
TPLP: Page 1–25. © The Author(s), 2022. Published by Cambridge University Press 2022

doi:10.1017/xxxxx
1

Answer-Set Programming for Lexicographical
Makespan Optimisation in Parallel

Machine Scheduling∗

THOMAS EITER, TOBIAS GEIBINGER, NYSRET MUSLIU, JOHANNES OETSCH
Institute of Logic and Computation,

Vienna University of Technology (TU Wien), Austria
(e-mails: eiter@kr.tuwien.ac.at, tgeibing@dbai.tuwien.ac.at,

musliu@dbai.tuwien.ac.at, oetsch@kr.tuwien.ac.at)

PETER SKOČOVSKÝ, DARIA STEPANOVA
Bosch Center for AI,

Robert Bosch Campus 1, D-71272 Renningen, Germany
(e-mails: fixed-term.peter.skocovsky@de.bosch.com, daria.stepanova@de.bosch.com)

Abstract

We deal with a challenging scheduling problem on parallel machines with sequence-dependent setup times
and release dates from a real-world application of semiconductor work-shop production. There, jobs can
only be processed by dedicated machines, thus few machines can determine the makespan almost regardless
of how jobs are scheduled on the remaining ones. This causes problems when machines fail and jobs
need to be rescheduled. Instead of optimising only the makespan, we put the individual machine spans in
non-ascending order and lexicographically minimise the resulting tuples. This achieves that all machines
complete as early as possible and increases the robustness of the schedule. We study the application of
Answer-Set Programming (ASP) to solve this problem. While ASP eases modelling, the combination of
timing constraints and the considered objective function challenges current solving technology. The former
issue is addressed by using an extension of ASP by difference logic. For the latter, we devise different
algorithms that use multi-shot solving. To tackle industrial-sized instances, we study different approximations
and heuristics. Our experimental results show that ASP is indeed a promising KRR paradigm for this problem
and is competitive with state-of-the-art CP and MIP solvers. Under consideration in Theory and Practice of
Logic Programming (TPLP).

KEYWORDS: answer-set programming, parallel machine scheduling, lexicographical optimisation

1 Introduction

We consider a scheduling problem on unrelated parallel machines that arises in industrial semi-
conductor production at Bosch. The problem is involved due to several aspects. We have to
deal with sequence-dependent setup-times and job release dates on the one hand; on the other
hand, setup-times, release dates, and job durations are machine dependent, and jobs can only be
scheduled on dedicated machines. Our goal is to maximise the throughput, which can be defined

*This is an extended version of a paper (Eiter et al. 2021) that appeared in the Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning (KR’21).

ar
X

iv
:2

21
2.

09
07

7v
1

 [
cs

.A
I]

 1
8

D
ec

 2
02

2

mailto:eiter@kr.tuwien.ac.at
mailto:tgeibing@dbai.tuwien.ac.at
mailto:musliu@dbai.tuwien.ac.at
mailto:oetsch@kr.tuwien.ac.at
mailto:fixed-term.peter.skocovsky@de.bosch.com
mailto:daria.stepanova@de.bosch.com

2 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

as the number of jobs processed per time unit. In principle, minimising the makespan, i.e., the
total length of the schedule, accomplishes this. However, we have to deal with high machine
dedication, i.e., many jobs can be processed only by few machines. When dealing with machines
with high dedication, few machines determine the makespan almost regardless of how jobs are
scheduled on the remaining ones. This is not ideal when jobs need to be rescheduled because of,
e.g., machine failure, and domain experts expressed the requirement that “all machines should
complete as early as possible” to give the scheduler freedom for rearrangements.

Instead of optimising only the makespan, we lexicographically minimise the individual ma-
chine spans. In particular, we define the lexicographical makespan of a schedule as the tuple of
all machine spans in non-ascending order. We prefer a schedule with smaller lexicographical
makespan over one with a larger one, where we use lexicographical order for comparison. A
schedule with minimal lexicographical makespan has therefore also a minimal makespan, but ties
are broken using machines that complete earlier.

This idea of lexicographical optimisation to produce schedules that show to be robust when
they need to be updated has been investigated and confirmed in the context of job scheduling
on identical machines in recent work (Letsios et al. 2021). While these results further support
our motivation to use this objective, the algorithms and tool chains developed there cannot be
used directly as our problem is significantly more complex due to machine dedication, sequence-
dependent setup times, and release dates.

We are specifically interested in using Answer-Set Programming (ASP) (Brewka et al. 2011;
Gebser et al. 2012; Lifschitz 2019), a state-of-the-art logic-based KRR paradigm, for our schedul-
ing problem. ASP is interesting for two reasons: first, its expressive modelling language makes it
easy to concisely model the problem including the objective function. This allows one to quickly
come up with a first prototype that can be evaluated by domain experts and can serve as a blueprint
for more sophisticated solutions. Second and more importantly, ASP makes it relatively easy
to develop solutions which can be conveniently adapted to problem variations, a feature known
as elaboration tolerance (McCarthy 1998). This is indeed needed as it is a goal to use similar
scheduling solutions for other work centers with slightly different requirements.

While ASP makes modelling easy and provides enough flexibility for future adaptations, the
combination of timing constraints and the considered objective function challenges current solving
technology. The former issue is addressed by using an extension of ASP with difference logic (Jan-
hunen et al. 2017). While this solves the issue of dealing with integer domains without blowing
up the size of the grounding, it makes expressing optimisation more tricky as current technology
does not support complex optimisation of integer variables. We devise different algorithms that
use multi-shot solving (Gebser et al. 2019) to accomplish lexicographical optimisation for our
scheduling problem.

To tackle industrial-sized instances, we study different approximations and heuristics. In
particular, we consider an approximate algorithm where parts of a solution are fixed after solver
calls. This allows us to find near-optimal solutions in a short time. Orthogonally to the ASP model,
we formulate different heuristic rules using a respective ASP extension (Gebser et al. 2013). These
rules do not alter the solution space but guide the solver with variable assignments and improve
performance.

For an experimental evaluation of our algorithms, we use random instances of various sizes
that are generated based on real-life scenarios. In addition, we provide an alternative solver-
independent MiniZinc model that can be used by various state-of-the-art MIP and CP solvers. The
experiments aim to explore the additional costs needed when using the lexicographical makespan

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 3

for optimisation instead of the standard makespan and the trade-off between performance and
solution quality. Our experimental results show that the lexicographical makespan optimisers
produce schedules with small makespans and thus ensure high throughput, while at the same
time accomplish our other objective of early completion times for all machines. The ASP-based
algorithms scale up to instances of realistic size and demonstrate that ASP is indeed a viable KRR
solving paradigm for lexicographical makespan problems.

This article is an extended version of a conference paper that has been presented at KR 2021
(Eiter et al. 2021). In particular, it includes proofs, further encodings and additional experimental
data that were not contained in the original publication, as well as an extended discussion and
other minor extensions.

The rest of this paper is organised as follows. After some background on ASP in the next section,
we formally define our scheduling problem including the lexicographical makespan objective in
Section 3. We then present exact ASP approaches for lexicographical makespan minimisation
in Section 4, and discuss approximation approaches in Section 5. Experiments are discussed in
Section 6. We review relevant literature in Section 7, before we conclude in Section 8.

2 Background on ASP

Answer-Set Programming (ASP) (Brewka et al. 2011; Gebser et al. 2012; Lifschitz 2019) provides
a declarative modelling language that allows one to succinctly represent search and optimisation
problems, for which solutions can be computed using dedicated ASP solvers.12

ASP is a compact relational, in essence propositional, formalism where variables in the input
language are replaced by constant symbols in a preprocessing step called grounding. An ASP
program is a (finite) set of rules of the form

p1 | . . . | pk :- q1, . . . , qm, not r1, . . . , not rn. (1)

where all pi, qj , and rl are function-free first-order atoms.3 The head are all atoms before the
implication symbol :-, and the body are all the atoms and negated atoms afterwards. The intuitive
meaning of the rule (1) is that if all atoms q1, . . . , qm can be derived, and there is no evidence for
any of the atoms r1, . . . , rn (i.e., the rule fires) then at least one of p1, . . . , pk has to be derived.

A rule with an empty body (i.e., m = n = 0) is called a fact, with :- usually omitted. Facts
are used to express knowledge that is unconditionally true. A rule with empty head (i.e., k = 0) is
a constraint. The body of a constraint cannot be satisfied by any answer set and is used to prune
away unwanted solution candidates.

The semantics of an ASP program P is given in terms of particular Herbrand models of its
grounding grdC(P) =

⋃
r∈P grdC(r), where grdC(r) consists of all ground (variable-free) rules

rθ that result from r by some substitution θ of the variables in r with elements from the set C of
constants, which by default are the constants occurring in P . A (Herbrand) interpretation I is a
subset of the set HBC(P) of all ground atoms p(c1, . . . , cl) with a predicate p occurring in P and
constants c1, . . . , cl from C. It is a (Herbrand) model of P , if each rule r in grdC(P) of form (1)
is satisfied, i.e., either (i) {p1, . . . pk}∩I 6= ∅ or (ii) {q1, . . . , qm} 6⊆ I or (iii) {r1, . . . rn}∩I 6= ∅.

1potassco.org.
2www.dlvsystem.com.
3Extensions of ASP with strong negation as well as function symbols, both uninterpreted and interpreted ones, are

available, which however we disregard here.

potassco.org
www.dlvsystem.com

4 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

(a) (b) (c)

Fig. 1: Different schedules involving three machines and six jobs.

Then I is an answer set of P , if I is a ⊆-minimal model of the reduct P I of P by I , which is
given by

P I = {p1 | . . . | pk :- q1, . . . , qm | r ∈ P, {r1, . . . rn} ∩ I = ∅};
intuitively, I must be a ⊆-minimal model of all rule instances of P whose negative body is
satisfied by I .

A common syntactic extension are choice rules of the form

i {p1, . . . , pk} j :- q1, . . . , qm, not r1, . . . , not rn.

The meaning is that if the rule fires, then some subset S of p1, . . . , pk with i ≤ |S| ≤ j has to
be true as well; it is compiled to ordinary rules using hidden auxiliary predicates (Calimeri et al.
2020).

We use the hybrid system clingo-dl (Janhunen et al. 2017)4 that extends the ASP solver
clingo by difference logic to deal with timing constraints. A difference constraint is an expres-
sion of the form u−v ≤ d, where u and v are integer variables and d is an integer constant. In con-
trast to unrestricted integer constraints, systems of difference constraints are solvable in polynomial
time. The latter are expressed in clingo-dl using theory atoms (Gebser et al. 2016). That job j
starts after its release time, say 10, can be expressed as &diff{ 0 - start(j) } <= -10.
Here, 0 and start(j) are integer variables, where 0 has a fixed value of 0; thus start(j)
must be at least 10.

We will also use an extension for heuristic-driven solving (Gebser et al. 2013) that allows
to incorporate domain heuristics into ASP. These heuristics do not change the answer sets of
a program but modify internal solver heuristics to bias search. The general form of a heuristic
directive is

#heuristic A : B. [w@p,m]

where A is an atom, B is a rule body, and w, p, m are terms. In particular, w is a weight, @p is an
optional priority, and m is a modifier like true or false. We will provide further details when
we introduce specific heuristic rules later on.

Further features of the input language, like aggregation and optimisation statements, will be
explained as we go.

3 Problem Statement

We study the following scheduling problem. Given m machines and n jobs, every job needs to
be processed by a single machine, and every machine can process at most one job at a time;

4https://github.com/potassco/clingo-dl.

https://github.com/potassco/clingo-dl

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 5

preemption is not allowed. Some machines can only handle certain jobs, such that from the view
of the latter, cap(j) is the set of machines that can process job j.

We assume that a release date rj,k is specified for every job j and machine k as a non-negative
integer. Release dates are machine dependent because transportation time for jobs to the machines
depends on the transport system and their location. No job can start before its release date.

A specified amount of time may be required to change from one job to the next one. Specifically,
we assume that si,j,k is the time needed to set up job j directly after job i on machine k.
Consequently, these times are referred to as sequence-dependent setup times. Every job j has a
positive duration dj,k that depends on the machine k it is assigned to.

A schedule S for a problem instance is defined by:

1. an assignment a that maps each job j to a machine k ∈ cap(j) capable of processing it;
2. for each machine k, a total order �k on the set J of jobs assigned to the machine via a.

Relation �k determines the sequence in which the jobs in J are processed on k.

If each job can be processed by some machine, then some schedule for the problem instance
exists.

Assume that j1, . . . , jl is the processing sequence of the jobs assigned to machine k in a given
schedule. The processing time pji of a job ji is its duration plus the setup time for its predecessor
(if one exists); i.e., pj1 = dj1,k and pji = sji−1,ji,k + dji,k, for i > 1. The start time stji of job
ji is rji,k if i = 1, and max (rji,k, stji−1

+ pji−1
) for i > 1. The completion time cji of job ji is

stji + pji .
The machine span of k, span(k), is the completion time of the last job jl on k. A common

optimisation criterion is to search for a schedule with a small makespan, which is the largest
machine span of the schedule.

Versions of this problem have been extensively studied in the literature (Allahverdi 2015). The
problem presented here abstracts the actual problem statement at Bosch to its most essential
elements. We left out some details due to confidentiality. Other elements, like due dates or manual
labor costs have been omitted as they are not relevant for the objective function studied in this
paper.

3.1 The Lexicographical Makespan Objective

Recall that we are interested in computing schedules that maximise the throughput, but high
machine dedication and rescheduling due to sudden machine failure render minimal makespan as
a single objective function suboptimal.

Figure 1 (a) illustrates this: assume all jobs scheduled to machine m1 cannot be processed
by any other machine. Thus, m1 will always determine the makespan and the remaining jobs
can be put almost arbitrarily on the remaining machines. This can lead to unnecessary workload
on these machines. A more severe problem is when machines suddenly fail and their jobs need
to be rescheduled. To cope with events like machine failure, the domain experts formulated the
requirement that “all machines should complete as early as possible” with the intention to give the
scheduler maximal freedom in rearranging jobs with minimal decrease in throughput.

We next define the lexicographical makespan for lexicographical optimisation of machine spans
to obtain robust schedules (Letsios et al. 2021).

Definition 1

6 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

Given a schedule S involving m machines, the lexicographical makespan, or lex-makespan for
short, of S is the tuple ms(S) = (c1, . . . , cm) of all the machine spans of S in non-ascending
order.

In this definition, c1 is a maximal machine span and hence corresponds to the makespan.
For schedules S and S′ involving m machines each, S has a smaller lex-makespan than S′

if ms(S) is smaller than ms(S′) under lexicographical order, i.e., on the least index i where
ms(S) = (c1, . . . , cm) and ms(S′) = (c′1, . . . , c

′
m) disagree, we have ci < c′i. For a set S of

schedules, S ∈ S is then optimal if ms(S) is minimal over all schedules in S.
Consider Figure 1 for illustration. We would prefer schedule (b) over (c) under the lex-makespan

objective. For both schedules, the lex-makespan is given by the machine spans of m1, m2, and
m3 in that order. Both schedules have the same makespan, but schedule (b) has a smaller machine
span for m2. If machine m1 fails and most of the jobs can only be rescheduled to machine m2,
schedule (b) would indeed be advantageous. It happens also earlier for schedule (b) that machines
m2 and m3 complete all their jobs and are therefore free if new jobs need to be scheduled.

To describe the dynamics of a schedule, we define, for a time point t and schedule S, M(S, t)

as the number of machines that complete at or before t. We then obtain:

Proposition 1
Let S and S′ be two schedules for some problem instance. Then, ms(S) < ms(S′) iff there is a
time point t such that M(S, t) > M(S′, t), and, for every t′ > t, M(S, t′) ≥M(S′, t′).

Proof
Let s = (c1, . . . , cm) be the lexical makespan of S and s′ = (d1, . . . , dm) the one of S′. Let
(∗) stand for the right-hand side of the proposition: there is a time point t such that M(S, t) >

M(S′, t) and for any t′ > t, M(S, t′) ≥M(S′, t′).
(⇒) Assume that s < s′. Consider the least i ∈ {1, . . . ,m} with ci < di. Observe that

M(S, ci) ≥ m − i + 1 while M(S′, ci) = m − i. Thus, there is a time point t = ci such that
M(S, t) > M(S′, t). Since cj = dj for any j < i, it follows that, for any time point t′ > t,
M(S, t′) ≥M(S′, t′). Hence, (∗) holds.

(⇐) Towards a contradiction, assume that both s ≥ s′ and (∗) hold. We distinguish between
the two cases s = s′ and s′ < s. If s = s′ then there cannot be any time point t with M(S, t) >

M(S′, t), a contradiction to (∗). If s′ < s, the left-to-right side of the proposition implies that
there is a time point t such that M(S′, t) > M(S, t), and, for any t′ > t, M(S′, t′) ≥M(S, t′).
Again, a contradiction to (∗).

For problems involving many machines, hierarchically minimising all the machine spans can
be excessive if the overall makespan is dominated by few machines only. However, comparing
lex-makespans allows for a rather natural parametrisation, namely an integer l that defines the
number of components to consider in the comparison.

Definition 2
Given schedules S and S′ involving m machines each and an integer l, 1 ≤ l ≤ m, we say
ms(S) = (c1, . . . , cm) is smaller than ms(S′) = (c′1, . . . , c

′
m) under parametrised lexico-

graphical order, in symbols ms(S) ≤l ms(S
′), if under lexicographical order (c1, . . . , cl) ≤

(c′1, . . . , c
′
l).

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 7

1 1 {asg(J,M): cap(M,J)} 1 :- job(J).
2

3 before(J1,J2,M) | before(J2,J1,M) :- asg(J1,M), asg(J2,M), J1 < J2.
4

5 1 {first(J,M): asg(J,M)} 1 :- asg(_,M).
6 1 {last(J,M): asg(J,M)} 1 :- asg(_,M).
7 1 {next(J1,J2,M): before(J1,J2,M)} 1 :- asg(J2,M), not first(J2,M).
8 1 {next(J2,J1,M): before(J2,J1,M)} 1 :- asg(J2,M), not last(J2,M).
9 :- first(J1,M), before(J2,J1,M).

10 :- last(J1,M), before(J1,J2,M).
11

12 &diff{0 - c(J1)} <= -(T+D+S) :- asg(J1,M), next(J3,J1,M),
13 setup(J3,J1,M,S), duration(J1,M,D),
14 release(J1,M,T).
15 &diff{c(J2) - c(J1)} <= -(P+S) :- before(J2,J1,M), next(J3,J1,M),
16 setup(J3,J1,M,S),
17 duration(J1,M,P).
18 &diff{0 - c(J1)} <= -(T+D) :- asg(J1,M), duration(J1,M,D),
19 release(J1,M,T).
20 &diff{c(J) - cmax} <= 0 :- job(J).
21

22 &diff{c(J2) - c(J1)} <= -P :- before(J2,J1,M), duration(J1,M,P).
23

24 1 {span(M,T): int(T)} 1 :- machine(M).
25 &diff{c(J) - 0} <= S :- asg(J,M), span(M,S).
26 #minimize{T@T,M: span(M,T)}.

Fig. 2: ASP encoding with difference logic for lex-makespan optimisation.

Note that for a schedule with m machines, we obtain the makespan objective if l = 1 and the
full lex-makespan if l = m.

4 An Exact ASP Model with Difference Logic

A problem instance is described by ASP facts using some fixed predicate names. We illustrate this
by an example with one machine m1 and two jobs j1, j2. The machine is capable of processing
all jobs and all release dates are 0. The setup time is 4 when changing from job j1 to j2 and 2 vice
versa. Both jobs have duration 5. The according facts are

machine(m1).
cap(m1,j1). cap(m1,j2).
job(j1). duration(j1,m1,5). release(j1,m1,0).
job(j2). duration(j2,m1,5). release(j2,m1,0).
setup(j1,j2,m1,4). setup(j2,j1,m1,2).

Any problem instance can be described using this format.
Next, we present the ASP encoding for computing minimal schedules. The entire program is

given in Figure 2.
The encoding consists of three parts: Lines 1–10 qualitatively model feasible sequences of

jobs on machines, while the quantitative model for completion times is realised in Lines 12-22
with difference logic; we avoid by this doing integer arithmetic in the Boolean ASP constraints,
which would blow up the size of the grounding. Finally, the optimisation is accomplished by Lines

8 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

24-26. Intuitively, we guess an upper bound for each machine span, which is then minimised. The
directive in Line 26 assigns each span a priority equal to their value, thus ensuring that the highest
span is the most important followed by the second highest and so forth.

The first line of Figure 2 expresses that each job is assigned to a machine capable of processing
it. The notation asg(J,M):cap(M,J) means that in the grounding step for each value j of
the global variable J (as it occurs in the body), asg(J,M) is replaced by all atoms asg(j,m)
for which cap(j,m) can be derived.

We further require that the jobs assigned to a machine are totally ordered. That is, for any two
distinct such jobs j1 and j2, either j1 ≺ j2 or j2 ≺ j1 holds. This is achieved by the rule in Line
3. In Lines 5–6, the predicates first/2 and last/2, representing the first and last job on
each machine, respectively, are defined. Constraints in Lines 9-10 ensure that this selection is
compatible with the order given by before/3. Furthermore, each job except the last (resp. first)
has a unique successor (resp. predecessor); this is captured by next/3 in Lines 7-8.

We use difference logic to express that jobs are put on the machines in the order defined by
next/3. The rules in Lines 12–19 closely follow respective definitions from Section 3. Line 20
defines cmax as an upper bound of any completion time. In any answer-set, cmax will be the
actual makespan since the solver will always instantiate integer variables with the smallest value
possible. The redundant rule in Line 22 helps the solver to further prune the search space.

For optimisation, we “guess” a span for each machine in Line 24. Here int/1 is assumed to
provide a bounded range of integers. In Line 25, we enforce that machines complete not later than
the guessed spans. The actual objective function is defined by the last line of Figure 2 notably
concise: any machine contributes its span c to a cost function at priority level c. The cost function
accumulates contributing values and the solver minimises answer sets by lexicographically
comparing cost tuples ordered by priority.

The formal correctness of the encoding is assured by the following proposition.

Proposition 2
For every problem instance I , the schedules of I with minimal lex-makespan are in one-to-one
correspondence with the optimal answer sets of the program PI consisting of the rules in Figure 2
augmented with the fact representation of I .

Proof (Sketch)
Given a (correct) schedule S for a problem instance I , we can define an interpretation MI that is
an answer set of the program PI . To this end, we include in MI all atoms asg(j,k) such that
job j is assigned to machine k in S; all atoms before(j1,j2,k) such that jobs j1 and j2 are
assigned in S to the same machine k and j1 starts before j2; all atoms next(j1,j2,k) such
that jobs j1 and j2 are assigned in S to the same machine k and j1 starts immediately before
j2; the atoms first(j,k) and last(j,k) where j is in S the first respectively last job on
machine k; and the atom span(k,t) for each machine k, where t is span(k) according to S.
Furthermore, each integer variable c(j) is set to the completion time of job j in S; cmax equals
the maximal completion time. It can then be shown that MI is an answer set of P , according to the
semantics of clingo-dl. In turn, it can be shown that every answer set M of the program PI

encodes a correct schedule S for the problem instance I , which is given by the atoms asg(j,k),
before(j1,j2,k) in M .

Thus, the correct schedules for I correspond to the answer sets of PI . By the statement
#minimize{T@T,M: span(M,T)}, those answer setsM are optimal where the vector vM =

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 9

Algorithm 1: Lex-Makespan Optimisation
Input: model M involving m machines and parameter l with 1 ≤ l ≤ m
Output: schedule R for M with parametrised lex-makespan (c1, . . . , cl)

solve(M) . . . returns a solution for M or ∅ if none is found within fixed resource limits

bound(i ◦ b), ◦ ∈ {<,≤} . . . constraints enforcing that ci ◦ b for the lex-makespan
(c1, . . . , cm)

1 (c1, . . . , cl)← (0, . . . , 0)

2 R← solve(M)

3 for i← 1 to l do
4 S ← R

5 while S 6= ∅ do
6 R← S

7 ci ← ith element of the lex-makespan of S
8 S ← solve(M ∪ bound(i < ci))

9 M ←M ∪ bound(i ≤ ci)
10 return R with lex-makespan (c1, . . . , cl)

(span(k1), span(k2), · · · , span(km)) of all machine spans in the encoded schedule in decreasing
order, i.e., span(kj) ≥ span(kj−1) for all m ≥ j > 1, is lexicographical minimal; indeed, if
vector vM is smaller than vector vM ′ , then the value of the objective function for M is smaller
than the one for M ′. Consequently, the optimal answer sets M of PI correspond one-to one to the
schedules for I with minimal lex-makespan.

4.1 Direct Multi-shot Optimisation

The performance bottleneck for the ASP approach from the previous section is grounding. In
particular, the definition of the machine spans must be grounded over the entire relevant integer
range. We can define machine spans in difference logic as bounds on completion times similar to
the makespan:

&diff{ 0 - span(M)} <= 0 :- machine(M).
&diff{c(J) - span(M)} <= 0 :- asg(J,M).

However, multi-objective optimisation for integer variables with priorities is unfortunately not
supported in the current version (1.1.1) of clingo-dl. Schedules with minimal lex-makespan
are still computable using multiple solver calls and incrementally adding constraints.

To this end, we present Alg. 1 for lex-makespan minimisation by using multiple solver calls.
Alg. 1 is a standard way for multi-objective minimisation by doing a (highest priority first)

hierarchical descent. Due to symmetries, showing a lack of solutions is usually more costly for
this problem than finding one; this makes alternative strategies with fewer expected solver calls
like binary search or exponentially increasing search steps less attractive.

We use clingo-dl and the encoding from Figure 2 without the optimisation statement in
Lines 21–23 to implement solve(M) in Alg. 1. A handy feature is that clingo-dl supports
multi-shot solving (Gebser et al. 2019) where parts of the solver state are kept throughout multiple

10 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

runs, thereby saving computational resources. Notably solve(M) in Alg. 1 does not limit us to
use ASP solver. We can in principle use any exact method that is capable of producing solutions
for a model M in the input language of the respective system.

The constraints for bound(i ≤ b) are quite easy to express in ASP: that the i-th component of
the lex-makespan is smaller than or equal to b is equivalent to enforcing that at least m− i+ 1

machines have a span of at most b. We can encode the latter by non-deterministically selecting
m− i+ 1 machines and enforcing that they complete not later than b:

(m-i+1) {sel(M): machine(M)}.
&diff{span(M) - 0} <= b :- sel(M).

While Alg. 1 is guaranteed to return a schedule with minimal lex-makespan when resources for
solve(M) are not limited, we will in practice restrict the time spent for search in solve(M) by a
suitable time limit.

4.2 Domain-specific Heuristics

We use two domain heuristics to improve performance by guiding search more directly to
promising areas of the search space. Both heuristic directives use the modifier true: Whenever
an atom needs to be assigned a truth value, the solver will pick the one with the highest weight
among the ones with highest priority and assigns it to true at first.

Recall that job durations depend on the machines. The first heuristic expresses the idea to assign
jobs to machines if their duration is low on that machine.

#heuristic asg(J,M): duration(J,M,D),
maxDuration(J,F), W=F-D. [W@2,true]

maxDuration(J,M) :- job(J), M = #max{D: duration(J,_,D)}.

Here, maxDuration/2 defines the longest duration of a given job over all machines. Then,
the heuristic directive gives a high weight to an atom asg(j,m) if the duration of j is low
relative to its maximal duration. The priority level of this rule is 2; this means that the solver will
try to assign jobs to machines before deciding on other atoms.

The second heuristic directive affects how jobs are put on machines. We want to avoid large
setup times and follow an analogous strategy as for the first heuristic:

#heuristic next(J,K,M): setup(J,K,M,S), maxSetup(K,M,T),
cap(J,M), cap(K,M), W=T-S. [W@1,true]

maxSetup(J,M,S) :- job(J), machine(M),
S = #max{T: setup(_,J,M,T)}.

Atom next(j,k,m) gets a high weight if putting job j before k results in a relatively small
setup time. We also need to make sure that machine m is actually capable of processing both jobs.
The order of the jobs has a lower priority than the machine assignment.

4.3 Plain Clingo Model

The ASP encoding in Figure 2 can also be formulated without difference logic which makes
it suitable as input for the ASP solver clingo. This ASP program for computing minimal
schedules is given in Figure 3. There, completion times are computed directly with arithmetic

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 11

1 1 {asg(J,M) : cap(M,J)} 1 :- job(J).
2 1 {first(J1,M) : asg(J1,M)} 1 :- #count{J2 : asg(J2,M)} > 0.
3 1 {last(J1,M) : asg(J1,M)} 1 :- #count{J2 : asg(J2,M)} > 0.
4 1 {next(J1,J2,M) : asg(J1,M)} 1 :- asg(J2,M), not first(J2,M).
5 1 {next(J1,J2,M) : asg(J2,M)} 1 :- asg(J1,M), not last(J2,M).
6 reach(J,M) :- first(J,M).
7 reach(J2,M) :- reach(J1,M), next(J1,J2,M).
8 :- asg(J,M), not reach(J,M).
9

10 process(J,T) :- first(J,M), duration(J,M,T).
11 process(J2,D+S) :- next(J1,J2,M), duration(J2,M,D),
12 setup(J1,J2,M,S).
13 start(J,T) :- int(T), first(J,M), release(J,M,T).
14 start(J2,T) :- int(T), next(J1,J2,M),
15 T = #max{R : release(J2,M,R) ; C : compl(J1,C)}.
16 compl(J,S+P) :- int(T), start(J,S), process(J,P).
17 span(M,T) :- int(T), last(J,M), compl(J,T).
18

19 #minimize{ T@T,M : span(M,T) }.

Fig. 3: Plain ASP encoding for lexical makespan minimisation.

aggregates. While this approach works for small instances, it does not scale for larger integer
domains.

5 ASP-based Approximation

While the exact methods from the previous section have the advantage that we can run a solver
until we find a guaranteed optimal solution, this works only for very small problem instances.
Finding good solutions within a time limit is in practice more important than showing optimality.
This is what the ASP-based approximation method we discuss next are designed to accomplish.

There is a simple way to turn the exact encoding from Figure 2 into an approximation that scales
better to larger instances. It has been introduced for clingo-dl optimisation in the context of
train scheduling (Abels et al. 2019), and we apply it for our machine scheduling application. Recall
that we use int/1 to define a range [0, 1, . . . , n] of integers from which potential bounds for
individual machine spans are taken from. We can instead consider integers from [0, 1 · g, . . . , i · g]
where g is the granularity of the approximation, and i is chosen such that n ≤ i · g; i can be
significantly smaller than n, depending on g, and thus reduce the search space and the size of the
grounding. A larger g makes the approximation more coarse, a smaller g makes it closer to the
exact encoding. We will compare the exact encoding and this approximation in Section 6.

5.1 Multi-shot Approximation

We next present a variant of Alg. 1 for approximation, where we assume that we have an exact
optimiser opt(·) which is good at finding schedules with small makespans. This optimiser can
then be employed to compute schedules with small lex-makespans. The specifics are presented as
Alg. 2

Algorithm 2 uses opt(·) to recompute and improve parts of a solution by fixing the jobs on the
machine with highest span after each solver call. Similar to Alg. 1, we require multiple solver calls

12 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

Algorithm 2: Lex-Makespan Approximation
Input: model M involving m machines and parameter l with 1 ≤ l ≤ m
Output: schedule S for M with parametrised lex-makespan (c1, . . . , cl)

opt(M) . . . returns the best solution for M found within fixed resource limits

1 (c1, . . . , cl)← (0, . . . , 0)

2 S ← ∅
3 for i← 1 to l do
4 S ← opt(M)

5 ci ← makespan of S
6 remove some machine k that completes at ci and all jobs assigned to k from M

7 return S

M3 M5 M10 M15 M20

m 3 5 10 15 20
n 5–50 10–50 50–200 100-200 150–200

Table 1: Machines (m) and jobs (n) per instance class.

but with a profound difference: the number of solver calls to the makespan optimiser is bounded by
the number of machines, and after each solver call, the problem instance is significantly simplified
and thus easier to solve.

As clingo-dl allows to directly minimise a single integer variable, we can implement the
makespan optimiser opt(·) directly using our difference logic encoding and minimise cmax.
However, we opted for using multi-shot solving again to reuse heuristic values and learned clauses
from previous solver runs.

6 Experimental Evaluation

We now provide an experimental evaluation of the approaches for lex-makespan optimisation from
above. Notably, any approach that produces schedules with small makespan will also produce
small lex-makespans. Our primary goal is to investigate the difference in schedule quality when
spending all resources for makespan optimisation versus distributing them for lex-makespan
optimisation to different priorities. As we cannot disclose real instances from the semi-conductor
production application, we use random instances of realistic size and structure instead. In addition
to experiments with ASP-based solvers, to compare with other solving paradigms, we provide
a solver-independent model in MiniZinc (Nethercote et al. 2007). This model can be solved by
many CP and MIP solvers. However, for a direct comparison, we also model our problem directly
in cplex and cpoptimizer.

6.1 Problem Instances

We generated 500 benchmark instances of different sizes randomly. The random instance generator
is designed however to reflect relevant properties of the real instances. The generator is based on
previous work in the literature (Vallada and Ruiz 2011b), but also produces instances with high

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 13

alldifferent except 0(p1≤i≤n) (2)
n∑

i=1

(pi = 0) ≤ nvalue(a1≤i≤m) (3)

ai ∈ cap(i) 1 ≤ i ≤ n (4)

pi 6= 0→ ai = api 1 ≤ i ≤ n (5)

pi 6= i 1 ≤ i ≤ n (6)

ci ≥ (max (cj , ri,ai) + sj,i,ai + di,ai) · (pi = j) 1 ≤ i, j ≤ n, i 6= j (7)

ci ≥ ri,ai + di,ai 1 ≤ i ≤ n (8)

sk = max1≤i≤n(ci · (ai = k)) 1 ≤ k ≤ m (9)

alldifferent(l1≤i≤m) (10)

li > lj → si ≥ sj 1 ≤ i, j ≤ m (11)

Fig. 4: Solver-independent MiniZinc model for lex-makespan optimisation.

machine dedication and amends older benchmarks, which were designed for different objective,
with random release dates. The 500 instances can be grouped into five classes, shown in Table 1,
of 100 instances each. The instance generator as well as all the encoding and algorithms are online
available.5

The machine capabilities were assigned uniformly at random for half of the instances in every
class: for each job, a random number of machines were assigned as capable. For the other half, we
assigned the capabilities such that 80% of the jobs can only be performed by 20% of the machines.
We refer to the latter setting as high-dedication and the former as low-dedication.

For each job j and any machine k, the duration dj,k, setup time sj,i,k for any other job i,
and release date rj,k were drawn uniformly at random from [10, 500], [0, 100], and [0, rmax],
respectively, where

rmax =
1

m

∑
1≤j≤n

1

|cap(j)|
(∑
k∈cap(j)

dj,k +
∑

1≤j′≤n,k∈cap(j′)

sj′,j,k
)
.

6.2 A Solver-Independent MiniZinc Model

As an alternative to ASP, we implemented a solver-independent model for schedule optimisation
in the well-known high-level modelling language MiniZinc for constraint satisfaction and opti-
misation problems. MiniZinc models, after being compiled into FlatZinc, can be used by a wide
range of solvers. We provide a direct model that represents our best attempt at using MiniZinc. It
thus serves only as a first baseline and more advanced models may improve performance. Our
model of the problem statement from Section 3 and the objective function are as follows.

For each job i ∈ {1, . . . , n}, we use the following decision variables: ai ∈ {1, . . . ,m}
for its assigned machine, pi ∈ {0, . . . , n} representing its predecessor or 0 if it has none, and
ci ∈ {0, . . . , h} denoting its completion time where h is the scheduling horizon. For each machine
j ∈ {1, . . . ,m}, we use sj ∈ {1, . . . , h} denoting its span, and its level in the ordering of spans
lj ∈ {1, . . . ,m}.

5http://www.kr.tuwien.ac.at/research/projects/bai/tplp22.zip.

http://www.kr.tuwien.ac.at/research/projects/bai/tplp22.zip

14 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

The constraints of the MiniZinc model are given in Figure 4. The global constraint (2) ensures
that no two jobs have the same predecessor, while (3) enforces that the number of first jobs is less
or equal to the number of assigned machines. The latter is determined through a global nvalue
constraint returning the number of different values in a1≤i≤m. Constraint (4) ensures that every
job is assigned a capable machine, and constraint (5) ensures that a job’s predecessor is on the
same machine. Constraint (6) expresses that no job is its own predecessor, while (7) ensures that
each job starts after its predecessor and the corresponding setup time. Finally, (8) enforces that
every first job starts after its release date.

Defining an objective function for lex-makespan minimisation is more intricate. For this, we
use constraints (9-11). Here (9) defines the span for each machine to be the latest completion time
of any job scheduled on it, while (10-11) ensure that each machine is assigned a different level
and the levels order the machines with respect to their spans.

The objective function for minimising the lex-makespan can then be expressed as

min
∑m

i=1 h
li−1 · si.

Intuitively, the levels represent the priorities for optimisation. By assigning the span of machine i
the weight hli−1, it is more important than all spans of machines on lower levels.

Note that restricting the model to constraints (2–8) and using the objective min max 1≤i≤n(ci)

expresses the scheduling problem with the standard makespan objective.

CPLEX and CP Optimizer Models

We also encoded our problem in the modelling languages of cplex and cpoptimizer. As
for the MiniZinc model, the encodings represent our best attempts at using respective modelling
languages. The MIP model for cplex uses the following variables.

• aj,i ∈ {0, 1} indicating that job j is assigned to machine i,
• pj,k,i ∈ {0, 1} representing that k is the predecessor of j (k can be zero) on machine i,
• cj the completion time of job j,
• sMi the span of machine i,
• sLl the span of level l, and
• li,l ∈ {0, 1} indicating that machine i has level l.

The last variable is obviously only needed for the lex-makespan objective.
The model with all constraints is given in Figure 5. Constraints (12) and (13) ensure that each

job is assigned exactly one capable machine. Constraint (14) enforces that each machine has at
most one first job. Constraint (15) states that each job is either the first job on its assigned machine
or has exactly one predecessor. The next constraint (16) enforces that each job has at most one
successor on its machine. Constraint (17) ensures that each job starts after its predecessor. Job
starting after their release is enforced through (18) and (19). Machine spans are ensured to be
bigger than all completion times on the machine by Constraint (20). Constraints (21–24) make
sure that the level spans correspond to the machine spans and are descending.

Optimising the lex-makespan objective can now be achieved by using the lexicographic min-
imisation functionality of cplex to minimise the level spans sLi (1 ≤ i ≤ l). We can also use
this model to optimise makespan by simply dropping Constraints (21-24) and minimising the
maximum machine span.

The decision variables of the cpoptimizer model are of a slightly different form.

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 15

∑
1≤i≤m

aj,i = 1 1 ≤ j ≤ n (12)

∑
i∈cap(j)

aj,i = 1 1 ≤ j ≤ n (13)

∑
1≤j≤n

pj,0,i ≤ 1 1 ≤ i ≤ m (14)

∑
0≤k≤n

pj,k,i = aj,i 1 ≤ j ≤ n, 1 ≤ i ≤ m (15)

∑
1≤k≤n

pk,j,i = aj,i 1 ≤ j ≤ n, 1 ≤ i ≤ m (16)

cj + h · (1− pj,k,i) ≥ ck + dj,i + sk,j,i 1 ≤ j, k ≤ n, 1 ≤ i ≤ m (17)

cj ≥ (rj,i + dj,i) · aj,i 1 ≤ j ≤ n, 1 ≤ i ≤ m (18)

cj + h · (1− pj,k,i) ≥ rj,i + dj,i + sk,j,i 1 ≤ j, k ≤ n, 1 ≤ i ≤ m (19)

sMi + h · (1− aj,i) ≥ cj 1 ≤ j ≤ n, 1 ≤ i ≤ m (20)

(1− li,k) · h+ sLk ≥ sMi 1 ≤ k ≤ l, 1 ≤ i ≤ m (21)

sLi ≥ sLj 1 ≤ i < j ≤ l (22)∑
1≤k≤l

li,k = 1 1 ≤ i ≤ m (23)

∑
1≤i≤m

li,k = 1 1 ≤ k ≤ l (24)

Fig. 5: MIP model used for lex-makespan optimisation in cplex.

• aj indicates the assigned machine of job j i.e. 1 ≤ aj ≤ m,
• pj is the predecessor of j or zero if there is none,
• cj the completion time of job j,
• sMi the span of machine i,
• sLl the span of level l, and
• li indicating the level of machine i.

The constraints for cpoptimizer are given in Figure 66. Constraint (25) ensures that prede-
cessors are all different or zero. The next constraint (26) enforces that no job is its own predecessor.
Constraint (12) makes sure that each job is assigned a capable machine. The number of first jobs
is bounded by the number of assigned machines through Constraint (14). Constraint (29) ensures
that the predecessor of a job is assigned the same machine. Jobs starting after their predecessor
and their release is enforced through (30) and (31). Machine spans are ensured to be bigger than
all completion times on the machine by Constraint (32). Lastly, Constraints (33–35) make sure
that the level spans correspond to the machine spans and are descending.

Similarly to cplex, optimising lex-makespan can be accomplished by using the lexicographic
minimisation functionality of cpoptimizer and the model can also be easily modified to
minimise makespan.

6For a proposition P , [P] = 1 if P is true and [P] = 0 otherwise.

16 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

pj = 0 ∨ pk = 0 ∨ pj 6= pk 1 ≤ j < k ≤ n (25)

pj 6= j 1 ≤ j ≤ n (26)

aj ∈ cap(j) 1 ≤ j ≤ n (27)∑
1≤i≤m

[count((aj)1≤j≤n, i) > 0] ≥ count((pj)1≤j≤n, 0) (28)

pj 6= k ∨ aj = ak 1 ≤ j, k ≤ n, j 6= k (29)

cj ≥ (max (rj,aj , ck) + dj,aj + sk,j,aj) · pj = k 1 ≤ j, k ≤ n, j 6= k (30)

cj ≥ rj,aj + dj,aj 1 ≤ j ≤ n (31)

sMi + (h · [aj 6= i]) ≥ cj 1 ≤ i ≤ m, 1 ≤ j ≤ n (32)

sLi ≥ sLj 1 ≤ i < j ≤ l (33)

li 6= lj 1 ≤ i < j ≤ n (34)

[li 6= j] · h+ sLj ≥ sMi 1 ≤ i ≤ m, 1 ≤ j ≤ l (35)

Fig. 6: Native cpoptimizer Model for lex-makespan optimisation.

6.3 Systems

We use clingo-dl version (1.1.1) for solve(·) and opt(·) in Algs. 1 and 2, respectively. For
both algorithms, the time limit for optimising any level of the lex-makespan can be set to a
geometric sequence with ratio 0.5. Thus, half of the total time limit is spent on optimising the
highest priority level, a quarter on the next level etc.

We use a FlatZinc linearisation of the MiniZinc model to compare with four MIP/CP solvers
(cplex 12.107, cpoptimizer 20.17, gecode 6.3.08 and or-tools 7.89) against the hy-
brid ASP approach. All solvers could be used for makespan minimisation. Regarding the lex-
makespan, gecode could not produce any solutions due to numerical issues and both cplex
and cpoptimizer wrongly reported optimality for some solutions. This is a technical issue
that is probably due to the translation of MiniZinc model to FlatZinc or too high values for the
lex-makespan objective function. Due to this, we also encoded the problem and both objectives
in the native modelling languages of cplex and cpoptimizer.10 Those direct approaches
had no problems with wrongly reported optimal solutions and their results are included below. In
difference, or-tools had no issues with the MiniZinc model and was thus run using this model.
We generally used all solvers in single-threaded mode and with default settings.

6.4 Experimental Results and Discussion

All experiments were conducted on a cluster with 13 nodes, where each node has two Intel Xeon
CPUs E5-2650 v4 (max. 2.90GHz, 12 physical cores, no hyperthreading), and 256GB RAM.
For each run, we set a memory limit of 20GB and all solvers only used one solving thread. The
application at the production site requires schedule computation within 300 seconds i.e. 5 minutes,

7https://www.ibm.com/analytics/cplex-optimizer.
8https://www.gecode.org.
9https://developers.google.com/optimisation.

10The encodings are available online at http://www.kr.tuwien.ac.at/research/projects/bai/tplp22.zip.

https://www.ibm.com/analytics/cplex-optimizer
https://www.gecode.org
https://developers.google.com/optimisation
http://www.kr.tuwien.ac.at/research/projects/bai/tplp22.zip

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 17

or-tools gecode cplex cpoptimizer clingo-dl
0

100

200

300

400

500

#feasible
#best
#optimal

or-tools cplex cpoptimizer clingo-dl clingo-dl
(approx)

Alg. 1 Alg. 1
(geo)

Alg. 2
0

100

200

300

400

500

Fig. 7: Different systems on all instances for makespan (top) and lex-makespan (bottom) with a time limit of
5 minutes.

which we adopted as time limit. However, in order to offer additional insights, we also performed
experiments with run times of up to 15 minutes.

Figures 7 and 8 give an overview of the performance of solvers on all instances. We compare
the approaches for makespan and lex-makespan optimisation . For each solver, we report the
number of instances where some solution was found (feasible), a minimal solution among all
approaches was found (best), and a globally minimal solution was found (optimal).

The makespan comparisons provide an important baseline as every approach that aims at
improving lex-makespan necessarily involves makespan minimisation, and any good lex-makespan
optimisers also needs to produce small makespans. With the practice oriented timeout of 5
minutes, the clingo-dl approach finds solutions for most of the instances and shows very good
performance for the number of best and optimal solutions compared to cplex, cpoptimizer,
or-tools and gecode. At least when using our MiniZinc model, or-tools and gecode
have difficulties to find solutions for a large proportion of the instances. The performance of
cplex and cpoptimizer is better, but it is still behind clingo-dl. It should be noted that
we did not investigate further improvements for those solvers. In the setting with 15 minutes run
time, cpoptimizer finds slightly more best solutions than clingo-dl which still solved the
most instances to optimality. For the other solvers, the longer time out does not seem to make
much difference.

For the lex-makespan comparisons, we use or-tools, cplex, cpoptimizer as well as
clingo-dl, the clingo-dl approximation described in Section 5 with granularity g = 10,
and Algs. 1 and 2. While or-tools, cplex and clingo-dl struggle now to find feasible solu-
tions in the 5 minutes setting, our multi-shot approaches shine in comparison with cpoptimizer

18 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

or-tools gecode cplex cpoptimizer clingo-dl
0

100

200

300

400

500

#feasible
#best
#optimal

or-tools cplex cpoptimizer clingo-dl clingo-dl
(approx)

Alg. 1 Alg. 1
(geo)

Alg. 2
0

100

200

300

400

500

Fig. 8: Different systems on all instances for makespan (top) and lex-makespan (bottom) with a time limit of
15 minutes.

trailing closely behind. The clingo-dl approximation does find more feasible solutions than
normal clingo-dl. However, it finds the least number of best solutions when compared to the
others. While the approximation does indeed improve performance of clingo-dl on bigger
instances, it performs worse on small instances and the results for the bigger instances are dwarfed
by the other approaches. If Alg. 1 is used without geometric timeouts, it reports optimal solutions
for quite a number of instances and finds the most best solutions. This, when comparing with
Algs. 1 and 2 with geometric timeouts, is not surprising as more time, for many instances all
the time, is spent on minimising the first component of the lex-makespan. With the 15 minutes
run time as shown in Figure 8, the results are generally similar. However, here cpoptimizer
manages to overtake Alg. 1 on the number of best solutions found even though the latter still
proves more instances to be optimal. Furthermore, with the longer run time, cplex does find
significantly more feasible solutions. Overall, our ASP based solution is still largely competitive
with the commercial solver cpoptimizer.

Figures 7 and 8 do not tell us much about the quality differences of the schedules produced by
the different algorithms. As our informal objective is that machines complete as early as possible,
we show in Figures 9 and Figures 10 graphs for the ratio of machines that completed as a function
of schedule time, i.e., f(t) =M(S, t)/m. This allows us to compare different approaches on the
same instance classes, where the x-axis is schedule time in seconds and the y-axis is the average of
M(S, t)/m over the instances. The curves for different algorithms can be interpreted as follows:
the earlier a curve reaches 1 (all machines completed), the smaller is the average makespan of the
instances. The shape of the curve reveals details about the quality of the schedule prior to this

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 19

point. For our informal objective, a steep incline of this curve is desired—the earlier it gets ahead
and stays ahead, the better.

We again start by discussing the results for the 5 minutes time limit. We only consider Algs. 1
and 2 with geometric timeouts against plain makespan optimisation with clingo-dl in Figure 9.
We show instance classes of increasing size from left to right and compare instances of type “low
dedication” in the upper row and “high dedication” in the lower row. All approaches produce
small makespans and thus schedules with a high throughput. This is worth emphasising since only
half of the time limit is used here for makespan optimisation by Algs. 1 and 2. However, when
comparing the shape of the curves, the lex-makespan optmisers show their strengths for meeting
our informal objective; the difference to makespan is subtle for Alg. 1 but more pronounced for
Alg. 2. While Alg. 2 finds fewer minimal solutions than Alg. 1 according to Figure 7, it tends
to get ahead the earliest in terms of completed machines when considering the execution of the
schedules, especially for high dedication instances. We can quantify this by looking at the average
ratio of machines finished at each point in time. On average, Alg 1. improves this metric by 6.3%
whereas Alg. 2 shows an improvement of 9.53%.

The graphs for the longer run time of 15 minutes shown in Figure 10 are largely similar.
However, the improvements of Alg. 2 are slightly more pronounced, especially for the instances
with 15 machines.

In summary, clingo-dl performs best among all considered approaches for plain makespan
optimisation. For lex-makespan, Alg. 1 performs best when the time limit is 5 minutes, while
cpoptimizer finds more often better solutions with the longer time limit of 15 minutes.

7 Related Work

7.1 Parallel Machine Scheduling

Many variants of Parallel Machine Scheduling Problem, e.g., (Allahverdi et al. 2008; Allahverdi
2015), have been studied extensively in the literature. Previous publications have considered
eligibility of machines, e.g., (Afzalirad and Rezaeian 2016; Perez-Gonzalez et al. 2019; Bektur
and Saraç 2019), machine dependent processing time, e.g., (Vallada and Ruiz 2011a; Avalos-
Rosales et al. 2013; Allahverdi 2015), and sequence dependent setup times, e.g., (Vallada and
Ruiz 2011a; Perez-Gonzalez et al. 2019; Fanjul-Peyro et al. 2019; Gedik et al. 2018).

7.2 Lexicographical Makespan

The idea to use lexicographical makespan optimisation to obtain robust schedules for identical
parallel machines comes from Letsios et al. (2021) but has not been used, to the best of our
knowledge, when setup times are present. The general idea of optimising not only the element
that causes the highest costs but also the second one and so on to obtain robustness, fairness, or
balancedness is studied under the notion of min-max optimisation for a various combinatorial
problems (Burkard and Rendl 1991; Ogryczak and Śliwiński 2006).

There are several related objective functions that can be used to achieve similar effects as
minimising the lex-makespan. Load balancing can be used to obtain balanced resource utilisation
by equalising the workload on machines (Rajakumar et al. 2004; Yildirim et al. 2007; Sabuncu
and Simsek 2020). One measure for this is to minimise the relative percentage of imbalance in
workload (Rajakumar et al. 2004) which is determined based on the difference between a machine

20 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

Low dedication

time

3
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

High dedication

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

5
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

10
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

15
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

20
m

ac
hi

ne
s

0 5k 10k 15k 20k 25k 30k 35k

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

0 5k 10k 15k 20k 25k 30k 35k

makespan
Alg. 1 (geo)
Alg. 2 (geo)

Fig. 9: Machine completion rate over time for makespan and lex-makespan (5 minutes run time).

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 21

Low dedication

time

3
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

High dedication

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

5
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

10
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

15
m

ac
hi

ne
s

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

time

20
m

ac
hi

ne
s

0 5k 10k 15k 20k 25k 30k 35k

0
0.

2
0.

4
0.

6
0.

8
1

time

pr
op

or
tio

n
of

m
ac

hi
ne

s
fin

is
he

d

0 5k 10k 15k 20k 25k 30k 35k

makespan
Alg. 1 (geo)
Alg. 2 (geo)

Fig. 10: Machine completion rate over time for makespan and lex-makespan (15 minutes run time).

22 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

span and the makespan. Other approaches try to minimise the difference between the largest and
the smallest machine span (Ouazene et al. 2014). Note that the machines m2 and m3 in Figure 1
(a) are balanced under this notion, but this does not ensure that the machines finish as early as
they could.

7.3 ASP Applications

Sabuncu and Simsek (2020) provide a novel formulation of a machine scheduling problem in ASP.
Their approach bears some similarity to ours, but their objective is to balance the workload of the
given machines. In general, load balancing can lead to schedules where, e.g., longer than necessary
setup times are used to artificially prolong machine spans for reducing imbalances. Another idea
is to minimise workload instead of balancing it. While this achieves short processing times, it does
not ensure that all machines finish as early as possible either. Similar to the workload, minimising
the sum of machine spans does not prevent that jobs are scheduled in an unbalanced way; Figs. 1
(b) and (c) serve as an example of two schedules with the same total machine span. Minimising
a non-linear sum of machine spans like their squares comes close to our informal objective but
is different from the lex-makespan as it does not guarantee a minimal makespan (Walter 2017).
Another way to obtain compact schedules is it to minimise the total completion times (Weng et al.
2001). This however can pull short jobs to the front of the schedule, which can adversely interfere
with avoiding large setup times.

7.4 ASP Extensions

Extending ASP with difference logic is just one way to blend integer constraints and ASP and there
are several other approaches (Lierler 2014; Gebser et al. 2009). We evaluated ASP with full integer
constraints with clingcon, but performance on our problem was poor. The fast propagation
enabled by the lower computational complexity of difference logic seems a big advantage here.
The clingo-dl system has indeed been used for the related problem of job-shop scheduling
and makespan optimisation (Janhunen et al. 2017; El-Kholany and Gebser 2020). Train scheduling
for the Swiss Federal Railways is another application of clingo-dl that involves routing,
scheduling, and complex optimisation (Abels et al. 2019). However, we are solving a different
problem with a more complex objective function and also compare to other solving paradigms.

8 Conclusion

We studied the application of hybrid ASP with difference logic to solve a challenging parallel
machine scheduling problem with setup-times in industrial semi-conductor production at Bosch.
As objective function, we used the lex-makespan which generalises the canonical makespan to a
tuple of machine spans and aims at accomplishing short completion times for all machines. Semi-
conductor production involves not only one but several connected work centers that solve similar
problems. Having a flexible ASP solution for one that can easily be adapted to others is highly
desirable. To make ASP perform up to par, we appropriated advanced techniques like difference
constraints, multi-shot solving, domain heuristics, and approximations for our application.

For the experimental evaluation, we considered random instances of realistic size and structure.
We further implemented a solver-independent MiniZinc model as well as direct encodings that
we used for comparisons with MIP and CP solvers. The results show that the objective of short

ASP for Lexicographical Makespan Optimisation in Parallel Machine Scheduling 23

completion times for machines is well achieved. Performance is improved by using approximations
without significant deterioration of the schedules produced. It is encouraging that the ASP
approaches turn out to be competitive with commercial MIP and CP solvers which are, at least to
some extent, engineered for industrial scheduling problems.

We plan to study meta-heuristics for lex-makespan optimisation in combination with ASP and
methods to combine the lex-makespan with other common objective functions.

Acknowledgments

We would like to thank the reviewers for their comments and Michel Janus, Andrej Gisbrecht,
and Sebastian Bayer for very helpful discussions on the scheduling problems at Bosch, as well as
Roland Kaminski, Max Ostrowski, Torsten Schaub, and Philipp Wanko for their help, valuable
suggestions, and feedback on constraint ASP. Johannes Oetsch was supported by funding from
the Bosch Center for Artificial Intelligence.

References

D. Abels, J. Jordi, M. Ostrowski, T. Schaub, A. Toletti, and P. Wanko. Train Scheduling with Hybrid ASP. In
Proceedings of the 15th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2019), volume 11481 of Lecture Notes in Computer Science, pages 3–17. Springer, 2019.

M. Afzalirad and J. Rezaeian. Resource-constrained unrelated parallel machine scheduling problem with
sequence dependent setup times, precedence constraints and machine eligibility restrictions. Computers
and Industrial Engineering, 98:40–52, 2016.

A. Allahverdi. The third comprehensive survey on scheduling problems with setup times/costs. European
Journal of Operational Research, 246(2):345–378, 2015.

A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov. A survey of scheduling problems with setup
times or costs. European Journal of Operational Research, 187(3):985–1032, 2008.

O. Avalos-Rosales, A. M. Alvarez, and F. Ángel-Bello. A Reformulation for the Problem of Scheduling
Unrelated Parallel Machines with Sequence and Machine Dependent Setup Times. In Proceedings 23rd
International Conference on Automated Planning and Scheduling (ICAPS 2013), pages 278–282, 2013.

G. Bektur and T. Saraç. A mathematical model and heuristic algorithms for an unrelated parallel machine
scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common
server. Comput. Oper. Res., 103:46–63, 2019.

G. Brewka, T. Eiter, and M. Truszczyński. Answer Set Programming at a Glance. Communications of the
ACM, 54(12):92–103, 2011.

R. E. Burkard and F. Rendl. Lexicographic bottleneck problems. Operations Research Letters, 10(5):303–308,
1991.

F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, M. Maratea, F. Ricca,
and T. Schaub. Asp-core-2 input language format. Theory Pract. Log. Program., 20(2):294–309, 2020.

T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovskỳ, and D. Stepanova. Answer-set programming for
lexicographical makespan optimisation in parallel machine scheduling. In Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning, volume 18, pages 280–290, 2021.

M. El-Kholany and M. Gebser. Job Shop Scheduling with Multi-shot ASP. In Proceedings of the 4th
Workshop on Trends and Applications of Answer Set Programming (TAASP 2020), 2020.

L. Fanjul-Peyro, R. Ruiz, and F. Perea. Reformulations and an exact algorithm for unrelated parallel machine
scheduling problems with setup times. Computers & Operations Research, 101:173–182, 2019.

M. Gebser, M. Ostrowski, and T. Schaub. Constraint Answer Set Solving. In Proceedings of the 25th
International Conference on Logic Programming (ICLP 2009), volume 5649 of Lecture Notes in Computer
Science, pages 235–249. Springer, 2009.

24 T. Eiter, T. Geibinger, N. Musliu, J. Oetsch, P. Skočovský, and D. Stepanova

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 6(3):1–238, 2012.

M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, and P. Wanko. Domain-specific heuristics in
answer set programming. In Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI
2013), pages 350–356. AAAI Press, 2013.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko. Theory Solving Made
Easy with Clingo 5. In Tech. Comm. 32nd International Conference on Logic Programming (ICLP 2016),
volume 52 of OASIcs, pages 2:1–2:15. Schloss Dagstuhl-Leibniz-Zentrum f. Informatik, 2016.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP Solving with clingo. Theory and
Practice of Logic Programming, 19(1):27–82, 2019.

R. Gedik, D. Kalathia, G. Egilmez, and E. Kirac. A constraint programming approach for solving unrelated
parallel machine scheduling problem. Computers & Industrial Engineering, 121:139–149, 2018.

T. Janhunen, R. Kaminski, M. Ostrowski, S. Schellhorn, P. Wanko, and T. Schaub. clingo goes Linear
Constraints over Reals and Integers. Theory and Practice of Logic Programming, 17(5-6):872–888, 2017.

D. Letsios, M. Mistry, and R. Misener. Exact Lexicographic Scheduling and Approximate Rescheduling.
European Journal of Operational Research, 290(2):469–478, 2021.

Y. Lierler. Relating Constraint Answer Set Programming Languages and Algorithms. Artificial Intelligence,
207:1–22, 2014.

V. Lifschitz. Answer Set Programming. Springer, 2019.
J. McCarthy. Elaboration Tolerance. In Common Sense, volume 98, 1998.
N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack. MiniZinc: Towards a Standard CP

Modelling Language. In International Conference on Principles and Practice of Constraint Programming,
volume 4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007.

W. Ogryczak and T. Śliwiński. On Direct Methods for Lexicographic Min-Max Optimization. In Proceedings
of the 6th International Conference on Computational Science and Its Applications (ICCSA 2006), volume
3982 of Lecture Notes in Computer Science, pages 802–811. Springer, 2006.

Y. Ouazene, F. Yalaoui, H. Chehade, and A. Yalaoui. Workload balancing in identical parallel machine
scheduling using a mathematical programming method. International Journal of Computational Intelli-
gence Systems, 7(sup1):58–67, 2014.

P. Perez-Gonzalez, V. Fernandez-Viagas, M. Z. Garcı́a, and J. M. Framiñan. Constructive heuristics for the
unrelated parallel machines scheduling problem with machine eligibility and setup times. Computers and
Industrial Engineering, 131:131–145, 2019.

S. Rajakumar, V. Arunachalam, and V. Selladurai. Workflow balancing strategies in parallel machine
scheduling. The International Journal of Advanced Manufacturing Technology, 23(5-6):366–374, 2004.

O. Sabuncu and M. C. Simsek. Solving assembly line workload smoothing problem via answer set program-
ming. In Proceedings of the 13th Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP 2020), volume 2678 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

E. Vallada and R. Ruiz. A genetic algorithm for the unrelated parallel machine scheduling problem with
sequence dependent setup times. European Journal of Operational Research, 211(3):612–622, 2011a.

E. Vallada and R. Ruiz. A genetic algorithm for the unrelated parallel machine scheduling problem with
sequence dependent setup times. European Journal of Operational Research, 211(3):612–622, 2011b.

R. Walter. A note on minimizing the sum of squares of machine completion times on two identical parallel
machines. Central European Journal of Operations Research, 25(1):139–144, 2017.

M. X. Weng, J. Lu, and H. Ren. Unrelated parallel machine scheduling with setup consideration and a total
weighted completion time objective. International Journal of Production Economics, 70(3):215–226,
2001.

M. B. Yildirim, E. Duman, K. K. Krishnan, and K. Senniappan. Parallel machine scheduling with load
balancing and sequence dependent setups. International Journal of Operations Research, 4(1):42–49,
2007.

	1 Introduction
	2 Background on ASP
	3 Problem Statement
	3.1 The Lexicographical Makespan Objective

	4 An Exact ASP Model with Difference Logic
	4.1 Direct Multi-shot Optimisation
	4.2 Domain-specific Heuristics
	4.3 Plain Clingo Model

	5 ASP-based Approximation
	5.1 Multi-shot Approximation

	6 Experimental Evaluation
	6.1 Problem Instances
	6.2 A Solver-Independent MiniZinc Model
	6.3 Systems
	6.4 Experimental Results and Discussion

	7 Related Work
	7.1 Parallel Machine Scheduling
	7.2 Lexicographical Makespan
	7.3 ASP Applications
	7.4 ASP Extensions

	8 Conclusion
	References

