sets of rules, each rule can be identified as belonging to a context by the

identifier of its program context. Thus, a context identifier can be associated with a rule.

Definition 2.3 (Scope of a rule)

Given a rule R with context identifier s j, its scope is any context Πsk
such that s j � sk. �

In the framework of hypothetical reasoning, a rule only can be selected for solving if it is

within the scope of the current context. Alternatively, we often say that R, with context identifier

s j, is included in (or belongs to) the context Πsk
, because Πs j

⊆Πsk
when s j � sk. Thus, from a

context Πsk
it is possible to access all rules whose context identifier s j is a prefix of sk.
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2.3 Translating hypothetical propositional programs into Prolog

Hypothetical propositional SLD resolution can be efficiently implemented by translating hypo-

thetical propositional programs into Prolog in a such a way as to mimic this operational se-

mantics. This translation is based on, first, providing a context identifier for each rule (either a

user-program rule or the hypothesis in an embedded implication); and, second, transmitting the

current context for which the rule is selected during inferencing. Each hypothesis receives a new

index symbol (an integer for simplicity) which is added to the current context identifier sequence

to form the identifier of the new context. This sequence can be implemented as a reversed integer

list.

In contrast to the basic implementations in Section 2, user programs and hypotheses must be

translated by adding the new arguments for the rule and current context identifiers:

Definition 2.4 (Propositional rule and goal translation)

The rule translation of R ≡ p←∧1≤i≤nqi for a rule context identifier SR and a current context

identifier SC, is defined as p(SR,SC)← chk(SR,SC)∧1≤i≤n q′i, where chk(SR,SC) checks context

inclusion (i.e., whether SR � SC) and the goal translation q′i, for the current context identifier SC,

is either:

• qi for a built-in call; or

• qi(C,S
C) for a user-predicate call, where C is a new free variable representing any context

in the scope of the current context SC; or

• H ′⇒ G′ for an embedded implication H ⇒ G, where: H ′ is the rule translation of H for

a rule context identifier SH = SC.I (where I is a fresh index) and a new current context

identifier SC′ , and G′ is the goal translation of G for a current context identifier SH . �

Definition 2.4 deserves some comment. Firstly, variables (e.g., SR or SC) denote context iden-

tifiers, which may be unknown at translation time. In general, SR (or SH) denotes the context to

which a rule R (or H) belongs, while SC (or SC′ ) denotes the current context in which the rule

will be selected for solving or the goal will be solved.

Since an embedded implication H⇒G generates a new context SH = SC.I, the corresponding

hypothetical rule H will be annotated with SH , which will be the current context in which the goal

G will be solved. It is not possible to set the actual index I in the sequence SH for the embedded

implication until solving-time (also, depending on the goal, not all contexts will be needed). Ac-

tually solving an embedded implication will bind the elements in the sequence representing the

context. As chk(ε,SC) always holds, it can be omitted in the translation. The following example

illustrates Definition 2.4 for a simple program rule:

Example 2

Assume the source program rule R≡ p← q⇒ q. For a source rule R, the rule context identifier

SR = ε . Applying Definition 2.4 to translate R for SR, leads to: p(ε,SC)← chk(ε,SC)∧(H ′⇒G′),

where H ′⇒ G′ is the translation of the embedding implication H⇒ G≡ q⇒ q.

In order to translate H, consider that H is really seen as the rule q (shorthand for q← true,

where true is a built-in symbol). Then, recursively applying Definition 2.4, the translation of H

for the rule context identifier SH = SC.I (where I is a fresh variable denoting an unknown index

which will be resolved at run-time) is H ′ ≡ q(SC.I,SC′)← chk(SC.I,SC′)∧ true. The translation

of G is simply G′ ≡ q(C,SC.I), where C is a fresh variable.

The translation of R is: p(ε,SC)← ((q(SC.I,SC′)← chk(SC.I,SC′)∧true)⇒ q(C,SC.I)) where

the call to chk(ε,SC) has been omitted because, as previously mentioned, it always succeeds.
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Our actual implementation produces the following translated Prolog rule for R, where true

calls are omitted:

p([], A) :- (q([B|A], C) :- chk([B|A], C)) => q(_, [B|A])

where chk is straightforwardly implemented as: chk(S1, S2) :- append(_, S1, S2). �

Solving the embedded implication can be implemented as follows:

Definition 2.5 (Solving the propositional implication clause)

Solving the propositional implication clause for SLD resolution is defined as:

(R⇒G)← get ci(I)∧ rule context(R,S.I)∧assertz(R)∧ call(G).

where the predicate get ci/1 returns a unique integer each time it is called, and rule context/2

simply provides access in its second argument to the context of R. �

Considering ⇒SLD⊆ (E ×E) as the transition relation for propositional SLD resolution of a

program Π, where E is a set of states formed by tuples 〈G,θ ,Π〉 (goal, substitution, program),

the following can be stated:

Proposition 2.6

For a program Π and goal ← A, there exists 〈(← A),Π〉
∗
⇒HPSLD 〈�,Π〉 iff 〈← A′, id,Π′〉

∗
⇒SLD

〈�, id,Π′〉, where Π′ is the propositional translation of each rule in Π, and A′ is the propositional

goal translation of A. �

See the proof of Proposition 3.6 in the predicate logic case, of which this is a particular case.

3 Implementing a hypothetical predicate logic inference system

In this section we discuss how to extend hypothetical reasoning from the framework of proposi-

tional logic to the framework of predicate logic as a prior step to the introduction of hypothetical

reasoning into the fuzzy logic programming language Bousi∼Prolog.

As in the propositional case, the programs of our hypothetical logic language are sets of rules

of the form A← Q1 ∧ . . .∧Qn, but composed of atomic formulas instead of only propositional

letters. Rules are assumed to be universally quantified and the occurrence of extra variables in

the body of a rule can be understood as existentially quantified. When translating embedded

implications, the question of how to deal with their variables is an important one.

3.1 Hypothetical SLD resolution

Definition 2.1 can be extended to the non-propositional case by dealing with substitutions, which

then become part of the notion of computation state. Let E be a set of tuples 〈G,σ ,Π〉 (goal,

substitution, program), each representing a state of a computation. Let ⇒HSLD⊆ (E×E) be the

transition relation as defined in Definition 3.1 below. A successful inference sequence for a given

state is a sequence ending in the state 〈�,σ ′,Π〉.

Definition 3.1 (HSLD resolution)

Hypothetical SLD (HSLD) resolution is defined as a transition system 〈E,⇒HSLD〉, whose transi-

tion relation⇒HSLD is the smallest relation satisfying:

Rule 1: if R≡ (A←Q) ∈Π and mgu(A,A′) = σ : 〈(←A′∧Q′),θ ,Π〉 ⇒HSLD 〈(←Q∧Q′)σ ,θσ ,Π〉

Rule 2: if 〈(← A), id,Π′〉
∗
⇒HSLD 〈�,σ ,Π′〉 is a successful inference sequence with Π′ =Π∪{R}:

〈(←(R⇒A)∧Q),θ ,Π〉 ⇒HSLD 〈(←Qσ),θσ ,Π〉



Theory and Practice of Logic Programming 7

As in the propositional case, HSLD can be implemented as a meta-interpreter, and Definition

2.4 can easily be extended to the predicate logic case by using predicates instead of propositions:

Definition 3.2 (Rule and goal translation for predicate logic)

The rule translation of R ≡ p(X)← ∧1≤i≤nqi(Xi) for a rule context identifier SR and a cur-

rent context identifier SC, is defined as the rule p(X ,SR,SC) ← chk(SR,SC) ∧1≤i≤n q′i, where

chk(SR,SC) checks context inclusion (i.e., whether SR � SC) and the goal translation of qi(Xi)

for the current context identifier SC is either:

• qi(Xi) for a built-in call; or

• qi(Xi,C,S
C) for a user-predicate call, where C is a new free variable representing any

context within the scope of the current context SC; or

• H ′⇒ G′ for an embedded implication H ⇒ G, where: H ′ is the rule translation of H for

a rule context identifier SH = SC.I (where I is a fresh index) and a new current context

identifier SC′ , and G′ is the goal translation of G for a current context identifier SH . �

The following example illustrates Definition 3.2 for a simple program that will be used in

several places hereafter:

Example 3

Given the source program Π = {R1 : p(X)← g(X)∧ (q(X)⇒ r),R2 : g(1),R3 : r← q(2)}, note

that all rules are translated for the rule context identifier SR = ε . Specifically, applying Defini-

tion 3.2 to translate R1 for SR, gives: p(X ,ε,SC)← chk(ε,SC)∧G′1 ∧ (H
′
2 ⇒ G′2), where G′1 is

the goal translation of G1 ≡ g(X) and H ′2⇒ G′2 is the translation of the embedding implication

H2⇒G2 ≡ (q(X)⇒ r).

Because G1 ≡ g(X) is a user-defined predicate, Definition 3.2 makes G′1 = g(X ,C,SC). On the

other hand, since H2 ≡ q(X)← true, on recursively applying Definition 3.2, the translation of

H2 for the rule context identifier SH = SC.I (where I is a fresh variable denoting an unknown

index which will be resolved at run-time) is H ′2 ≡ q(X ,SC.I,SC′)← chk(SC.I,SC′)∧ true. The

translation of G2 ≡ r for rule context identifier SH is simply G′2 ≡ r(C′,SC.I), where C′ is a fresh

variable. Finally, the translation of R1 is:

p(X ,ε,SC)← g(X ,C,SC)∧ ((q(X ,SC.I,SC′)← chk(SC.I,SC′)∧ true)⇒ r(C′,SC.I))

where the call to chk(ε,SC) has been omitted because, as previously mentioned, it always suc-

ceeds.

It is easy to determine that the translation of R2 is g(1,ε,SC)← true and the translation of R3

is r(ε,SC)← q(2,C,SC).

Our implementation produces the following translated Prolog program for the source program

Π:

p(A,[],B) :- g(A,_,B), ((q(A,[C|B],D):-chk([C|B],D)) => r(_,[C|B])).

g(1,[],_).

r([],A) :- q(2,_,A). �

Despite the two solutions above for solving the embedded implication by means of a meta-

interpreter and program translation, our goal is to add this kind of implication to Bousi∼Prolog,

which requires complex rule transformations.

This raises two problems: First, in contrast to the solution in Definition 3.2, a more involved

translation is required before asserting hypotheses. This first issue suggests avoiding program
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compilations at run-time by translating hypotheses at compile-time, but this leads to the second

problem: When asserting a rule, all variables become universally quantified by default, but this

is no longer true in the context of an embedded implication. Thus, it will be necessary to take ac-

count of substitutions in assumptions. Taking the logic system shown in Section 2.3 as a starting

point, the following sections will cover these two issues.

3.2 Hypothesis precompilation

One possible approach to addressing the first problem is to translate and assert clauses at compile-

time, so that a program does not need any translation at run-time. Although this involves all

hypotheses in the program being translated and asserted, it is highly likely that the memory thus

speculatively used will return a pay-off in terms of run-time gains.

Since it is not known how many times a given embedded implication will be selected for

solving, some sort of registration is needed at run-time. First, the hypothesis can be translated

and asserted at run-time and, whenever the embedded implication is selected for solving at run-

time, the corresponding hypothesis is registered for the current context. Each registration will

correspond to one alternative of the hypothesis and can be represented by an entry in a new

dynamic predicate reg/2: one argument for the rule reference and another for the context in

which it was registered.

Therefore, registering a rule R for a new context needs a univocal reference IR to the rule.

A new argument must thus be added to any predicate containing its reference, which can be

achieved with a predicate similar to get ci (Definition 2.5). Definition 2.4 must be modified to

add this argument to head clauses and to translate the embedded implication with the reference

to the translated hypothesis. In addition to the call to the chk/2 predicate, each body rule must

include a call to reg/2 to retrieve, by backtracking, as many alternatives of the hypothesis as were

registered in the course of the solving process.

In turn, solving the embedded implication needs to perform this registration of the hypothesis

for the current context SC augmented with this hypothesis. Then, the embedded implication is

added, with two new arguments: the new element in the context identifier sequence IC and the

current context SC, meaning it is no longer a binary operator:⇒ (IR,G, IC,SC)← get ci(IC)∧

assertz(reg(IR,SC.IC))∧ call(G)

The following examples informally illustrate the proposed translation (which will be for-

malised in Definition 3.5) and the behaviour of the translated program. From here on, context

identifiers will be represented as reversed lists of unique indexes.

Example 4

The program {p← q⇒ q} in Section 2 would be translated as:

Π = {p(1, [ ],SC)← ⇒ (0,q( , , [IC|SC]), IC,SC),q(0, [ | ],SC)← reg(0,CR)∧ chk(CR,SC)}.

In contrast to the method proposed in Section 2.3, the hypothesis q of the embedded impli-

cation is compiled into a new rule. Three new arguments are added to the head of the rules: a

unique rule index, the rule context identifier, and the current context identifier in which the rule

will be used at run-time.

Solving the rule defining p/3 will call the operator⇒, which will generate a unique identifier

IC and will register the rule defining q/3 (the hypothesis) for the current context [IC|SC] before

submitting the goal q( , , [IC|SC]).

Solving by SLD resolution requires the program to be added as a third argument to the state

tuple in the transition relation⇒SLD, since it can be augmented by assertz/1.
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Example 5

For the program {p← (q⇒ q⇒ q)}, the goal← p succeeds with two solutions. If the first (resp.

second) context receives the identifier 0 (resp. 1), the program is translated as:

Π = {p(2,nil,SC)←⇒ ([1],⇒ ([0],q( , , [IC
0 , I

C
1 |S

C]), IC
0 , [I

C
1 |S

C]), IC
1 ,A),

q(0, [ , | ],SC)← reg(0,CR)∧ chk(CR,SC),q(1, [ | ],SC)← reg(1,CR)∧ chk(CR,SC)}

where the facts: reg(1, [0]) and reg(0, [1,0]) are added while solving the embedded implications.

Thus, the consequent q( , , [IC
0 , I

C
1 |S

C]) can be solved twice at context [1,0] because both hy-

potheses match the goal at their respective contexts ([1,0] and [0]).

An advantage of this approach with respect to that given in Section 2.3 is that assumptions via

recursion require only one translated rule in the memory, rather than needing as many translated

rules as assumptions. The following program illustrates this:

Π = {p(0), p(N)← N > 0∧N1 is N− 1∧ (q⇒ p(N1))}

There is only one translated rule for q (the same as in the previous example) and as many

entries in reg/2 as N in the goal← p(N).

3.3 Handling substitutions in assumptions

An assertion with free variables is a problem in this approach because it is translated at compile-

time and the actual substitution is not known before solving-time.

Compared to the approach in Section 2.3 (and extended to the predicate logic case in Definition

3.2), where each assumption is asserted at run-time, now an assumption is asserted at compile-

time without any trace of its actual substitution, which can lead to losing bindings for the shared

variables between the hypothesis and its rule. The following program illustrates this issue:

Example 6

Consider again the program Π = {p(X)← g(X)∧ (q(X)⇒ r),g(1),r← q(2)} of Example 3.

For this program, the goal← p(X) succeeds because the translation of q/1 is q(X ,0, [ | ],SC)←

reg(0,CR)∧ chk(CR,SC), and the call to r succeeds because q/1 is registered and the translation

of q(2) unifies with the assertion, but it should not (as happens correctly following Definition

3.2). �

Moreover, variable sharing is also a problem. Let us consider the following example:

Example 7

In the program Π = {p← g(X ,Y )∧ (q(X ,Y )⇒ q(1,2)), g(X ,X)} the goal← p succeeds when

it should not. �

Substitutions must therefore be passed when solving an embedded implication by using its

hypothesis: Each rule will contain an extra argument containing the list of shared variables. In

addition, the list of shared variables will be added to the rule registration in the context of the

embedded implication so that, at solving-time, the translated implication can map the current

substitution to these variables. Finally, each rule body in the translation will include a call to the

reg predicate extended with an argument containing these shared variables, making it possible to

transmit variable bindings at run-time. This is formalised in the next subsection.

3.4 Putting it all together

Satisfying the requirements set out above, we define rule registration as follows:
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Definition 3.3 (Rule registration)

Rule registration is defined as: reg rule(IR, [XS], IC,SC)← assertz(reg(IR, [XS],SC.IC)). �

Then, the implementation of embedded implication solving, as introduced for the propositional

case in Definition 2.5, is adapted as follows:

Definition 3.4 (Solving implication clause)

The solving implication clause for SLD resolution is defined as:

⇒ (IR, [XS],G, IC,SC)← get ci(IC)∧ reg rule(IR, [XS], IC,SC)∧ call(G). �

Considering what must be added to the translation (precompiling with registering, and variable

sharing), rule and goal translation are defined as follows:

Definition 3.5 (Rule and goal translation)

Given a program Π, the rule translation of R ≡ p(s)← Q in Π, for the rule context identifier ε

and an empty list of variables, is the set of rules consisting of the rule:

• p(s, [ ], IR,ε,SC)←Q′ where IR is a fresh rule identifier, SC a variable that will be bound to

a current context identifier, and Q′ is the goal translation of the possibly conjunctive goal

Q.

• and each rule H ′ resulting from each embedded implication in R (as defined below).

The goal translation of a goal, Q, for a current context identifier SC, is either:

• qi(ti) if Q≡ qi(ti) is a built-in call; or

• qi(ti,L, I,C,S
C) if Q≡ qi(ti) is a user predicate call, where L , I and C are new free variables

representing any list of shared variables, any index and any context within the scope of the

current context SC respectively; or

• Q′1∧Q
′
2 if Q≡ Q1∧Q2 is a conjunctive goal call, where Q′1 and Q′2 are respectively the

goal translation of Q1 and Q2; or

• ⇒ (IH , [X ′S],G′, IC,SC) if Q≡ (H⇒G) is an embedded implication (i.e, H is a rule and G

is an atom or an embedded implication), where IH is a fresh rule identifier, [X ′S] is a list of

shared variables between the assumptions in H and the rest of the rule R, IC is a new free

variable representing any index, SC is the current context identifier:

— G′ is the goal translation of G for a current context identifier SH = SC.IC, and

— H ′ is the rule translation of H ≡ r(t)←B, for the rule context identifier SH = SC.IC,

a current context identifier SC, and a list of shared variables [X ′S], between the as-

sumptions in H and the rest of the rule R:

r(t, [X ′S], IH ,SH ,SC)← reg(IH , [X ′S],CR)∧ chk(CR,SC)∧B′

where IH is a fresh rule identifier, reg/3 is the predicate that stores each rule reg-

istration identified by IH for its current context identifier CR (cf. Definition 3.4),

chk(CR,SC) checks whether CR � SC, and B′ is the goal translation of B. As men-

tioned above, H ′ is added to the translated program. �
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Example 8

Consider once again the program in Example 3. Following Definition 3.5, the translation of the

rule {R≡ p(X)← g(X)∧ (q(X)⇒ r), for the rule context identifier ε and no shared variables, is

p(X , [ ],1,ε,SC)← g(X ,L, I,C,SC)∧⇒ (0, [X ],r(L′, I′,C′,SC.IC), IC,SC),

because g(X ,L, I,C,SC) is the translation of the goal g(X) for a current context identifier SC

and⇒ (0, [X ],r(L′, I′,C′,SC.IC), IC,SC) is the goal translation of (H⇒G)≡ (q(X)⇒ r) for SC,

where rule identifier IH has been set to the fresh value 0, the list of variables shared between the

assumptions in H and the rest of the rule R is [X ], and r(L′, I′,C′,SC.IC) is the goal translation of

G≡ r for the current context identifier SH = SC.IC.

Finally, rule H ≡ q(X)← true, of the single embedded implication, is translated for the rule

context identifier SH , and is added as a new rule (identified by 0):

q(X , [X ],0,SC.IC,SC′)← reg(0, [X ],CR)∧ chk(CR,SC′)∧ true.

From Definition 3.5, it is easy to obtain the translation of the remaining rules.

Our actual implementation produces the following translated Prolog program for the source

program Π:

p(A,[],1,[],B) :- g(A, _, _, _, B), (=>(0,[A], r(_, _, _, [C|B]),C, B)).

g(1,[],2,[],_).

r([],3,[],A) :- q(2, _, _, _, A).

q(A,[A],0,[_|_],C) :- reg(0, [A], B), chk(B, C).

It is noteworthy that the last translation fixes the problem mentioned in Example 6. �

Considering ⇒SLD⊆ (E × E) as the transition relation for SLD resolution of a program Π,

where the space state E is a set of tuples 〈G,θ ,Π〉 (goal, substitution, program), the following

can be stated:

Proposition 3.6

For a program Π and a goal← Q, there exists 〈(← Q), id,Π〉
∗
⇒HSLD 〈�,σ ,Π〉 iff 〈← Q′, id,Π′〉

∗
⇒SLD 〈�,σ ′,Π′′〉, where σ = σ ′[Var(Q)], Π′ is the translation of each rule in Π, Q′ is the goal

translation of Q, and Π′′ is Π′ augmented with all the reg/3 assertions from embedded implication

solving. �

Appendix A contains a performance analysis and Appendix B the proof of this proposition.

4 Applying hypothetical reasoning to Bousi∼Prolog

Bousi∼Prolog (Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017)

is an extension of Prolog and similarity-based logic programming (Fontana and Formato 1999;

Fontana and Formato 2002; Loia et al. 2001; Sessa 2002). We have also developed FuzzyDES

(Julián-Iranzo and Sáenz-Pérez 2017; Julián-Iranzo and Sáenz-Pérez 2018) as an extension of a

Datalog-based deductive database, embedding notions inherited from BPL. We then proposed an

extension of FuzzyDES to include hypothetical reasoning (Julián-Iranzo and Sáenz-Pérez 2020),

which includes an operational semantics that can be adapted to the hypothetical extension of

BPL (HBPL for short), as shown below.
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4.1 Formal background

It is first convenient to review some concepts before extending BPL to include hypothetical

reasoning.

BPL, among other features, incorporates a unification algorithm based on proximity relations.

A proximity relation is a binary fuzzy relation R : U ×U −→ [0,1] on a universe U satisfying,

for any e,e1,e2,e3 ∈U , the reflexive (R(e,e) = 1) and symmetric (R(e1,e2) = R(e2,e1))) prop-

erties. If in addition it has the △-transitive property (R(e1,e3)≥R(e1,e2)△R(e2,e3)), where the

operator △ is an arbitrary t-norm, it is called a similarity relation. A proximity relation allows

two symbols in a program to be weakly related. Given a binary fuzzy relation R and a value λ ,

the λ -cut Rλ = {〈x,y〉 | R(x,y)≥ λ}. By abuse of language, the value λ is also called λ -cut (or

cut value), which can be understood as a user-defined threshold intended to prune answers for a

minimum degree of confidence.

A weak unification of terms builds upon the notion of weak unifier of level λ for two expres-

sions E1 and E2 with respect to R (or λ -unifier): a substitution θ such that R(E1θ ,E2θ ) ≥ λ ,

which is the unification degree of E1 and E2 with respect to θ and R. There are several weak

unification algorithms (Julián-Iranzo and Sáenz-Pérez 2021) based on this notion and on the

proximity-based unification relation⇒, which defines a transition system (based on (Martelli and Montanari 1982)).

This relation, applied to a set of unification problems {Ei ≈ E′i|1≤ i≤ n} can yield either a suc-

cessful or a failed sequence of transition steps. In the first case, both a successful substitution and

a unification degree are obtained (detailed in, e.g., (Julián-Iranzo and Sáenz-Pérez 2021)). The

weak most general unifier (wmgu) θ between two expressions, denoted by wmguλ
R
(E1,E2), is

defined as a λ -unifier of E1 and E2 such that there is no other λ -unifier σ which is more general

than θ . That is, there exists a substitution δ such that, for any variable x in Dom(σ)∪Dom(θ ),

R(xσ ,xθδ ) ≥ λ . Although, unlike in the classical case, the wmgu is not unique, the weak uni-

fication algorithm computes a representative wmgu with approximation degree greater than or

equal to any other wmgu.

4.2 Adapting WSLD resolution for hypothetical reasoning

To combine WSLD and hypothetical reasoning, it is necessary to augment the notion of compu-

tation state by adding to it the context of the computation (i.e., the current program).

Let E be a set of tuples 〈G,Π,θ ,α〉 (goal, program, substitution, approximation degree), each

representing a state of a computation. Let⇒HWSLD⊆ (E×E) be the transition relation as defined

below in Definition 4.1. A successful inference sequence for a given state is a sequence ending in

the state 〈�,Π,θ ′,α ′〉 for some substitution θ ′ and approximation degree α ′, where � represents

an empty clause.

Definition 4.1 (HWSLD resolution)

Hypothetical Weak SLD (HWSLD) resolution is defined as a transition system 〈E,⇒HWSLD〉,

whose transition relation⇒HWSLD is the smallest relation satisfying:

Rule 1: if R ≡ 〈(A← Q);δ 〉 << Π, σ = wmguλ
R
(A,A′) 6= f ail, λ ≤ β = R(Aσ ,A′σ), R is as

defined in Π, and (δ△β△α) ≥ λ : 〈(←A′∧Q′),Π,θ ,α〉 ⇒HWSLD 〈(←Q∧Q′)σ ,Π,θσ ,δ△β△α〉

Rule 2: if 〈(← A′),Π′,θ ,α〉
∗

⇒HWSLD 〈�,Π′,σ ,α ′〉 is a successful inference sequence:

〈(←(R⇒A′)∧Q),Π,θ ,α〉 ⇒HWSLD 〈(←Q)σ ,Π,θσ ,α△α ′〉, where A is an atomic formula, Q

and Q′ are conjunctions of atomic formulas, Π′ = {R}∪Π, and R << Π indicates that R is a

standardised apart rule. �
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4.3 Expanded rules: translating hypothetical programs

A fuzzy logic program Π is translated into a logic program by linearising heads, making the

weak unification explicit, and explicitly computing the approximation degree. Essentially, given

a graded rule 〈p(tn)← Q;δ 〉 ∈ Π, for each R(p,q) = α with α ≥ λ , the following clause is

generated:

q(xn)← (δ△α)∧ x1 ≈ t1∧ . . .∧ xn ≈ tn∧Q

where ≈ is the weak unification operator, ti are terms, xi are variables, δ is the grade of the

rule (which may represent the user confidence level in the rule), and δ△α abbreviates the goal

δ△α ≥ λ . Note that, by reflexivity, R(p, p) = 1 is always in R.

An operational semantics can be defined for expanded programs by means of a transition

system with a set E of states (goal, program, substitution, degree), adding a new inference rule

to the tackling of assumptions:

Definition 4.2 (Operational semantics for expanded programs)

The operational semantics for expanded programs is a transition system 〈E,⇒EXP〉 and whose

transition relation⇒EXP is the smallest relation satisfying:

Rule 1: if β ∈ (0,1], and (β△α)≥ λ : 〈(← β ∧Q′),Π,θ ,α〉 ⇒EXP 〈(← Q′),Π,θ ,β△α〉

Rule 2: if σ =wmguλ
R
(A,B) 6= f ail, λ ≤ β =R(Aσ ,Bσ), R is as defined in Π, and (β△α)≥ λ :

〈(← A≈ B∧Q′),Π,θ ,α〉 ⇒EXP 〈(← Q′σ),Π,θσ ,β△α〉

Rule 3: if (p(xn)← β ∧ x1 ≈ t1 ∧ . . .∧ xn ≈ tn∧Q) << Π: 〈(← p(sn)∧Q′),Π,θ ,α〉 ⇒EXP 〈(←

β∧s1≈ t1∧ . . .∧sn≈ tn∧Q∧Q′),Π,θ ,α〉

Rule 4: if 〈(← p(sn)),Π
′, /0,1〉

∗
⇒EXP 〈�,Π′,σ ,β 〉, with Π′ = {R}∪Π, is a successful inference

sequence: 〈(←R⇒p(sn)∧Q′),Π,θ ,α〉 ⇒EXP 〈(← Q′σ),Π,θσ ,β△α〉 �

In this system, transition steps are applied to underlined fragments.

Proposition 4.3

Given a program Π, with a proximity relation R, and its expanded program Π′, there exists a

derivation 〈←Q,Π,θ ,α〉
∗

⇒HWSLD 〈← Q′,Π,θ ′,α ′〉 iff there exists a derivation 〈←Q,Π′,θ ,α〉
∗
⇒EXP 〈← Q′,Π′,θ ′,α ′〉 which computes the same state. �

The proof of this proposition follows a similar structure to the one for Proposition 3.6.

4.4 Implementing the expansion of programs

The generic implementation of expanded rules, including embedded implications, is done by ap-

plying the approach presented in Section 3.4 to the translation of expanded rules in Bousi∼Prolog.

Thus, instead of working with a program Π, the following definition refers to program contexts

with identifiers S and lists of shared variables [XS].

Definition 4.4 (Translation of expanded rules and goals)

Let Π be a BPL program, R a proximity relation on the syntactic domain generated by Π, △

the fixed t-norm associated with R, and λ ∈ [0,1] a cut value. Let R≡ 〈p(s)←∧1≤i≤kq′i,δ 〉 be

a graded rule in Π. The rule translation of R for a rule context identifier ε , a current context

identifier SC and an empty list of shared variables is a set of expanded rules consisting of:



14 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

• for each R(p,q) = β ∈ R, generate the rule:

q(X , [], IR,SR,SC,α)← over λ (β )∧uni f y( [(X1,s1,α1), . . . ,(Xn,sn,αn)])∧1≤i≤k q′i
∧ degree comp([δ ,β ,α1, . . . ,αn,α

′
1, . . . ,α

′
k],α)

• and each rule H ′ with rule context identifier SH resulting from each embedded implication

in R (as defined next),

where IR is a fresh rule identifier, over λ (β ) checks whether β ≥ λ (i.e., whether the rule can

be applied because β is over the λ -cut), uni f y/1 computes the unification degrees of the pairs

formed by the arguments passed to the variables X and the terms s, degree comp/2 compounds

the intermediate degrees to obtain the final degree α , and q′i is the goal translation of qi(ti) for a

current context identifier SC.

The goal translation q′i of qi(ti) for SC is either:

• qi(ti) for a built-in call; or

• qi(ti,L, I,C,S
C,α ′i ) for a user-predicate call qi(ti), where L, I, and C are respectively new

free variables representing any list of shared variables, any index, and any context within

the scope of SC, and α ′i is an approximation degree; or

• ⇒ (IH , [X ′S],G′, IC,SC) for an embedded implication H ⇒ G, where IH is a fresh rule

identifier, [X ′S] is a list of shared variables between the assumptions in H and the rest of

the rule R, IC is a new free variable representing any index, and SC is the current context

identifier:

— G′ is the goal translation of G, with degree α ′i , for the current context identifier

SH = SC.IC.

— Also the rule translation of H for the rule context identifier SH = SC.IC, a current

context identifier SC and the list [X ′S] of shared variables, is generated:

Let H ≡ 〈r(s)←∧1≤i≤lui(ti),ξ 〉, then the translation of H is a set of expanded rules

such that for each R(r,r′) = γ , the rule H’ is generated as:

r′(X , [XS], IR,SR,SC,α)← over λ (ξ )∧ reg(IR, [XS],CR)∧ chk(SR,SC)

∧ uni f y([(X1,s1,α1), . . . ,(Xn,sn,αn)])∧1≤i≤l u′i
∧ degree comp([ξ ,γ,α1, . . . ,αn,α

′
1, . . . ,α

′
l ],α)

where reg/3 is the predicate that stores each rule registration identified by IR for its

current context identifier CR (cf. Definition 3.3), chk(SR,SC) checks whether SR �

SC, and s′i is the goal translation of si(ti) for a current context identifier SC. �

Example 9

Given the Bousi∼Prolog program Π = {R1 : 〈p(X)← g(X)∧ (q(X)⇒ r),0.8〉, R2 : 〈g(1),0.7〉,

R3 : 〈r← q(2),0.9〉}, a proximity relation R, with an entry R(p,s) = 0.6, and λ = 0.5, following

Definition 4.4, the translation of R1 for the rule context identifier ε and no shared variables,

generates the following set of rules:

• For the entry R(p, p) = 1,

p(X1, [ ],1,ε,S
C,D)← over λ (1)∧uni f y([X1,X ,D1])∧g(X ,L, I,C,SC,D1)

∧⇒ (0, [X ],r(L′, I′,C′,SC.IC,D′1), I
C,SC)∧degree comp([0.8,1,D1,D

′
1],D)

because g(X ,L, I,C,SC,D1) is the translation of the goal g(X) for a current context iden-

tifier SC and⇒ (0, [X ],r(L′, I′,C′,SC.IC,D′1), I
C,SC) is the goal translation of (H ⇒ G)≡
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(q(X)⇒ r) for SC, where rule identifier IH has been selected to the fresh value 0, the

list of shared variables between the assumptions in H and the rest of the rule R is [X ],

and r(L′, I′,C′,SC.IC,D′1) is the goal translation of G≡ r for the current context identifier

SH = SC.IC.

• For the entry R(p,s) = 0.6, in a similar way,

s(X1, [ ],2,ε,S
C,D)← over λ (0.6)∧uni f y([X1,X ,D1])∧g(X ,L, I,C,SC,D1)

∧⇒ (0, [X ],r(L′, I′,C′,SC.IC,D′1), I
C,SC)∧degree comp([0.8,0.6,D1,D

′
1],D)

• Finally, the rule H ≡ 〈q(X)← true,1〉 of the single embedded implication is translated for

the rule context identifier SH and is added as a new rule (identified by 0):

q(X , [X ],0,SC.IC,SC′,D)← over λ (1)∧ reg(0, [X ],CR)∧ chk(CR,SC′)∧uni f y([X1,X ,D1])

∧ true∧degree comp([1,1,D1],D).

From Definition 4.4, it is easy to obtain the translation of the remaining rules:

• For R2 and the single case in which R(g,g) = 1, g(X1, [],3,ε,S
C,D)← over λ (1)∧uni f y(

[X1,1,D1])∧degree comp([0.7,1,D1],D)

• For R3 and the case R(r,r) = 1, r([],4,ε,SC,D)← over λ (1)∧q(2,L, I,C,SC,D). �

For this generic definition, several optimisations are amenable, such as tail-recursion preser-

vation, and deep indexing by linearising only the required head arguments.

5 Conclusions and Future Work

This paper has explored the inclusion of hypothetical reasoning in the fuzzy logic language

and system Bousi∼Prolog. We have proposed an operational semantics for hypothetical fuzzy

logic programs, and an efficient implementation skeleton, which has been assessed in terms of a

performance analysis (cf. Appendix A) of the proposed technique based on program contexts and

precompilation of assumptions. This analysis confirms the performance benefits in most cases,

but it depends on the host Prolog system: indeed, SICStus Prolog performs better and typically

makes the compiled approach behave better than the meta-interpreted one. In addition, soundness

and completeness of the translation are backed by formal results.

However, incorporation of the approach presented in this paper into the actual system BPL

remains to be done, and thanks to the performance analysis presented in the appendix, we are

confident that the final implementation will benefit from such an approach. Another extension

would be to embody negative assumptions, for which an appropriate declarative semantics must

be developed before thinking about an operational one. One may also think of inheriting both

positive and negative assumptions of proximity equations, but this is a much more delicate matter

performance-wise, because changing relation R changes the compilation of the program. An

incremental compilation could perhaps be devised, which would seem to be an appropriate way

of tackling this question.
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JULIÁN-IRANZO, P. AND SÁENZ-PÉREZ, F. 2018. A Fuzzy Datalog Deductive Database System. IEEE

Transactions on Fuzzy Systems 26, 5, 2634–2648.
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RUBIO-MANZANO, C. AND JULIÁN-IRANZO, P. 2014. Fuzzy Linguistic Prolog and its Applications.

Journal of Intelligent and Fuzzy Systems 26, 1503–1516.

SESSA, M. I. 2002. Approximate reasoning by similarity-based SLD resolution. Theoretical Computer

Science 275, 1-2, 389–426.

WIELEMAKER, J., SCHRIJVERS, T., TRISKA, M., AND LAGER, T. 2012. SWI-Prolog. Theory and Prac-

tice of Logic Programming 12, 1-2, 67–96.

WILSON, N. H. M. AND NUZZOLO, A. 2008. Schedule-Based Modeling of Transportation Networks:

Theory and applications Portada.
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Appendix A Performance comparison: meta-interpreted vs. interpreted

This section analyses the performance of the different solving alternatives explained above: the

meta-interpreter and the compiler-based solver interpreter. They are also compared, when appli-

cable, to the native implementation and the solving in SWI-Prolog of the program under test.

Two alternatives are first described for the meta-interpreter, and then the performance analysis is

given, comparing them to the compiled approach in Section 3. The Prolog interpreter for non-

hypothetical programs is also included in the comparison as a reference for the overhead caused

by the compiled approach.

A.1 Hypothetical Meta-interpreters

Figure A 1 illustrates the hypothetical propositional meta-interpreter, which has been enlarged to

deal with disjunctive rules and built-in calls, where a fact is a rule with a true body. The predicate

builtin/1 checks whether its argument represents a call to a built-in predicate (different from ∧,

∨ and⇒).

solve((φ1 ∧φ2),Π)← solve(φ1,Π)∧ solve(φ2,Π).

solve((φ1 ∨φ2),Π)← solve(φ1,Π)∨ solve(φ2,Π).

solve(φ ,Π)← builtin(φ)∧ call(φ).

solve((R⇒ φ),Π)← solve(φ , [R|Π]).

solve(φ ,Π)← member((φ ← φ ′),Π)∧ solve(φ ′,Π).

Fig. A 1. Meta-interpreter for hypothetical propositional logic programs

The meta-interpreter for hypothetical propositional logic programs depicted in Figure A 1 is

not applicable to predicate logic programs. For example, the goal ← p for the program {p←

q(1)∧ q(2),q(X)} should succeed, but it does not because solving← q(1) creates the substitu-

tion {X/1}, which is not compatible with the second call← q(2). Nonetheless, it can be easily

adapted to the non-propositional case by modifying the last clause to:

solve(φ ,Π)← copy term(Π,Π′)∧member((φ ← φ ′),Π′)∧ solve(φ ′,Π).

However, copying the entire program each time the unification of a rule or fact with the goal

is sought, is hugely resource consuming. A more convenient approach is to look for a matching

clause and copy only this clause, as follows:

solve(φ ,Π)← uni f member((φ← ),Π,R)∧copy term(R,(φ ′← φ ′′))∧φ = φ ′∧solve(φ ′′,Π).

where uni f member(X ,L,Y ) stands for: Y is a member of L that is unifiable with X .

This can be slightly enhanced by using an ordered list for the program predicates (though pre-

serving rule user ordering in each predicate), therefore reducing the serial access time complex-

ity by a factor of 2, on average. Also, adding cuts for selecting the appropriate meta-interpreter

clause will prune choice points in advance, and will also save some tests. Thus, an actual imple-

mentation in Prolog could be:
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solve((Goal1, Goal2), Program) :-

!, solve(Goal1, Program), solve(Goal2, Program).

solve((Goal1; Goal2), Program) :-

!, (solve(Goal1, Program) ; solve(Goal2, Program)).

solve((Hyp => Goal), Program) :-

!, insert_rule(Hyp, Program, NProgram), solve(Goal, NProgram).

solve(Goal, _Program) :-

builtin(Goal), !, Goal.

solve(Goal, Program) :-

unif_member((Goal :- _Body), Program, (UGoal :- UBody)),

copy_term((UGoal :- UBody), (CGoal :- CBody)),

CGoal=Goal, solve(CBody, Program).

Note that, in particular, the last clause will not be selected uselessly, as opposed to the skeleton

shown in Figure A 1. The predicate insert rule/3 inserts a rule in the place corresponding to

its ordering.

As suggested by an anonymous referee, there are more alternatives that may be considered.

In particular, this meta-interpreter can be further enhanced by passing only assumed rules to

solve/2, instead of the whole program. Then, the static user program can be accessed by the

built-in predicate clause/2. Moreover, the assumed rules can be better represented by a tree,

whose nodes are predicates (key of the tree), with their rules in a list, thereby improving access

when many predicates are assumed. To implement this approach, the last clause of the former

meta-interpreter is replaced by:

% Lookup in the consulted (static) program:

solve(Goal, Program) :-

clause(Goal, Body), solve(Body, Program).

% Lookup in the augmented program:

solve(Goal, Program) :-

functor(Goal, Functor, Arity), atomic_concat(Functor, Arity, Key),

get_assoc(Key, Program, Rules),

unif_member((Goal :- _Body), Rules, (UGoal :- UBody)),

copy_term((UGoal :- UBody), (CGoal :- CBody)),

CGoal=Goal, solve(CBody, Program).

Association lists are implemented with AVL trees, with O(logn) worst-case (and expected)

time operations, where n denotes the number of elements in the association list (Wielemaker et al. 2012).

This meta-interpreter uses get assoc/3 in solve/2 to retrieve nodes in the tree and put assoc/4

in insert rule/3 (cf. its implementation in meta2.pl at the URL mentioned in the next sub-

section).

A.2 Performance Analysis

All experiments were run on an Intel Xeon CPU E3-1505M v5 with 4 physical cores at 2.8

GHz, 16GiB RAM, with the Windows 10 64-bit operating system. Benchmarks are run on the

last stable version of SWI-Prolog 64-bit 8.2.4-1 at the time of writing this. Times in the Ta-

bles are given in seconds and are the result of averaging 10 runs (and discarding the first),
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and individual times were measured with the built-in predicate statistics/2. We have col-

lected the time for the total run-time measurement (key cputime for SWI-Prolog), which returns

the (user) CPU time, and the run-time (key runtime) which returns the total run-time, eliding

the time for memory management (garbage collection) and system calls. Tables include the

column CPUtime (for the total run-time), and Diftime (for the total run-time minus the run-

time, primarily to reflect the cost of garbage collection). Garbage collection and stack trimming

are carried out before each trial is run; then the time measurement can start. On completion

of the trial, these operations are performed again before taking the elapsed time, in order to

account for housekeeping tasks due to running the tests. Also, inferences is another mea-

surement from the statistics predicate, which indicates the number of passes via the call and

redo ports in order to execute a goal. All benchmarks and systems can be downloaded from

http://www.fdi.ucm.es/profesor/fernan/iclp2021/Experiments.zip.

Several classical benchmark programs have been selected (they can be found at the SWI-

Prolog site), where some have been adapted to remove cuts. These programs are intended, firstly,

to make clear the price to be paid for including hypothetical reasoning in the system; and, sec-

ondly, to compare meta-interpreted alternatives with respect to the compiled alternative. In any

case, it should be recalled that a compiled approach is preferred for the implementation of a

system such as BPL, because assuming a rule implies a recompilation. Furthermore, most of

those programs have been adapted to build hypothetical versions by assuming either facts or a

rule for the data generator. These versions add a preceding h before the classical test name. With

respect to the factorial test program, facttr is the tail recursive version, and all benchmark sizes

can be consulted at the URL above. As a stress test, several parametric hypothetical programs

are included, to test embedded implications: The first (labelled as hypo1 in the following Ta-

bles): {p← a1⇒ a2⇒ . . .⇒ an⇒ a1∧a2∧ . . .∧an} with a goal← p for n = 2000; the second

(hypo2): {p(0)← a, p(N)← N > 0∧N1 is N− 1∧ (a⇒ p(N1))} with a goal← p(3000) and

requesting all solutions; and the third (hypo3): {p← a⇒ . . .⇒ a⇒ a} with a goal← p for 3000

assumptions, also requesting all solutions. The first program is intended to test the system by as-

suming a large batch of different predicates iteratively. The second recursively assumes facts of

the same predicate and is intended to analyse the performance in the presence of backtracking by

requesting all solutions. The third is similar to the second but iteratively adding those facts with

nested assumptions.

Table A 1 collects the running measurements for classical tests and Table A 2 for hypothet-

ical tests. Rows in the Table include the following labels: Meta1 for the first meta-interpreter

as shown in this appendix, Meta2 for the second, improved, instance, Comp for the compiled

approach as described in Definition 3.5, and Prolog for the native execution of (classical, non-

hypothetical) tests in the Prolog system.

For classical tests (Table A 1) Meta2 performs better than Meta1 with significant speed-ups,

and there is even a notable speed-up in the case of path, where recursively traversing the list of

the program, including many arcs in the graph, takes a lot of effort that is avoided with Meta2,

because the program is consulted. Looking now at the compiled alternatives Comp and Prolog,

they perform better than the meta-interpreted versions. Comparing Comp to Prolog, they behave

similarly in most cases other than in nrev and queens, where Prolog is faster (4.62× and 1.44×,

respectively).

For hypothetical versions of classical tests (Table A 2, roughly similar conclusions can be

drawn. Performance of Comp is almost always better than Meta2, and the latter is better than

Meta1. Only in hpath is Meta2 faster by a small amount. Results can be different for other non-

http://www.fdi.ucm.es/profesor/fernan/iclp2021/Experiments.zip
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classical stress tests such as hypo1, for which Meta2 performs better. In this case, note that AVL

trees play an important role in fast accessing of each rule (in hypo1 there is one assumed rule

for each predicate, with a total of 2000). In turn, Comp takes more time, both in total time and

memory management, even when the number of inferences is roughly a fifth compared to Meta1,

but the time taken by memory management is noticeable compared to the other two alternatives.

This system Comp performs better for hypo2 with a similar inference ratio with respect to Meta2.

With respect to the last test hypo3,Meta2 is the slowest, while there is a small difference between

Comp and the fastest, Meta1.
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Program System CPUtime Diftime Inferences

deriv

Meta1 1.989 0.245 10,230,177

Meta2 1.205 0.128 4,070,102

Comp 0.491 0.030 660,078

Prolog 0.491 0.023 660,077

fact

Meta1 2.470 0.497 11,005,602

Meta2 1.194 0.123 4,070,102

Comp 0.848 0.253 1,500,077

Prolog 0.888 0.231 1,500,076

facttr

Meta1 2.636 0.648 11,016,606

Meta2 1.234 0.123 4,070,102

Comp 0.414 0.036 2,001,077

Prolog 0.450 0.056 2,001,076

fib

Meta1 1.156 0.439 4,827,118

Meta2 0.859 0.345 4,006,022

Comp 0.109 0.006 485,645

Prolog 0.111 0.002 485,644

nrev

Meta1 2.258 0.575 5,699,379

Meta2 1.194 0.127 4,070,102

Comp 0.527 0.092 1,130,321

Prolog 0.114 0.017 1,130,320

path

Meta1 572.533 0.428 5,414,424,890

Meta2 1.197 0.130 4,070,102

Comp 0.152 0.014 1,799,669

Prolog 0.148 0.007 1,799,668

primes

Meta1 4.503 0.859 29,145,106

Meta2 1.220 0.116 4,070,102

Comp 0.409 0.023 1,873,577

Prolog 0.408 0.016 1,873,576

qsort

Meta1 2.083 0.439 10,075,127

Meta2 1.167 0.119 4,070,506

Comp 0.287 0.016 1,005,071

Prolog 0.256 0.008 1,005,070

queens

Meta1 6.231 0.000 47,984,882

Meta2 1.173 0.116 4,070,102

Comp 0.417 0.000 1,971,077

Prolog 0.289 0.000 1,971,076

Table A 1. Comparing Meta1, Meta2, Comp and Prolog for classical programs
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Program System CPUtime Diftime Inferences

hderiv

Meta1 2.084 0.175 11,430,623

Meta2 1.181 0.117 4,070,102

Comp 0.303 0.020 660,124

hfact

Meta1 2.706 0.512 12,034,102

Meta2 1.211 0.111 4,070,102

Comp 0.703 0.077 3,012,069

hfacttr

Meta1 3.469 0.328 12,058,106

Meta2 1.216 0.130 4,070,102

Comp 0.670 0.044 3,514,569

hnrev

Meta1 2.742 0.386 5,699,425

Meta2 1.164 0.119 4,070,102

Comp 0.605 0.098 1,130,333

hpath

Meta1 9.698 0.089 76,637,002

Meta2 1.189 0.120 4,070,102

Comp 1.330 0.102 4,537,562

hprimes

Meta1 4.694 0.277 30,589,606

Meta2 1.241 0.119 4,070,102

Comp 0.892 0.030 5,264,319

hqsort

Meta1 2.020 0.294 10,075,159

Meta2 1.172 0.116 4,070,102

Comp 0.272 0.014 1,005,083

hqueens

Meta1 6.039 0.000 51,927,280

Meta2 1.139 0.116 4,070,102

Comp 0.289 0.000 1,971,081

hypo1

Meta1 0.700 0.017 9,090,603

Meta2 0.042 0.004 166,743

Comp 0.939 0.162 2,023,076

hypo2

Meta1 2.045 0.081 31,618,620

Meta2 1.498 0.128 22,657,550

Comp 1.014 0.002 4,534,580

hypo3

Meta1 1.477 0.058 22,543,610

Meta2 1.828 0.177 22,573,604

Comp 1.611 0.077 4,531,578

Table A 2. Comparing Meta1, Meta2 and Comp for hypothetical programs
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Appendix B Proof for Proposition 3.6

We divide the proof of Proposition 3.6 into two parts, starting with the proof of the statement

“if there exists a derivation D ≡ (〈(← Q), id,Π〉
∗
⇒HSLD 〈�,σ ,Π〉) then there exists a derivation

D′ ≡ (〈← Q′, id,Π′〉
∗
⇒SLD 〈�,σ ′,Π′′〉)”. This direction constitutes a kind of completeness result

where we prove that derivations in the original program using the HSLD resolution rule can

be reproduced by the SLD operational mechanism in the transformed program. In the second

part, we prove the converse of the first statement, that is “there exists a derivation D : 〈(←

Q),θ ,Π〉
∗
⇒HSLD 〈�,σ ,Π〉 if there exists a derivation D

′ : 〈← Q
′,θ ,Π′〉

∗
⇒SLD 〈�,σ ′,Π′′〉”, which

guarantees that the present implementation does not compute answers which are not computed

by the HSLD semantics, leading to a sort of soundness result.

B.1 Proof of Part I

Lemma Appendix B.1

Let Π be a program and G ≡ (← A∧Q1) a goal, if there exists the step

S ≡ 〈(← A∧Q1),θ ,Π〉 ⇒HSLD 〈(← Q2σ),θσ ,Π〉

then there exists the following derivation in the translated program Π′:

〈(← A′∧Q′1),θ ,Π
′〉

+
⇒SLD 〈(← Q

′
2(σ ∪δ )),θσ ∪δ ,Π′∪Πreg〉,

where A′, Q′i are the goal translations of A, Qi respectively, and Πreg is the set of all the reg/3 as-

sertions due to embedded implication solving. The domain of the substitution δ shares variables

with neither θ nor σ , and θσ = θ (σ ∪δ )[Var(G )]. �

Proof

We proceed by induction on the context identifier s associated with the program context.

1. Base case(s = ε): In this case query A must be an atom, that is, A ≡ p(sn) and there must be

a rule (p(tn)← B) ∈ Π for which σ = mgu({p(sn) = p(tn)}) = mgu({sn = tn}) (where si = ti,

with 1≤ i≤ n, are unification problems) and step S is

(〈← p(sn)∧Q1,θ ,Π〉 ⇒HSLD 〈← (B∧Q1)σ ,θσ ,Π〉)

According to Definition 3.5, the rule translation of (p(tn)←B) ∈Π is p(tn, [],0,ε,S
C)←B′ and

the goal translation of← p(sn) is← p(sn,L, I,C,S) where SC, L, I, C and S are fresh variables.

It is then easy to verify that:

mgu({p(sn,L, I,C,S) = p(tn, [],0,ε,S
C)})

= mgu({sn = tn,L = [], I = 0,C = ε,S = SC})

= σ{L/[], I/0,C/ε,S/SC}= σ ∪δ

where δ = {L/[], I/0,C/ε,S/SC}, and its domain does not share variables with σ . Hence, the

following step is possible in the translated program Π′:

〈← p(sn,L, I,C,ε)∧Q
′
1,θ ,Π

′〉 ⇒SLD 〈← (B′∧Q′1)(σ ∪δ ),θ (σ ∪δ ),Π′〉

and θσ = θ (σ ∪δ )[Var(G )].
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2. Inductive case (s > ε): The query A≡ (H ⇒ G), that is, an embedded implication (chain), and

the step

S ≡ 〈(← (H ⇒G)∧Q1),θ ,Π〉 ⇒HSLD 〈(← Q1σ),θσ ,Π〉

Therefore, Rule 2 of Definition 3.1 was applied and the derivation

D1 ≡ (〈(← G), id,Π1〉
∗
⇒HSLD 〈�,σ ,Π1〉)

must exist, where Π1 = Π∪{H} is a new program with context identifier 1 > ε . Then, by the

Inductive hypothesis, the following derivation in the translated program Π′:

D
′
1 ≡ (〈(← G′), id,Π′〉

∗
⇒SLD 〈�,σ ∪δ ,Π′∪Πreg〉)

must exist, where G′ is the goal translation of G, Πreg is the set of rule registrations and δ is a

substitution for which its domain shares variables with neither the original (not translated) goal

G nor the substitution σ .

On the other hand, note that the translation of the goal (H⇒ G) is⇒ (0, [X ],G′, IC,SC) plus the

rule translation H ′ of H.
Now, using Definition 3.4 for solving embedded implication clauses and Definition 3.3 of rule
registration, and the derivation D′1, it is possible to build the following derivation D′:

〈← (⇒ (0, [X ],G′, IC,SC)∧Q′1),θ ,Π
′〉

⇒SLD 〈← (get ci(IC)∧ reg rule(0, [X ], IC,SC)∧ call(G′)∧Q′1),θ ,Π
′〉

⇒SLD 〈← (reg rule(0, [X ],1,SC)∧ call(G′)∧Q′1){I
C/1},θ ∪{IC/1},Π′〉

⇒SLD 〈← (assertz(reg(0, [X ],SC))∧ call(G′)∧Q′1){I
C/1},θ ∪{IC/1},Π′〉

⇒SLD 〈← (call(G′)∧Q′1){I
C/1},θ ∪{IC/1},Π′ ∪{reg(0, [X ],SC)}〉

⇒SLD 〈← (G′∧Q′1){I
C/1},θ ∪{IC/1},Π′ ∪{reg(0, [X ],SC)}〉

∗
⇒SLD 〈← Q′1(σ ∪{I

C/1}∪δ ),(θσ)∪{IC/1}∪δ ,Π′ ∪{reg(0, [X ],SC)}∪Πreg〉

where the domain of {IC/1}∪δ shares variables with neither θ nor σ , and θσ =(θσ ∪{IC/1}∪

δ )[Var(G )].

Proposition Appendix B.2

For a program Π and a goal← Q, if there exists a derivation D≡ 〈(← Q), id,Π〉
∗
⇒HSLD 〈�,σ ,Π〉

then there exists a derivation D′ ≡ 〈← Q′, id,Π′〉
∗
⇒SLD 〈�,σ ′,Π′∪Πreg〉, where Π′ is the trans-

lation of each rule in Π, Q′ is the goal translation of Q, Πreg is the set of rule registrations, that

is, all the reg/3 assertions due to embedded implication solving, and σ = σ ′[Var(G )]. �

Proof

By induction on the length of the derivation D and Lemma Appendix B.1.

As mentioned above, Proposition Appendix B.2 constitutes a kind of completeness result. In

the following we concentrate on the other direction, which leads to a sort of soundness result.



26 P. JULIÁN-IRANZO and F. SÁENZ PÉREZ

B.2 Proof of Part II

Proposition Appendix B.3

Let Π′ be the translation of a program Π and G ′ ≡ (← Q′1) the goal translation of a goal G ≡

(← Q1), if there exists a derivation D′ ≡ 〈← Q′,θ ∪δ ,Π′〉
∗
⇒SLD 〈�,(θσ)∪δ ′,Π′∪Πreg〉, where

Πreg is the set of rule registrations, that is, all the reg/3 assertions due to embedded implication

solving, then there exists a derivation D≡ 〈(← Q),θ ,Π〉
∗
⇒HSLD 〈�,θσ ,Π〉. The domains of the

substitutions δ and δ ′ share variables with neither θ nor σ , and θσ = (θσ)∪δ ′[Var(G )]. �

Proof

The proof proceeds by induction on the length of the derivation D′. Without loss of generality,

thanks to the independence of the computation rule in the SLD operational mechanism, several

steps in the derivation D′ can be conveniently ordered. So, it is possible to group fragments of

the derivation D
′ in the translated program Π′, which correspond with the steps in the derivation

D, in the program Π.

1. Base case(n = 1): In this case the query Q′ ≡ p(sn, [], I,C,ε) (translation of Q≡ p(sn), since an

initially launched goal is solved in the initial context ε and its list of shared variables is empty)

and there must be a rule p(tn, [], i,ε,S
C), with rule index i (translation of the fact p(tn) ∈ Π), for

which

mgu({p(sn, [], I,C,ε) = p(tn, [], i,ε,S
C)})

= mgu({sn = tn, [] = [], I = i,C = ε,ε = SC})

= σ{I/i,C/ε,SC/ε}= σ ∪δ1

where mgu({sn = tn}) = σ must be solvable, δ1 = {I/i,C/ε,SC/ε}, and its domain shares vari-

ables with neither θ nor σ . Therefore, the following one-step derivation D is possible in the

program Π: 〈← p(sn),θ ,Π〉 ⇒HSLD 〈�,θσ ,Π〉 .

2. Inductive case (n > 1): In the analysis of the inductive case we consider two possibilities, de-

pending on whether the first step is performed with a sub-goal, which is an instance of the atom

⇒ (IH , [X ′],G′, IC,SC), or not. This kind of sub-goal comes from embedded implications that

appear in the body of some rule, or are submitted directly in the initial query proposed to the

system.

(a) First, consider that Q′ ≡← p(sn, [], I,C,epsilon)∧Q′1 (translation of Q ≡← p(sn)∧Q1)

and the first step is performed with a rule (p(tn, [], i,ε,S
C)← B′) ∈ Π′, with index rule i

(translation of (p(tn)←B) ∈Π),1 whose head unifies with the selected sub-goal:

mgu({p(sn, [], I,C,epsilon) = p(tn, [], i,ε,S
C)})

= mgu({sn = tn, [] = [], I = i,C = ε,ε = SC})

= σ{I/i,C/ε,SC/ε}= σ1∪δ1

where mgu({sn = tn}) = σ1 must be solvable, δ1 = {I/i,C/ε,SC/ε} and its domain shares

variables neither with θ nor with σ . Hence, derivation D
′ proceeds thus:

〈← p(sn)∧Q
′
1,θ ∪δ ,Π′〉

⇒SLD 〈← (B′∧Q′1)(σ1∪δ1),(θ ∪δ )(σ1∪δ1),Π
′〉

∗
⇒SLD 〈�,(θ ∪δ )(σ1∪δ1)(σ2∪δ2),Π

′∪Πreg〉

1 Note that in the translated program Π′, we can find rules of the form p(tn, [X ′],I
H ,SH ,SC)← reg(IH , [X ′],CR)∧

chk(CR ,SC)∧B′ coming from the translation of the embedded implications in the body of the rules in Π (see Definition
3.5). However, this type of rule does not contribute to the first step of a derivation.
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Now, because mgu({p(sn) = p(tn)}) = mgu({sn = tn}) = σ1 is solvable, there exists the

step in Π:

〈← p(sn)∧Q1,θ ,Π〉 ⇒HSLD 〈← (B′∧Q′1)σ1,θσ1,Π〉

on the other hand, by the inductive hypothesis, there exists a derivation in Π such that:

〈← (B∧Q1)σ1,θσ1,Π〉
∗
⇒HSLD 〈�,θσ1σ2,Π〉

and the derivation D in Π can be constructed.
(b) In this case, the first step is performed on a solving implication clause, that is Q′ ≡← (⇒

(i, [X ],G′, IC,SC)∧Q′1) which is the translation of Q ≡← (H ⇒ G)∧Q1. For simplicity,

we will assume that G′ ≡ q(sn) and the goal translation G≡ q(sn,L, I,C,S
C.IC). Then the

shape of the derivation D′ is:

〈← (⇒ (i, [X ],G′, IC,SC)∧Q′1),θ ,Π
′〉

⇒SLD 〈← (get ci(IC)∧ reg rule(i, [X ], IC,SC)∧ call(G′)∧Q′1),θ ,Π
′〉

⇒SLD 〈← (reg rule(i, [X ], j,SC)∧ call(G′)∧Q′1){I
C/ j},θ ∪{IC/ j},Π′〉

⇒SLD 〈← (assertz(reg(i, [X ],SC))∧ call(G′)∧Q′1){I
C/ j},θ ∪{IC/ j},Π′〉

⇒SLD 〈← (call(G′)∧Q′1){I
C/ j},θ ∪{IC/ j},Π′ ∪{reg(i, [X ],SC)}〉

⇒SLD 〈← (G′∧Q′1){I
C/1},θ ∪{IC/1},Π′ ∪{reg(0, [X ],SC)}〉

+
⇒SLD 〈← Q′1(σ1∪{I

C/1}∪δ1),(θσ1)∪{I
C/ j}∪δ1,Π

′ ∪{reg(i, [X ],SC)}∪Πreg1〉
∗
⇒SLD 〈�,(θσ1σ2)∪{I

C/ j}∪δ1 ∪δ2,Π
′ ∪{reg(i, [X ],SC)}∪Πreg1 ∪Πreg2〉

with two clear parts. The first part corresponds to the HSLD step performed on (H ⇒ G)

using Rule 2 of Definition 3.1. It groups the associated derivations submitted by the occur-

rence of embedded implications and their successive program contexts. Then there must

exist the HSLD step 〈← (H ⇒ G)∧Q1),θ ,Π〉 ⇒HSLD 〈Q1σ1,θσ1,Π〉 in the program Π.

As for the second part, by the inductive hypothesis, there must exist the HSLD derivation

〈Q1σ1,θσ1,Π〉
∗
⇒SLD 〈�,θσ1σ2,Π〉. Combining both, the former step and the last deriva-

tion, we obtain the derivation D.

Corollary Appendix B.4

Let Π′ be the translation of a program Π and G ′ ≡ (← Q′1) the goal translation of a goal G ≡ (←

Q1), if there exists a derivation D′ ≡ 〈← Q′, id,Π′〉
∗
⇒SLD 〈�,σ ′,Π′∪Πreg〉, where Πreg is the set

of rule registrations, that is, all the reg/3 assertions due to embedded implication solving, then

there exists a derivation D≡ 〈(← Q), id,Π〉
∗
⇒HSLD 〈�,σ ,Π〉, and σ = σ ′[Var(G )]. �
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Appendix C Related Work

The term ”hypothetical reasoning” appears in many important contexts in the philosophical and

scientific literature. Auguste Comte, founder of Positivism, is one of the first thinkers to highlight

the importance of hypotheses in science (Bourdeau 2020). Although Comte does not establish

laws for hypothetical reasoning, he begins the path, influencing (according to Michel Bourdeau

(Bourdeau 2014)) other thinkers such as Peirce and its abductive reasoning. According to that

American philosopher, human thought has three modes of reasoning: deductive, inductive and

abductive. ”Abduction is the first step of scientific reasoning”, because, as he says, ”abduction is

the process of forming explanatory hypotheses. It is the only logical operation that introduces a

new idea” (Douven 2021).

However, our work is centered in a more specific area with a long tradition in the field of Logic

Programming, in which the purpose is prospective: to propose hypotheses in order to evaluate

its consequences. Mainly, our work is influenced by those of Gabbay (Gabbay and Reyle 1984;

Gabbay 1985) and Bonner (Bonner 1988; Bonner 1990; Bonner 1994; Bonner 1997) and, to a

lesser extent, by those of L.T. McCarty (McCarty 1988a; McCarty 1988b).

Gabbay first deals with hypothetical implications in logic programming. In (Gabbay and Reyle 1984),

they focused only on addition operations because deletion is problematic; thus they let it for

another paper. Addition is essentially monotonic and deletion is not. We use a similar tech-

nique to the one followed by Gabbay for implementing hypothetical implications, by asserting

the antecedent to the program database, trying to derive the consequent and finally retracting

the antecedent. (Gabbay 1985) investigates the logical properties of N-PROLOG and the way

it relates to classical logic and the classical quantifiers. He also introduced negation as failure

into N-PROLOG. He saw that success in the N-PROLOG computation of a goal G from the

database P means logically that P ⊢ G in intuitionistic logic. It is credited that was Gabbay the

first one to realize the important connection between hypothetical reasoning and intuitionistic

logic (Bonner 1994).

In (McCarty 1988a), he presents a clausal language that extends Horn-clause logic by adding

negations and embedded implications (i.e., hypothetical implications –he was the one who first

used this designation–) to the right-hand side of a rule, and interpreting these new rules intuition-

istically in a set of partial models. Lately, in (McCarty 1988b), he shown that clausal intuitionistic

logic has a tableau proof procedure that generalizes Horn-clause refutation proofs and it is proved

sound and complete.

As it has been said, Bonner has extensive experience in this field, starting from a language

with embedded implications (close to ours) and exploring its applications and formal properties,

including results on complexity (Bonner 1988; Bonner 1990; Bonner 1994). In his latest work

on this topic (Bonner 1997), he broke with his initial works and he developed a logic program-

ming language with a dedicated syntax in which users can create hypotheses and draw inferences

from them. He provides two specific operations with a modal-like notation: hypothetical inser-

tion of facts into a database (Q[add : A] meaning that “Q would be true if A were added to

the database”), that has a well-established logic (intuitionistic logic) and hypothetical deletion

(Q[del : A] meaning that “Q would be true if A were deleted from the database”). In this paper,

he develop a logical semantics for hypothetical insertions and deletions (including a proof theory,

model theory, and fixpoint theory). He analyses the expressibility of the language and he shows

that classical logic cannot express some simple hypothetical queries. However, we believe that

the language introduced, with specific insertion and deletion operations, may have limitations
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compared to the one we have proposed in this work (e.g., only atoms can be inserted or deleted).

Finally, he augmented the logic with negation-as-failure so that nonmonotonic queries can be

expressed, a subject that we let as future work.

Finally, another piece of related work is λ -Prolog, which uses a syntax based on the so-called

“hereditary Harrop formulas.” Thanks to this type of formulas, λ -Prolog subsumes a set of in-

creasingly complex sublanguages, ranging from Horn clauses and higher-order Horn clauses to

hereditary Harrop formulas. This type of formula, for example, allows rules with bodies that

contain (hypothetical) implications whose hypotheses are in turn rules.

The use of higher-order Horn clauses and a non-deterministic goal-directed search-based

operational semantics (which is complete with respect to an intuitionistic sequent calculus)

(Miller et al. 1991) allows λ -Prolog the ability to perform hypothetical reasoning. In practical

and informal terms, the λ -Prolog operational mechanism performs operations similar to those

performed by Comp to solve a hypothetical implication (H ⇒ G): Assert H to the rules of the

program (creating a new context) and launch the goal G; if G is successful, then (H⇒G) is also

successful. It is nothing other than the rule ”AUGMENT” (P ⊢ (D⇒G) only if P+D ⊢G.), one

of the operational rules that models the computation-as-goal-directed-search of λ -Prolog.

Therefore, both mechanisms are comparable, except that λ -Prolog fits into a more general and

ambitious framework, while Comp simply tries to extend the language of Horn clauses and the

resolution principle with additional features, among which the hypothetical reasoning is found,

as a platform for a fuzzy logic programming system.

What specific expressive capabilities for hypothetical reasoning λ -Prolog incorporates de-

pends on the implementation. For example, we know in the words of D. Miller himself2 about

Teyjus, an implementation of λ -Prolog, that ”Teyjus does not permit implications to be used

in top-level goals. This is a characteristic that may change in the future when the compilation

model is extended also to these goals but, for now, it means that some of the examples presented,

eg, in Section 3.2, cannot be run directly using this system.” Instead, the future implementation

of Comp is planned to be able to allow this by compiling the goal in the context of the loaded

program before submitting it.

Moreover, λ -Prolog does not work with ”negative assumptions”, a matter that we have let

marked as future work, and that we will undertake by following some ideas already proposed for

the implementation of a Fuzzy Datalog system [Julian-Iranzo and Saenz-Perez, 2018].

Despite all the above and the possible relations between the foundations of our proposal and

λ -Prolog, as we have just commented in this section, our work has its roots in the previous

work carried out by Gabbay and Bonner. On the other hand, the main contribution of this ar-

ticle is the development of efficient high-level implementation techniques for implementing a

fuzzy logic programming system (HBPL) with the possibility of hypothetical reasoning based

on BPL (Rubio-Manzano and Julián-Iranzo 2014; Julián-Iranzo and Rubio-Manzano 2017). In

such a system, assumptions imply compilations which with our proposal are possible to perform

at compile-time.

2 stackoverflow.com/questions/65176668/?prolog-rejecting-hypothetical-reasoning-queries

stackoverflow.com/questions/65176668/?prolog-rejecting-hypothetical-reasoning-queries
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