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Abstract

This paper presents a rich knowledge representation language aimed at formalizing causal knowl-
edge. This language is used for accurately and directly formalizing common benchmark examples
from the literature of actual causality. A definition of cause is presented and used to analyze
the actual causes of changes with respect to sequences of actions representing those examples.
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1 Introduction

This work is a part of larger research program, originated by John McCarthy and oth-

ers in the late fifties. The program is aimed at the development of Knowledge Repre-

sentation (KR) languages capable of clear and succinct formalization of commonsense

knowledge. In this paper we concentrate on a long standing problem of giving a for-

mal account of the notion of actual causality. Despite significant amount of work in

this area the problem remains unsolved. We believe that the difficulty is related to in-

sufficient attentions paid to relevant commonsense background knowledge. To analyze

causal relations involved in a sequence of events happening even in comparatively simple

domains, we need to be able to represent sophisticated causal laws, time, defaults and

their exceptions, recursive definitions, and other non-trivial phenomena of natural lan-

guage. To the best of our knowledge none of the KR-languages used in previous works

are capable of representing all of these phenomena. We propose to remedy this problem

by analyzing causality in the context of a new rich KR-language W based on the ideas

from Answer Set Prolog (ASP), Theories of Action and Change (TAC), and Pearl’s do-

operator (Pearl 2009). The language is used to define several causal relations capable

of accurate analysis of a number of examples which could not have been properly ana-

lyzed by the previous approaches. Special emphasis in our approach is given to accuracy

http://arxiv.org/abs/2306.03874v1
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and elaboration tolerance (McCarthy 1998) of translations of English texts into theories

of W . This is facilitated by the well developed methodology of such translations in ASP

and TAC. These issues were not typically addressed in work on causality, but they are

essential from the standpoint of KR. We focus on the suitability ofW for causal analysis,

illustrated by its application to well-known benchmarks from the literature. The paper is

organized as follows. In the next section we motivate the need for a richer KR-language

by analyzing such benchmarks. After that, we introduce causal theories of W and a

methodology for formalizing natural language stories. This is illustrated on these bench-

marks. Special care is taken of obtaining accurate and direct translation from natural

language sentences, and the elaboration tolerance of the representation. The later is ob-

tained by a clear separation between background commonsense knowledge (formalized in

a background theory) and the particular story (formalized as a sequence of events that we

call scenario). Finally, we introduce our definition of cause and discuss several variations

of the benchmark examples. This definition provides answers that match our intuition.

Note that, since W is a powerful action language based on ASP it can also be used for

reasoning about temporal prediction, planning, etc. Due to space limitation the paper

does not demonstrate the full power ofW and the full variety of its causal relations. This

will be done in a longer version of the paper.

2 Motivating Examples

In this section, we discuss two problematic benchmarks from the literature and provide

their causal description based on KR perspective. We start by considering the Suzy

First example introduced by citehall04a and extensively discussed in the literature. The

following reading is by citehalpea01a.

Example 1

Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s rock gets there

first, shattering the bottle. Since both throws are perfectly accurate, Billy’s would have

shattered the bottle had it not been preempted by Suzy’s throw. Common sense suggests

that Suzy’s throw is the cause of the shattering, but Billy’s is not.

Time and actions are essential features of this example. The reasoning leading to

Suzy’s throw being regarded as the cause of the bottle directly points to the sentence

“Suzy’s rock gets there first, shattering the bottle.” Had Billy’s throw got there first,

we would have concluded that Billy’s throw was the cause. Despite the importance

of time in this example, most approaches do not explicitly represent time. As a re-

sult, the fact that “Suzy’s rock gets there first,” which naturally is part of the partic-

ular scenario, is represented as part of background knowledge (Halpern and Pearl 2001;

Hopkins and Pearl 2003; Chockler and Halpern 2004; Hall 2004; Hall 2007; Vennekens 2011;

Halpern 2014; Halpern 2015; Halpern and Hitchcock 2010; Beckers and Vennekens 2016;

Beckers and Vennekens 2018; Bochman 2018; Denecker et al. 2019; Beckers 2021). This

means that a small change in the scenario such as replacing “Suzy’s rock gets there first,

shattering the bottle” by “Billy’s rock gets there first, shattering the bottle” or “Suzy’s

rock gets there first, but her throw was too weak to shatter the bottle” requires a com-

plete change of the formal model of the domain instead of a small change to the scenario.
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This is a problem of elaboration tolerance. Several approaches addressed the lack of rep-

resentation of time by introducing features from the area of Reasoning about Actions and

Change. Approaches in the context of the Situation Calculus (Hopkins and Pearl 2007;

Batusov and Soutchanski 2018) and Logic Programming (Cabalar et al. 2014; Cabalar and Fandinno 2016;

Fandinno 2016; LeBlanc et al. 2019) allow us to reason about actual causes with respect

to different sequences of actions, where the order of these actions matter. For instance,

citecabfan16a explicitly represent a variation of this example where “Suzy’s rock gets

there first” is replaced by “Suzy throws first.” The model associated with this example

is represented by the following rules:

broken(I)← throw (A, I − 1), not broken(I − 1) (1)

broken(I)← broken(I − 1), not ¬broken(I) (2)

¬broken(I)← ¬broken(I − 1), not broken(I) (3)

This can be used together with facts: ¬broken(0), throw(suzy, 0), throw(billy , 1)

representing the particular scenario.We can represent an alternative story where “Billy

throws first” by replacing the last two facts by throw(billy , 0) and throw (suzy, 1). Clearly,

this constitutes a separation between model and scenario because we do not need to mod-

ify the rules that represent the model of the domain to accommodate the new scenario.

We go a step further and show how to represent the fact that “Suzy’s rock gets there

first” independently of who throws first. The rock may get there first because Suzy throws

first, because she was closer, etc. The reason why her rock gets there first is not stated

in the example and it is unnecessary to determine the cause of the shattering. We are

able to do that thanks to the introduction of abstract time-steps in our language, a fea-

ture missing in all previously discussed approaches. As a second example, consider the

Engineer scenario introduced by citehall00a.

Example 2

An engineer is standing by a switch in the railroad tracks. A train approaches in the

distance. She flips the switch, so that the train travels down the right-hand track, instead

of the left. Since the tracks reconverge up ahead, the train arrives at its destination all

the same; let us further suppose that the time and manner of its arrival are exactly as

they would have been, had she not flipped the switch.

It is commonly discussed whether flipping the switch should be (part of) the cause of

the train arriving at its destination (Halpern and Pearl 2001; Hall 2007; Halpern 2015;

Cabalar and Fandinno 2016; Beckers and Vennekens 2017; Batusov and Soutchanski 2018).

Normally these solutions are not elaboration tolerant. For instance, adding a neutral

switch position or a third route that does not reconverge, requires a different model or

leads to completely different answers.

3 Causal Theory

This section introduces a simplified version of knowledge representation language W ,
which is used for the analysis of basic causal relations. Formally, W is a subset of P-
log (Baral et al. 2009; Balai et al. 2019) expanded by a simple form of constraints with
signature tailored toward reasoning about change. Theories of W are called causal. A
causal theory consists of a background theory T representing general knowledge about
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m1 : arrived(fork) ← approach(I), ¬ab(m1, I)

m2 : arrivTime(fork) = I ← arrived(fork), approach(I − time2fork), ¬ab(m2, I)

m3(P ) : switch(I) = P ← flipTo(P, I − 1), switch(I − 1) 6= P, ¬ab(m3(P ), I)

m4 : arrived(dest) ← arrivTime(fork) = I, switch(I) 6= neutral , ¬ab(m4, I)

m5 : arrivTime(dest) = I ← arrived(dest), arrivTime(fork) = I ′, switch(I ′) = P,

I = I ′ + time2dest(P ), ¬ab(m5, I)

Fig. 1. Causal mechanisms in the background theory representing the Engineer story

the agent’s domain and domain scenario S containing the record of deliberate actions
performed by the agents. A sorted signature Σ of T , referred to as causal, consists of
sorts, object constants, and function symbols. Each object constant comes together with
its sort; each function symbol – with sorts of its parameters and values. In addition
to domain specific sorts and predefined sorts such as Boolean, integer, etc., a causal
signature includes sorts for time-steps, fluents, actions, and statics. Fluents are divided
into inertial, transient and time-independent. An inertial fluent can only change its value
as a result of an action. Otherwise the value remains unchanged. The default value of a
transient fluent is undefined. A time-independent fluent does not depend on time. But,
different from a static, it may change its value after the scenario is expanded by new
information. The value sort of actions is Boolean. Terms of Σ are defined as usual. Let e
be a function symbol, t̄ be a sequence of ground terms not containing time-steps, i be a
time-step, and y ∈ range(e). A ground atom of Σ is an expression of one of the forms

e(t̄, i) = y e(t̄, i) 6= y1

where e is an action, a fluent or a static. If e does not depend on time, i will be omitted.
If e is a Boolean fluent then e(t̄) = ⊤ (resp. e(t̄) = ⊥) is sometimes written as e(i) (resp.
¬e(i)). Atoms formed by actions are called action atoms. Similarly for statics, fluents,
etc. Action atom a(i) may be written as occurs(a, i). The main construct used to form
background theories of W is causal mechanism (or causal law) – a rule of the form:

m : e(t̄, I) = y ← body,¬ab(m, I) (4)

where e is a non-static, I ranges over time-steps, m is the unique name of this causal

mechanism, body is a set of atoms of Σ and arithmetic atoms of the form N ≺ AE where

N is a variable or a natural number and AE is an arithmetic function built from +, −, ×,

etc., and ≺ is =, >, or ≥. Special Boolean function ab(m, I) is used to capture exceptions

to application of causal mechanism m at step I. As usual in logic programming we view

causal mechanisms with variables as sets of their ground instances obtained by replacing

variables by their possible values and evaluating the remaining arithmetic terms. If e

in rule (4) is an action we refer to m as a trigger. A causal mechanism of the form (4)

says that “at time-step I, body activates causal mechanism m which, unless otherwise

specified, sets the value of e to y”. To conform to this reading we need to enforce a

broadly shared principle of causality: “the cause must precede its effect”. Our version of

this principle is given by the following requirement: For every ground instance of causal

mechanism such that i is a time-step occurring in its head and j is a time-step occurring

in its body, the following two conditions are satisfied:

• j < i if j occurs within an action atom; and

1 As in citebalduccini2012answer and citeBalaiGZ19, f(x̄) 6= y holds if f(x̄) = z such that z 6= y.
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• j ≤ i, otherwise.

A scenario of background theory T with signature Σ is a collection of static and arith-

metic atoms together with expressions of the form:

• init(f = y) – the initial value of inertial fluent f is y;

• do(a, i) – an agent deliberately executes action a at time-step i;

• do(¬a, i) – an agent deliberately refrains from executing action a at i;

• obs(f, y, i) – the value of f at time-step i is observed to be y;

We refer to these expressions as extended atoms of Σ; a set of extended atoms of the

form init(f = y), init(g = z) . . . will be written as init(f = y, g = z, . . . ). We assume

that the sort for time-steps consists of all natural numbers and symbolic constants we

refer to as abstract time-steps. Atoms, extended atoms and scenarios where all object

constants of the sort for time-steps are natural numbers are called concrete; those that

contain abstract time-steps are called abstract.
The story of Suzy First (Example 1) can be represented in W by a background the-

ory Tfst which contains a sub-sort throw of actions, inertial fluent broken , statics member ,
agent , and duration and causal mechanism

m0(A) : broken(I) ← occurs(A, I −D),member(A, throw),
agent(A) = Ag,duration(A) = D,

¬broken(I − 1),¬ab(m0(A), I)

The theory will be used together with an abstract scenario Ssuzy which includes actions
a1 and a2 of the sort throw and atoms

init(¬broken), do(a1, t1), do(a2, t2), t1+duration(a1) < t2+duration(a2)

where t1 and t2 are abstract time-steps. The last (arithmetic) atom represents the fact
that Suzy’s stone arrives first. Actions of Ssuzy are described by statics

agent(a1) = suzy member(a1, throw) agent(a2) = billy member(a2, throw) (5)

and arithmetic atoms duration(a1) ≥ 1, duration(a2) ≥ 1. Here, and in other places

f(t̄) ≥ y is understood as a shorthand for f(t̄) = d and d ≥ y, where d is a fresh abstract

constant. Similarly for >, = and 6=. To save space, we omit executability conditions for

causal mechanisms. Note that causal mechanism m0(A) is a general commonsense law

which is not specific to this particular story. This kind of general commonsense knowledge

can be compiled into a background library and retrieved when necessary (Inclezan 2016).

The same applies to all the other causal mechanisms for variations of this example

discussed in the paper. Note that we explicitly represent the temporal relation among

time-steps and make no further assumptions about the causal relation among the rocks.

The definition of cause introduced below is able to conclude that Suzy’s rock is the cause

of breaking the bottle. This is a distinguishing feature of our approach. Representing that

Billy’s stone arrives first is obtained simply by replacing the corresponding constraint in

Ssuzy by t1 + duration(a1) > t2 + duration(a2).

The Engineer story (Example 2) can be represented by a background theory Teng contain-
ing causal mechanisms in Figure 1. The arrival of the train is modeled by a time-independent
fluent arrived (point). Action approach of m2 causes the train to arrive at the fork after
the amount of time determined by static time2fork (note that since m1 can fail to cause
arrived(fork), this atom cannot be removed from m2). The switch is controlled by ac-
tion flipTo which takes one unit of time. This action can change the switch to any of
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its three positions: neutral , left , and right . Static time2dest(track ) determines the time
it takes the train to traverse the distance between the fork and the train’s destination
depending on the track taken. When the switch is in the neutral position, the train does
not arrive at its destination. Inertial fluent switch represents the position of the switch.
The times to travel between two points must obey the following constraints included in
scenario Seng:

time2fork ≥ 1 time2dest(left) ≥ 1 time2dest(right) ≥ 1

The rest of the scenario Seng consists of the following atoms

init(switch = left) do(approach , t3) do(flipTo(right), t4)

time2dest(left) = time2dest(right)

We make no assumptions regarding the order in which actions approach and flipTo

occur. We can easily modify the scenario to accommodate a variation of the story where

traveling down the right-hand track is faster than over the left one by replacing the last

arithmetic atom by time2dest(left) > time2dest(right).

Definition 1 (Causal Theory)

A causal theory T (S) is a pair where T is a background theory and S is a scenario.

We identify each causal theory T (S) with the logic program that consists of causal
mechanisms without their labels, all atoms in S as facts and the following general axioms:

def (f(X̄))← f(X̄) = Y (6)

← f(X̄) 6= Y, not def (f(X̄)) (7)

f(X̄) 6= Y ← f(X̄) = Z, Z 6= Y (8)

for every function symbol f ,

¬ab(m, I)← not ab(m, I) (9)

for every causal mechanism m,

f(0) = y ← init(f = y) (10)

f(I) = Y ← f(I − 1) = Y, not f(I) 6= Y (11)

f(I) 6= Y ← f(I − 1) 6= Y, not f(I) = Y (12)

for every inertial fluent f ,

a(I)← do(a, I) ¬a(I)← do(¬a, I) (13)

¬a(I)← not a(I) (14)

a(I)
+
← (15)

ab(m, I)← do(a = v, I) (16)

for every action a, Boolean value v and causal law m with head a(I) = w and v 6= w.

← obs(f(X̄), Y, I), not f(X̄, I) = Y (17)

Axioms (6), (7), and (8) reflect the reading of relation 6=. Axiom (9) ensures that causal

mechanisms are defeasible. Axiom (10) ensures that fluents at the initial situation take

the value described in the scenario. Axioms (11-12) are the inertia axioms, stating that

inertial fluents normally keep their values. Axiom (13) ensures that the actions occur
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as described in the scenario. Axiom (14) states the close world assumption for actions.

Axiom (15) is a cr-rule (Balduccini and Gelfond 2003; Gelfond and Kahl 2014) which

allows indirect exceptions to (14). Intuitively, it says that a(I) may be true, but such a

possibility is very rare and, whenever possible, should be ignored. Axiom (16) ensures that

deliberate actions overrule the default behavior of contradicting causal mechanisms (See

Example 3 below for more details). Axiom (17) ensures that observations are satisfied

in the model. Note, that if T (S) contains occurrences of abstract time-steps then its

grounding may still have occurrences of arithmetic operations. (If d is an abstract time-

step then, say, d + 1 > 5 will be unchanged by the grounding). The standard definition

of answer set is not applicable in this case. The following modification will be used to

define the meaning of programs with abstract time-steps. Let γ be a mapping of abstract

time-steps into the natural numbers and T (S) be a program not containing variables.

By T (S)|γ we denote the result of

(a) applying γ to abstract time-steps from T (S),

(b) replacing arithmetic expressions by their values,

(c) removing rules containing false arithmetic atoms.

Condition (c) is needed to avoid violation of principle of causality by useless rules. By an

answer set of T (S) we mean an answer set of T (S)|γ for some γ. If T (S)|γ is consistent,

i.e., has an answer set then γ is called an interpretation of T (S). T (S) is called consistent

if it has at least one interpretation. If T (S) is consistent and for each interpretation γ of

T (S), T (S)|γ has exactly one answer set then T (S) is called deterministic. In this paper

we limit ourselves to deterministic causal theories. To illustrate our representation of

triggers, parallel actions, and the defeasibility of causal laws, we introduce the following

variation of Suzy First (Example 1).

Example 3

Suzy and Billy throw rocks by the order of a stronger girl. Suzy’s rock gets there first.

The effects of orders are described by the causal mechanism:

m6(A, T,B) : occurs(A, I) ← member(B, order), occurs(B, T ),
what(B) = A, when(B) = I,

I > T, ¬ab(m6(A, T,B), I).

The scenario Sorder is obtained from Ssuzy by adding new actions, b1 and b2, of the
sort order described by statics

what(b1) = a1 when(b1) = t1 what(b2) = a2 when(b2) = t2 (18)

and new constraints t1 > 0, t2 > 0, and replacing its extended atoms by

init(¬broken), do(b1, 0), do(b2, 0).

For any interpretation γ, in the unique answer set of T (Sorder)|γ atom broken becomes

true at time-step2 γ(t1) + γ(duration(a1)). For the sake of simplicity, we assume that

orders are given at time-step 0, but in general we would use two abstract time-steps. The

example illustrates representation of triggers and parallel actions. To illustrate defeasi-

bility, let us consider a scenario where both Suzy and Billy refuse to follow the order.

2 duration(a1) stands for d where duration(a1) = d.
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This can be formalized as scenario Sorder2 obtained from Sorder by adding the extended

atoms do(¬a1, t1) and do(¬a2, t2). Due to axioms (16), causal mechanisms m6(a1, 0, b1)

and m6(a2, 0, b2) do not fire, and broken never becomes true.

4 Cause of Change

In this section, we describe our notion of cause of change. We start with scenarios not

containing observations.

Definition 2

We say that a ground atom e(t̄, k) = y is a change in T (S)|γ if the unique answer set M

of T (S)|γ satisfies e(t̄, k) = y and one of the following conditions holds:

• e is inertial and e(t̄, k − 1) is either undefined in M or M satisfies e(t̄, k − 1) = z

with z 6= y;

• e is an action or a transient or time-independent fluent.

The definition of cause of change relies on the definition of tight proof that we introduce

next. By [P ]i, we denote the sequence consisting of the first i elements of sequence P .

By atoms(P ) we denote the atoms occurring in P .

Definition 3 (Proof )

A proof of a set U of ground atoms in T (S)|γ is a sequence P of atoms in the unique

answer set M of T (S)|γ and rules of the ground logic program associated with T (S)|γ
satisfying the following conditions:

• P contains all the atoms in U .

• Each element xi of P is one of the following:

— a rule whose body is satisfied by the set

atoms([P ]i) ∪ {not l : l 6∈M}, or

— an axiom, i.e., a do-atom or a static from S|γ , or

— the head of some rule from [P ]i.

• No proper subsequence3 of P satisfies the above conditions.

Let us consider the Engineer story (Example 2) and an interpretation γ of the abstract
theory Teng(Seng), that is, a function mapping time2fork , time2dest(left) and time2dest(right)
to natural numbers such that

γ(time2dest(left)) = γ(time2dest(right)).

For instance, an interpretation γ satisfying γ(t3) = 0, γ(t4) = 1, γ(time2fork ) = 3 and

γ(time2dest(left)) = γ(time2dest(right)) = 5.

The unique answer set of Teng(Seng)|γ contains, among others, atoms

switch(0) 6= neutral , . . . , switch(3) 6= neutral

arrivTime(fork) = 3, arrived(dest)

3 A sequence obtained from P by removing some of its elements.



Embracing Background Knowledge in the Analysis of Actual Causality 9

do(approach, γ(t3))

m1 at I = γ(t3)

arrived(fork)

m2 at I = n1

arrivTime(fork) = n1

switch(0) 6= neutral

. . . (inertia rules)

switch(n1) 6= neutral

m4 at I = n1

arrived(dest)

do(approach, γ(t3))

m1 at I = γ(t3)

arrived(fork)

m2 at I = n1

arrivTime(fork) = n1

do(flipTo(right), γ(t4))

m3(right) at I = γ(t4) + 1

switch(γ(t4) + 1) = right

axiom (8)

switch(γ(t4) + 1) 6= neutral

. . . (inertia rules)

switch(n1) 6= neutral

m4 at I = n1

arrived(dest)

Fig. 2. Proofs P1 and P2 of arrived(dest) in scenario Seng with any interpretation γ sat-

isfying condition γ(t3) + γ(time2fork ) > γ(t4). We use n1 to denote the positive natural

number γ(t3) + γ(time2fork ). Only P1 is a tight proof.

Since arrived is a time-independent fluent, we can conclude that arrived(dest) is a change
in this concrete causal theory. In general, we can check that, for any interpretation γ of
the abstract theory Teng(Seng) where the switch is flipped before the train arrives to the
fork, i.e. satisfying γ(t4) < γ(t3) + γ(time2fork ), the unique answer set of Teng(Seng)|γ
contains atoms

switch(0) 6= neutral , . . . , switch(n1) 6= neutral

arrivTime(fork) = n1, arrived(dest)

where n1 = γ(t3) + γ(time2fork ) is a natural number corresponding to the arrival time

of the train to the switch. We can then conclude that arrived(dest) is a change in this

causal theory for any such interpretation γ. Figure 2 depicts (condensed versions) of the

two proofs in this scenario for any such interpretation γ. In P1, we reach the conclusion

that the switch is not in the neutral position by inertia. In P2, the same conclusion

is the result of the flipping the switch to the right . Both are valid derivations of the

change arrived (dest). However, to infer the causes of an event we give preference to

proofs using inertia over those using extra causal mechanisms. This idea is formalized in

the following notion of tight proof.

Definition 4 (Tight proof )

Let P1 and P2 be proofs of change e(t̄, k) = y in T (S)|γ . P1 is (causally) tighter than P2

if every causal mechanism of P1 belongs to P2 but not vice-versa. Proof P of e(t̄, k) = y

in T (S)|γ is tight if there is no proof of e(t̄, k) = y in T (S)|γ that is tighter than P .

Clearly, proof P1 from our running example is tighter than P2; causal mechanisms of P1

are m1, m2 and m4, while P2 contains the additional causal mechanism m3(right).

Definition 5 (Causal chain)

Given a numeric time-step i and an atom e(t̄, k) = y in T (S)|γ , a causal chain Ch(i)

from i to e(t̄, k) = y is a sequence

a1, . . . , an, C1, . . . , Cm, e(t̄, k) = y
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of atoms and ground causal mechanisms of T (S)|γ with n ≥ 1 and m ≥ 0 such that there

is a tight proof P of e(t̄, k) = y in T (S)|γ satisfying the following conditions:

• a1 is a do-atom from P with time step i,

• a2, . . . an are all other do-atoms from P with time-steps greater than or equal to i,

and

• C1, . . . , Cm are all causal mechanisms of P with time-steps greater than i.

Let us introduce some terminology. We say that Ch(i) is generated from the proof P

above. If e(t̄, k) = y is a change, we say that causal chain from i to e(t̄, k) = y in T (S)|γ
leads to change e(t̄, k) = y. A causal chain is initiated by the set of all its do-atoms. Two

proofs of a set of ground atoms U are equivalent if they differ only by the order of their

elements. Two chains are equivalent if they are generated from equivalent proofs.
Continuing with our running example, sequence

do(approach , γ(t3)), m1, m2, m4, arrived(dest) (19)

is a causal chain in this scenario that leads to change arrived(dest), and it is generated
by proof P1 in Figure 2. However, sequence

do(approach , γ(t3)), do(flipTo(right), γ(t4)), m1, m2,

m3(right), m4, arrived(dest)

corresponding to proof P2 is not causal chain because P2 is not a tight proof.

Definition 6 (More informative causal chain)

Given causal chains Ch(i) and Ch(j) to e(t̄, k) = y, we say that Ch(i) is more informative

than Ch(j) if i < j and Ch(i) contains all elements of Ch(j).

Definition 7 (Candidate inflection point)

A time-step i is called a candidate inflection point of change e(t̄, k) = y in T (S)|γ if it

satisfies the following conditions:

(a) There is a causal chain from i to e(t̄, k) = y in T (S[i])|γ , and

(b) There is a causal chain from i to e(t̄, k) = y in T (S)|γ

where S[i] is the scenario obtained from S by removing all do-atoms after i.

Definition 8 (Inflection point)

A candidate inflection point i is called an inflection point of e(t̄, k) = y in T (S)|γ if there

is a causal chain Ch(i) from i to e(t̄, k) = y in T (S)|γ such that there is no candidate

inflection point j and causal chain Ch(j) from j to e(t̄, k) = y in T (S)|γ which is more

informative than Ch(i).

Note that a scenario can have more than one inflection point (see Example 4).

Definition 9 (Deliberate cause of change)

A non-empty set α of do-atoms is called a (deliberate) cause of change e(t̄, k) = y

in T (S)|γ if there is an inflection point i of e(t̄, k) = y in T (S)|γ such that α initiates a

causal chain in T (S)|γ from i to e(t̄, k) = y.

It is said to be (deliberate) cause of change e(t̄, k) = y in T (S) if it is a cause of

change e(γ(k)) = y in T (S)|γ for every interpretation γ of T (S).
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Following with the Engineer example (Example 2), let us consider scenario Seng. Since

this is an abstract scenario, to answer questions about the cause of change we have to

consider all interpretations of this scenario. We proceed by cases. Let us first consider

an interpretation γ satisfying condition γ(t4) < γ(t3) + γ(time2fork ). As we discussed

above, (19) is the only causal chain leading to change arrived(dest). Furthermore, we can

see that this is also a causal chain from γ(t3) to this change in T (S[γ(t3)])|γ . Therefore,

time-step γ(t3) is the unique candidate inflection point of change arrived(dest) and, thus,

it is the unique inflection point as well. As a result, singleton set {do(approach , γ(t3))}

is the unique cause of this change with respect to any such γ. Let us now consider an

interpretation γ satisfying γ(t4) ≥ γ(t3)+ γ(time2fork ). In this case arrived(dest) is still

a change and P1 is the only proof of this change. Hence, {do(approach , γ(t3))} is also the

unique cause of this change with respect to any such γ. Consequently, {do(approach , t3)}

is the unique cause of this change in this story.
Let us now consider Suzy First story (Example 1). The unique answer set of Tfst (Ssuzy )|γ

contains atoms

do(a1, (γ(t1)), do(a2, γ(t2)), ¬broken(0), . . . ,¬broken(n4 − 1), broken(n4)

with n4 = γ(t1) + γ(duration(a1)) being a positive integer representing the arriving
time-step of Suzy’s rock. This means that broken(n4) is a change. There is only one
causal chain leading to this change:

do(a1, γ(t1)), m0(a1), broken(n4) (20)

and the only inflection point is γ(t1). As a result, Suzy’s throw, {do(a1, t1)} is the only

cause of this change. Note that the order in which Suzy and Billy throw is irrelevant (as

long as the constraint t1 + duration(a1) < t2 + duration(a2) is satisfied): the reason for

Suzy’s rock to get first may be because she throws first or because her rock is faster or

any other reason. It is easy to check that, if we consider a scenario where Billy’s rock

gets first – formally a scenario Sbilly obtained from Ssuzy by replacing constraint t1 +

duration(a1) < t2 + duration(a2) by t1 + duration(a1) > t2 + duration(a2) – then Billy’s

throw, {do(a2, t2)}, is the only cause of this change.

In the following variation of Suzy First story broken has two inflection points.

Example 4

Suzy and Billy throw rocks at a bottle, but this time both rocks arrive at the same time.

This story can be formalized by a scenario Ssame obtained from Ssuzy by replacing t1 +

duration(a1) < t2 + duration(a2) by t1 + duration(a1) = t2 + duration(a2)
For any interpretation γ of this scenario, we have change broken(n5) with n5 = γ(t1)+

duration(a1) = γ(t2) + duration(a2) and two causal chains leading to this change:

do(a1, γ(t1)), m0(a1), broken(n5)

do(a2, γ(t2)), m0(a2), broken(n5)

Both γ(t1) and γ(t2) are inflection points. They may be the same inflection point or differ-

ent ones depending of the interpretation γ. In all cases, both {do(a1, γ(t1))} and {do(a2, γ(t2))}

are causes of change broken(n5).
Let us now consider the variation of this story introduced in Example 3, where Suzy

and Billy throw by the order of a stronger girl. As we discuss above, broken becomes true
at time-step t1 + duration(a1). In other words broken(n4) is a change in scenario Sorder .
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In this scenario there is only one causal chain leading to this change:

do(b1, 0), m6(a1, t1, b1), m0(a1), broken(n4)

and, thus, {do(b1, 0)} is the only cause of broken(n4).
Note that our notion of cause is different from the notion of immediate or direct cause.
The immediate cause of breaking the bottle is the throw of the rock, but the deliberate
cause is the order. We also discussed the scenario where both Suzy and Billy refuse
to follow the order and, thus, broken never happens. Therefore, there was no cause.
Next let us consider a story where Suzy refuses to throw but Billy follows the order.
This can be formalized by scenario Sorder3 obtained from Sorder by adding extended
atom do(¬a1, t1). In this case the change happens later. That is, broken(n6) is a change
with n6 = γ(t2) + γ(duration(a2)). The only causal chain leading to this change is

do(b2, 0), m6(a2, t1, b2), m0(a2), broken(n6)

and, thus, {do(b2, 0)} is the only cause of broken(n6). Next example illustrates our treat-

ment of preconditions of a cause.

Example 5

As in Example 1 Suzy picks up a rock and throws it at the bottle. However, this time we

assume that she is accurate only if she aims first. Otherwise, her rock misses. Suzy aims

before throwing and hits the bottle. Billy just looks at his colleague’s performance.

The story is formalized by causal theory Taim :

m′

0(A) : broken(I) ← occurs(A, I −D),member(A, throw),
agent(A) = Ag,duration(A) = D,

aimed(Ag, I −D),¬broken(I − 1),¬ab(m′

0(A), I)

m7(A) : aimed(Ag, I) ← occurs(A, I −D),member(A,aim),
agent(A) = Ag,duration(A) = D,¬ab(m7(A), I)

where aimed is an inertial fluent and scenario Saim

agent(a1) = suzy member(a1, throw) duration(a1) ≥ 1

agent(c) = suzy member(c, aim) duration(c) ≥ 1

do(c, t5), do(a1, t1), t5+duration(c) < t1

(21)

The inflection point in Saim is t1 and the only deliberate cause of broken(n4) is {do(a1, t1)}.

Action do(c, t5) is necessary for shattering the bottle, because it is required by one of

the preconditions of m′
0(a1). However, it is not a deliberate cause because at the time of

its occurrence the shattering could not be predicted (see condition (a) in Definition 7).

Definition 9 can be used to define the notion of causal explanation of unexpected obser-

vations: T (S) is called strongly consistent if T reg(S), obtained from T (S) by dropping

cr-rules, is consistent. If T (S) is strongly consistent and T (S ∪ {obs(f, y, i)}) is not we

say that obs(f, y, i) is unexpected. We assume that every abductive support4 U of this

theory has exactly one answer set. By a cause of atom f(i) = y we mean a cause of the

last change of f to y which precedes i + 1 (note that for actions and time-independent

fluent f , f(i) = y is a change). By causal explanation of obs(f, y, i) we mean a cause

4 Abductive support of a program Π is a minimal collection of cr-rules of Π which, if turned into regular
rules and added to the regular part of Π, produce a consistent program Π′. Answer set of Π is then
defined as an answer set of Π′.
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of f(i) = y in T (SU ) where SU is obtained from S by adding do(a, i) for every rule

a(i)
+
← from U for some abductive support U . For example, consider a scenario S of

Tfst consisting of init(¬broken),obs(broken, true, 2), actions a1 and a2 from Ssuzy with

durations 2 and 4 respectively. The program has one abductive support, a1(0)
+
← and

hence do(a1, 0) explains the unexpected observation. If broken were observed at 3 we’d

have two explanations: do(a1, 0) and do(a1, 1). This can be compactly represented using

a do-atom do(a1, t) where t is an abstract time step satisfying 0 ≤ t < 2.

5 Conclusions

The paper describes a new approach for representing causal knowledge, and its use for

causal analysis. The approach emphasizes the separation between background theory and

scenario. The first contains general knowledge that may be shared by different stories

and the latter contains the information specific to the considered story. This, together

with the use of abstract constants, provides a higher degree of elaboration tolerance than

other approaches to causal analysis. We also propose the use of a rich KR-language that

is able to represent sophisticated causal laws, time, defaults and their exceptions, re-

cursive definitions, and other non-trivial phenomena of natural language. As a result,

we can obtain accurate and direct formalizations of natural language sentences that, we

believe, is essential for causal analysis. We have illustrated this with common challenging

examples from the literature on actual causality. Causal analysis is realized over a formal

representation rather than over the natural language statements. However, our intuitions

are usually more clear with respect to the natural language statements than with respect

to the formal representation. The closer the formal representation is to the natural lan-

guage statements of a story, the better we can use our intuition to guide us towards a

formal analysis of actual causality. A preliminary version of this paper was presented at

a workshop (Gelfond and Balai 2020). We substantially extend that version and correct

mistakes that were discovered after its presentation. This has led us to change the defini-

tion of inflection point, to introduce the notion of tight proof and abstract time-steps, etc.

In the future, this work should be expanded to consider other types of causal relations.

Some, like prevention, are not included due to space limitation. Others require further

work. In particular we plan to expand W by probabilistic constructs of P-log and use it

to study probabilistic causal relations. Finally, we plan to investigate mathematical prop-

erties of causal theories and algorithms for effectively computing the causes of various

causal relations and their implementations. The notion of tight proof is closely related

to the notion of causal justifications for answer set programs (Cabalar et al. 2014). This

may open the door to use xclingo (Cabalar et al. 2020) as the first-step of a new system

for computing causes according to our definition.
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