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Abstract

This paper presents a language, Alda, that supports all of logic rules, sets, functions, updates,
and objects as seamlessly integrated built-ins. The key idea is to support predicates in rules as
set-valued variables that can be used and updated in any scope, and support queries using rules
as either explicit or implicit automatic calls to an inference function. We have defined a formal
semantics of the language, implemented a prototype compiler that builds on an object-oriented
language that supports concurrent and distributed programming and on an efficient logic rule
system, and successfully used the language and implementation on benchmarks and problems
from a wide variety of application domains. We describe the compilation method and results of
experimental evaluation.

KEYWORDS: language design and implementation, logic rules, sets, comprehension, aggrega-
tion, quantification, functions, updates, objects, concurrent and distributed

1 Introduction

Logic rules are powerful for expressing complex reasoning and analysis problems, espe-

cially in critical areas such as program analysis, decision support, networking, and se-

curity (Warren and Liu 2017; Liu 2018). However, developing application programs that

use logic rules remains challenging:

• Powerful logic languages and systems support succinct use of logic rules for complex

reasoning and analysis, but not as directly or conveniently for many other aspects

of applications—e.g., data aggregation, numerical computation, input/output, modu-

lar construction, and concurrency—that are more easily expressed using set queries,

functions, state updates, and object encapsulation (Maier et al. 2018).

• At the same time, commonly-used languages for building applications support many

powerful features but not logic rules, and to use a logic rule system, tedious and

error-prone interface code is required—to pass rules and data to the rule system,

invoke operations of the rule system for answering queries, and pass the results back—

manually solving an impedance mismatch, similarly as in interfaces with relational

databases (Geiger 1995), making logic rules harder to use than necessary.

What’s lacking is (1) a simple and powerful language that can express application prob-

lems by directly using logic rules as well as all other features without extra interface

code, and with a clear semantics for analysis as well as execution, plus (2) a compilation

framework for implementing this powerful language, in a practical way by extending a

http://arxiv.org/abs/2305.19202v1


2 Y.A. Liu, S.D. Stoller, Y. Tong, and B. Lin

widely-used programming language, and levergaing best performance of logic program-

ming systems.

We have developed such a powerful language, Alda, that combines the advantages of

logic languages and commonly-used languages for building applications, by supporting

direct use of all of logic rules, sets, functions, updates, and objects including concurrent

and distributed processes as seamlessly integrated built-ins with no extra interfaces.

• Sets of rules can be specified directly as other definitions can, where predicates in

rules are simply set-valued variables holding the set of tuples for which the predicate

is true. Thus, predicates can be used directly as set-valued variables and vice versa

without needing any extra interface, and predicates being set-valued variables are

completely different from functions or procedures, unlike in prior logic rule languages

and extensions.

• Queries using rule sets are calls to an inference function that computes desired values

of derived predicates (i.e., predicates in conclusions of rules) given values of base

predicates (i.e., predicates not in conclusions of rules). Thus, queries as function calls

need no extra interface either, and a rule set can be used with predicates in it holding

the values of any appropriate set-valued variables.

• Values of predicates can be updated either directly as for other variables or by the in-

ference function; declarative semantics of rules are ensured by automatically maintain-

ing values of derived predicates when values of base predicates are updated, through

appropriate implicit calls to the inference function.

• Predicates and rule sets can be object attributes as well as global and local names,

just as variables and functions can.

We also defined a formal semantics that integrates declarative and operational seman-

tics. The integrated semantics supports, seamlessly, all of logic programming with rules,

database programming with sets, functional programming, imperative programming, and

object-oriented programming including concurrent and distributed programming. Note

that predicates as variables, and queries as calls with different predicate values, also avoid

the need for higher-order predicates or more sophisticated features for reusing rules on

different predicates in more complex logic languages.

Implementing such a powerful language is nontrivial, especially to support logic rules

together with updates and objects. We describe a compilation framework for implemen-

tation that achieves generally good performance.

• The framework implements Alda by building on an object-oriented language that

supports all other features but not logic rules, and uses an efficient logic rule system

for queries using rules.

• The framework considers and analyzes different kinds of updates to predicates in

different scopes and uses an efficient implementation for each kind to minimize calls

to the inference function while still ensuring the declarative semantics of rules.

• The framework also allows optimizations from decades of study of logic rules to be

added for further efficiency improvements, both for queries using rules and for incre-

mental queries under updates.

There has been a significant amount of related research, as discussed in Section 5. Our

work contains two main contributions:
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1 class CoreRBAC : # class for Core RBAC component/object
2 def setup (): # method to set up the object, with no arguments
3 self.USERS , self.ROLES , self.UR := {},{},{}
4 # set users , roles , user -role pairs to empty sets
5 def AddRole (role): # method to add a role
6 ROLES.add(role) # add the role to ROLES
7 def AssignedUsers(role): # method to return assigned users of a role
8 return {u: u in USERS | (u,role) in UR} # return set of users having the role

...

9 class HierRBAC extends CoreRBAC : # Hierarchical RBAC extending Core RBAC
10 def setup ():
11 super ().setup() # call setup of CoreRBAC , to set sets as in there
12 self.RH := {} # set ascendant -descendant role pairs to empty set
13 def AddInheritance(a,d): # to add inherit . of an ascendant by a descendant
14 RH.add((a,d)) # add pair (a,d) to RH
15 rules trans_rs : # rule set defining transitive closure
16 path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)
17 path(x,y) if edge(x,z), path(z,y) # ... if edge(x,z) holds and path(z,y) holds
18 def transRH (): # to return transitive RH and reflexive role pairs
19 return infer(path , edge=RH, rules=trans_rs ) + {(r,r): r in ROLES}
20 def AuthorizedUsers(role): # to return users having a role transitively
21 return {u: u in USERS , r in ROLES | (u,r) in UR and (r,role) in transRH ()}

...

22 h = new(HierRBAC , []) # create HierRBAC object h, with no args to setup
23 h.AddRole (’chair’) # call AddRole of h with role ’chair’

...

24 h.AuthorizedUsers(’chair ’) # call AuthorizedUsers of h with role ‘chair ’
...

Fig. 1. An example program in Alda, for Role-Based Access Control (RBAC), demon-

strating logic rules used with sets, functions, updates, and objects.

• A language that supports direct use of logic rules with sets, functions, updates, and

objects, all as built-ins, seamlessly integrated, with a formal semantics.

• A compilation framework for implementation in a widely-used programming language,

where additional optimizations for rules can be exploited when available.

We have developed a prototype implementation of the compilation framework for Alda

and experimented with a variety of programming and performance benchmarks. Our

experiments strongly confirm the power and benefit of a seamlessly integrated language

and the generally good performance of the implementation. Our implementation and

benchmarks are publicly available (Tong et al. 2023).

2 Alda language

We first introduce rules and then describe how our overall language supports rules with

sets and functions as well as imperative updates and object-oriented programming. Fig-

ure 1 shows an example program in Alda that uses all of rules, sets, functions, updates,

and objects. It will be explained throughout Sections 2.1–2.6 when used as examples. A

complete exposition of the formal semantics is in Appendix A.

2.1 Logic rules

We support rule sets of the following form, where name is the name of the rule set,

declarations is a set of predicate declarations, and the body is a set of rules.

rules name (declarations):
rule+

A rule is either one of the two equivalent forms below (for users accustomed to either

form), meaning that if hypothesis1 through hypothesish all hold, then conclusion holds.
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conclusion if hypothesis1 , hypothesis2 , ..., hypothesish
if hypothesis1 , hypothesis2 , ..., hypothesish: conclusion

If a conclusion holds without a hypothesis, then if and : are omitted.

Declarations are about predicates used in the rule set, for advanced uses, and are

optional. For example, they may specify argument types of predicates, so rules can

be compiled to efficient standalone imperative programs (Liu and Stoller 2009) that

are expressed in typed languages (Rothamel and Liu 2007). They may also specify as-

sumptions about predicates (Liu and Stoller 2020) to support different desired seman-

tics (Liu and Stoller 2021; Liu and Stoller 2022). We omit the details because they are

orthogonal to the focus of the paper. In particular, we omit types to avoid unnecessary

clutter in code.

We use Datalog rules (Abiteboul et al. 1995; Maier et al. 2018) in examples, but our

method of integrating semantics applies to rules in general. Each hypothesis and conclu-

sion in a rule is an assertion, of the form

p(arg1 ,...,arga)

where p is a predicate, and each argk is a variable or a constant. We use numbers and

quoted strings to represent constants, and the rest are variables. As is standard for safe

rules, all variables in the conclusion must be in a hypothesis. If a conclusion holds without

a hypothesis, then each argument in the conclusion must be a constant, in which case

the conclusion is called a fact. Note that a predicate is also called a relation, relating the

arguments of the predicate.

Example. For computing the transitive closure of a graph in the running example,

the rule set, named trans_rs, in Figure 1 (lines 15-17) can be written. The rules are the

same as in dominant logic languages except for the use of lower-case variable names, the

change of :- to if, and the omission of dot at the end of each rule. �

Terminology. Consider a set of rules. Predicates not in any conclusion are called base

predicates, and the other predicates are called derived predicates. We say that a predicate

p depends on a predicate q if p is in the conclusion of a rule whose hypotheses contain q

or contain a predicate that depends on q recursively. We say that a derived predicate p

fully depends on a set s of base predicates if p does not depend on other base predicates.

Example. In rule set trans_rs, edge is a base predicate, and path is a derived predicate.

path depends on edge and itself. path fully depends on edge. �

2.2 Integrating rules with sets, functions, updates, and objects

Our overall language supports all of rule sets and the following language constructs as

built-ins; all of them can appear in any scope—global, class, and local.

• Sets and set expressions (comprehension, aggregation, quantification, and high-level

operations such as union) to make non-recursive queries over sets easy to express.

• Function and procedure definitions with optional keyword arguments, and function

and procedure calls.

• Imperative updates by assignments and membership changes, to sets and data of other

types, in sequencing, branching, and looping statements.

• Class definitions containing object field and method (function and procedure) defini-

tions, object creations, and inheritance.
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A name holding any value is global if it is introduced (declared or defined) at the global

scope; is an object field if it is introduced for that object; or is local to the function,

method, or rule set that contains it otherwise. After a name is defined, the value that it

is holding is available: globally for a global name, on the object for an object field, and

in the enclosing function, method, or rule set for a local name.

Example. Rule set trans_rs in Figure 1 (defined on lines 15-17 and queried using a

call to an inference function. infer, on line 19) is used together with sets (defined on lines

3 and 12), set expressions (on lines 8, 19, and 21), functions (defined on lines 7-9, 18-19,

and 20-21), procedures (defined on lines 2-3, 5-6, 10-12, and 13-14), updates (on lines 3,

6, 12, 14), classes (defined on lines 1 and 9, with inheritance), and objects (created on

line 22). No extra code is needed to convert edge and path, declare logic variables, and so

on. �

The key ideas of our seamless integration of rules with sets, functions, updates, and

objects are: (1) a predicate is a set-valued variable that holds the set of tuples for which

the predicate is true, (2) queries using rules are calls to an inference function that com-

putes desired sets using given sets, (3) values of predicates can be updated either directly

as for other variables or by the inference function, and (4) predicates and rule sets can

be object attributes as well as global and local names, just as sets and functions can.

Integrated semantics, ensuring declarative semantics of rules. In our overall

language, the meaning of a rule set rs is completely declarative, exactly following the

standard least fixed-point semantics of rules (Fitting 2002; Liu and Stoller 2009):

Given values of any set s of base predicates in rs , the meaning of rs is, for all derived

predicates in rs that fully depend on s , the least set of values that can be inferred,

directly or indirectly, by using the given values and the rules in rs ;

for any derived predicate in rs that does not fully depend on s, i.e., depends on any

base predicate whose values are not given, its value is undefined.

The operational semantics for the rest of the language ensures this declarative semantics

of rules. The precise constructs for using rules with sets, functions, updates, and objects

are described in Sections 2.3–2.6.

2.3 Predicates as set-valued variables

For rules to be easily used with everything else, our most basic principle in designing the

language is to treat a predicate as a set-valued variable that holds the set of tuples that

are true for the predicate, that is:

For any predicate p over values x1 ,...,xa , assertion p(x1 ,...,xa) is true—i.e., p(x1 ,...,xa)

is a fact—if and only if tuple (x1 ,...,xa) is in set p. Formally,

p(x1 ,...,xa) ⇐⇒ (x1 ,...,xa) in p

This means that, as variables, predicates in a rule set can be introduced in any scope—as

global variables, object fields, or variables local to the rule set—and they can be written

into and read from without needing any extra interface.

Example. In rule set trans_rs in Figure 1, predicate edge is exactly a variable holding

a set of pairs, such that edge(x,y) is true iff (x,y) is in edge, and edge is local to trans_rs.

In general, edge can be a global variable, an object field, or a local variable of trans_rs.

Similarly for predicate path. �
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Writing to predicates is discussed later under updates to predicates, but reading and

using values of predicates can simply use all operations on sets. We use set expressions

including the following:

exp in sexp membership
exp not in sexp negated membership
sexp1 + sexp2 union
{exp: v1 in sexp1 ,...,vk in sexpk | bexp} comprehension
agg sexp, where agg is count, max, min, sum aggregation
some v1 in sexp1 ,...,vk in sexpk | bexp existential quantification

A comprehension returns the set of values of exp for all combinations of values of variables

that satisfy all membership clauses vi in sexpi and condition bexp. An aggregation returns

the count, max, etc. of the set value of sexp. An existential quantification returns true iff

for some combination of values of variables that satisfies all vi in sexp clauses, condition

bexp holds. When an existential quantification returns true, variables v1 ,...,vk are bound

to a witness. Note that these set queries, as in (Liu et al. 2017), are more powerful than

those in Python.

Example. For computing the transitive closure T of a set E of edges, the following while

loop with quantification can be used (we will see that we use objects and updates as in

Python except for the syntax := for assignment in this paper):

T := E.copy ()
while some (x,z) in T, (z,y) in E | (x,y) not in T:

T.add ((x,y))
�

In the comprehension and aggregation forms, each vi can also be a tuple pattern that

elements of the set value of sexpi must match (Liu et al. 2017). A tuple pattern is a tuple

in which each component is a non-variable expression, a variable possibly prefixed with

=, a wildcard _, or recursively a tuple pattern. For a value to match a tuple pattern, it

must have the corresponding tuple structure, with corresponding components equal the

values of non-variable expressions and variables prefixed with =, and with corresponding

components assigned to variables not prefixed with =; multiple occurrences of a variable

must be assigned the same value; corresponding components of wildcard are ignored.

Example. To return the set of second component of pairs in path whose first compo-

nent equals the value of variable x, and where that second component is also the first

component of pairs in edge whose second component is 1, one may use a set comprehension

with tuple patterns:

{y: (=x,y) in path , (y,1) in edge}
�

Now that predicates in rules correspond to set-valued variables, instead of functions

or procedures, we can further see that logic variables, i.e., variables in arguments of

predicates in rules, are like pattern variables, i.e., variables not prefixed with = in patterns.

These variables are used for relating values, through what is generally called unification;

they do not hold values, unlike variables prefixed with = in patterns.

2.4 Queries as calls to an inference function

For inference and queries using rules, calls to a built-in inference function infer, of the

following form, are used, with queryk ’s and pk=sexpk ’s being optional:

infer(query1 , ..., queryj , p1 =sexp1 , ..., pi=sexpi, rules=rs)



Integrating Logic Rules with Everything Else, Seamlessly 7

rs is the name of a rule set. Each sexpk is a set-valued expression. Each pk is a base

predicate of rs and is local to rs . Each queryk is of the form p(arg1 ,...,arga), where p

is a derived predicate of rs , and each argument argk is a constant, a variable possibly

prefixed with =, or wildcard _. A variable prefixed with = indicates a bound variable whose

value will be used as a constant when evaluating the query. So arguments of queries are

patterns too. If all argk ’s are _, the abbreviated form p can be used.

Function infer can be called implicitly by the language implementation or explicitly by

the user. It is called automatically as needed and can be called explicitly when desired.

Example. For inference using rule set trans_rs in Figure 1, where edge and path are

local variables, infer can be called in many ways, including:

infer (path , edge=RH , rules =trans_rs )
infer (path(_,_), edge=RH , rules =trans_rs )
infer (path(1,_), path(_,=R), edge=RH , rules =trans_rs )

The first is as in Figure 1 (line 19). The first two calls are equivalent: path and path(_,_)

both query the set of pairs of vertices having a path from the first vertex to the second

vertex, following edges given by the value of variable RH. In the third call, path(1,_) queries

the set of vertices having a path from vertex 1, and path(_,=R) queries the set of vertices

having a path to the vertex that is the value of variable R.

If edge or path is a global variable or an object field, one may call infer on trans_rs

without assigning to edge or querying path, respectively. �

The operational semantics of a call to infer is exactly like other function calls, except

for the special forms of arguments and return values, and of course the inference function

performed inside:

1) For each value k from 1 to i , assign the set value of expression sexpk to predicate pk
that is a base predicate of rule set rs .

2) Perform inference using the rules in rs and the given values of base predicates of rs

following the declarative semantics, including assigning to derived predicates that are

not local.

3) For each value k from 1 to j , return the result of query queryk as the kth component

of the return value. The result of a query with l distinct variables not prefixed with =

is a set of tuples of l components, one for each of the distinct variables in their order

of first occurrence in the query.

Note that when there are no pk=sexpk ’s, only defined values of base predicates that are

not local to rs are used; and when there are no queryk ’s, only values of derived predicates

that are not local to rs may be inferred and no value is returned. This is the case for

implicit calls to infer on rs.

2.5 Updates to predicates

Values of base predicates can be updated directly as for other set-valued variables, and

values of derived predicates are updated by the inference function.

Base predicates of a rule set rs that are local to rs are assigned values at calls to

infer on rs, as described earlier. Base predicates that are not local can be updated by

assignment statements or set update operations. We use

lexp := exp
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for assignments, where lexp can also be a nested tuple of variables, and each variable is

assigned the corresponding component of the value of exp.

Derived predicates of a rule set rs can be updated only by calls to the inference function

on rs . The updates must ensure the declarative semantics of rs :

Whenever a base predicate of rs is updated in the program, the values of the derived

predicates in rs are maintained according to the declarative semantics of rs by calling

infer on rs .

Updates to derived predicates of rs outside rs are not allowed, and any violation will

be detected and reported at compile time if possible and at runtime otherwise.

Simply put, updates to base predicates trigger updates to derived predicates, and other

updates to derived predicates are not allowed. This ensures the invariants that the derived

predicates hold the values defined by the rule set based on values of the base predicates,

as required by the declarative semantics. Note that this is the most straightforward

semantics, but the implementation can avoid many inefficiencies with optimizations.

Example. Consider rule set trans_rs in Figure 1. If edge is not local, one may assign a

set of pairs to edge:

edge := {(1 ,8) ,(2 ,9) ,(1 ,2)}

If edge is local, the calls to infer in the example in Section 2.4 assign the value of RH to

edge.

If path is not local, then a call infer(edge=RH, rules=trans_rs) updates path, contrasting

the first two calls to infer in the example in Section 2.4 that return the value of path.

If path is local, the return value of infer can be assigned to variables. For example, for

the third call to infer in the example in Section 2.4, this can be

from1 ,toR := infer(path(1,_), path(_,=R), edge=RH , rules =trans_rs )

If both edge and path are not local, then whenever edge is updated, an implicit call

infer(rules=trans_rs) is made automatically to update path. �

For the RBAC example in Figure 1, different ways of using rules are possible, including

(1) allloc: adding a rule path(x,x) if role(x,x) to the rule set, adding role=ROLES in the call

to infer, and removing the union in function transRH, so all predicates are local variables;

(2) nonloc: as in allloc, except to replace predicates edge, role, and path with RH, ROLES,

and a new field transRH, respectively, replace call transRH() with field transRH, and remove

function transRH; (3) union: as in Figure 1; and other combinations of aspects of (1)–(3).

2.6 Using predicates and rules with objects and classes

Predicates and rule sets can be object fields as well as global and local names, just as

sets and functions can, as discussed in Section 2.2. This allows predicates and rule sets

to be used seamlessly with objects in object-oriented programming.

For other constructs than those described above, we use those in high-level object-

oriented languages. We mostly use Python syntax (looping, branching, indentation for

scoping, ‘:’ for elaboration, ‘#’ for comments, etc.) for succinctness, but with a few con-

ventions from Java (keyword new for object creation, keyword extends for subclassing, and

omission of self, the equivalent of this in Java, when there is no ambiguity) for ease of

reading.

Example. We use Role-Based Access Control (RBAC) to show the need of using rules

with all of sets, functions, updates, and objects and classes.
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RBAC is a security policy framework for controlling user access to resources based on

roles and is widely used in large organizations. The ANSI standard for RBAC (ANSI INCITS 2004)

was approved in 2004 after several rounds of public review (Sandhu et al. 2000; Jaeger and Tidswell 2000;

Ferraiolo et al. 2001), building on much research during the preceding decade and earlier.

High-level executable specifications were developed for the entire RBAC standard (Liu and Stoller 2007),

where all queries are declarative except for computing the transitive role-hierarchy rela-

tion in Hierarchical RBAC, which extends Core RBAC.

Core RBAC defines functionalities relating users, roles, permissions, and sessions.

It includes the sets and update and query functions in class CoreRBAC in Figure 1, as

in (Liu and Stoller 2007).1

Hierarchical RBAC adds support for a role hierarchy, RH, and update and query func-

tions extended for RH. It includes the update and query functions in class HierRBAC in Fig-

ure 1, as in (Liu and Stoller 2007),1 except that function transRH() in (Liu and Stoller 2007)

computes the transitive closure of RH plus reflexive role pairs for all roles in ROLES by us-

ing a complex and inefficient while loop much worse than that in Section 2.3 (due to

Python’s lack of some with witness) plus a union with the set of reflexive role pairs

{(r,r): r in ROLES}, whereas function transRH() in Figure 1 simply calls infer and unions

the result with reflexive role pairs.

Note though, in the RBAC standard, a relation transRH is used in place of transRH(), in-

tending to maintain the transitive role hierarchy incrementally while RH and ROLES change.

It is believed that this is done for efficiency, because the result of transRH() is used con-

tinually, while RH and ROLES change infrequently. However, the maintenance was done

inappropriately (Liu and Stoller 2007; Li et al. 2007) and warranted the use of transRH()

to ensure correctness before efficiency.

Overall, the RBAC specification relies extensively on all of updates, sets, functions, and

objects and classes with inheritance, besides rules: (1) updates for setting up and updat-

ing the state of the RBAC system, (2) sets and set expressions for holding the system state

and expressing set queries exactly as specified in the RBAC standard, (3) methods and

functions for defining and invoking update and query operations, and (4) objects and

classes for capturing different components—CoreRBAC, HierRBAC, constraint RBAC, their

further refinement, extensions, and combinations, totaling 9 components, corresponding

to 9 classes, including 5 subclasses of HierRBAC (ANSI INCITS 2004; Liu and Stoller 2007).

�

3 Compilation

We describe our compilation framework for implementing Alda, by building on an object-

oriented language that supports all features except rules and queries and on an efficient

logic rule engine for queries using rules. Three main tasks are (1) compiling rule sets to

generate rules accepted by the rule engine, (2) compiling queries using rules to generate

queries accepted by the rule engine, together with automatic conversion of data and query

results, and (3) compiling updates to predicates that require implicit automatic queries

and updates of the query results. The compiler must appropriately handle scoping of rule

sets and predicates for all three tasks. Besides that, task (1) is straightforward, task (2)

1 Only a few selected sets and functions are included, and with small changes to names and syntax.
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is also straightforward but tedious, and task (3) requires the most analysis, so we focus

on task (3) below.

We first describe how to compile all possible updates to predicates, starting with

the checks and actions needed to correctly handle updates for a single rule set with

implicit and explicit calls to infer. We then describe how to implement the inference in

infer. In Appendix B, we systematize powerful optimizations that can be added in the

overall compilation framework; clearly separated handling of updates and queries in our

compilation framework allows optimizations to be added in a modular fashion.

3.1 Compiling updates to predicates

The operational semantics to ensure the declarative semantics of a rule set rs is concep-

tually simple, but for efficiency, the implementation required varies, depending on the

kind of updates to base predicates of rs outside rs. Note that inside rs there are no

updates to base predicates of rs , by definition of base predicate.

1) Local updates. Local variables of rs, i.e., predicates local to rs , can be assigned

values only at explicit calls to infer on rs . Such a call passes in values of local variables

that are base predicates of rs before doing the inference. Values of local variables that

are derived predicates of rs can only be used in constructing answers to the queries

in the call, and the answers are returned from the call.

There are no updates outside rs to local variables that are derived predicates of rs ,

by definition of local variables.

2) Non-local updates. For updates to non-local variables of rs, an implicit call to infer

on rs needs to be made only after every update to a base predicate of rs .

Statements outside rs that update derived predicates of rs are identified and reported

as errors.

In languages or application programs where variables hold data values, such as in

database languages and applications, these updates can be determined simply at com-

pile time, e.g., if s holds a set value, then s := s+{x} updates the set value of s. This is

also the case when logic rules are used in these languages and programs.

In programs where variables may be references to data values, each update needs

to check whether the updated variable may alias a predicate of rs , conservatively at

compile-time if possible, and at runtime otherwise.

To satisfy these requirements, the overall method for compiling an update to a variable

v outside rule sets is:

• In languages or application programs where variables hold data values, report a

compile-time error if v is a derived predicate of any rule set; otherwise, for each rule

set rs that contains v as a base predicate, insert code, after the update, that calls

infer on rs with no arguments for base predicates and no queries.

• Otherwise, if v may refer to a predicate in a rule set, insert code that does the following

after the update: if v refers to a derived predicate of any rule set, report a runtime

error and exit; otherwise for each rule set rs , if v refers to a base predicate of rs, call

infer on rs with no arguments for base predicates and no queries.

Our method for compiling an explicit call to infer on a rule set directly follows the

operational semantics of infer.

In effect, function infer is called to implement a wide range of control: from inferring
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everything possible using all rule sets and values of all base predicates at every update,

to answering specific queries using specific rules and specific sets of values of specific base

predicates at explicit calls.

Obviously, updates in different cases may have significant impact on program effi-

ciency. Update analysis is needed to determine the case and generate correct code. Our

compilation method above minimizes calls to infer in each case.

3.2 Implementing inference and queries

Any existing method can be used to implement the functionality inside infer. The infer-

ence and queries for a rule set can use either bottom-up or top-down evaluation (Kifer and Liu 2018;

Tekle and Liu 2010; Tekle and Liu 2011), so long as they use the rule set and values of

the base predicates according to the declarative semantics of rules

The inference and queries can be either performed by using a general logic rule engine,

e.g., XSB (Sagonas et al. 1994; Swift et al. 2022), or compiled to specialized standalone

executable code as in, e.g., (Liu and Stoller 2009; Rothamel and Liu 2007; Jordan et al. 2016),

that is then executed. Our current implementation uses the former approach, by indeed

using the well-known XSB system, as described in Section 4, because it allows easier

extensions to support more kinds of rules and optimizations that are already supported

in XSB. Other powerful logic rule engines, including efficient Answer Set Programming

(ASP) systems such as Clingo (Gebser et al. 2019), can certainly be used also.

4 Implementation and experimental evaluation

We have implemented a prototype compiler for Alda. The compiler generates executable

code in Python. The generated code calls the XSB logic rule engine (Sagonas et al. 1994;

Swift et al. 2022) for inference using rules.

We implemented Alda by extending the DistAlgo compiler (Liu et al. 2012; Liu et al. 2017;

Lin and Liu 2022). DistAlgo is an extension of Python with high-level set queries as well

as distributed processes. The compiler is implemented in Python 3, and uses the Python

parser. So Python syntax is used in place of the ideal syntax presented in Section 2,

allowing any user with Python to run Alda directly.

The Alda implementation extends the DistAlgo compiler to support rule-set definitions,

function infer, and maintenance of derived predicates at updates to non-local variables.

It handles direct updates to variables used as predicates, not updates through aliasing,

as we found this to be the only update case in all benchmarks and other examples we

have seen; we think this is because using logic rules with updates is similar to using

queries and updates in relational databases, with no need of updates through aliasing.

Currently Datalog rules extended with unrestricted negation are supported, and well-

founded semantics computed by XSB is used; extensions for more general rules can be

handled similarly, and inference using XSB can remain the same. Calls to infer are

automatically added at updates to non-local base predicates of rule sets.

In particular, the following Python syntax is used for rule sets, where a rule can be

either one of the two forms below, so the only restriction is that the name rules is reserved.

def rules (name = rsname):
conclusion, if_(hypothesis1 , hypothesis2 , ..., hypothesish)
if (hypothesis1 , hypothesis2 , ..., hypothesish): conclusion

...
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Rule sets are translated into Prolog rules at compile time. The directive :- auto_table. is

added for automatic tabling in XSB.

For function infer, the implementation translates the values of predicates and the list

of queries into facts and queries in standard Prolog syntax, and translates the query

answers back to values of set variables. It invokes XSB using a command line in between,

passing data through files; this external interface has an obvious overhead, but it has not

affected Alda having generally good performance. infer automatically reads and writes

non-local predicates used in a rule set.

Note that the overhead of the external interface can be removed with an in-memory

interface from Python to XSB, which is actively being developed by the XSB team.2 How-

ever, even with the overhead of the external interface, Alda is still faster or even drasti-

cally faster than half or more of the rule engines tested in OpenRuleBench (Liang et al. 2009)

for all benchmarks measured except DBLP (even though OpenRuleBench uses the fastest

manually optimized program for each problem for each rule engine), and than not using

rules at all (without manually writing or adapting a drastically more complex, specialized

algorithm implementation for each problem).

Building on top of DistAlgo and XSB, the compiler consists of about 1100 lines of

Python and about 50 lines of XSB. This is owing critically to the overall framework and

comprehensive support, especially for high-level queries, already in the DistAlgo compiler

and to the powerful query engine of XSB. The parser for the rule extension is about 270

lines, and update analysis and code generation for rules and inference are about 800 lines.

The current compiler does not perform further optimizations, because they are or-

thogonal to the focus of this paper, and our experiments already showed generally good

performance. Further optimizations can be implemented in either the Alda compiler to

generate optimized rules and tabling and indexing directives, or in XSB. Incremental

maintenance under updates can also be implemented in either one, with a slightly richer

interface between the two.

We discuss our experiments on the benchmarks summarized in Table 1. Detailed de-

scription of the benchmarks are in (Liu et al. 2022; Liu et al. 2023). Just as the bench-

marks selected, the experiments selected are also meant to show generally good per-

formance even under the most extreme overhead penalties we have encountered—runs

with large data (DBLP and PA), large query results (transitive closure TC), large rules

(Wine), frequent switches among different ways of using rules and other features (RBAC

and PA), and frequent external invocations of the rule engine (RBAC). Our extensive

experiments with other uses of Alda have experienced minimum performance overhead.

All measurements were taken on a machine with an Intel Xeon X5690 3.47 GHz CPU,

94 GB RAM, running 64-bit Ubuntu 16.04.7, Python 3.9.9, and XSB 4.0.0. For each

experiment, the reported running times are CPU times averaged over 10 runs. Garbage

collection in Python was disabled for smoother running times when calling XSB. Program

sizes are numbers of lines excluding comments and empty lines. Data sizes are number

of facts.

2 A version for Unix, not yet Windows, has been released: passing data of size 100 million in memory
took about 30 nanoseconds per element (Swift et al. 2022, release notes). So even the largest data in
our experiments, of size a few millions, would take 0.1–0.2 seconds to pass in memory, instead of 10–20
seconds with the current external interface.
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Benchmark
sets

Benchmarks Variants
and timing

Problem kinds Code/data size

Open-
RuleBench
(Liang et al. 2009)

13 incl. LUBM,
Mondial, DBLP,
TC, WordNet,
Wine

TCrev,
TCda,
TCpy,
ORBtimer

many kinds of
rules and queries,
but missing
aggregate queries

largest rule set:
967 rules,
largest data size:
2.4M+

RBAC
as in
Section 2.6

RBACallloc,
RBACnonloc,
RBACunion

RBACda,
RBACpy,
RBACtimer

interleaved object
queries and updates
with function and
recursive rules

program size:
385–423,
data size:
10K+

Program
Analysis

PA (on any prog.:
numpy, pandas,
matplot, pytorch,
sympy, etc.)

PAopt,
PAtimer

interleaved rules,
aggregate and set
queries, and
recursive functions

program size:
55 XSB, 33Alda,
largest data size:
5.1M+

Table 1. Benchmarks from different kinds of problems. RBAC benchmarks are for dif-

ferent ways of using rules as at the end of Section 2.4. PA is a mixture of problems from

class hierarchy analysis. Under Variants, suffixes py and da indicate using while loops

like that in Section 2.3 in Python and DistAlgo, respectively, instead of using rules.

We summarize the results from the experiments below. Detailed measurements and

explanations are in (Liu et al. 2022; Liu et al. 2023).

• Compared with XSB programs in OpenRuleBench, the corresponding Alda programs

are much smaller, almost all by dozens or even hundreds of lines, because all bench-

marking code is in a single shared 45-line ORBtimer, much easier in Python than

XSB. Compilation times are all 0.6 seconds or less.

• Running times for all benchmarks and variants, except for PA, are as expected, e.g.,

TC is drastically faster than TCpy and TCda, and essentially as fast as XSB if not for

the overhead of using external interface with XSB; and RBACnonloc is much faster

than RBACallloc due to updates being much less frequent than queries. The overhead

of using external interface is obvious: e.g., for TC, up to 5.9 seconds, out of 29.2,

for graphs of 100K edges; for PA, 13.1 seconds, out of 15.2, on the largest program,

SymPy; and worst for DBLP, 26.9 seconds, out of 30.6, on over 2.4M facts.

However, even so, Alda is competitive, as described above, and the overhead is ex-

pected to be reduced to 1% of it with an in-memory Python-XSB interface.

• For PA, the corresponding XSB programs were all slower and even drastically slower

than Alda programs, even 120 times slower on PyTorch. Significant effort was spent

on performance debugging and manual optimization before we eventually created a

version that is faster than Alda—5.1 vs. 15.2 seconds on SymPy.

5 Related work and conclusion

There has been extensive effort in design and implementation of languages to support

programming with logic rules together with other programming paradigms, by extending

logic languages, extending languages in other paradigms, or developing multi-paradigm

or other standalone languages.

A large variety of logic rule languages have been extended to support sets, functions,

updates, and/or objects, etc. (Kifer and Liu 2018; Körner et al. 2022). For example, see

Maier et al. (Maier et al. 2018) for Datalog and variants extended with sets, functions,

objects, updates, higher-order extensions, and more. In particular, many Prolog variants

support sets, functions, updates, objects, constraints, etc. For example, Prolog supports
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assert for updates, as well as cut and negation as failure that are imperative instead of

declarative (Sterling and Shapiro 1994); Flora (Yang and Kifer 2000; Kifer et al. 2020)

builds on XSB and supports objects (F-logic), higher-order programming (HiLog), and

updates (Transaction Logic); and Picat (Zhou 2016) builds on B-Prolog and supports

updates, comprehensions, etc. Lambda Prolog (Miller and Nadathur 2012) extends Pro-

log with simply typed lambda terms and higher-order programming. Functional logic

languages, such as Mercury (Somogyi et al. 1995) and Curry (Hanus 2013), combine

functional programming and logic programming. Some logic programming systems are

driven by scripting externally, e.g., using Lua for IDP (Bruynooghe et al. 2014), and shell

scripts for LogicBlox (Aref et al. 2015). Additional examples of Datalog extensions in-

clude Flix (Madsen et al. 2016; Madsen and Lhoták 2020), which supports lattices and

monotone functions, and DDlog (Ryzhyk and Budiu 2019), which supports incremental

maintenance under updates to input relations. These languages and extensions do not

support predicates as set-valued variables together with commonly-used updates and

objects in a simple and direct way, or do not support them at all.

Many languages in other programming paradigms, especially including imperative lan-

guages and object-oriented languages, have been extended to support rules by being a

host language. This is generally through explicit library interfaces of the host languages

to connect with a particular logic language, for example, a Java interface for XSB through

InterProlog (Calejo 2004; Swift et al. 2022), C++ and Python interfaces for answer-set

programming systems dlvhex (Redl 2016) and Potassco (Banbara et al. 2017), a Python

interface for IDP (Vennekens 2017), Rust and other interfaces for DDlog (Ryzhyk and Budiu 2019),

and many more, e.g., for miniKanren (Byrd 2009). Hosting logic languages through ex-

plicit interfaces requires programmers to write extra wrapper code for going to the rule

language and coming back—declare predicates and/or logic variables, wrap features in

special objects, functions, macros, etc., and/or convert data to and from special repre-

sentations. They are in the same spirit as interfaces such as JDBC (Reese 2000) for using

database systems from languages such as Java.

Multi-paradigm languages and other standalone languages have also been developed.

For example, the Mozart system for the Oz multi-paradigm programming language (Roy and Haridi 2004)

supports logic, functional, and constraint as well as imperative and concurrent program-

ming. However, it is similar to logic languages extended with other features, because

it supports logic variables, but not state variables to be assigned to as in commonly-

used imperative languages. Examples of other languages involving logic and constraints

with updates and/or objects include LOGRES (Cacace et al. 1990), which integrates

object-oriented data modeling and updates with rules under inflationary semantics;

TLA+ (Lamport 1994), a logic language for specifying actions; CLAIRE (Caseau et al. 2002),

an object-oriented language that supports functions, sets, and rules whose conclusions are

actions; LINQ (Meijer et al. 2006; LINQ 2023), an extension of C# for SQL-like queries;

IceDust (Harkes et al. 2016), a Java-based language for querying data with path-based

navigation and incremental computation; extended LogiQL in SolverBlox (Borraz-Sánchez et al. 2018),

for mathematical and logic programming on top of Datalog with updates and con-

straints; and other logic-based query languages, e.g., Datomic (Anderson et al. 2016) and

SOUL (De Roover et al. 2011). These are either logic languages lacking general imper-

ative and objected-oriented programming constructs, or imperative and object-oriented

languages lacking the power and full declarativeness of logic rules.
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In conclusion, Alda supports ease of programming with logic rules together with all

of sets, functions, updates, and objects as seamlessly integrated built-ins, without extra

interfaces or boiler-plate code. As a direction for future work, many optimizations can be

added to improve the efficiency of implementations. This includes optimizing the logic

rule engines used (Liu and Stoller 2009; Tekle and Liu 2011), the interfaces and interac-

tions with them, and using other efficient rule systems such as Clingo (Gebser et al. 2019)

and specialized rule implementations such as Souffle (Jordan et al. 2016) to obtain the

best possible performance.
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Appendix A Formal Semantics

We give a complete abstract syntax and formal semantics for our language. The opera-

tional semantics is a reduction semantics with evaluation contexts (Wright and Felleisen 1994;

Serbanuta et al. 2009). It builds on the standard least fixed-point semantics for Data-

log (Fitting 2002) and the formal operational semantics for DistAlgo (Liu et al. 2017).

Relative to the latter, we removed the constructs specific to distributed algorithms, added

an abstract syntax for rule sets and calls to infer, added a transition rule for calls to

infer, extended the state with a stack that keeps track of rule sets whose results need

to be maintained, extended several existing transition rules to perform automatic main-

tenance of the results of rule sets, and modified the semantics of existential quantifiers

to bind the quantified variables to a witness when one exists. The removed DistAlgo

constructs can easily be restored; we removed them simply to avoid repeating them.

A.1 Abstract syntax

The abstract syntax is defined in Figures A 1–A2. Tuples are immutable values, not

mutable objects. Sets and sequences are mutable objects. They are instances of the

predefined classes set and sequence, respectively. Methods of set include add, del,

contains, size, and any (which returns an element of the set, if the set is non-empty,

otherwise it returns None). Methods of sequence include add (which adds an element

at the end of the sequence), contains, and length. For brevity, among the standard
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arithmetic operations, we include only one representative operation in the abstract syntax

and semantics; others are handled similarly. All expressions are side-effect free. Object

creation, comprehension, and infer are not expressions, because they all have the side-

effect of creating one or more new objects. Semantically, the for loop copies the contents

of a (mutable) set or sequence into an (immutable) tuple before iterating over it, to

ensure that changes to the set or sequence by the loop body do not affect the iteration.

whileSome and ifSome are similar to while and if, except that they always have an

existential quantification as their condition, and they bind the variables in the pattern

in the quantification to a witness, if one exists. We use some syntactic sugar in sample

code, e.g., we use infix notation for some binary operators, such as is and and.

We refer to rule sets defined in global scope and class scope as “global rule sets” and

“class scope rule sets”, respectively.

Note that method parameters are not variables and cannot be assigned to, and that

methods do not have local variables. These choices simplify the semantics by eliminating

the need for a call stack. The only local variables are local variables of rule sets. We

refer to the other kinds of variables, namely global variables and instance variables, as

non-local variables. For brevity, we use “variables” without a qualifier to refer to non-local

variables.

Notation in the grammar. A symbol in the grammar is a terminal symbol if it

is in typewriter font or is a non-terminal symbol if it is in italics. In each production,

alternatives are separated by a linebreak. Square brackets enclose optional clauses. *

after a non-terminal means “0 or more occurrences”. + after a non-terminal means “1 or

more occurrences”.

Well-formedness requirements on programs. In global rule sets, predicates cannot

contain self. In class scope rule sets, derived predicates cannot be global variables. Each

global variable appears as a derived predicate in at most one rule set in the program. In

each class, for each field f , self.f appears as a derived predicate in at most one rule

set in that class. In each rule in each rule set, each logic variable that appears in the

conclusion appears in a hypothesis. Within each rule set, all uses of the same predicate

have the same number of arguments.

In assignments with a call to infer on the right side of the assignment, the number of

variables on the left of the assignment equals the number of queries, the predicates queried

are derived predicates of the rule set used, and local variables in keyword arguments are

base predicates of the rule set used.

Invocations of methods defined using def appear only as statements. Invocations of

methods defined using defun appear only as expressions; we also refer to these methods as

“functions”. The program does not contain definitions of classes named set and sequence.

Class names are unique; in other words, each class name is defined at most once.

Method names are unique within the scope of each class. Rule set names are unique

within each scope.
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Program ::= Ruleset* Class* Statement

Ruleset ::= rules RulesetName Rule+

Rule ::= DerivedPredicate(PredicateArg*) if BasePredicate(PredicateArg*)*

DerivedPredicate ::= GlobalVariable

self.Field

LocalVariable

BasePredicate ::= GlobalVariable [.Field*]

self.Field+

LocalVariable

PredicateArg ::= LogicVariable

Literal

Class ::= class ClassName [extends ClassName] : Ruleset* Method*

Method ::= def MethodName(Parameter*) Statement

defun MethodName(Parameter*) Expression

Statement ::= NonLocalVariable := Expression

NonLocalVariable := new ClassName

NonLocalVariable := { Expression : Iterator* | Expression }

Statement ; Statement

if Expression : Statement else : Statement

for Iterator : Statement

while Expression : Statement

ifSome Iterator | Expression : Statement

whileSome Iterator | Expression : Statement

Expression.MethodName(Expression*)

NonLocalVariable* := [Expression.]infer(Query*, KeywordArg*,

rules=RulesetName)

skip

Expression ::= Literal

Parameter

NonLocalVariable

Tuple

UnaryOp(Expression)

BinaryOp(Expression,Expression)

isinstance(Expression,ClassName)

and(Expression,Expression) / / conjunction (short-circuiting)

or(Expression,Expression) / / disjunction (short-circuiting)

each Iterator | Expression

some Iterator | Expression

Expression.MethodName(Expression*)

Fig. A 1. Abstract syntax, Part 1.
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NonLocalVariable := GlobalVariable

InstanceVariable

InstanceVariable ::= Expression .Field

Literal ::= None

Bool

Int

...

Bool ::= True

False

Int ::= ...

Iterator ::= Pattern in Expression

Pattern ::= NonLocalVariable

TuplePattern

TuplePattern ::= (PatternElement*)

PatternElement ::= Expression

_

=NonLocalVariable

Query := Predicate [TuplePattern]

KeywordArg ::= LocalVariable = Expression

Tuple ::= (Expression*)

UnaryOp ::= not / / Boolean negation

isTuple / / test whether a value is a tuple

len / / length of a tuple

BinaryOp ::= is / / identity-based equality

plus / / sum

select / / select(t,i) returns the i’th component of tuple t

Fig. A 2. Abstract syntax, Part 2. Ellipses (“...”) are used for common syntactic cat-

egories whose details are unimportant. Details of the identifiers allowed for non-

terminals RulesetName, GlobalVariable , Field , LocalVariable , LogicVariable , ClassName ,

MethodName, and Parameter are also unimportant and hence unspecified, except that

ClassName must include set and sequence, and Parameter must include self.

A.1.1 Constructs whose semantics is given by translation

Notation. A (partial) function is represented as a set of mappings x 7→ y. We represent

substitutions as functions from parameters and variables to expressions. t θ denotes the

result of applying substitution θ to t.

Class scope rule set names. The program is transformed so that rule set names are

unique across all scopes. A straightforward way to do this is to prefix the name of every

class scope rule set with the name of the enclosing class.

Global variables. Global variables are replaced with instance variables, and global

rule sets are transformed to have the same form as class scope rule sets, by the following

transformations. Choose an address agv whose fields will be used to represent global

variables. Everywhere except in global rule sets and in queries in calls to infer on global
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rule sets, replace each global variable x with agv .x. Introduce a class name Cgv , put all

global rule sets into this class, and replace each global variable x with self.x in those

rule sets and in queries in calls to infer on those rule sets. Calls to infer on those

rule sets are also transformed by prefixing agv . to the call, i.e., infer(· · · ) is replaced

with agv .infer( · · · ), so all calls to infer have a target object. The initial state of the

program is defined so that an object of type Cgv is at address agv . These transformations

simplify the transition rules related to inference, by allowing global rule sets and class

scope rule sets to be handled in a uniform way.

Boolean operators. The Boolean operators and and each are eliminated as follows: e1
and e2 is replaced with not(not(e1) or not(e2)), and each iter | e is replaced with

not(some iter | not(e)).

Non-variable expressions in tuple patterns. Non-variable expressions in tuple

patterns are replaced with variables prefixed by “=”. Specifically, for each expression e

in a tuple pattern that is not a variable, a variable prefixed with “=”, or wildcard, an

assignment v := e to a fresh variable v is inserted before the statement that contains the

tuple pattern, and e is replaced with =v in the tuple pattern.

Wildcards. Wildcards are eliminated from tuple patterns in for loops, comprehen-

sions, and quantifications (i.e., everywhere except as Query in infer) by replacing each

wildcard with a fresh variable.

Tuple patterns in infer statements. infer statements are transformed to eliminate

tuple patterns in queries. After transformation, each query is simply the name of a pred-

icate. Consider the statement x1, . . . , xn := [e.]infer(p1(pat1), . . . , pn(patn), kwargs ,

rules=rs). Let xi,1, . . . , xi,ki
be the components of pat i, in order and without repeti-

tions, that are variables not prefixed by “=”. Let y1, . . . , yn be fresh variables. The above

statement is transformed to:

y1, . . . , yn := [e.]infer(p1, . . . , pn, kwargs , rules=rs)

x1 := { (x1,1, . . . , x1,k1
) : pat1 in y1 | True }

. . .

xn := { (xn,1, . . . , xn,kn
) : patn in yn | True }

ifSome statements. ifSome is statically eliminated as follows. Consider the statement

ifSome pat in e | b : s. Let i1, . . . , ik be indices, in order of appearance from left

to right, of elements of pat that are variables not prefixed by “=”. Let xi1 , . . . , xik be

those variables. Let foundOne and x′
i1
, . . . , x′

ik
be fresh variables. Let substitution θ be

[xi1 7→ x′
i1
, . . . , xik 7→ x′

ik
]. Let pat ′ = pat θ and b′ = b θ. The above ifSome statement is

transformed to:

foundOne := False

for pat′ in e:

if b′ and not foundOne:

xi1 := x′
i1

. . .

xik := x′
ik

s
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foundOne := True

whileSome statements. whileSome is statically eliminated as follows. Consider the

statement whileSome pat in e | b : s. Using the same definitions as in the previous

item, this statement is transformed to:

foundOne := True

while foundOne:

foundOne := False

for pat′ in e:

if b′ and not foundOne:

xi1 := x′
i1

. . .

xik := x′
ik

s

foundOne := True

Comprehensions. First, comprehensions are transformed to eliminate the use of vari-

ables prefixed with “=”. Specifically, for a variable x prefixed with “=” in a comprehension,

replace occurrences of =x in the comprehension with occurrences of a fresh variable y,

and add the conjunct y is x to the Boolean condition. Second, all comprehensions are

statically eliminated as follows. The comprehension x := { e | pat1 in e1, . . ., patn

in en | b } is replaced with

x := new set

for pat1 in e1:

...

for patn in en:

if b:

x.add(e)

Tuple patterns in iterators. Iterators containing tuple patterns are rewritten as

iterators without tuple patterns.

Consider the existential quantification some (e1, . . . , en) in e | b. Let x be a fresh

variable. Let θ be the substitution that replaces ei with select(x,i) for each i such

that ei is a variable not prefixed with “=”. Let {j1, . . . , jm} contain the indices of the con-

stants and the variables prefixed with “=” in (e1, . . . , en). Let ēj denote ej after removing

the “=” prefix, if any. The quantification is rewritten as some x in e | isTuple(x) and

len(x) is n and (select(x,j1), . . ., select(x,jm)) is (ēj1, . . ., ējm) and b θ.

Consider the loop for (e1, . . . , en) in e : s. Let x and S be fresh variables. Let

{i1, . . . , ik} contain the indices in (e1, . . . , en) of variables not prefixed with “=”. Let

{j1, . . . , jm} be as in the previous paragraph. Let ēj denote ej after removing the “=”

prefix, if any. Note that e may evaluate to a set or sequence, and duplicate bindings for

the tuple of variables (ei1 , . . . , eik) are filtered out if e evaluates to a set but not if e

evaluates to a sequence. The loop is rewritten as the code in Figure A 3.
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S := e

if isinstance(S,set):

S := { x : x in S | isTuple(x) and len(x) is n

and (select(x,j1), . . ., select(x,jm))

is (ēj1, . . ., ējm) }

for x in S:

ei1 := select(x, i1)

. . .

eik := select(x, ik)

s

else: / / S is a sequence

for x in S:

if (isTuple(x) and len(x) is n

and (select(x,j1), . . ., select(x,jm))

is (ēj1, . . ., ējm):

ei1 := select(x, i1)

. . .

eik := select(x, ik)

s

else:

skip

Fig. A 3. Translation of for loop to eliminate tuple pattern.

A.2 Semantic domains

The semantic domains are defined in Figure A 4, using the following notation. D∗ is

the set of finite sequences of values from domain D. Set(D) is the set of finite sets of

values from domain D. D1 → D2 and D1 ⇀ D2 are the sets of (total) functions and

partial functions, respectively, from D1 to D2. dom(f) and range(f) are the domain and

range, respectively, of a partial function f , i.e., dom(f) = {x | ∃y : x 7→ y ∈ f} and

range(f) = {y | ∃x : x 7→ y ∈ f}.

In a state (s, h, ht), s is the statement to be executed, h is the heap that maps an

address to the object at that address, and ht is the heap type map that maps an address

to the type of the object on the heap at that address.

A.3 Extended abstract syntax

Section A.1 defines the abstract syntax of programs that can be written by the user. We

extend the abstract syntax to include additional forms into which programs may evolve

during evaluation. The new productions appear below. The statement for v inTuple

t: s iterates over the elements of tuple t, in the obvious way.

Expression ::= Address

Address.Field

Statement ::= for Variable inTuple Tuple: Statement



Integrating Logic Rules with Everything Else, Seamlessly 25

Bool = {True, False}

Int = ...

Address = ...

Tuple = Val∗

Val = Bool ∪ Int ∪ Address ∪Tuple ∪ {None}

Object = (Field ⇀ Val) ∪ Set(Val) ∪ Val∗

HeapType = Address ⇀ ClassName

Heap = Address ⇀ Object

State = Statement ×Heap ×HeapType

Fig. A 4. Semantic domains. Ellipses are used for semantic domains of primitive values

whose details are standard or unimportant.

A.4 Evaluation contexts

Evaluation contexts, also called reduction contexts, are used to identify the next part of

an expression or statement to be evaluated. An evaluation context is an expression or

statement with a hole, denoted [], in place of the next sub-expression or sub-statement

to be evaluated. Evaluation contexts are defined in Figure A 5. Note that square brackets

enclosing a clause indicate that the clause is optional; this is unrelated to the notation

[] for the hole.

For example, the definition of evaluation contexts for method calls (lines 3–4 of Figure

A 5) says that the expression denoting the target object is evaluated first to obtain an

address (if the expression isn’t already an address); then, the arguments are evaluated

from left to right. The left-to-right order holds because an argument can be evaluated

only if the arguments to its left are values, as opposed to more complicated unevaluated

expressions. The definition of evaluation contexts for infer implies that the expressions

for the targets of the assignment are evaluated from left to right; then the expression for

the target object, if any (i.e., if the call is for a rule set with class scope), is evaluated;

and then the argument expressions are evaluated from left to right.

A.5 Transition relations

The transition relation for expressions has the form h, ht ⊢ e → e′, where e and e′ are

expressions, h ∈ Heap, and ht ∈ HeapType. The transition relation for statements has

the form state → state ′ where state ∈ State and state ′ ∈ State.

Both transition relations, and some of the auxiliary functions defined below, are im-

plicitly parameterized by the program, which is needed to look up method definitions,

rule set definitions, etc. The transition relation for expressions is defined in Figure A 6.

The transition relation for statements is defined in Figures A 8–A9, using auxiliary func-

tions defined in Figure A 7. The context rules for expressions and statements at the top

of Figure A 8 allow the expression or statement in the evaluation context’s hole to take

a transition, while the rest of the program, denoted by C, is carried along unchanged.



26 Y.A. Liu, S.D. Stoller, Y. Tong, and B. Lin

C ::= []

(Val*, C , Expression*)

C .MethodName(Expression*)

Address .MethodName(Val*, C , Expression*)

UnaryOp(C )

BinaryOp(C , Expression)

BinaryOp(Val , C )

isinstance(C , ClassName)

or(C , Expression)

some Pattern in C | Expression

C .Field := Expression

C .Field := new ClassName

Address .Field := C

C ; Statement

if C: Statement else: Statement

for InstanceVariable in C: Statement

for InstanceVariable inTuple Tuple: C

(Address .Field )*, C .Field , (Expression .Field)* :=

[Expression .]infer(Query*, KeywordArg*,

rules=RulesetName)

(Address .Field )* := C .infer(Query*, KeywordArg*,

rules=RulesetName)

(Address .Field )* :=

[Address .]infer(Query*, (Parameter=Val)*,

Parameter=C, KeywordArg*, rules=RulesetName)

Fig. A 5. Evaluation contexts for expressions and statements.

Notation. In the transition rules, a matches an address, and v matches a value (i.e.,

an element of Val).

f∪g is the union of functions f and g with disjoint domains. For any functions f and g,

f ⊔g = {x 7→ f(x) | x ∈ dom(f)\dom(g)}∪g. For a function f , f [x 7→ y] = f ⊔{x 7→ y}.

When a function θ is intended to be used to compute an updated version f ⊔ θ of a

function f , we refer to θ as an “update” to f .

Sequences are denoted with angle brackets, e.g., 〈0, 1, 2〉 ∈ Int∗. s@t is the concatena-

tion of sequences s and t. first(s) is the first element of sequence s. rest(s) is the sequence

obtained by removing the first element of s. length(s) is the length of sequence s.

Auxiliary definitions. new(c) returns a new instance of class c, for c ∈ ClassName .

When c is the name of user-defined class, new(c) returns an empty set representing the

empty function.

new(c) = if c = sequence then 〈〉 else {}

legalAssign(ht, a, f) holds if assigning to field f of the object with address a is legal,

in the sense that a refers to an object with fields (not an instance of a pre-defined class

without fields), and a.f is not a derived predicate of any rule set. legalAssign(ht, a, f) =
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/ / field access

h, ht ⊢ a.f → h(a)(f) if ht(a) 6∈ {set, seq} ∧ f ∈ dom(h(a))

/ / invoke function in user-defined class

h, ht ⊢ a.m(v1, . . . , vn) → e[self 7→ a, x1 7→ v1, . . . , xn 7→ vn]

if methodDef (ht(a),m, defun m(x1, . . . , xn) e)

/ / invoke function in pre-defined class (example)

h, ht ⊢ a.any() → v if ht(a) = set ∧ v ∈ h(a)

h, ht ⊢ a.any() → None if ht(a) = set ∧ h(a) = ∅

/ / unary operations

h, ht ⊢ not(True) → False

h, ht ⊢ not(False) → True

h, ht ⊢ isTuple(v) → True if v is a tuple

h, ht ⊢ isTuple(v) → False if v is not a tuple

h, ht ⊢ len(v) → n if v is a tuple with n components

/ / binary operations

h, ht ⊢ is(v1, v2) → True

if v1 and v2 are the same (identical) value

h, ht ⊢ plus(v1, v2) → v3

if v1 ∈ Int ∧ v2 ∈ Int ∧ v3 = v1 + v2

h, ht ⊢ select(v1, v2) → v3

if v2 ∈ Int ∧ v2 > 0 ∧ (v1 is a tuple with length at least v2)

∧ (v3 is the v2’th component of v1)

/ / isinstance

h, ht ⊢ isinstance(a, c) → True if ht(a) = c

h, ht ⊢ isinstance(a, c) → False if ht(a) 6= c

/ / disjunction

h, ht ⊢ or(True, e) → True

h, ht ⊢ or(False, e) → e

/ / existential quantification

h, ht ⊢ some x in a | e → e[x 7→ v1] or · · · or e[x 7→ vn]

if (ht(a) = sequence∧ h(a) = 〈v1, . . . , vn〉)

∨ (ht(a) = set ∧ 〈v1, . . . , vn〉 is a linearization of h(a))

Fig. A 6. Transition relation for expressions.
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deref (h, a, F ) = if a 6∈ dom(h) then ⊥

elif length(F ) = 1 then (if F ∈ dom(h(a)) then h(a)(F ) else ⊥)

else first(F ) ∈ dom(h(a)) then deref (h, h(a)(first(F )), rest(path)) else ⊥

allBaseAreSets(h, ht) =

∀a ∈ dom(h), rs ∈ rulesets(ht(a)), self.F ∈ nlBase(rules(rs)) :

deref (h, a, F ) = ⊥ ∨ (deref (h, a, F ) ∈ Address ∧ ht(deref (h, a, F )) = set)

updateVar(h, rs, a.f, S) = if h(a)(f) ∈ Address then {h(a)(f) 7→ S}

else {a 7→ h(a)[f 7→ newAddr(rs , a.f, h)], newAddr(rs , a.f, h) 7→ S}

infUpdate(h, rs , a, args) =

let factsB = {a.F (v) : self.F ∈ nlBase(rules(rs)) ∧ v ∈ deref (h, a, F )}

factsL = {p(v) : p ∈ dom(args) ∧ v ∈ h(args(p))}

result = evalRules(rules(rs)[self 7→ a] ∪ factsB ∪ factsL)

θ =
⋃

self.f∈nlDerived(rules(rs)) updateVar(h, rs , a.f, result(a.f))

in (θ, result)

maintain(h, ht) = let θ =
⋃

a∈dom(h),rs∈rulesets(ht(a)) π1(infUpdate(h, rs , a, {}))

θT = {a 7→ set | a ∈ dom(θ) ∧ θ(a) ⊆ Val})

(h′, ht′) = (h, ht) ⊔ (θ, θT )

in if (h′, ht′) = (h, ht) then (h, ht) else maintain(h′, ht′)

Fig. A 7. Definitions of auxiliary functions related to inference.

ht(a) 6∈ {set, sequence} ∧ ((a = agv ∧ agv .f 6∈ glblDerived) ∨ (a 6= agv ∧ self.f 6∈

nlDerived(ht(a)))).

methodDef (c,m, def ) holds iff c is a user-defined class and either (1) c defines method

m, and def is the definition of m in c, or (2) c does not define m, and def is the definition

of m in the nearest ancestor of c in the inheritance hierarchy that defines m.

glblRulesets is the set of names of global rule sets in the program. rulesets(c) is the

set of names of rule sets defined in class c in the program. By definition, rulesets(Cgv ) =

glblRulesets, and for convenience, we also define rulesets(set) = ∅ and rulesets(seq) = ∅.

For any rule set name rs in the program, rules(rs) is the set of rules in that rule set

(recall from Section A.1.1 that rule set names have been transformed to be unique across

all scopes).

For a set of rules R, nlBase(R) and nlDerived(R) are the sets of non-local base

predicates and non-local derived predicates, respectively, in R. For c ∈ ClassName ,

nlDerived(c) is the set of non-local derived predicates in rule sets defined in class c.

glblDerived is the set of global variables that are derived predicates in any rule set.

For a derived predicate p of rule set rs , and heap h, newAddr(rs , p, h) selects a fresh

address for p of rs ; specifically, it returns an address that is not in dom(h) and is dif-

ferent from newAddr(rs ′, p′, h) whenever rs 6= rs ′ ∨ p 6= p′. Using function newAddr to

select fresh addresses, instead of selecting them non-deterministically, is inessential but
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simplifies the definitions of auxiliary functions related to inference in Figure A 7 and the

transition rule for infer in Figure A 9.

The following five auxiliary functions and relation are defined in Figure A 7.

deref (h, a, F ) returns the value obtained by starting at address a in heap h and deref-

erencing the sequence F of one or more fields. If a is not an address in dom(h), or if a

field in F is not in the domain of the appropriate object, then deref returns ⊥.

allBaseAreSets(h, ht) returns true if, in heap h with heap type map ht, for each rule

set, for each non-local base predicate of the rule set, either it is uninitialized (indicated

by deref returning ⊥) or its value is a set.

updateVar(h, rs , a.f, S) returns an update to the heap that makes variable a.f to refer

to a set with content S. If the value of a.f is already an address a′, a set with content S

is stored at a′, otherwise a.f is assigned a fresh address a′, and a set with content S is

stored at a′.

infUpdate(h, rs , a, args) computes an update expressing the result of inference for rule

set rs instantiated with self 7→ a, with heap h and using args to obtain values for local

variables of →. infUpdate returns a pair containing the update to apply to the heap

h and a function result that maps each defined derived predicate in the rule set to its

value; a derived predicate is undefined after this inference if it depends on a local variable

that is a base predicate whose value is not provided by args . For explicit calls to infer,

args contains values provided by keyword arguments; for automatic maintenance, args

is the empty function. Note that the condition v ∈ deref (h, a, F ) is false if deref (h, a, F )

is ⊥; this has the effect that uninitialized base predicates are equivalent to empty sets.

infUpdate uses the auxiliary function evalRules(R), which evaluates the set of rules R and

returns a function from the set of predicates that appear in the rules to their meanings,

represented as sets of tuples.

maintain(θ, θT , h, ht) returns a pair whose first and second components are updates

to h and ht, respectively, that express the result of automatic maintenance of all rule

sets in heap h and heap type map ht. For each set of rules that needs to be maintained,

it calls infUpdate to compute an update expressing the result of inference for that rule

set, and uses function π1, which select the first component of a tuple, to extract that

update from the tuple returned by infUpdate . It combines the resulting updates using

union, since the well-formedness restrictions on programs ensure that these updates have

disjoint domains. maintain uses recursion to repeatedly evaluate all rule sets until a

fixed-point is reached.

Notes. The transition rules enforce the invariant that each non-local base predicate

is either uninitialized or its value is a set. Inference treats uninitialized variables used

as base predicates as empty sets. This is consistent with the semantics of Datalog and

Prolog, which treats predicates for which no information has been supplied as false for

all arguments. This principle is realized implicitly in the set comprehensions defining

factsB and factsL in infUpdate : the resulting sets do not contain any facts for those base

predicates. This principle applies whenever an uninitialized field is encountered in the

sequence of field dereferences used to read the value of a base predicate.

The transition rules include premises that check for run-time errors; in case of an error,

the premise is false, and evaluation is stuck. Examples of such errors include trying to

select a component from a value that is not a tuple, invoke a non-existent method of an
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object, read the value of a non-existent (uninitialized) field of an object, assign a value

to a derived predicate using an assignment statement, or assign a non-set value to a base

predicate. The transition rules check for this error at updates to fields of instances of

all classes—not only classes that define rule sets—because base predicates may contain

multiple field dereferences.

Transition rules for methods of pre-defined classes set and sequence are similar in

style, so only one representative example is given, for set.add. Note that maintain needs

to be called only in transition rules for methods of set that update the content of the

set.

The transition rule for invoking a method in a user-defined class executes a copy

of the method body s that has been instantiated by substituting argument values for

parameters.

The transition rule for an explicit call to infer on a rule set rs with class scope

instantiates rs using the target object a for self and values given by keyword arguments

for local variables, calls infUpdate to evaluate the instantiated rule set, and calls maintain

to determine the effects of automatic maintenance. Note that θ is an update to the heap

that updates the values of non-local derived predicates of rs; result maps each derived

predicate of R to its value; θQNL and θQL are updates to the heap that together update

the values of a1.f1, . . . , an.fn to contain the query results, with the former handling

queries of non-local derived predicates, and the latter handling queries of local derived

predicates; and θT is an update to the heap type map that updates the types of addresses

containing sets created by this call to infer.

Executions. An execution is a sequence of transitions σ0 → σ1 → σ2 → · · · such that

σ0 is the initial state of the program, given by σ0 = (s0, {agv 7→ {}}, {agv 7→ Cgv}), where

s0 is the top-level statement that appears in the program after the rule set definitions and

class definitions, and agv is the address of the object introduced by the transformation

that eliminates global variables (see Section A.1.1).

Execution of a program may eventually (1) terminate (i.e., the statement in the first

component of the state becomes skip, meaning that there is nothing left to do), (2)

get stuck (i.e., the statement is not skip, and the process has no enabled transitions,

meaning an error in the program), or (3) run forever (due to an infinite loop or infinite

recursion).

Appendix B Powerful optimizations

Efficient inference and queries using rules is well known to be challenging in general, and

especially so if it is done repeatedly to ensure the declarative semantics of rules under

updates to predicates. Addressing the challenges has produced an extensive literature

in several main areas in computer science—database, logic programming, automated

reasoning, and artificial intelligence in general—and is not the topic of this paper.

Here, we describe how well-known analyses and optimizations can be used together to

improve the implementation of the overall language as well as the rule language, giving

a systemic perspective of all main optimizations for efficient implementations. There are

two main areas of optimizations.

The first area is for inference under updates to the predicates used. There are three
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/ / context rule for expressions
h, ht ⊢ e → e′

(C[e], h, ht) → (C[e′], h, ht)

/ / context rule for statements
(s, h, ht) → (s′, h′, ht′)

(C[s], h, ht) → (C[s′], h′, ht′)

/ / field assignment
(a.f := v, h, ht)

→ (skip, h′ ⊔ θ, ht ⊔ θT )

if legalAssign(ht, a, f) ∧ h′ = h[a 7→ h(a)[f 7→ v]] ∧ allBaseAreSets(h′, ht)
∧ (θ, θT ) = maintain(h′, ht)

/ / object creation

(a.f := new c, h, ht)

→ (skip, h′ ⊔ θ, ht′ ⊔ θT )
if a′ 6∈ dom(ht) ∧ a′ ∈ Address ∧ legalAssign(ht, a, f)

∧ ht′ = ht [a′ 7→ c] ∧ h′ = h[a 7→ h(a)[f 7→ a′], a′ 7→ new(c)] ∧ allBaseAreSets(h′, ht′)
∧ (θ, θT ) = maintain(h′, ht′)

/ / sequential composition
(skip; s, h, ht) → (s, h, ht)

/ / conditional statement

(if True : s1 else : s2, h, ht) → (s1, h, ht)

(if False : s1 else : s2, h, ht) → (s2, h, ht)

/ / for loop
(for x in a: s, h, ht)

→ (for x inTuple (v1, . . . , vn) : s, h, ht)
if (ht(a) = sequence∧ h(a) = 〈v1, . . . , vn〉)
∨ (ht(a) = set ∧ 〈v1, . . . , vn〉 is a linearization of h(a))

(for x inTuple (v1, . . . , vn) : s, h, ht)

→ (s[x 7→ v1]; for x inTuple (v2, . . . , vn) : s, h, ht)

(for x inTuple () : s, h, ht) → (skip, h, ht)

/ / while loop

(while e: s, h, ht)

→ (if e: (s; while e: s) else : skip, h, ht)

Fig. A 8. Transition relation for statements, Part 1.
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/ / invoke method in pre-defined class (example)

(a.add(v1), h, ht) → (skip, h′ ⊔ θ, ht ⊔ θT )

if ht(a) = set ∧ ∄agv .f ∈ glblDerived : a = h(agv )(f)

∧ ∄a′ ∈ dom(ht), self.f ∈ nlDerived(ht(a′)) : a = h(a′)(f)

∧ h′ = h[a 7→ h(a) ∪ {v1}] ∧ (θ, θT ) = maintain(h′, ht)

/ / invoke method in user-defined class

(a.m(v1, . . . , vn), h, ht)

→ (s[self 7→ a, x1 7→ v1, . . . , xn 7→ vn], h, ht)

if methodDef (ht(a),m, def m(x1, . . . , xn) s)

/ / invoke infer on a rule set defined in class scope

(a1.f1, . . . , an.fn := a.infer(q1, . . . , qn, x1 = v1, . . . , xk = vk, rules=rs), h, ht)

→ (skip, h′ ⊔ θ′, ht ⊔ θT ⊔ θ′T )

if rs ∈ rulesets(ht(a))

∧ ∀i ∈ {1..n} : legalAssign(ht, ai, fi)

∧ (∀i ∈ {1..k} : vi ∈ dom(ht) ∧ ht(vi) = set)

∧ args = {xi 7→ vi | i ∈ {1..k}}

∧ (θ, result) = infUpdate(h, ht, rs , a, args)

∧ θQNL =
⋃

i∈{1..n} s.t. qi is a non-local predicate self.f
{ai 7→ h(ai)[fi 7→ (h ⊔ θ)(a)(f)]}

∧ θQL =
⋃

i∈{1..n} s.t. qi is a local predicate{ai 7→ h(ai)[fi 7→ newAddr(rs , qi, h)],

newAddr(rs , qi, h) 7→ result(qi)}

∧ θT = {a 7→ set | a ∈ dom(θ) ∧ θ(a) ⊆ Val}

∪ {a 7→ set | a ∈ dom(θQL) ∧ θQL(a) ⊆ Val}

∧ h′ = h ⊔ θ ⊔ θQNL ⊔ θQL ⊔ θU

∧ allBaseAreSets(h′, ht ⊔ θT )

∧ (θ′, θ′T ) = maintain(h′, ht ⊔ θT )

Fig. A 9. Transition relation for statements, Part 2.

main kinds of optimizations in this area: (1) reducing inference triggered by updates, (2)

performing inference lazily only when the results are demanded, and (3) doing inference

incrementally when updates must be handled to give results:

Reducing update checks and inference. In the presence of aliasing, it can be ex-

tremely inefficient to check, for all rule sets after every update, that the update is not

to a derived predicate of the rule set and whether a call to infer on the rule set is

needed, not knowing statically whether the update affects a base predicate of the rule

set. Alias analysis, e.g., (Goyal 2005; Gorbovitski et al. 2010), can help reduce such

checks by statically determining updates to variables that possibly alias a predicate

of a rule set.

Demand-driven inference. Calling infer after every update to a base predicate can

be inefficient and wasteful, because updates can occur frequently while the main-

tained derived predicates are rarely used. To avoid this inefficiency, infer can be

called on demand just before a derived predicate is used, e.g., (Fong and Ullman 1976;
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Rothamel and Liu 2008; Liu et al. 2016), instead of immediately after updates to base

predicates.

Incremental inference. More fundamentally, even when derived predicates are fre-

quently used, infer may be called repeatedly on slightly changed or even unchanged

base predicates, in which case computing the results from scratch is extremely waste-

ful. Incremental computation can drastically reduce this inefficiency by maintain-

ing the values of derived predicates incrementally, e.g., (Gupta and Mumick 1999;

Saha and Ramakrishnan 2003).

The second area is for efficient implementation of rules by themselves, without consid-

ering updates to the predicates used. There are two main groups of optimizations.

Internal demand-driven and incremental inference. Even in a single call to infer,

significant optimizations are needed.

In top-down evaluation (which is already driven by the given query as demand), sub-

queries can be evaluated repeatedly, so tabling (Tamaki and Sato 1986; Chen and Warren 1996)

(a special kind of incremental computation by memoization) is critical for avoiding not

only repeated evaluation of queries but also non-termination when there is recursion.

In bottom-up evaluation (which is already incremental from the ground up), demand

transformation (Tekle and Liu 2010; Tekle and Liu 2011), which improves over magic

sets (Bancilhon et al. 1986; Abiteboul et al. 1995) exponentially, can transform rules

to help avoid computations not needed to answer the given query.

Ordering and indexing for inference. Other factors can also drastically affect the

performance of logic queries in a single call to infer (Maier et al. 2018; Liu 2018).

Most prominently, in dominant logic rule engines like XSB, changing the order of

joining hypotheses in a rule can impact performance dramatically, e.g., for the tran-

sitive closure example, reversing the two hypotheses in the recursive rule can cause a

linear factor performance difference. Reordering and indexing (Liu and Stoller 2009;

Liu et al. 2016) are needed to avoid such severe slowdowns.


	Introduction
	Alda language
	Logic rules
	Integrating rules with sets, functions, updates, and objects
	Predicates as set-valued variables
	Queries as calls to an inference function
	Updates to predicates
	Using predicates and rules with objects and classes

	Compilation
	Compiling updates to predicates
	Implementing inference and queries

	Implementation and experimental evaluation
	Related work and conclusion
	References
	Appendix A Formal Semantics
	A.1 Abstract syntax
	A.2 Semantic domains
	A.3 Extended abstract syntax
	A.4 Evaluation contexts
	A.5 Transition relations

	Appendix B Powerful optimizations

