
ar
X

iv
:2

20
5.

07
78

3v
1

 [
cs

.L
O

]
 1

6
M

ay
 2

02
2

TPLP : Page 1–16. © The Author(s), 20XX. Published by Cambridge University Press 20XX

doi:10.1017/S147106840100xxxx

1

Strong Equivalence

of Logic Programs with Counting

Vladimir Lifschitz
University of Texas at Austin, USA

Abstract

In answer set programming, two groups of rules are considered strongly equivalent if they have
the same meaning in any context. In some cases, strong equivalence of programs in the input
language of the grounder gringo can be established by deriving rules of each program from rules
of the other. The possibility of such proofs has been demonstrated for a subset of that language
that includes comparisons, arithmetic operations, and simple choice rules, but not aggregates.
This method is extended here to a class of programs in which some uses of the #count aggregate
are allowed. This paper is under consideration for acceptance in TPLP.

1 Introduction

In answer set programming Marek and Truszczynski (1999); Niemelä (1999);

Gelfond and Kahl (2014); Lifschitz (2019), two groups of rules are considered strongly

equivalent if, informally speaking, they have the same meaning in any context

Lifschitz et al. (2001). We are interested in proving strong equivalence of programs in

the input language of the grounder gringo Gebser et al. (2019) by deriving rules of each

program from rules of the other. The possibility of such proofs has been demonstrated for

the subset of that language called mini-gringo Lifschitz et al. (2019); Lifschitz (2021).

Programs allowed in that subset may include comparisons, arithmetic operations, and

simple choice rules, but not aggregates.

The process of proving strong equivalence uses the translation τ∗ (Lifschitz et al. 2019,

Section 6) that transforms mini-gringo rules into first-order formulas with two sorts

of variables—for numerals and for arbitrary precomputed terms. If two mini-gringo

programs, rewritten as sets of sentences, are equivalent in the deductive system HTA

(“here-and-there with arithmetic”) then they are strongly equivalent (Lifschitz 2021,

Section 4).

In this paper, τ∗ is extended to a superset of mini-gringo in which the #count aggre-

gate can be used in a limited way. The study of the strong equivalence relation between

gringo programs with counting and other aggregates is important because these con-

structs are widely used in answer set programming, and because some properties of this

relation in the presence of aggregates may seem counterintuitive. For instance, the rule

q :- #count{X : p(X)} >= Y, Y = 1. (1)

is strongly equivalent to each of the simpler rules

q :- #count{X : p(X)} >= 1. (2)

http://arxiv.org/abs/2205.07783v1

2 Vladimir Lifschitz

and

q :- p(X). (3)

—as could be expected. But the rule

q :- #count{X : p(X)} = Y, Y >= 1. (4)

is not strongly equivalent to (2) and (3). Indeed, adding the rules

p(a).

p(b) :- q.
(5)

to (4) gives a program without stable models.1

The syntax and semantics of mini-gringo rules are reviewed in Sections 2 and 3. The

semantics is defined by transforming rules into infinite sets of propositional formulas

(Lifschitz et al. 2019, Section 3) and then appealing to the propositional stable model

semantics (Lifschitz 2019, Section 5.2). Adding the #count aggregate, described in Sec-

tions 4 and 5, involves stable models of infinitary propositional formulas (Truszczynski

2012, Section 2), in the spirit of the approach of Gebser et al. 2015. The translation τ∗ is

reviewed in Section 6 and extended to mini-gringo with counting in Sections 7, 8. After

providing additional background information in Section 9, we state in Section 10 three

theorems expressing properties of the translation and show how the strong equivalence

of rules (1)–(3) can be proved by deriving them from each other. Proofs of the theorems

are given in Section 11.

2 Review: syntax of mini-gringo

The description of mini-gringo programs below uses “abstract syntax,” which disregards

some details related to representing programs by strings of ASCII characters. We assume

that three countably infinite sets of symbols are selected: numerals, symbolic constants,

and variables. We assume that a 1-1 correspondence between numerals and integers is

chosen; the numeral corresponding to an integer n is denoted by n. Precomputed terms

are numerals, symbolic constants, and the symbols inf, sup. We assume that a total order

on the set of precomputed terms is selected, with the least element inf and the greatest

element sup, so that numerals are contiguous and ordered in the standard way.

Terms allowed in a mini-gringo program are formed from precomputed terms and

variables using the binary operation symbols

+ − × / \ ..

An atom is a symbolic constant optionally followed by a tuple of terms in parentheses.

A literal is an atom possibly preceded by one or two occurrences of not. A comparison

is an expression of the form t1 ≺ t2, where t1, t2 are mini-gringo terms and ≺ is one of

the six comparison symbols

= 6= < > ≤ ≥ (6)

1 This is a modification of an example due to Gelfond and Zhang 2019. This example shows that the
use of functional notation for #count is sometimes misleading. The correspondence between sets and
their cardinalities is a total function classically, but not intuitionistically. We return to this question
in the discussion of related work (Section 12).

Strong Equivalence of Logic Programs with Counting 3

A mini-gringo rule is an expression of the form

Head← Body, (7)

where

• Body is a conjunction (possibly empty) of literals and comparisons, and

• Head is either an atom (then (7) is a basic rule), or an atom in braces (then (7) is

a choice rule), or empty (then (7) is a constraint).

A mini-gringo program is a finite set of mini-gringo rules.

3 Review: semantics of mini-gringo

The semantics of ground terms is defined by assigning to every ground term t the fi-

nite set [t] of its values (Lifschitz et al. 2019, Section 3). Values of a ground term are

precomputed terms. For instance,

[2/2] = {1}, [2/0] = ∅, [0 .. 2] = {0, 1, 2}.

If a term is interval-free (that is, does not contain ..) then it has at most one value. For

any ground terms t1, . . . , tn, by [t1, . . . , tn] we denote the set of tuples r1, . . . , rn such

that r1 ∈ [t1], . . . , rn ∈ [tn].

Stable models of a mini-gringo program are defined as stable models of the set of

propositional formulas obtained from it by applying a syntactic transformation denoted

by τ (Lifschitz et al. 2019, Section 3). These propositional formulas are built from pre-

computed atoms—atoms p(r) such that members of the tuple r are precomputed terms.

Thus every stable model is a set of precomputed atoms.

The transformation τ is defined as follows. For any ground atom p(t),

• τ(p(t)) is
∨

r∈[t] p(r),

• τ(not p(t)) is
∨

r∈[t] ¬p(r), and

• τ(not not p(t)) is
∨

r∈[t] ¬¬p(r).

For any ground comparison t1 ≺ t2, τ(t1 ≺ t2) is ⊤ if the relation ≺ holds between

some r1 from [t1] and some r2 from [t2], and ⊥ otherwise. The result of applying τ to a

conjunction B1 ∧B2 ∧ · · · is τ(B1)∧ τ(B2)∧ · · · . If R is a ground basic rule p(t)← Body

then τ(R) is the propositional formula

τ(Body)→
∧

r∈[t]

p(r). (8)

If R is a ground choice rule {p(t)} ← Body then τ(R) is the propositional formula

τ(Body)→
∧

r∈[t]

(p(r) ∨ ¬p(r)). (9)

If R is a ground constraint ← Body then τ(R) is

¬τ(Body). (10)

For any mini-gringo program Π, τ(Π) is the set of propositional formulas τ(R) for all

ground rules R that can be obtained from rules of Π by substituting precomputed terms

for variables.

4 Vladimir Lifschitz

For example, substituting a precomputed term r for X in the choice rule

{p(2)} ← p(X) (11)

gives the ground rule {p(2)} ← p(r), so that τ transforms (11) into the set of all formulas

of the form

p(r)→ p(2) ∨ ¬p(2).

4 Mini-gringo with counting: syntax

We extend the class of mini-gringo rules as follows. An aggregate element is a pair

X : L, where X is a tuple of distinct variables, and L is a conjunction of literals and

comparisons such that every member of X occurs in L. In mini-gringo with counting,

the body of a rule is allowed to contain, besides literals and comparisons, aggregate atoms

of the forms

count{E} ≥ t, count{E} ≤ t, (12)

where E is an aggregate element, and t is an interval-free term. The conjunction of

aggregate atoms (12) can be written as count{E} = t.

A variable that occurs in a rule R is local in R if each of its occurrences is within an

aggregate element, and global otherwise. A rule is pure if, for every aggregate element

X : L in its body, all variables in the tuple X are local. For example, all rules that do

not contain aggregate elements are pure. The rules

q ← count{X : p(X,Y)} ≤ 2 (13)

and

q ← count{X : p(X,Y)} ≤ 2 ∧ Y = 1 .. 10, (14)

are pure, because X is local in each of them. The rule

q ← count{X : p(X,Y)} ≤ 2 ∧X = 1 .. 10 (15)

is not pure, because X is global.2

A program in mini-gringo with counting, or an mgc program, is a finite set of pure

rules. Allowing non-pure rules in a program would necessitate making the semantics more

complicated; see Footnote 3.

An expression of the form

m {X : A}n← Body

where X is a tuple of distinct variables, A is an atom, and Body is a conjunction of

literals, comparisons and aggregate atoms, can be used as shorthand for the group of

three rules:

{A} ← Body,

← Body, count{X : A} ≤ m− 1,

← Body, count{X : A} ≥ n+ 1.

2 In response to rules like this, the current version of gringo produces a warning message: global

variable in tuple of aggregate element.

Strong Equivalence of Logic Programs with Counting 5

5 Mini-gringo with counting: semantics

To define the semantics of mgc programs, we will extend the definition of τ (Section 3)

to aggregate atoms (12) such that t is a ground term. Since t is interval-free, [t] is either

a singleton or empty. If [t] is a singleton {c} then τ(count{X : L} ≥ t) is defined as the

infinite disjunction
∨

∆ : |∆|≥c

∧

x∈∆

∨

w

τ
(

LX,W
x, w

)

, (16)

and τ(count{X : L} ≤ t) as the infinite conjunction
∧

∆ : |∆|>c

¬
∧

x∈∆

∨

w

τ
(

LX,W
x, w

)

, (17)

where

• ∆ ranges over finite sets of tuples of precomputed terms of the same length as X;

• W is the list of variables that occur in L but do not belong to X;

• w ranges over tuples of precomputed terms of the same length as W;

• the expression LX,W
x, w denotes the result of substituting x, w for all occurrences of

X, W in L.

(If c is a numeral n then the inequalities |∆| ≥ c, |∆| > c in these formulas can be written

as |∆| ≥ n, |∆| > n.) If [t] is empty then we define

τ(count{X : L} ≥ t) = τ(count{X : L} ≤ t) = ⊥.

For example, the result of applying τ to the body of rule (13) is
∧

∆ : |∆|>2

¬
∧

x∈∆

∨

w

p(x,w).

(In this case, X is X ; W is Y ; ∆ ranges over sets of precomputed terms; w ranges over

precomputed terms.) In application to the aggregate expression

count{X : p(X, r)} ≤ 2,

where r is a precomputed term, τ gives
∧

∆ : |∆|>2

¬
∧

x∈∆

p(x, r)

(W is empty).

A rule is closed if it has no global variables. It is clear that substituting precomputed

terms for all global variables in a pure rule is a closed pure rule.3 For any mini-gringo

program Π, τ(Π) stands for the conjunction of the formulas τ(R) over all closed rules R

that can be obtained from rules of Π by such substitutions. Thus τ(Π) is an infinitary

propositional formula over the signature consisting of all precomputed atoms.

3 In case of a rule that is not pure, substituting precomputed terms for global variables may transform
an aggregate element in the body into an expression that is not an aggregate element. For instance,
substituting 1 for X in rule (15) turns X : p(X, Y) into the expression 1 : p(1, Y), which is not allowed
by the syntax of mini-gringo with counting.

6 Vladimir Lifschitz

For example, τ transforms rule (13) into
∧

∆ : |∆|>2

¬
∧

x∈∆

∨

w

p(x,w)→ q,

where ∆ ranges over sets of precomputed terms, and w ranges over precomputed terms.

Rule (14) becomes

∧

r









∧

∆ : |∆|>2

¬
∧

x∈∆

p(x, r)



 ∧ τ(r = 1..10)→ q



 ,

where r ranges over precomputed terms, and ∆ ranges over sets of precomputed terms.

The subformula τ(r = 1..10) is ⊤ if r is one of the numerals 1, . . . , 10, and ⊥ otherwise.

The semantics of mgc described in this section, like the semantics of aggregates pro-

posed by Gebser et al. 2015, aims at modeling the behavior of the answer set solver

clingo. The definition in this paper is simpler than the 2015 version, but more limited

in scope, because it is does not cover aggregates other than #count. The two versions

of the semantics of #count are not completely equivalent, however, because they handle

infinite sets in slightly different ways. This difference does not affect safe programs, and

is in this sense inessential.

6 Review: representing mini-gringo rules by formulas

The target language of the translation τ∗ is a first-order language with two sorts: the

sort general and its subsort integer. General variables are meant to range over arbitrary

precomputed terms, and we identify them with variables used in mini-gringo rules.

Integer of the second sort are meant to range over numerals (or, equivalently, integers).

The signature σ0 of the language includes

• all precomputed terms as object constants; an object constant is assigned the sort

integer iff it is a numeral;

• the symbols +, − and × as binary function constants; their arguments and values

have the sort integer ;

• symbols p/n, where p is a symbolic constant, as n-ary predicate constants;

• comparison symbols (6) as binary predicate constants.

An atomic formula (p/n)(t) can be abbreviated as p(t). An atomic formula ≺(t1, t2),

where ≺ is a comparison symbol, can be written as t1 ≺ t2.

Lifschitz et al. 2019 defined, for every mini-gringo term t, a formula val t(Z) that

expresses, informally speaking, that Z is one of the values of t. For example, val 2(Z) is

Z = 2. If t is a tuple t1, . . . , tn of mini-gringo terms, and Z is a tuple Z1, . . . , Zn of

distinct general variables, then val t(Z) stands for val t1(Z1) ∧ · · · ∧ val tn(Zn).

The translation τB , which transforms literals and comparisons into formulas over the

signature σ0, is defined in that paper as follows:4

• τB(p(t)) = ∃Z(val t(Z) ∧ p(Z));

4 The superscript B indicates that this translation is intended for bodies of rules.

Strong Equivalence of Logic Programs with Counting 7

• τB(not p(t)) = ∃Z(val t(Z) ∧ ¬p(Z));

• τB(not not p(t)) = ∃Z(val t(Z) ∧ ¬¬p(Z));

• τB(t1 ≺ t2) = ∃Z1Z2(val t1(Z1) ∧ val t2(Z2) ∧ Z1 ≺ Z2).

Here Z1, Z2, and members of the tuple Z are fresh general variables.

The result of applying τ∗ to a mini-gringo rule H ← B1 ∧ · · · ∧Bn can be defined as

the universal closure of the formula

B∗
1 ∧ · · · ∧B∗

n ∧ val t(Z)→ p(Z) if H is p(t),

B∗
1 ∧ · · · ∧B∗

n ∧ val t(Z)→ p(Z) ∨ ¬p(Z) if H is p{(t)},

¬(B∗
1 ∧ · · · ∧B∗

n) if H is empty,

(18)

where B∗
i stands for τB(Bi), and Z is a tuple of fresh general variables.

For example, the result of applying τ∗ to choice rule (11) is

∀XZ(τB(p(X)) ∧ Z = 2→ p(Z) ∨ ¬p(Z));

τB(p(X)) can be further expanded into ∃Z(Z = X ∧ p(Z)).

7 Extending the target language

In this section, we extend the translation τ∗ to arbitrary pure rules. This more general

translation produces first-order formulas over the signature σ1 that is obtained from σ0

by adding infinitely many predicate constants

AtleastX;V
F and AtmostX;V

F (19)

where X and V are disjoint lists of distinct general variables, and F is a formula over σ0

such that each of its free variables belongs to X or to V.5 The number of arguments of

each of constants (19) is greater by 1 than the length of V; all arguments are of the sort

general.

If n is a positive integer then the formula AtleastX,V
F (V, n) is meant to express that F

holds for at least n values of X; symbolically,

∃X1 · · ·Xn





n
∧

i=1

FX

Xi
∧
∧

i<j

¬(Xi = Xj)



 , (20)

where X1, . . . ,Xn are tuples of fresh general variables.6 For any precomputed term r,

the expression ∃≥rXF will stand for

formula (20), if r = n > 0,

⊤, if r ≤ 0,

⊥, if r > n for all integers n.

5 Adding infinitely many predicate symbols gives us a single signature that is sufficient for representing
all mgc rules. The translation of any specific rule will only contain finitely many symbols, of course.

6 An expression of the form (X1,X2, . . .) = (Y1, Y2, . . .) stands for X1 = Y1 ∧X2 = Y2 ∧ · · · .

8 Vladimir Lifschitz

The formula AtmostX,V
F (V, n) is meant to express that F holds for at most n values

of X; symbolically,

∀X1 · · ·Xn+1





n+1
∧

i=1

FX

Xi
→

∨

i<j

Xi = Xj



 . (21)

For any precomputed term r, the expression ∃≤rXF will stand for

formula (21), if r = n ≥ 0,

⊥, if r < 0,

⊤, if r > n for all integers n.

The set of all sentences of the forms

∀V
(

AtleastX;V
F (V, r)↔ ∃≥rXF

)

, (22)

∀V
(

AtmostX;V
F (V, r)↔ ∃≤rXF

)

(23)

will be denoted by Defs.

8 Representing pure rules by formulas

To extend the definition of τ∗ reproduced in Section 6 to arbitrary pure rules, we need

to say how to choose B∗
i in (18) when Bi includes an aggregate element X : L. Let V be

the list of global variables that occur in L, and let W be the list of local variables that

occur in L but are not included in X. Then B∗
i is defined as

∃C
(

val t(C) ∧ AtleastX;V
∃WτB(L)

(V, C)
)

if Bi is count{X : L} ≥ t, and as

∃C
(

val t(C) ∧ AtmostX;V
∃WτB(L)(V, C)

)

if Bi is count{X : L} ≤ t, where C is a fresh general variable.

For example, the result of applying τ∗ to rule (13) is

∃C
(

val 2(C) ∧ AtmostX;
∃Y τB(p(X,Y))(C)

)

→ q

(V is empty, W is Y). The result of applying τ∗ to rule (14) is

∀Y
(

∃C
(

val 2(C) ∧ AtmostX;Y
τB(p(X,Y))

(Y,C)
)

∧ τB(Y = 1 .. 10)→ q
)

(V is Y , W is empty).

For any mgc program Π, τ∗(Π) stands for the conjunction of the formulas τ∗(R) for

all rules R of Π. Thus τ∗(Π) is a sentence over the signature σ1.

9 Review: infinitary logic of here-and-there

Some of the properties of the translation τ∗ discussed below refer to the deductive sys-

tem of infinitary propositional logic of here-and-there Harrison et al. (2017), denoted

by HT∞. In this section, we reproduce the definition of that system.

Strong Equivalence of Logic Programs with Counting 9

(∧I) Γ ⇒ H for all H ∈ H

Γ ⇒ H
∧ (∧E) Γ ⇒ H

∧

Γ ⇒ H
(H ∈ H)

(∨I) Γ ⇒ H
Γ ⇒ H

∨ (H ∈ H) (∨E)
Γ ⇒ H

∨ ∆,H ⇒ F for all H ∈ H

Γ,∆ ⇒ F

(→I)
Γ, F ⇒ G

Γ ⇒ F → G
(→E) Γ ⇒ F ∆ ⇒ F → G

Γ,∆ ⇒ G

Table 1. Introduction and elimination rules of infinitary propositional logic. By H∧ and

H∨ we denote the conjunction and disjunction of all formulas in H.

The derivable objects of HT∞ are sequents—expressions of the form Γ⇒ F , where F

is an infinitary propositional formula, and Γ is a finite set of infinitary propositional

formulas (“F under assumptions Γ”). To simplify notation, we write Γ as a list. We

identify a sequent of the form ⇒ F with the formula F .

The axiom schemas of HT∞ are

F ⇒ F,

F ∨ (F → G) ∨ ¬G

and
∧

α∈A

∨

F∈Hα

F →
∨

(Fα)α∈A

∧

α∈A

Fα, (24)

where (Hα)α∈A is a non-empty family of sets of formulas; the disjunction in the conse-

quent of (24) extends over all elements (Fα)α∈A of the Cartesian product of the family

(Hα)α∈A. The inference rules of HT∞ are the introduction and elimination rules for the

propositional connectives shown in the table above and the weakening rule

(W)
Γ⇒ F

Γ,∆⇒ F
.

Falsity and negation are not mentioned in the axiom schemas and inference rules of HT∞

because ⊥ is considered shorthand for ∅∨, and ¬F is shorthand for F → ⊥.

The set of theorems of HT∞ is the smallest set of sequents that includes the axioms

of the system and is closed under the application of its inference rules. We say that

formulas F and G are equivalent in HT∞ if F ↔ G is a theorem of HT∞.

The role of this deductive system is determined by the fact that two infinitary propo-

sitional formulas are strongly equivalent to each other if and only if they are equivalent

in HT∞ (Harrison et al. 2017, Corollary 2).

10 Properties of the generalized translation

Informally speaking, a pure rule R has the same meaning as the sentence τ∗(R). This

claim is made precise in Theorem 1 below. The statement of the theorem refers to the

infinitary propositional formulas obtained from sentences over σ1 by applying the ground-

ing operator gr, which is defined recursively:

10 Vladimir Lifschitz

• gr(⊥) is ⊥;

• if F is ≺ (t1, t2), where ≺ is a comparison symbol, then gr(F) is ⊤ if the relation ≺

holds for the values of t1 and t2, and ⊥ otherwise;

• if F is p(t), where p is not a comparison symbol, then gr(F) is obtained from F

by replacing each member of the tuple t by its value;

• gr(F ⊙G) is gr(F)⊙ gr(G) for every binary connective ⊙;

• gr(∀X F) is the conjunction of the formulas gr
(

FX
r

)

over all precomputed terms

r if X is a general variable, and over all numerals r if X is an integer variable;

• gr(∃X F) is the disjunction of the formulas gr
(

FX
r

)

over all precomputed terms r

if X is a general variable, and over all numerals r if X is an integer variable.

Thus gr(F) is an infinitary propositional formula over the signature consisting of all

atomic formulas of the form p(r), where p is different from comparison symbols and r is

a tuple of precomputed terms. Such atomic formulas will be called extended precomputed

atoms. Unlike precomputed atoms, they may contain predicate symbols (19). If Γ is a

set of sentences over σ1 then gr(Γ) stands for the set of formulas gr(F) for all F in Γ.

The statement of the theorem refers also to the system HT∞ (Section 9) extended by

the axioms gr(Defs). These axioms express the meaning of predicate symbols (19).

Theorem 1

For any pure rule R, gr(τ∗(R)) is equivalent to τ(R) in HT∞+gr(Defs).

About mgc programs Π1, Π2 we say that they are strongly equivalent to each other

if τ(Π1) is strongly equivalent to τ(Π2). This condition guarantees that for any mgc

program Π (and, more generally, for any logic program Π in a similar language), Π1 ∪Π

has the same stable models as Π2 ∪ Π.

Theorem 2

mgc programs Π1, Π2 are strongly equivalent to each other iff

gr(τ∗(Π1)) is equivalent to gr(τ∗(Π2)) in HT∞+gr(Defs). (25)

Thus the claim that MGC programs Π1, Π2 are strongly equivalent to each other can be

always established, in principle, by deriving each of the infinitary propositional formulas

gr(τ∗(Π1)), gr(τ
∗(Π2)) from the other in HT∞+gr(Defs). Theorem 3 below shows that

in some cases such a claim can be justified by operating with finite formulas—with first-

order formulas of the signature σ1. Instead of HT∞+gr(Defs) we can use the logic of

here-and-there with arithmetic Lifschitz (2021) extended by the axiom schemas Defs :

Theorem 3

For any mgc programs Π1, Π2, if the formulas τ∗(Π1) and τ∗(Π2) are equivalent in

HTA+Defs then Π1 and Π2 are strongly equivalent to each other.

As an example, we will use HT∞+gr(Defs) to verify that rules (1), (2), (3) are strongly

equivalent to each other. The translation τ∗ transforms these rules into the formulas

∀Y
(

∃C
(

C = Y ∧ AtleastX;
τB(p(X))(C)

)

∧ τB(Y = 1),→ q
)

, (26)

∃C
(

C = 1 ∧ AtleastX;
τB(p(X))(C)

)

→ q, (27)

∀X(τB(p(X))→ q). (28)

Strong Equivalence of Logic Programs with Counting 11

The first two formulas are equivalent to each other in intuitionistic predicate calculus

with equality, which is a subsystem of HTA; this is clear from the fact that τB(Y = 1)

stands for the formula ∃Z1Z2(Z1 = Y ∧ Z2 = 1 ∧ Z1 = Z2), which is intuitionistically

equivalent to Y = 1. Furthermore, (27) is intuitionistically equivalent to

AtleastX;
τB(p(X))

(1)→ q. (29)

Using the axiom

AtleastX;
τB(p(X))(1)↔ ∃XτB(p(X))

of HTA+Defs, (29) can be transformed into the formula ∃X τB(p(X)) → q, which is

intuitionistically equivalent to (28).

11 Proofs

In this section, the word “equivalent” in application to infinitary propositional formulas

refers to equivalence in HT∞ whenever the deductive system is not specified.

Lemma 1

For any tuple t of terms in the language of mini-gringo and any tuple r of precomputed

terms of the same length, the formula gr(valt(r)) is provable in HT∞ if r ∈ [t], and

refutable otherwise.

Proof

For the case when t is a single term, the assertion of the lemma can be proved by

induction (Lifschitz et al. 2019, Proposition 1). The general case easily follows.

The following fact is Proposition 2 by Lifschitz et al. 2019.

Lemma 2

If L is a ground literal or ground comparison in the language of mini-gringo then

gr(τB(L)) is equivalent to τ(L).

Lemma 3

Let X, V, W be disjoint lists of distinct general variables, and let A be an aggregate

atom count{X : L} ≺ t such that every variable occurring in L belongs to one of these

three lists, and every variable occurring in t belongs to V. For any list v of precomputed

terms of the same length as V, the formula τ
(

AV

v

)

is equivalent in HT∞+gr(Defs) to

gr
(

∃C
(

valtV
v
(C) ∧ AtleastX;V

∃WτB(L)(v, C)
))

(30)

if ≺ is ≥, and to

gr
(

∃C
(

valtV
v
(C) ∧ AtmostX;V

∃WτB(L)(v, C)
))

(31)

if ≺ is ≤.

Proof

Case 1: ≺ is ≥. Formula (30) can be written as
∨

c

(

gr(val tV
v
(c)) ∧ AtleastX;V

∃WτB(L)
(v, c)

)

,

12 Vladimir Lifschitz

where c ranges over precomputed terms. From Lemma 1 we see that it is equivalent to
∨

c∈[tV
v
]

AtleastX;V
∃WτB(L)

(v, c).

Consider the infinitary formula obtained by grounding (22) with ∃WτB(L) as F . One

of its conjunctive terms is

AtleastX;V
∃WτB(L)(v, c)↔ gr

(

(

∃≥cX∃WτB(L)
)V

v

)

.

Consequently (30) is equivalent in HT∞+gr(Defs) to
∨

c∈[tV
v
]

gr
(

(

∃≥cX∃WτB(L)
)V

v

)

. (32)

Case 1.1: The set
[

tVv
]

is empty. Then (32) is the empty disjunction ⊥; τ
(

AV
v

)

is ⊥

as well. Case 1.2: The set
[

tVv
]

is non-empty. Since t is interval-free, this set is a single-

ton {c}, so that (32) is

gr
(

(

∃≥cX∃WτB(L)
)V

v

)

(33)

and τ
(

AV
v

)

is
∨

∆ : |∆|≥c

∧

x∈∆

∨

w

τ
(

LX,V,W
x, v, w

)

. (34)

Case 1.2.1: c ≤ 0. Then (33) is ⊤. The disjunctive term of (34) with ∆ = ∅ is the empty

conjunction ⊤, so that (34) is equivalent to ⊤. Case 1.2.2: for all n, c > n. Then (33)

is ⊥. Formula (34) is the empty disjunction ⊥ as well. Case 1.2.3: c is a numeral n,

n > 0. Then (33) is

gr



∃X1 · · ·Xn





n
∧

i=1

∃W
(

τB(L)X,V
Xi,v

)

∧
∧

i<j

¬(Xi = Xj)







 ,

This formula can be rewritten as

∨

x1,...,xn





n
∧

i=1

∨

w

gr
(

(τBL)X,V,W
xi,v,w

)

∧
∧

i<j

¬gr(xi = xj)





(x1, . . .xn,w range over tuples of precomputed terms). The part
∧

i<j ¬(gr(xi = xj))

is equivalent to ⊤ if the tuples x1, . . .xn are pairwise distinct, that is to say, if the

cardinality of the set {x1, . . .xn} is n; otherwise this conjunction is equivalent to ⊥.

Consequently (33) is equivalent to
∨

∆ : |∆|=n

∧

x∈∆

∨

w

gr
(

(τBL)X,V,W
x, v, w

)

.

The formula gr
(

(τBL)X,V,W
x, v, w

)

can be rewritten as gr
(

τB
(

LX,V,W
x, v, w

))

. By Lemma 2, it is

equivalent to τ
(

LX,V,W
x, v, w

)

, so that (33) is equivalent to
∨

∆ : |∆|=n

∧

x∈∆

∨

w

τ
(

LX,V,W
x, v, w

)

. (35)

Strong Equivalence of Logic Programs with Counting 13

Disjunction (34) can be obtained from this disjunction by adding similar disjunctive

terms with sets ∆ containing more than n tuples. Since each of these disjunctive terms is

stronger than some of the disjunctive terms in (35), the two disjunctions are equivalent.

Case 2: ≺ is ≤. Formula (31) is equivalent in HT∞+gr(Defs) to
∨

c∈[tV
v
]

gr
(

(

∃≤cX∃WτB(L)
)V

v

)

; (36)

this is parallel to the argument in Case 1.

Case 2.1: The set
[

tVv
]

is empty. Then (36) is the empty disjunction ⊥; τ
(

AV
v

)

is ⊥

as well. Case 2.2: The set
[

tVv
]

is non-empty. Since t is interval-free, this set is a single-

ton {c}, so that (36) is

gr
(

(

∃≤cX∃WτB(L)
)V

v

)

(37)

and τ
(

AV
v

)

is
∧

∆ : |∆|>c

¬
∧

x∈∆

∨

w

τ
(

LX,V,W
x, v, w

)

. (38)

Case 2.2.1: c < 0. Then (37) is ⊥. The conjunctive term of (38) with ∆ = ∅ is ¬⊤, so

that (38) is equivalent to ⊥. Case 2.2.2: for all n, c > n. Then (37) is ⊤. Formula (38)

is the empty conjunction ⊤ as well. Case 2.2.3: c is a numeral n, n > 0. Then (37) is

gr



∀X1 · · ·Xn+1





n+1
∧

i=1

∃W
(

τB(L)X,V
Xi,v

)

→
∨

i<j

Xi = Xj







 .

This formula can be rewritten as

∧

x1,...,xn+1





n+1
∧

i=1

∨

w

gr
(

(τBL)X,V,W
xi,v,w

)

→
∨

i<j

gr(xi = xj)



 .

The consequent
∨

i<j gr(xi = xj)) is equivalent to ⊥ if the tuples x1, . . .xn+1 are pairwise

distinct, that is to say, if the cardinality of the set {x1, . . .xn+1} is n+ 1; otherwise this

conjunction is equivalent to ⊤. Consequently (37) is equivalent to
∧

∆ : |∆|=n+1

¬
∧

x∈∆

∨

w

gr
(

(τBL)X,V,W
x, v, w

)

and furthermore to
∧

∆ : |∆|=n+1

¬
∧

x∈∆

∨

w

τ
(

LX,V,W
x, v, w

)

; (39)

this is parallel to the argument in Case 1.2.3. Conjunction (38) can be obtained from

this conjunction by adding similar conjunctive terms with finite sets ∆ containing more

than n + 1 tuples. Since each of these conjunctive terms is weaker than some of the

conjunctive terms in (39), the two conjunctions are equivalent to each other.

Proof of Theorem 1

Assume, for instance, that R is a basic rule p(t) ← B1 ∧ · · · ∧ Bn; for choice rules and

constraints the proof is similar. Then τ∗(R) is

∀VZ(B∗
1 ∧ · · · ∧B∗

n ∧ val t(Z)→ p(Z)),

14 Vladimir Lifschitz

where V is the list of global variables of R, and B∗
i are the formulas defined in Section 8.

It follows that gr(τ∗(R)) is the conjunction of the formulas

gr
(

(B∗
1)

V

v

)

∧ · · · ∧ gr
(

(B∗
n)

V

v

)

∧ gr
(

val tV
v
(r)

)

→ p(r)

over all tuples v of precomputed terms of the same length as V and all tuples r of

precomputed terms of the same length as Z. By Lemma 1, we can conclude that gr(τ∗(R))

is equivalent to the formula

∧

v





(

gr
(

(B∗
1)

V

v

)

∧ · · · ∧ gr
(

(B∗
n)

V

v

))

→
∧

r∈[tV
v
]

p(r)



 .

Each of the formulas

gr
(

(B∗
i)

V

v

)

(40)

(i = 1, . . . , n) is equivalent in HT∞+gr(Defs) to τ
(

(Bi)
V

v

)

. Indeed, if Bi is a literal or a

comparison then (40) is gr
(

(

τB(Bi)
)V

v

)

, which can be also written as gr
(

τB
(

(Bi)
V

v

))

;

this formula is equivalent in HT∞+ gr(Defs) to τ
(

(Bi)
V

v

)

by Lemma 2. If Bi is an

aggregate atom then (40) is equivalent in HT∞+gr(Defs) to τ
(

(Bi)
V

v

)

by Lemma 3.

Consequently gr(τ∗(R)) is equivalent in HT∞+gr(Defs) to

∧

v



τ
(

(B1)
V

v

)

∧ · · · ∧ τ
(

(Bn)
V

v

)

→
∧

r∈[tV
v
]

p(r)



 . (41)

It remains to observe that instances of R are rules of the form

p(tVv)← (B1)
V

v ∧ · · · ∧ (Bn)
V

v ,

so that (41) is τ(R).

Lemma 4

If an infinitary propositional formula over the set of precomputed atoms is provable in

HT∞+gr(Defs) then it is provable in HT∞.

Proof (sketch)

The set gr(Defs) consists of infinitary propositional formulas of the forms
∧

v

(

AtleastX;V
F (v, r)↔ gr

(

∃≥rXFV

v

)

)

(42)

and
∧

v

(

AtmostX;V
F (v, r)↔ gr

(

∃≤rXFV

v

)

)

. (43)

A derivation from gr(Defs) can be visualized as a tree with axioms of HT∞ and formu-

las (42), (43), attached to leaves. In such a tree, modify all formulas by replacing

• atoms AtleastX;V
F (v, r) by gr

(

∃≤rXFV
v

)

, and

• atoms AtmostX;V
F (v, r) by gr

(

∃≥rXFV
v

)

.

The result is a derivation from formulas that are provable in HT∞. If the formula at-

tached to the root does not contain AtleastX;V
F , AtmostX;V

F then it is not affected by this

transformation.

Strong Equivalence of Logic Programs with Counting 15

Proof of Theorem 2

By Theorem 1, each of the equivalences

gr(τ∗(Π1))↔ τ(Π1), gr(τ∗(Π2))↔ τ(Π2)

is provable in HT∞+gr(Defs). Consequently condition (25) is equivalent to the condition

τ(Π1) is equivalent to τ(Π2) in HT∞+gr(Defs). (44)

By Lemma 4, (44) is equivalent to the condition

τ(Π1)↔ τ(Π2) is provable in HT∞,

which holds if and only if Π1 is strongly equivalent to Π2.

Lemma 5

If a sentence F over the signature σ1 is provable in HTA+Defs then gr(F) is provable

in HT∞+gr(Defs).

Proof (sketch)

For any axiom S of HTA, the formula gr(S) is provable in HT∞. (To be precise, axioms

of HTA are sequents, and the transformation gr needs to be applied to the universal

closure of the formula corresponding to S.) For any instance

S1 · · · Sk

S

of an inference rule of HTA, the formula gr(S) is derivable from gr(S1), . . . , gr(Sk)

in HT∞. It follows that for any formula F that is derivable from Defs in HTA, the

formula gr(F) is derivable from gr(Defs) in HT∞.

Proof of Theorem 3

By Lemma 5, if the equivalence τ∗(Π1) ↔ τ∗(Π2) is provable in HTA+Defs then the

equivalence gr(τ∗(Π1)) ↔ gr(τ∗(Π2)) is provable in HT∞+gr(Defs). Then, by Theo-

rem 2, the programs Π1 and Π2 are strongly equivalent.

12 Related Work

Fandinno et al. 2022 defined a translation similar to τ∗ for an answer set programming

language that is in some ways less expressive than mini-gringo with counting (no arith-

metic operations), and in some ways more expressive (the #sum aggregate is allowed,

besides #count). The main difference between that approach to transforming aggregate

expressions into formulas and the one described above is that the former employs function

symbols in the role that predicate symbols (19) play here. As discussed in Footnote 1,

thinking of #count as a function may be misleading. This is apparently the reason why

the adequacy of the translation due to Fandinno et al. is only guaranteed for programs

without positive recursion through aggregates (Fandinno et al. 2022, Theorem 3). This

assumption is not satisfied, for instance, for program (4), (5).

The technical problems discussed in this paper are specific for the approach to ag-

gregates implemented in the answer set solver clingo and do not appear in the same

form, for instance, in the theory of the solver dlv Faber et al. (2011). The semantics

of aggregates based on the vicious circle principle Gelfond and Zhang (2019), unlike the

clingo semantics, makes rule (4) strongly equivalent to each of the rules (1)–(3).

16 Vladimir Lifschitz

Acknowledgements

Many thanks to Jorge Fandinno, Michael Gelfond, Yuliya Lierler, and the anonymous

referees for comments on preliminary versions of this paper.

References

Faber, W., Pfeifer, G., and Leone, N. 2011. Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence 175, 278–298.

Fandinno, J., Nansen, Z., and Lierler, Y. 2022. Axiomatization of aggregates in answer set
programming. In Proceedings of the AAAI Conference on Artificial Intelligence. To appear.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and Schaub, T. 2015. Abstract
Gringo. Theory and Practice of Logic Programming 15, 449–463.

Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M.,
Romero, J., Schaub, T., and Thiele, S. 2019. Potassco User Guide. Available at
https://github.com/potassco/guide/releases/.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of

Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press.

Gelfond, M. and Zhang, Y. 2019. Vicious circle principle, aggregates, and formation of sets
in ASP based languages. Artificial Intelligence 275, 28–77.

Harrison, A., Lifschitz, V., Pearce, D., and Valverde, A. 2017. Infinitary equilibrium
logic and strongly equivalent logic programs. Artificial Intelligence 246, 22–33.

Lifschitz, V. 2019. Answer Set Programming. Springer.

Lifschitz, V. 2021. Here and there with arithmetic. Theory and Practice of Logic Programming .

Lifschitz, V., Lühne, P., and Schaub, T. 2019. Verifying strong equivalence of programs in
the input language of gringo. In Proceedings of the 15th International Conference on Logic

Programming and Non-monotonic Reasoning.

Lifschitz, V., Pearce, D., and Valverde, A. 2001. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541.

Marek, V. and Truszczynski, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag, 375–
398.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

Truszczynski, M. 2012. Connecting first-order ASP and the logic FO(ID) through reducts.
In Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir Lifschitz, E. Erdem,
J. Lee, Y. Lierler, and D. Pearce, Eds. Springer, 543–559.

	1 Introduction
	2 Review: syntax of mini-gringo
	3 Review: semantics of mini-gringo
	4 Mini-gringo with counting: syntax
	5 Mini-gringo with counting: semantics
	6 Review: representing mini-gringo rules by formulas
	7 Extending the target language
	8 Representing pure rules by formulas
	9 Review: infinitary logic of here-and-there
	10 Properties of the generalized translation
	11 Proofs
	12 Related Work
	References

