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Abstract

Theory of stable models is the mathematical basis of answer set programming. Several results in
that theory refer to the concept of the positive dependency graph of a logic program. We describe
a modification of that concept and show that the new understanding of positive dependency
makes it possible to strengthen some of these results.

1 Introduction

This note contributes to the theory of stable models, which serves as the mathematical ba-

sis of answer set programming (Marek and Truszczynski 1999; Niemelä 1999; Lifschitz 2019).

Several results in that theory refer to “positive dependencies” between atoms in a logic

program—the idea used by François Fages (Fages 1994) for the purpose of describing the

relationship between program completion (Clark 1978) and stable models (Gelfond and Lifschitz 1988).

It was applied later to the study of loops and to designing the answer set solver assat

(Lin and Zhao 2004), and found other applications.

For a program consisting of rules of the form

H ← B1, . . . , Bm, not Bm+1, . . . , not Bn, (1)

where H,B1, . . . , Bn are propositional atoms, the positive dependency graph is defined as

the directed graph such that

• its vertices are the atoms occurring in the program, and

• its edges go from H to B1, . . . , Bm for all rules (1) of the program.

For example, the positive dependency graph of the program

q ← p,

p← q, not r
(2)

has two edges, (q, p) and (p, q).

In the early days of answer set programming, the syntactic form of every rule of a

program was similar to (1), so that the definition of the positive dependency graph above

was applicable to all grounded programs. Later on, the syntax of rules was extended in

several ways. In one of these generalizations, reviewed in Section 2 below, rules are

replaced by arbitrary propositional formulas (Ferraris 2005). Rule (1) can be viewed as
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a special case—as alternative notation for the implication

B1 ∧ · · · ∧Bm ∧ ¬Bm+1 ∧ · · · ¬Bn → H.

This degree of generality is important in connection with the use of aggregates, such as

the cardinality of a set, in the body of a rule (Ferraris 2005, Section 4).

A generalization of the definition of the positive dependency graph to propositional

formulas (Ferraris et al. 2006) and further generalizations have been used for several

purposes:

(i) to extend Fages’ theorem on tight programs (Fages 1994) to first-order formulas

(Ferraris et al. 2011) and to infinitary propositional formulas (Lifschitz and Yang 2013),

(ii) to extend the theory of loops (Lin and Zhao 2004) to arbitrary propositional for-

mulas (Ferraris et al. 2006),

(iii) to investigate a logic programming counterpart of pointwise circumscription (Lifschitz 1986)

in the context of first-order formulas (Ferraris et al. 2011),

(iv) to extend the process of symmetric splitting (Oikarinen and Janhunen 2008) to

first-order formulas (Ferraris et al. 2009) and to infinitary propositional formulas

(Harrison and Lifschitz 2016).

In this note, we reexamine the definition of the positive dependency graph used in these

publications and argue that a different interpretation of positive dependency would be

more appropriate in two of these research lines—in those listed above under (i) and (iii).

Two theorems on properties of modified dependency graphs are stated in Sections 4.1

and 4.3 and proved in Section 5. The possibility of extending Fages’ theorem along the

lines of Theorem 1 is used in the proof of a theorem on the verification of locally tight

programs (Fandinno and Lifschitz 2021).

2 Review: Stable Models of Propositional Theories

We assume that formulas are built from propositional atoms and the symbol ⊥ using

the binary connectives ∧, ∨, →; ¬F stands for F → ⊥, and F ↔ G stands for (F →

G) ∧ (G → F ). A propositional theory is a set of formulas. An interpretation is a set of

atoms; we identify an interpretation I with the truth assignment that maps the elements

of I to true and all other atoms to false.

The reduct F I of a formula F with respect to an interpretation I is the formula

obtained from F by replacing every maximal subformula of F that is not satisfied by I

with ⊥ (Ferraris 2005, Section 2.1). The reduct T I of a propositional theory T is the

set of the reducts F I of all formulas F in T . An interpretation I is a stable model of a

propositional theory T if it is minimal (with respect to set inclusion) among the models

of T I .

Consider, for instance, the formulas

p→ q,

q ∧ ¬r → p,
(3)

corresponding to rules (2). The reduct of each of them with respect to the interpretation ∅

is the tautology ⊥ → ⊥; since ∅ is a minimal model of this tautology, it is a stable model
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of theory (3). The reduct of (3) with respect to {p, q} is

p→ q,

q ∧ ¬⊥ → p.

The interpretation {p, q} is a model of this reduct, but it is not minimal: its subset ∅ is

a model of the reduct as well. Consequently {p, q} is not a stable model of (3).

It is easy to check by induction that an interpretation I satisfies the reduct F I if and

only if it satisfies F . It follows that every stable model of a propositional theory T is a

model of T .

It is clear also that every atom occurring in F I belongs to I.

3 A Tale of Two Graphs

A nondisjunctive rule is an implication whose consequent is an atom. Take a set T of

nondisjunctive rules. What graph will we designate as the positive dependency graph

of T ? As far as the set of vertices is concerned, the decision is straightforward—we will

include all atoms that occur in the members

Body→ H (4)

of T . How will we choose the edges of the graph? For every formula (4) in T , the graph

will include edges going from H to some of the atoms occurring in Body. But how will

we decide which of the atoms occurring in Body to choose as the heads of edges?

A subformula of a formula F is called strictly positive if it does not belong to the

antecedent of any implication. For instance, in a conjunction of literals

B1 ∧ · · · ∧Bm ∧ ¬Bm+1 ∧ · · · ¬Bn

the atoms B1, . . . , Bm are strictly positive, and the atoms Bm+1, . . . , Bn are not (recall

that ¬Bi is shorthand for the implication Bi → ⊥). In our more general definition of the

positive dependency graph it would be natural to include, for every member (4) of T ,

the edges from H to all atoms that have

at least one strictly positive occurrence in Body.

We will denote the graph formed from T according to this rule by Gsp(T ). (The super-

script sp stands for strictly positive.)

However, the publications mentioned in the introduction (Ferraris et al. 2006; Ferraris et al. 2011;

Lifschitz and Yang 2013; Ferraris et al. 2009; Harrison and Lifschitz 2016) use a differ-

ent, and more complicated, definition of the positive dependency graph. A subformula of

a formula F is called

• positive if the number of implications containing it in the antecedent is even, and

• nonnegated if it does not belong to the antecedent of any implication with the

consequent ⊥.

The graph designated as the positive dependency graph of T in the publications men-

tioned above has the same vertices as Gsp(T ), but its edges go from H to all atoms that

have

at least one positive nonnegated occurrence in Body
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for all members (4) of T . We will denote this graph by Gpnn(T ). (The superscript pnn

stands for positive nonnegated.) It is clear that Gsp(T ) is a subgraph of Gpnn(T ). For

example, if T is

((p→ q)→ r)→ s

then the only edge of Gsp(T ) is (s, r); Gpnn(T ) has two edges, (s, r) and (s, p).

4 Which Graph Is Right for Your Problem?

The definitions of Gsp and Gpnn in Section 3 are limited to sets of nondisjunctive rules.

We will now extend them to arbitrary propositional theories; this generalization will be

used in Sections 4.2–4.4.

A strictly positive occurrence of an implication Body→ Head in a formula F is called

a rule of F . For any propositional theory T , by Gsp(T ) we denote the directed graph

such that

(a) its vertices are the atoms occurring in the members of T , and

(b) for every rule Body → Head of any member of T , it includes the edge (H,B) for

every atom B that has at least one strictly positive occurrence in Body and every

atom H that has at least one strictly positive occurrence in Head.

By Gpnn(T ) we denote the directed graph satisfying conditions (a) and

(b′) for every rule Body → Head of any member of T , it includes the edge (H,B) for

every atom B that has at least one positive nonnegated occurrence in Body and

every atom H that has at least one strictly positive occurrence in Head.

For any formula F , we will write Gsp({F}) as Gsp(F ), and similarly for Gpnn.

4.1 Supported Models

A model I of a set T of nondisjunctive rules is supported if every atom A in I is the

consequent of some member Body → A of T such that I satisfies Body. Supported

models are important because of their relation to program completion (Clark 1978;

Lloyd and Topor 1984): for any finite set T of nondisjunctive rules, an interpretation I is

a model of the completion of T if and only if I is a supported model of T (Apt et al. 1988).

Every stable model of a set of nondisjunctive rules is supported, but the converse is,

generally, not true. For instance, {p, q} is a supported model of (3), but it is not stable.

From published work on generalizations of Fages’ theorem we know that the stability of

all supported models can be asserted for the sets T of nondisjunctive rules such that the

graph Gpnn(T ) has no infinite paths (Lifschitz and Yang 2013, Electronic Appendix B).

(For finite T , this is the same as assuming that the graph is acyclic.) We will show that

the graph Gsp(T ) has the same property:

Theorem 1

For any set T of nondisjunctive rules, if the graph Gsp(T ) has no infinite paths then

every supported model of T is stable.
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Thus cycles and other infinite paths in Gpnn(T ) containing edges that are not included

in Gsp(T ) are harmless—they do not destroy the match between stable models and

supported models. For instance, let T be the pair of formulas

p→ q,

((q → r)→ r)→ p.
(5)

The graph Gsp(T ) has two edges, (q, p) and (p, r), and it is acyclic. Consequently the

stable models of T are identical to its supported models ∅, {p, q}. The graph Gpnn(T ) is

not acyclic in this case because of the additional edge (p, q).

4.2 Loops

For any formula F and any set Y of atoms occurring in F , the “negated external support”

formula NESF (Y ) is defined recursively, as follows:

• for an atom A, NESA(Y ) is ⊥ if A ∈ Y , and A otherwise;
• NES⊥(Y ) = ⊥;
• NESF∧G(Y ) = NESF (Y ) ∧ NESG(Y );
• NESF∨G(Y ) = NESF (Y ) ∨ NESG(Y );
• NESF→G(Y ) = (NESF (Y )→ NESG(Y )) ∧ (F → G)

(Ferraris et al. 2006, Section 3). A set I of atoms occurring in F is a stable model of F

iff it satisfies both F and the loop formulas
∧

A∈Y

(A→ ¬NESF (Y )) (6)

for all sets Y of atoms occurring in F (Ferraris et al. 2006, Theorem 2). Furthermore,

according to the same theorem, there is no need to check all loop formulas (6). A set Y

of atoms occurring in F is called a loop for F if the subgraph of Gpnn(F ) induced by Y

is strongly connected. If I satisfies both F and the loop formulas (6) for all loops Y of F

then I is a stable model of F .

The discussion in Section 4.1 above suggests the question: will the last result remain

true if we replace the graph Gpnn(F ) in the definition of a loop by the smaller graph

Gsp(F )? The answer to this question is no. A counterexample is given by the formula

(p→ q) ∧ (((q → p)→ p)→ p) (7)

as F , and {p, q} as I. Indeed, the edges of the graph Gsp(F ) in this case are (q, p)

and (p, p), and the sets Y for which the subgraph of Gsp(F ) induced by Y is strongly

connected are {p} and {q}. Calculations show that each of the formulas

NESF ({p}), NESF ({q})

is equivalent to ¬p ∧ ¬q, so that each of the loop formulas

p→ ¬NESF ({p}), q → ¬NESF ({q})

is a tautology. Thus I is a model of F that satisfies these loop formulas, although it is

not stable.

The graph Gpnn(F ), on the other hand, has one more edge, (p, q). The subgraph of

this graph induced by {p, q} is strongly connected, and the corresponding loop formula

eliminates the model I.
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4.3 Pointwise Stable Models

Recall that a model I of a propositional theory T is stable if and only if no proper subset

of I satisfies the reduct F I (Section 2). We say that a model I of T is pointwise stable if

there is no atom A in I such that I \ {A} satisfies the reduct T I . For example, {p, q} is

a pointwise stable model of p ↔ q. Indeed, the reduct of p↔ q with respect to {p, q} is

p↔ q; it is not satisfied by any of the two sets obtained from {p, q} by removing a single

atom.

From published work on pointwise stable models (Ferraris et al. 2011, Theorem 13) we

can conclude that for any finite propositional theory T such that the graph Gpnn(T ) is

acyclic, every pointwise stable model of T is stable. The following theorem shows that

the graph Gpnn(T ) in this statement can be replaced by the smaller graph Gsp(T ):

Theorem 2

For any propositional theory T , if the graph Gsp(T ) has no infinite paths then all point-

wise stable models of T are stable.

The additional generality of this theorem related to the use of Gsp(T ) instead of

Gpnn(T ) can be illustrated by formulas (5). Theorem 2 shows that all pointwise stable

models of that theory are stable.

4.4 Splitting

Splitting a logic program (Lifschitz and Turner 1994) allows us to relate its stable models

to stable models of its parts. The form of splitting described below is a special case of

published results on splitting first-order formulas (Ferraris et al. 2009) and infinitary

propositional theories (Harrison and Lifschitz 2016), expressed in a form convenient for

our present purposes.

Let {P,Q} be a partition of the set of atoms occurring in a formula F ∧G. If

(i) every atom that has a strictly positive occurrence in F belongs to P , and

(ii) every atom that has a strictly positive occurrence in G belongs to Q, and

(iii) every strongly connected component of Gpnn(F ∧G) is contained in P or in Q,

then any set of atoms is a stable model of F ∧ G if and only if it is a stable model of

each of the formulas

F ∧
∧

A∈Q(A ∨ ¬A), G ∧
∧

A∈P (A ∨ ¬A).

This assertion will become incorrect, however, if we replace Gpnn(F ∧ G) in condi-

tion (iii) by Gsp(F ∧ G). A counterexample is given by formula (7) as F ∧ G, {q} as P ,

and {p} as Q. Indeed, {p, q} is a stable model of each of the formulas

(p→ q) ∧ (p ∨ ¬p),

(((q → p)→ p)→ p) ∧ (q ∨ ¬q),

but not a stable model of (7).

5 Proofs of Theorems

It is convenient to prove Theorem 2 first.
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For any formula F , SPos(F ) stands for the set of atoms that have at least one strictly

positive occurrence in F . For any propositional theory T , SPos(T ) is the union of the

sets SPos(F ) over all formulas F in T .

Lemma 1

(Lifschitz and Yang 2013, Electronic Appendix C, Lemma F) If an interpretation I sat-

isfies a formula F then every interpretation J such that SPos(F I) ⊆ J satisfies F I .

Lemma 2

Let F be a propositional formula, let I, J be interpretations such that J ⊂ I, and let M

be an atom in I \ J such that

for every edge (M,A) of Gsp(F I), A ∈ J . (8)

If M belongs to SPos(F I) and J satisfies F I then I \ {M} satisfies F I as well.

Proof. Note first that, under the assumptions of the lemma, I satisfies F . Indeed, oth-

erwise F I would be ⊥, which contradicts the assumption that J satisfies F I .

The proof is by structural induction. Formula F is neither an atom nor ⊥. Indeed,

otherwise F I would be an atom or ⊥ too; since M ∈ SPos(F I), F I = M . Since M ∈ I \J ,

this contradicts the assumption that J satisfies F I .

Let F be F1 ∧F2, so that F I is F I
1 ∧F

I
2 . Since J satisfies F I , J satisfies F I

i (i = 1, 2).

We need to show that I \ {M} satisfies F I
i as well. Case 1: M ∈ SPos(F I

i ). Since every

rule of F I
i is a rule of F I , Gsp(F I

i ) is a subgraph of Gsp(F I); from (8) we can conclude

that

for every edge (M,A) of Gsp(F I
i ), A ∈ J .

Then I \ {M} satisfies F I
i by the induction hypothesis. Case 2: M 6∈ SPos(F I

i ). Since

SPos(F I
i ) is a subset of I, it follows that SPos(F I

i ) ⊆ I \ {M}. On the other hand, I

satisfies Fi, because J satisfies F I
i . By Lemma 1, these two facts imply that I \ {M}

satisfies F I
i .

If F is F1 ∨ F2 then the proof is similar.

Let F be F1 → F2. Then F I is F I
1 → F I

2 and SPos(F I) = SPos(F I
2 ), so that M ∈ SPos(F I

2 ).

It follows that for every atom A in SPos(F I
1 ), the graph Gsp(F I) has an edge from M

to A. Hence, by assumption (8), every such atom A belongs to J . Thus

SPos(F I
1 ) ⊆ J. (9)

Case 1: J satisfies F I
2 . Since every rule of F I

2 is a rule of F I , Gsp(F I
2 ) is a subgraph

of Gsp(F I); from (8) we can conclude that

for every edge (M,A) of Gsp(F I
2 ), A ∈ J .

By the induction hypothesis, it follows that I \ {M} satisfies F I
2 , and consequently sat-

isfies F I . Case 2: J does not satisfy F I
2 . Then I does not satisfy F1. Indeed, otherwise

we would be able to conclude by (9) and Lemma 1 that J satisfies F I
1 , which contradicts

the assumption that J satisfies F I . Hence F I
1 = ⊥, and F I is a tautology.

Proof of Theorem 2. Let I be a model of T . Assume that J is a proper subset of I

that satisfies T I ; we need to show that a subset satisfying T I can be obtained from I by

removing a single atom.
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We will show first that the set I \ J contains an atom M satisfying condition (8).

Case 1: I \J contains an atom that is not a vertex of Gsp(T I). Then condition (8) holds

for that atom trivially. Case 2: all atoms in I \ J are vertices of Gsp(T I). Assume that

condition (8) is not satisfied for any of the vertices M in I \ J , so that

for every vertex M in I \ J , Gsp(T I) has an edge to some vertex A in I \ J .

Since the set I \ J is non-empty, it follows that the graph Gsp(T I) has an infinite path.

But this is impossible, because Gsp(T I) is a subgraph of Gsp(T ).

Take an atom M in I \ J that satisfies condition (8), and any formula F from T . If

M ∈ SPos(F I) then we conclude that I \ {M} satisfies F I by Lemma 2. Otherwise,

SPos(F I) ⊆ I \ {M}, and I \ {M} satisfies F I by Lemma 1.

Proof of Theorem 1. Let I be a supported model of a set T of nondisjunctive rules such

that the graph Gsp(T ) has no infinite paths; we need to show that I is stable. According

to Theorem 2, it is sufficient to check that I is pointwise stable.

Take any atom A in I; we need to show that I \ {A} is not a model of T I . Since I is

supported, T contains a nondisjunctive rule Body → A such that I satisfies Body. The

atom A has no strictly positive occurrences in Body; otherwise, A,A, . . . would be an

infinite path in Gsp(T ). Consequently

SPos(BodyI) ⊆ SPos(Body) ⊆ I \ {A}.

By Lemma 1, it follows that I \ {A} satisfies BodyI . Therefore I \ {A} does not satisfy

the formula BodyI → A, which belongs to T I .

6 Conclusion

The earliest use of positive dependency graphs for propositional formulas (Ferraris et al. 2006)

was related to the study of loops, and introducing the Gpnn construction in that context

rather than Gsp was fully justified, as we saw in Section 4.2. Using Gpnn in the theory

of splitting was justified as well (Section 4.4). Theorems 1 and 2 show, on the other

hand, that Gsp would be a better tool for research on completion and on pointwise stable

models.

The definitions of Gsp and Gpnn, as well as Theorems 1 and 2 and their proofs, can be

extended to infinitary propositional formulas.

The positive predicate dependency graph of a first-order formula can be defined in

two different ways as well, using either the “sp” approach or the “pnn” approach. The

dependency graph defined by Bartholomew and Lee (Bartholomew and Lee 2019) is the

sp-style predicate dependency graph for first-order formulas with intensional functions.

Theorem 1 above is similar to their Theorem 4. It is less general in some ways (no

variables and quantifiers, no intensional functions) and more general in other ways (the

theory can be infinite and is not required to be in Clark normal form).
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