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Abstract

Uncertain information is being taken into account in an increasing number of application fields. In the

meantime, abduction has been proved a powerful tool for handling hypothetical reasoning and incomplete

knowledge. Probabilistic logical models are a suitable framework to handle uncertain information, and in

the last decade many probabilistic logical languages have been proposed, as well as inference and learning

systems for them. In the realm of Abductive Logic Programming (ALP), a variety of proof procedures have

been defined as well. In this paper, we consider a richer logic language, coping with probabilistic abduc-

tion with variables. In particular, we consider an ALP program enriched with integrity constraints à la IFF,

possibly annotated with a probability value. We first present the overall abductive language, and its seman-

tics according to the Distribution Semantics. We then introduce a proof procedure, obtained by extending

one previously presented, and prove its soundness and completeness. This paper is under consideration for

acceptance in TPLP.

KEYWORDS: Abduction, Integrity Constraints, Distribution Semantics, Probabilistic IFF

1 Introduction

Reasoning in uncertain domains is a common task for humans, and the human brain also has

the capability to explore different scenarios by considering a variety of possible hypotheses, in

order to take a decision. The ability of the human brain, and human expertise in specific do-

mains, meant that humans were not replaceable by a machine in their reasoning tasks, so far.

Nonetheless, in the last decade, the huge increase of available data and knowledge in many

domains (e.g., in medicine, science, physics, etc.), often in a form that can be processed auto-

matically, strongly pushes towards forms of automatic reasoning able to cope with uncertainty,

probabilities and hypotheses, also in order to have reasoning systems facing humans, and to

achieve a more reproducible (and verifiable) behaviour. This is definitively a strong commit-

ment for a trustworthy Artificial Intelligence. Logic Programming (LP) is a powerful class of

languages to be a candidate for this purpose. The language itself is human-readable, and knowl-

edge expressed in this class of languages can be validated by humans. Standard LP syntax, and

LP-based reasoning is the base for a variety of more expressive languages, and proof proce-

dures. In particular, Probabilistic Logic Programming (PLP) (De Raedt and Kersting 2008) lan-

guages are simple yet powerful enough to represent different scenarios (Azzolini et al. 2019;

http://arxiv.org/abs/2108.03033v2
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Nguembang Fadja and Riguzzi 2017). Several of these languages are based on the distribution

semantics (Sato 1995), such as PRISM (Sato 1995), LPAD (Vennekens et al. 2004), and ProbLog (De Raedt et al. 2007).

In the meantime, Abductive Logic Programming (ALP) (Kakas et al. 1998) has been proven

very effective for hypothetical reasoning and for formalizing a variety of domains and applica-

tions, ranging from diagnosis to societies of agents and accountable protocols for multi-agent

systems, commitments and normative systems, web service choreographies. ALP is based on

a declarative (model-theoretic) semantics and equipped with an operational semantics in terms

of a proof-procedure. The IFF proof-procedure was proposed by Fung and Kowalski (1997) to

support abductive reasoning also in presence of non-ground abducible literals.

In this paper we consider a richer logic language, coping with probabilistic abduction with

variables. In particular, we consider an ALP program featuring also Integrity Constraints (ICs)

similar to those offered by IFF, extended by the possibility of annotating them with a proba-

bility value, that makes it possible to handle uncertainty of real world domains. Probabilistic

integrity constraints were defined by Riguzzi et al. (2020): programs containing such constraints

are called Probabilistic Constraint Logic Theories (PCLTs) and may be learned directly from

data by means of PASCAL (“ProbAbiliStic inductive ConstrAint Logic”), a system that learns

both their structure and parameters from interpretations. However, a system able to reason about

these integrity constraints is still missing. Consider the following example.

Example 1

Several years ago, a murder in Italy captured the attention of the population: a woman was

murdered, and the main indicted person was her husband. The collected evidence included the

following facts: the woman was killed in the house where she lived with her husband (house1); a

pillow stained with the blood of the victim was found in another house (house2) some hundreds

of km away; the husband had the keys of this second house.

We can represent the facts listed above in the following knowledge base:

has_keys (husband ,house1 ).

has_keys (husband ,house2 ).

The goal is to find the murderer M, i.e., the person who entered both houses and killed the victim:

G = enter (M,house1),killed (M,woman),enter (M,house2).

Predicates killedand enterare not known in the knowledge base, and they must be hypothe-

sized: in ALP they are considered abducibles (in this paper, abducibles are in italic ). Notice

that this problem requires non-ground abduction, since the murderer M is unknown, and it is not

even possible to list all the possible murderers.

The relationship between having the keys and entering a house can be stated through an in-

tegrity constraint

enter(P,H)→ has keys(P,H). (ic1)

saying that if a person P enters a house H, (s)he must have the keys.

However, the information encoded in ic1 is not 100% sure: a person could also enter the house

without having the keys, e.g., by breaking a window or picking the lock of the door. The encoding

would be more faithful to reality if a probability was associated to ic1. The probability that ic1

does not hold would be quite low, since entering with the keys is much easier than with unlawful

methods, in which the intruder could be noticed and arrested.

Most previous works proposing probabilistic abductive logic programming have considered
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only abduction of ground atoms (Poole 1993; Arvanitis et al. 2006; Inoue et al. 2009; Kate and Mooney 2009;

Raghavan 2011; Turliuc et al. 2013; Rotella and Ferilli 2013). To the best of our knowledge, only

Christiansen (2008) focused on probabilistic non-ground abduction, and this clearly extends the

expressiveness of the language, as well as the answer capabilities of the proof-procedure: as a

matter of fact, non-ground abduction can provide answers in which not all parts of the answer

are completely defined, and in which possible hypotheses, for some given evidence, are assumed

without complete knowledge. This more closely resembles the capabilities of the human brain,

that is able to hypothesize the existence of some action, force or individual causing an effect

even without complete knowledge of whom, or which force is responsible. On the other hand,

the proof-procedure by Christiansen (2008) considers only a limited form of negation and assigns

probabilities only to abducibles. In our work, instead, we extend ALP to give the possibility to

probabilistically annotate integrity constraints to enrich the standard semantics. This leads to a

probabilistic ALP reasoning system that clearly improves on existing systems such as the one

by Christiansen, since annotating ICs also allows one to obtain the same effect of adding proba-

bilities to abducibles. Moreover, machine learning systems already exist that learn probabilistic

integrity constraints from data in the same form proposed in this paper, such as the aforemen-

tioned PASCAL, however, no abductive logic programming reasoning system existed before to

exploit the learned constraints: in this paper we fill this gap.

The paper is organized as follows. Sect. 2 introduces information about the IFF semantics nec-

essary for understanding Sect. 3 and 4 that discuss language, syntax, and semantics of the pro-

posed probabilistic non-ground abduction proof-procedure, called IFFProb. Sect. 5 proves sound-

ness and completeness of IFFProb, while Sect. 6 describes its implementation and Sect. 7 dis-

cusses some real world application examples. Sect. 8 shows preliminary scalability tests. Sect. 9

presents related work and Sect. 10 concludes the paper.

2 Background

IFF Declarative Semantics. A IFF (Fung and Kowalski 1997) program is a triple 〈KB,IC,A 〉.
A is a set of abducible predicates, or simply abducibles. An abducible is a predicate about which

it is possible to make assumptions, such as about its truth. An abducible atom is an atom built

on an abducible predicate. In this work, abduced literals can contain variables, that are implicitly

existentially quantified. KB is a set of logic programming clauses of the form

h← b1, . . . ,bm

where m≥ 0, and each bi with 1 ≤ i≤ m is a literal (i.e., an atom or its negation), while h is an

atom that cannot be built on a predicate in A . h is called head, while b1, . . . ,bm is called the body

of the clause.

IC is a set of implications, called Integrity Constraints (ICs). Each ic ∈ IC has the form

b1, . . . ,bn→ H1∨·· ·∨Hk

where b1, . . . ,bn is a conjunction of atoms called Body of the IC ic, while the disjunction H1∨
·· ·∨Hk is called the Head. Each Hi with 1≤ i≤ k is a conjunction of literals h1, . . . ,hl .

A goal G is a conjunction of literals of the form g1, . . . ,gm with m≥ 1.

To define the abductive semantics, we need to recall some definitions. An IC, clause or ab-

ducible is ground if it does not contain variables. A substitution θ is an assignment of variables

to terms: θ = {V1/t1, . . . ,Vn/tn}. The application of a substitution θ = {V1/t1, . . . ,Vn/tn} to an



4 Bellodi et al.

IC ic, indicated with icθ , is the replacement of each variable Vi appearing in ic and in θ with ti.

icθ is called an instance of ic. θ is grounding for ic if icθ is ground. The same applies to clauses

and abducibles as well.

The IFF abductive semantics defines an abductive answer to a goal G as a pair (∆,θ ), where

∆ is a set of abducible atoms and θ is a substitution for the variables contained in G, such that

KB∪∆ |= IC and

KB∪∆ |= Gθ
(1)

where |= is entailment according to the 3-valued completion semantics (Kunen 1987), i.e., we

require that every 3-valued models of the completion (Clark 1978) of KB∪∆ is also a 3-valued

model of IC. In such a case, we write ALP |=∆ G. Variables in G are free, the remaining vari-

ables in ∆ are existentially quantified, while variables in KB and IC are implicitly universally

quantified with scope the entire implication.

Riguzzi et al. (2020) introduce (although not in the context of ALP) the concept of Probabilis-

tic Integrity Constraint (PIC)

pi :: Body→ Head (2)

where pi is a probability ∈ [0,1].

3 IFFProb Syntax and Declarative Semantics

IFFProb programs define a probability distribution over IFF programs inspired by the distribution

semantics proposed in the field of Probabilistic Logic Programming (Sato 1995). A IFFProb pro-

gram, similarly to IFF, is a triple ALPp = 〈KB,IC,A 〉, however, in this case, the set IC is defined

as ICp ∪ ICnp, where ICp is a set of PICs as in Eq. 2 while ICnp is a set of (non-probabilistic)

ICs as in the IFF.

It is worth noting that associating probabilities to ICs makes IFFProb more general than other

frameworks (Christiansen 2008) in which probabilities are attached to abducibles, since the fact

that abducible a has probability p can be simply expressed by the PIC

(1− p) :: a → false.

A IFFProb program T = 〈KB,IC,A 〉 defines a probability distribution over IFF programs

called worlds where the constraints set includes each ic ∈ ICnp, and some instances of any ic ∈
ICp included with probability pi.

An atomic choice is a triple (ici,θ j,k) where ici is the i-th PIC, θ j is a substitution for the

variables in ici, and k ∈ {0,1} indicates whether iciθ j is chosen to be included in a world (k = 1)

or not (k = 0). A composite choice E is a consistent set of atomic choices, where consistent means

that E does not contain two atomic choices (ici,θ j ,k),(ici,θ j ,m) with k 6= m, i.e., (ici,θ j,k) ∈
E,(ici,θ j,m) ∈ E⇒ k = m (only one decision for each instance of each PIC).

The probability of a composite choice E is

P(E) = ∏
(ici,θ j ,1)∈E

pi ∏
(ici,θ j ,0)∈E

(1− pi)

where pi is the probability associated with PIC ici.

A selection σ is a total composite choice, i.e., it contains an atomic choice for every instance

up to renaming of every PIC of the IFFProb program. Given a selection σ , the world Wσ is defined

as Wσ = {iciθ j|(ici,θ j,1) ∈ σ}. Let us indicate with ST the set of all selections and with WT
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the set of all worlds. The probability of a world Wσ is P(Wσ ) = P(σ). P(Wσ ) is a probability

distribution over worlds, i.e., ∑W ∈WT
P(W ) = 1.

Given a world W , the conditional probability that a goal G is satisfied in the world is defined

as P(G|W ) = 1 if ∃∆〈KB,W ,A 〉 |=∆ G and 0 otherwise. Given a goal G, its probability P(G)

can be defined by marginalizing the joint probability of the goal and the worlds:

P(G) = ∑
W ∈WT

P(G,W ) = ∑
W ∈WT

P(G|W )P(W ) = ∑
W ∈WT :W |=G

P(W )

Therefore, the probability of a goal G can be computed by summing the probability of the worlds

where the goal is true.

Given a goal G to solve, an explanation is a composite choice E for G such that G is entailed

by every world of ωE , where ωE = {Wσ |σ ∈ST ,σ ⊇ E} is the set of worlds compatible with E .

We also define the set of worlds identified by a set of explanations E as ωE =
⋃

E∈E ωE . A set

of explanations E is covering with respect to G if every world W ∈WT in which G is entailed is

such that W ∈ ωE . Two explanations E1 and E2 are incompatible if their union is inconsistent,

i.e., given a PIC ic and a substitution θ , the explanations E1 = {(ic,θ ,1)} and E2 = {(ic,θ ,0)}
are incompatible. A set E is pairwise incompatible if for all E1 ∈ E , E2 ∈ E , E1 6= E2 implies

E1 and E2 are incompatible. The probability of a pairwise incompatible set of explanations E is

defined as P(E ) = ∑E∈E P(E).

Definition 1 (Probabilistic Abductive Answer)

Given an ALPp, (∆,θ ) is a probabilistic abductive answer for a goal G in the explanation E if

KB∪∆ |= Gθ

KB∪∆ |= ICnp

∀(ici,θ j,1) ∈ E, KB∪∆ |= iciθ j

In such a case, we write ALPp |=∆
E G.

Example 1 (Continued)

We are now able to refine the previous example by associating a probability to the IC saying that

if a person P enters a house H, (s)he must have the keys: such statement is uncertain, because it

might be the case that an unauthorized person is able to enter a house also without having the

keys, although with a lower probability, say 0.3:

0.7 :: enter(P,H)→ has keys(P,H). (ic′1)

4 IFFProb Operational Semantics

IFF Operational Semantics. Before defining the IFFProb operational semantics, we recap the

IFF operational semantics (Fung and Kowalski 1997).

The following is the subset of IFF transitions that are relevant for this work, in a proof-theory

style notation. In the following list, a is an abducible atom, while p and q represent atoms of

either abducible or defined predicates, and N is a set of arguments.

• propagation
a (N) a (N′),B→H

N=N′,B→H
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• unfolding

p(N) p(N′)← B

N = N′,B

p(N)→ H

p(N′)← B′

p(N′′)← B′′

. . .
p(Nk)← Bk

N = N′,B′→ H
N = N′′,B′′→ H

. . .
N = Nk,Bk → H

• case analysis

(N = N′,B)→ H

(N = N′), (B→ H)

(N = N′,B)→ H

N 6= N′

• equality rewriting

[∃E][∀A]A = E

θ = {A/E}
[∃E][∀A]A 6= E

false

[∃E1][∃E2]E1 = E2

θ = {E1/E2}
X = t t does not contain X

θ = {X/t}
X = t t contains X

false

X 6= t t contains X

true

p(t1, . . . ,tn) = p(s1, . . . ,sn)

t1 = s1, . . . ,tn = sn

p(t1, . . . ,tn) 6= p(s1, . . . ,sn)

t1 6= s1∨·· · ∨ tn 6= sn

p(t1, . . . ,tn) = q(s1, . . . ,sm) where p 6= q∨n 6= m

false

p(t1, . . . ,tn) 6= q(s1, . . . ,sm) where p 6= q∨n 6= m

true

where the substitution θ is added to the child node. In case two variables with different

quantifiers are unified, the new variable is existentially quantified.

• logical simplifications

true→ A

A
(3)

false→A
true

true∧A
A

false∧A
false

true∨A
true

false∨A
A

• factoring
a (X) a (Y )

X=Y

a (X) a (Y )
X 6=Y

IFFProboperational semantics. We provide an extended version of the IFF operational seman-

tics capable to deal with probabilistic integrity constraints. We decorate each probabilistic in-

tegrity constraint ic with its original version and a substitution, initially empty, θ /0:

icicθ /0

The main transition that needs to be updated is the logical equivalence true→A
A

(Eq 3). Such a

rule continues to exist for non-probabilistic ICs, while for probabilistic ones it is replaced by the

following two rules:

(p :: true→ A)iciθ j E (ici,θ j ,0) 6∈ E

A, E ∪{(ici,θ j,1)}
(4)

(p :: true→ A)iciθ j E (ici,θ j ,0) 6∈ E

E ∪{(ici,θ j ,0)})
(5)
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Intuitively, when the body of a PIC is proven true, its consequences are not propagated in all

possible explanations, but, instead, two alternative explanations are generated: one in which the

PIC is assumed to hold and its consequences are propagated, while in the other the PIC is not

assumed to hold and the consequence A is not derived.

The other transitions are unmodified, except for the decoration explained earlier, e.g., Proba-

bilistic Propagation becomes

a(X) (p :: a(Y ),B→ H)icθ

(p :: X = Y,B→H)icθ

Definition 2 (Successful derivation)

Each node of a derivation has the form

〈R,∆,PSIC,E,θ 〉

where the goal still to be proven is partitioned into the set R (Resolvent) of non-abducible literals

and the set ∆ of abducible ones, PSIC is a set of (probabilistic and non-probabilistic) ICs that

must hold, E is the current explanation, and θ is the current substitution.

A derivation is successful for a goal G in an ALP = 〈KB,IC,A 〉 with explanation E if it starts

from a node

〈G, /0, IC, /0, /0〉
and terminates in a node

〈 /0,∆,PSIC,E,θ 〉
where no transition is applicable. If such a derivation exists, we write

ALP ⊢∆
E Gθ

Definition 3 (Computed Probability of a goal)

Let E = {E|ALP ⊢∆
E G} be the covering pairwise incompatible set of explanations for the goal

G, the computed probability of G is P(G) = P(E ) = ∑E∈E P(E).

5 Soundness and Completeness

Theorem 1 (Soundness)

If there exists a successful derivation ALP ⊢∆
E Gθ , then ALP |=∆

E Gθ .

Proof

Note that, with respect to the original IFF transitions, the new transitions of IFFProb only change

the explanations, while all remaining elements of each node of the proof tree remain as in

IFF. In particular, all non-probabilistic integrity constraints are handled as in IFF, that is sound

(Fung and Kowalski 1997), so for each successful derivation ALP ⊢∆
E G, KB∪∆ |= ICnp holds.

The only modification is probabilistic logical equivalence (Eq 4 and Eq 5), in which a new

branch is added: while in the original IFF proof-procedure, when the condition of an IC is satis-

fied, the consequence is always added to the node, for probabilistic ICs two mutually-exclusive

branches are added to the proof-tree.

In one branch, Eq 4 is applied and adds the atomic choice (ic,θ ,1) to E . Note that no transition

removes elements from E . In such a branch, the consequent of icθ is added to the resolvent and
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all the following computation treats icθ as a non-probabilistic integrity constraint in IFF; this

proves that for each (ic,θ ,1) that is added to E , KB∪∆ |= icθ .

In the other branch, Eq 5 is applied and the atomic choice (ic,θ ,0) is added to E . Notice that

no transition can add an atomic choice (ic,θ ,k) to E if (ic,θ ,0) was already in E (the set E

is always consistent). This proves that (ic,θ ,1) will not be added in the following part of the

derivation to E .

Theorem 2 (Completeness)

If ALP |=∆
E Gθ then there exists a successful derivation ALP⊢∆′

E ′ Gθ , where ∆′⊆∆ and ∀(ici,θ j ,1)∈
E ′, (ici,θ j ,1) ∈ E .

Proof

Suppose that ALP |=∆
E∗ G, i.e., there is a probabilistic abductive answer for a goal G, in an expla-

nation E∗. We leverage on the completeness theorem of the IFF proof-procedure (Fung and Kowalski 1997),

crafting an IFF program in such a way that a IFFProb derivation can be built with simple replace-

ments of transitions from the IFF derivation.

Let IC(E+
∗ ) = {iciθ j|(ici,θ j,1) ∈ E∗}; consider the (non-probabilistic)

ALP6p = 〈KB,(IC(E+
∗ )∪⊤(ICp \ IC(E+

∗ )))| 6p∪ ICnp,A 〉

where X | 6p = {ic|p :: ic ∈ X} strips the probability annotation from a set of probabilistic ICs

X and ⊤(X) = {Body→ true|Body→ Head ∈ X} replaces the Head of a set of ICs with true;

clearly the last operation produces implications that are tautologies, and are useless from a logical

viewpoint, but that help us build the IFFProb derivation.

From the completeness theorem of the IFF (Fung and Kowalski 1997), we have that there

exists an IFF derivation ALP6p ⊢∆′ G where ∆′ ⊆ ∆. We build a successful IFFProb derivation that

mimics the IFF derivation, where Eq 4 is applied to ICs in IC(E+
∗ ), and in which Eq 5 is applied

to ICs in its complement, ICp \ IC(E+
∗ ).

In the IFF derivation, the logical equivalence Eq 3 is possibly applied to ⊤(ICp \ IC(E+
∗ ))| 6p;

we substitute each application with the application of Eq 5. Such applications have no other

consequences beside adding elements (ici,θ j,0) to the E set, where iciθ j ∈ ICp \ IC(E+
∗ ).

Since IFFProb may also have to apply propagation, unfolding and case analysis to the ICs in

ICp \ IC(E+
∗ ), adding the set ⊤(ICp \ IC(E+

∗ ))| 6p to the integrity constraints of the IFF program

ensures that also the IFF derivation applies such transitions when necessary.

In the IFF derivation, the logical equivalence true→A
A

is (possibly) applied to ICs in IC(E+
∗ )| 6p.

We substitute each application of Eq 3 with the application of Eq 4. Note that Eq 4 is applicable,

because the set E is empty in the initial node, and the only transition that adds atomic choices

of the type (ici,θ j,0) to E is Eq 5, that adds only elements of ICp \ IC(E+
∗ ). Clearly the result

in the resolvent is the same as for the original IFF derivation, since both Eq 3 and Eq 4 add the

consequence A of the implication to the resolvent. By construction, the set of atomic choices

(ici,θ j,1) added in this way to E is always a subset of IC(E+
∗ ).

6 Implementation

6.1 Recap: CHR implementation of the S CIFF proof-procedure

We implemented IFFProb leveraging on the implementation of the S CIFF proof-procedure.

S CIFF (Alberti et al. 2008) is an extension of the IFF proof procedure (Fung and Kowalski 1997)
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that also features constraints (à la Constraint Logic Programming (CLP)) and universally quan-

tified abducibles. In this work, we extend to the probabilistic case only the IFF sub-language and

leave for future work the probabilistic extension of the other parts of S CIFF.

The S CIFF proof-procedure was implemented (Alberti et al. 2013) in Constraint Handling

Rules (CHR) (Frühwirth 2020). CHR is a rewriting system originally developed to implement

new CLP constraint solvers, and then employed also as a language for a wide variety of ap-

plications. A set of atoms are declared as CHR constraints; according to the CLP operational

semantics, when a CHR constraint is selected (e.g., during SLD-resolution), it is moved to a con-

straint store. CHR rules transform the constraint store, hopefully simplifying it. There exist two

main types of CHR rules: propagation and simplification rules.

A Propagation rule has the form

c1,c2, . . . ,cn⇒ Guard|Body

where c1, . . . ,cn are CHR constraints, Guard and Body are Prolog goals. The meaning is that

Body is a logical consequence of the conjunction c1∧·· ·∧cn provided that Guard is true. Oper-

ationally, when the set of constraints c1, . . . ,cn are in the constraint store, the guard is evaluated;

in case it is true, the Body is executed.

A Simplification rule has the form

c1,c2, . . . ,cn⇔ Guard|Body

Its declarative reading is that Body is equivalent to the conjunction c1 ∧ ·· · ∧ cn provided that

Guard is true. Operationally, when the set of constraints c1, . . . ,cn is in the store, and the guard

is true, the constraints c1, . . . ,cn are removed from the store and the Body is executed.

In the S CIFF implementation, each abducible atom a (X) is mapped to a CHR constraint

abd(a(X)), and each IC Body→ Head is mapped to a CHR constraint ic(Body,Head). Each

transition in the operational semantics is mapped to a CHR rule. For example, transition propa-

gation is mapped to the CHR simplification rule (CHR expert readers will actually recognize it

as a simpagation rule)

abd(A), ic([abd(B)|T ],H) ⇔ abd(A), ic([A = B|T ],H),

and transition case analysis is mapped to

ic([A = B|T ],H) ⇔ A = B, ic(T,H) ; A 6= B

where the semicolon is Prolog’s OR and 6= is a dis-unification constraint. Logical equivalence
true→G

G
is mapped to the simplification rule

ic([],Head)⇔Head. (6)

6.2 Implementation of IFFProb

In order to implement probabilistic reasoning, we add a new CHR constraint that represents the

current explanation:
expl(E,P)

means that, in the current derivation branch, the explanation is E , and has probability P. The E

parameter is a collection (e.g., list) of triples (ici,θ j,k), holding the integrity constraint ici, the

substitution that made its body true, θ j, and the integer k representing a Boolean value explaining

whether iciθ j belongs to E or not.

The CHR constraint representing ICs now requires additional information for probabilistic

ICs: unsurprisingly the probability P needs to be added to the parameters, and also the original



10 Bellodi et al.

1: ic([],Head, iciθ j,Pic), expl(E,PE)⇔
2: ( (ici,θ j, ) ∈ E,
3: expl(E,PE)
4: ; (ici,θ j, ) 6∈ E,
5: ( expl(E ∪{(ici,θ j,1)},PE Pic),
6: Head

7: ; expl(E ∪{(ici,θ j,0)},PE(1−Pic))
8: )
9: ).

Fig. 1: Implementation of the probabilistic logical equivalence rule in CHR.

version ici of the integrity constraint together with the θ j substitution that binds the variables in

the body is stored. The new CHR constraint representing a probabilistic implication is

ic(Body,Head, iciθ j,P).

We extend the logical equivalence rule true→A
A

according to the new operational semantics

(Figure 1). Such logical equivalence is applied when (due to successive applications of other

transitions) the body of an integrity constraint ici is proven true, for a given substitution θ j of

the variables in the body. Simplification rule 6 is extended to consider three cases in disjunction.

In the first (line 2), it is imposed that iciθ j belongs to the current explanation (i.e., a unification

is imposed such that iciθ j unifies with at least one member of the explanation, similarly to the

member predicate in standard Prolog); in such a case, the ic has already been propagated with

exactly the same substitution, so there is no need to re-propagate its consequences, nor to change

the current explanation and its probability. Otherwise (line 4), it is imposed that iciθ j does not

belong to the current explanation (i.e., a dis-unification constraint is imposed between iciθ j and

all members of the explanation). In such a case, two alternative branches are opened, i.e., one in

which we consider an explanation that includes the integrity constraint iciθ j (line 5) and one in

which iciθ j is considered removed (line 7).

6.3 Computation of the Probability of Goals

The IFFProbproof-procedure returns the covering set E of all the explanations expl/2 for a goal

G. As seen in Definition 3, if E is also pairwise incompatible, then P(G) = P(E ). However, a

covering set of explanations E for a goal G is not guaranteed to be pairwise incompatible.

Thus, we associate a Boolean random variable Xi j to each instance of PIC iciθ j. In this

way, an atomic choice (ici,θ j ,1) corresponds to Xi j assuming value true. The variables X =

{Xi j|(ici,θ j ,k) ∈ E,E ∈ E } are pairwise independent and the probability that Xi j takes value 1 is

pi, the probability associated with the i-th PIC.

Given a covering set of explanations E for a query G, each world where the query is true

corresponds to an assignment of X for which the following Boolean function takes value 1:

fE (X) =
∨

E∈E

∧

(ici,θ j ,1)∈E

Xi j

∧

(ici,θ j ,0)∈E

Xi j (7)

Thus, we can compute the probability of G by computing the probability that fE (X) takes value

1. This formula is in Disjunctive Normal Form (DNF) but we cannot compute P( fE (X)) by

summing the probability of each individual explanation because the different explanations may

not be mutually disjoint. To solve the problem, we can apply knowledge compilation to the

propositional formula fE (X) (Darwiche and Marquis 2002) in order to translate it into a target
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Fig. 2: BDD for function f (X).

1: function PROB(node, pMap)
2: Input: a BDD node node and a (node,prob) map pMap
3: Output: the probability of the formula associated to node

4: if node is a terminal then

5: return value(node) ⊲ value(node) is 0 or 1
6: else if node is in pMap then

7: return pMap[node] ⊲ The probability of node

8: else

9: let X be v(node) ⊲ v(node) is the variable associated to node
10: P1←PROB(child1(node))
11: P0←PROB(child0(node))
12: add (node,P(X) ·P1 +(1−P(X)) ·P0) to pMap
13: return P(X) ·P1 +(1−P(X)) ·P0

14: end if

15: end function

Fig. 3: Function that computes the probability of a BDD.

language that allows the computation of the probability in polynomial time. A target language

that was found to give good performances is the one of Boolean Decision Diagrams (BDDs).

A BDD for a function of Boolean variables is a rooted graph that has one level for each

Boolean variable. A node n in a BDD has two children: one corresponding to the 1 value of

the variable associated with n, indicated with child1(n), and one corresponding to the 0 value

of the variable, indicated with child0(n). The leaves store either 0 or 1. Given values for all

the variables, a BDD can be used to compute the value of the formula by traversing the graph

starting from the root, following the edges corresponding to the variables values and returning the

value associated to the leaf that is reached. For instance, Figure 2 shows a BDD for the function

f (X) = (X11∧X21)∨(X12∧X21). A BDD performs a Shannon expansion of the Boolean formula

fE (X), so that if X is the variable associated to the root level of a BDD, the formula fE (X) can

be represented as fE (X) = X ∧ f X
E
(X)∨X ∧ f X

E
(X) where f X

E
(X) (respectively, f X

E
(X)) is the

formula obtained by fE (X) by setting X to 1 (resp., 0). Now the two disjuncts are mutually

exclusive and the probability of fE (X) can be computed as P( fE (X)) = P(X)P( f X
E
(X))+ (1−

P(X))P( f X
E
(X)). Figure 3 shows the function PROB that implements the dynamic programming

algorithm of (De Raedt et al. 2007) for computing the probability of a formula encoded as a

BDD.

7 Application examples

We can now show how probabilities are computed in the running example; we then show a second

example taken from the literature, to show the versatility of our approach.

Example 1 (Continued)

Here ICp = {ic′1}, ICnp = /0 and the set of abducible predicates is A = {enter/2,killed/2},
since they are not known.

Two atoms may make the body of ic′1 true, one stating that husband has the keys of house1

and the other stating that he holds the keys of house2; these will correspond to the substitu-

tions θ1 = {P/husband,H/house1} and θ2 = {P/husband,H/house2}. For each instantiation

that makes the body true, exactly one of the two transitions in Eq. 4 and 5 is applicable. In this

way, four explanations are generated in alternative branches: E1 = {(ic′1,θ1,1),(ic
′
1,θ2,1)} with

P(E1) = 0.72 = 0.49, E2 = {(ic′1,θ1,1),(ic
′
1,θ2,0)} with P(E2) = 0.7 · (1− 0.7) = 0.21, E3 =

{(ic′1,θ1,0), (ic
′
1,θ2,1)}with P(E3)= (1−0.7)·0.7= 0.21 and E4 = {(ic′1,{P/X,H/house1},0),

(ic′1,{P/X,H/house2},0)} with P(E4) = (1− 0.7)2 = 0.09.
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The sets of explanations where the goal is true are:

E1 = {E1,E2,E3} with probability P(E1) = ∑
3
i=1 P(Ei) = 0.91, probabilistic abductive answer

∆ = {enter (husband,house1),enter (husband,house2), killed (husband,woman)} and θ =

{M/husband}. This solution (the most likely) states that the husband was the killer with a

chance of 91%. Explanation E1 indicates that the goal is true (the husband was the killer) if

the husband had entered both houses since he had the keys for both. The second and third

explanations represent the fact that one instantiation of the PIC is not considered, so with

probability 0.3 one can enter a house even if (s)he does not have the keys.

E2 = {E4} with P(E2) = P(E4) = (1− 0.7)2 = 0.09; note that both instances of ic′1 are relaxed

(k = 0) so the complement of 0.7 must be used. In this case the probabilistic abductive an-

swer is (∆,θ ) = ({enter (M,house1), enter (M,house2), killed (M,woman)}, /0). This solution

(much less probable) states that some unknown person entered the two houses and committed

the murder with a chance of 9%.

IFFProb provided two reasonable explanations. In particular, the second abductive explanation,

obtained through non-ground abductive reasoning, is that some person, unknown to the knowl-

edge base, could have perpetrated the murder. It is interesting to know that this is exactly the

explanation suggested by the husband during the trial: he pleaded not guilty and suggested that

some other person could have entered his house, killed the woman, and carried the pillow to

the second house. Although logically possible, such explanation was considered unlikely by the

judges, that sentenced the husband guilty. Nevertheless, as a human brain was able to hypothesize

the existence of an external person entering both houses and killing the victim, also the IFFProb

proof-procedure was able to produce such hypothesis. And as a human brain judged such hy-

pothesis unrealistic, also the proof-procedure assigned it a low probability. Of course, this is a

simplification of all the evidence collected during the trial, that we cannot report here due to lack

of space.

It is also interesting to vary the probability q associated with ic′1 to see when E2 becomes the

most probable explanation. Now the probabilities are: P(E1) = q2, P(E2) = q · (1− q), P(E3) =

q · (1−q) and P(E4) = (1−q)2. In order to have P(E1)+P(E2)+P(E3)< P(E4), it must be that

q < 1−
√

2
2
≃ 0.293.

Example 2

Christiansen (2008) proposes an example of power supply network diagnosis (here adapted to

IFFProb syntax); a power plant pp provides electricity to a few villages vi through directed wires

wi. The network structure is described by a set of edge/3 facts (please refer to the figure of the

network in Section 7.1 in (Christiansen 2008)):

edge (w1 , pp , n1). edge (w4 , n3 , v3). edge (w7 , n3 , v2).

edge (w2 , n1 , n2). edge (w5 , n1 , n4). edge (w8 , n4 , v4).

edge (w3 , n2 , n3). edge (w6 , n2 , v1). edge (w9 , n4 , v5).

The fact that a given point (the power plant, a node or a village) in the network has no elec-

tricity is described in (Christiansen 2008) by means of the hasnopower/1 predicate.

hasnopower (pp) ← down (pp).

hasnopower (N2) ← edge (W,_,N2), down (W).

hasnopower (N2) ← edge (_,N1 ,N2), hasnopower (N1).

while the opposite situation is described by:
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haspower (pp) ← up (pp).
haspower (N2) ← edge (W,N1 ,N2), up (W), haspower (N1).

The clauses and facts mentioned above represent the KB of the IFFProb program. In the proof-

procedure by Christiansen (2008), probabilities are associated to abducible atoms, and he defines

the abducibles up /1 with probabilities 0.9 (every instance of up (X) has the same probability)

and down /1 with 0.1. As noted earlier, in IFFProb we can use PICs to associate probabilities to

single abducibles, using the complementary probability:

ic1 = 0.1::up (X) → false.

ic2 = 0.9::down (X) → false.

Finally, the program in (Christiansen 2008) also includes one IC to state that no node may be up

and down at the same time:

ic3 = up (X) ∧ down (X) → false.

Here ICp = {ic1, ic2}, ICnp = {ic3} and the set of abducible predicates is A = {up /1,down /1}.
Given the goal:

G = hasnopower (v1),hasnopower (v2),hasnopower (v3),

hasnopower (v4),hasnopower (v5)

P(G) = 0.199695 is returned as the probability that no village has electricity, as the sum of the

probability of the worlds where the goal is true, throughout the application of function PROB of

Fig. 3. In total, 1600 worlds are found, corresponding to the different combinations of failures of

wires/power plant. As also computed by Christiansen (2008), the two most probable worlds have

both probability 0.1 and are respectively identified by the explanations:

E1 = {(ic2,X/pp,0)} having probability P(E1) = (1− 0.9) = 0.1; the complement of 0.9 is

taken as ic2 with substitution θ1 = {X/pp} (i.e., down(pp) → false.) is not included

(k = 0). The probabilistic abductive answer is (∆,θ ) = ({down (pp)},θ1);

E2 = {(ic2,X/w1,0)} having probability P(E2)= (1−0.9)= 0.1; here ic2 with substitution θ2 =

{X/w1} is not included. The probabilistic abductive answer is (∆,θ ) = ({down(w1)},θ2).

E1 indicates that the goal is true (no village receives power) if the power plant is down with

probability 0.1, while E2 if the main wire (w1) is down with probability 0.1.

8 Experiments

To test how our approach reacts with an increasing number of worlds, given an integer n≥ 1, we

considered the ALP containing the following ICs for 1≤ i≤ n:

0.6::b i−1(X) → p i(X) ∧ q i(X).

0.6::p i(X) → b i(X).

0.6::q i(X) → b i(X).

where b i(X), p i(X), and q i(X) are abducibles for all i. For the test purpose, we built 12 ALPs of

increasing size containing the above ICs for i varying from 1 to n, with n ∈ {1,2,3, . . . ,11,12}.
These ALPs present a number of worlds that grows exponentially with n. This is due to the

fact that p i+1(X) and q i+1(X) are needed to abduce b i(X). p i+1(X) and q i+1(X) can either

both be true, or one true while the other must be abduced, or both must be abduced. In turn,

to abduce p i+1(X) or q i+1(X), one must use b i+1(X), which may be already abduced or may
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Table 1: Average running time (in seconds) on 5 executions of the IFFProb proof-procedure and

the± the standard deviation. ALP size indicates the value n takes in each ALP, i.e., it defines the

range 1≤ i≤ n. OM means Out of Memory.
ALP size (n) N. Worlds Time (s) ± Std. dev.

1 5 0.00133±0.00003
2 17 0.00387±0.00001
3 53 0.01228±0.00003
4 161 0.04042±0.00013
5 485 0.13582±0.00059
6 1 457 0.45903±0.45903
7 4 373 1.91763±0.01396
8 13 121 6.32130±0.02730
9 39 365 21.51733±0.06072
10 118 097 73.78656±0.29424
11 354 293 333.90058±0.78041
12 1 062 881 OM

possibly have to be abduced. These possible cases must be considered for all values assumed by

i, creating an exponential number of possible ways to prove b i(X).

For the test, we compute the probability of the goal G = b 0(X). To compute the running time,

we ran the IFFProb proof procedure 5 times w.r.t. each ALP built and we computed the average

running time with its standard deviation. All the tests have been performed on a Linux machine

equipped with IBM© POWER9TM AC922 at 2.6(3.1)GHz, with 256 GB of RAM. We allowed

a maximum of 100 GB for the Prolog stack, necessary to hold the worlds and the information

about the choice points for the ALPs with i≥ 11.

Table 1 shows, for each ALP, the number of found worlds and the average running time in

seconds to compute the probability of the goal± the standard deviation. The value OM represents

the fact that the proof-procedure went out of the available stack due to the high number of worlds

and choice points to maintain in memory. As one can see, our approach is able to manage very

high number of worlds within 1 minute.

9 Related work

Some works explicitly addressed probabilistic abductive reasoning: Turliuc et al. (2013) rank

explanations in terms of probabilities and investigate the role of integrity constraints. They de-

fine a probability distribution over the truth values of each (ground) abducible, while we set

probabilities on integrity constraints. SOLAR (Inoue et al. 2009) is a system for abductive in-

ference that applies an Expectation Maximization (EM) algorithm for evaluating hypotheses ob-

tained from the process of hypothesis generation. After generating all minimal explanations,

the EM algorithm, working on BDDs, is used to assign probabilities to atoms in explanations.

Finally, SOLAR computes the probability of each hypothesis to find the most probable one.

EM is also used by Raghavan (2011), who considers Bayesian Logic Programs (BLPs), and by

Kate and Mooney (2009), who consider Markov Logic Networks (MLNs). EM is exploited to

learn the parameters associated with the model.

Differently, Poole (1993) considers Bayesian networks but focuses on the definition of the lan-

guage instead of the combination of abductive proof-procedures and statistical learning. More-

over, it imposes assumptions on the type of constraints in order to simplify the procedure.

Arvanitis et al. (2006) consider Stochastic Logic Programs (SLPs), where abductive reasoning

is done by reversing deduction, i.e., reversing the flow of the proof-procedure. However, this may

return wrong conclusions without imposing ad hoc constraints in the program.
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Rotella and Ferilli (2013) define new types of probabilistic constraints to guide the search of

explanations that are consistent with the constraints, by giving priority to explanations having

higher probability to be true. However, all these approaches do not allow non-ground abduction.

We refer to (De Raedt and Kersting 2008) for a description of BLPs, MLNs, and SLPs.

Abduction is also used in machine learning. For example in (Muggleton et al. 2015), it is used

to perform predicate invention and recursive generalisations with respect to a meta-interpreter.

In this case, however, values for predicate variables rather than values for first order variables

are abduced. More recently, (Dai and Muggleton 2021) proposed to use abduction to infer con-

straints for learning problems but do not consider existential variables.

Christiansen (2008) also implements probabilistic non-ground abduction in CHR; the main

difference with our work is that in his work probabilities are associated with abducibles, while

in our work they are associated with integrity constraints. The integrity constraints in his proof-

procedure are more limited in syntax, since they can only accommodate abducible predicates

and are in the form of denials, while in IFF they can include all types of atoms, and are in the

form of implications, with disjunctions in the head. Due to the syntactic restrictions on integrity

constraints, only a limited form of negation is possible, while in IFF sound negation can be

applied to both abducible and defined atoms. Differently from our solution, Christiansen adopts

a best-first search scheme, in which branches with higher probability are explored before the

branches with lower probability; while the exact probability is only known at the end of the

whole search, at each found solution a lower bound is obtained, and it gets more precise as new

solutions are found. On the other hand, a best-first search has higher memory requirements than

a depth-first search.

10 Conclusions

We presented a probabilistic abductive logic programming language able to perform abductive

reasoning with variables, and probabilities attached to constraints. The need to have probabilistic

integrity constraints comes from probabilistic reasoning with many real-life applications, and

such integrity constraints may be learned from available data (Riguzzi et al. 2020). We showed

two examples on different domains of abductive reasoning with probabilities in action, showing

the usefulness of non-ground abduction and that our language can also tackle problems with

probabilities attached to abducibles. Soundness and completeness of the devised proof-procedure

have been shown.

Future work concerns considering non-ground probabilities, i.e., variable probabilities at-

tached to integrity constraints and its CHR implementation, as well as probabilistic clauses in

the KB, and CLP constraints.
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