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Abstract. We explore photometric redshift estimation of quasars with the SDSS DR12 quasar
sample. Firstly the quasar sample is separated into three parts according to different redshift
ranges. Then three classifiers based on Extreme Learning Machine (ELM) are created in the
three redshift ranges. Finally k-Nearest Neighbor (kNN) approach is applied on the three sam-
ples to predict photometric redshifts of quasars with multiwavelength photometric data. We
compare the performance with different input patterns by ELM-KNN with that only by kNN.
The experimental results show that ELM-KNN is feasible and superior to kNN (e.g. rms is
0.0751 vs. 0.2626 for SDSS sample), in other words, the ensemble method has the potential to
increase regressor performance beyond the level reached by an individual regressor alone and
will be a good choice when facing much more complex data.
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1. Introduction
Photometric redshifts may provide distance information of celestial objects so that it is

an important tool to study many significant issues, such as the formation and evolution
of galaxies, large-scale structure of cosmology, reionization of the early universe, galaxy
clustering, high-redshift quasars and so on. The development and operation of large
photometric survey missions (e.g. SDSS, WISE, UKIDSS) creates large opportunities
and data testbed for the research of photometric redshift techniques. The studies on this
respect are thriving. Taking the photometric redshift estimation of quasars for example,
Wu & Jia (2010) explored template-matching; Zhang et al. (2013) applied k-Nearest
Neighbors algorithm (kNN); Brescia et al. (2013) put forward the Multi Layer Perceptron
with Quasi Newton Algorithm (MLPQNA); Han et al. (2016) presented an integration
of KNN and SVM.

2. Data
Our data sets are adopted from the Data Release 12 Quasar catalog (DR12Q) (Paris

et al. 2016). After removing the records with default values and z warning, we obtain
the multiwavelength samples. According to which surveys the samples are from, the data
sets include four samples: SDSS sample, SDSS-UKIDSS sample, SDSS-WISE sample,
SDSS-UKIDSS-WISE sample. For each sample, we divide it into three subsamples: one
with zspec < 1.3, one with 1.3 � zspec < 4.3 and one with zspec � 4.3, based on the
spectroscopic redshift distribution histagram of known quasars.
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Figure 1. The flowchart of ELM-KNN for Photometric Redshift Estimation

3. Method
A popular learning algorithm called extreme learning machine (ELM) was proposed for

both generalized single hidden layer feedforward network and multi-hidden-layer feedfor-
ward networks by Huang (2015) and Huang, Zhu & Siew (2006). This algorithm randomly
chooses hidden nodes and analytically determines the output weights of feedforward net-
works. Compared to the other feedforward network learning algorithms, ELM is easily
implemented, tends to reach the smallest training error, obtains the smallest norm of
weights, provides the good generalization performance at extremely fast learning speed.
It is applied for feature learning, clustering, regression and classification. It gradually
comes into view due to its superiorities in the big data era.

k-Nearest Neighbors algorithm (kNN) is among the simplest of all machine learning
algorithms, belongs to a kind of instance-based learning, or lazy learning, and can be
used for classification and regression. For classification, the output of kNN is a class
membership, which is determined by a majority vote of its neighbors. For regression, the
output of kNN is the average of the values of its k nearest neighbors.

In this paper we firstly divide the quasar sample into three different subsamples (one
with zspec < 1.3 as Sample 1, one with 1.3 � zspec < 4.3 as Sample 2 and one with
zspec � 4.3 as Sample 3) according to the redshift ranges, then randomly separate each of
the three subsamples into two parts: two thirds for training and one-third for testing. By
testing, the reliable ELM classifier is created. During the three redshift ranges, different
optimal kNN regressors are built. For any unknown-redshift object, the ELM classifier
provides its type as Sample 1, Sample 2 or Sample 3, and then the corresponding kNN
regressor gives its predicted redshift. The overall flowchart is shown in Fig 1.

4. Results
For each of SDSS, SDSS-UKIDSS, SDSS-WISE and SDSS-UKIDSS-WISE samples,

we explore extreme learning machine (ELM) to classify the quasar sample into three
different redshift subsamples with different input patterns and model parameters. The
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optimal input and model parameters as well as the classification accuracy are shown in
Table 1. When arriving at the best performance, different samples correspond to different
input patterns and model parameters. Table 1 indicates that the accuracy is more than
84% for all samples, and even reaches 97.51% for the SDSS-UKIDSS-WISE sample.
Therefore the following photometric redshift estimation is reliable based on the classified
samples obtained by ELM.

Table 1. The performance of ELM classifiers on different samples.

Sample Input Pattern No. of Hidden Neurons Activation Function Accuracy(%)

S D S S 4C + i 494 Triangular basis function 84.03
S D S S -U K ID S S 8C + r 682 Radial basis function 93.44
S D S S -W IS E 8C

′
+ r 562 Sigmoidal function 94.04

S D S S -U K ID S S -W IS E 12C 1904 Triangular basis function 97.51

Notes: 4C = u − g , g − r, r − i, i − z ; 8C = u − g , g − r, r − i, i − z , z − Y , Y − J, J − H, H − K ;8C
′

=
u − g , g − r, r − i, i − z , z − W 1, W 1 − W 2, W 2 − W 3, W 3 − W 4; 12C = u − g , g − r, r − i, i − z , z − Y , Y −
J, J − H, H − K, K − W 1, W 1 − W 2, W 2 − W 3, W 3 − W 4.

For each subsample of SDSS, SDSS-UKIDSS, SDSS-WISE and SDSS-UKIDSS-WISE
samples, we apply k-Nearest Neighbors algorithm (kNN) to predict photometric redshifts
of quasars, respectively. The experimental results are shown in Table 2. The subsamples
at low redshift (Sample 1), medium redshift (Sample 2) and high redshift (Sample 3) are
represented as a, b and c, respectively. As Table 2 indicates, the percents within different
|Δz| are more than 86.476% and the root mean square (rms) errors are less than 0.0818.
The optimal k value for each subsample is also given in Table 2.

Table 2. Photometric redshift estimation on different subsamples by kNN.

Sample Input Pattern Subsample k |Δz | < 0.1(%) |Δz | < 0.2(%) |Δz | < 0.3(%) rms

S D S S 4C + i a 9 90.112 97.687 99.225 0.0730
b 12 93.679 99.020 99.816 0.0562
c 6 100.000 100.000 100.000 0.0229

S D S S -U K ID S S 8C + r a 10 89.430 98.299 99.503 0.0677
b 13 88.552 96.402 98.789 0.0800
c 9 100.000 100.000 100.000 0.0188

S D S S -W IS E 8C
′

+ r a 9 86.476 96.390 99.046 0.0818
b 10 93.826 99.081 99.780 0.0561
c 6 100.000 100.000 100.000 0.0229

S D S S -U K ID S S -W IS E 12C a 6 88.747 97.680 99.304 0.0746
b 5 93.987 98.376 99.760 0.0568
c 1 100.000 100.000 100.000 0.0225

Notes: 4C ,8C ,8C
′
,12C are the same as in Table 1.

Here we put forward a method of firstly classifying the sample into different subsamples
by ELM and then estimating photometric redshifts by kNN, called as ELM-KNN. In
order to check the effectiveness of ELM-KNN, we compare the performance of ELM-
KNN with that of kNN, as shown in Table 3. As far as the percents in different |Δz|
ranges and rms error, ELM-KNN shows better performance than kNN for any sample.
The performance rank of samples from top to bottom is SDSS-UKIDSS-WISE sample,
SDSS-WISE sample, SDSS sample and SDSS-UKIDSS sample.
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Table 3. Comparison of photometric redshift estimation of ELM-KNN and kNN.

S am p le In p u t P a t te rn M eth o d |Δz | < 0.1(%) |Δz | < 0.2(%) |Δz | < 0.3(%) rms

S D S S 4C + i E L M -K N N 89.440±0.138 97.320±0.064 99.030±0.031 0.0751±0.0005
k N N (k = 2 2 ) 61.140±0.143 78.520±0.100 85.040±0.098 0.2626±0.0010

S D S S -U K ID S S 8C + r E L M -K N N 89.121±0.116 96.892±0.059 98.973±0.052 0.0756±0.0005
k N N (k = 6 ) 74.470±0.262 87.050±0.140 92.130±0.109 0.1939±0.0018

S D S S -W IS E 8C
′

+ r E L M -K N N 90.015±0.107 97.565±0.102 99.189±0.097 0.0718±0.0010
k N N (k = 1 4 ) 82.970±0.292 92.330±0.173 95.770±0.116 0.1367±0.0025

S D S S -U K ID S S -W IS E 12C E L M -K N N 92.293±0.703 98.266±0.324 99.571±0.126 0.0614±0.0030
k N N (k = 6 ) 85.610±0.742 92.960±0.411 96.800±0.336 0.1290±0.0074

Notes: 4C ,8C ,8C
′
,12C are the same as in Table 1.

5. Conclusion
We apply ELM-KNN and kNN for photometric redshift estimation of quasars with dif-

ferent samples and different input patterns. The experimental results indicate that the
performances of ELM-KNN are all superior to kNN for the four different samples with
different input patterns. It is obvious that when the sample is divided into subgroups
according to redshift distribution, the redshift prediction accuracy improves. In general,
the more information from more bands are given, algorithms have better performance.
But when adding parameters from more bands, the size decrease of a sample sometimes
leads to accuracy reduction (e.g. SDSS-UKIDSS sample), at this time, we should pay
more attention on whether it is necessary to cross-identify the sample with other band
catalogues. Facing a concrete problem, we need pursue a balance between sample size
and sample information. Moreover for a special algorithm, the choice of optimal model
parameters is necessary in practice, and when samples are set, the input pattern is very
important for accuracy improvement. In addition, with more and more data collected, we
consider not only how to improve the accuracy of photometric redshift estimation, but
also how to increase the speed of photometric redshift estimation. In a word, each data
processing step, data mining algorithm choice as well as algorithm application environ-
ments directly influence the effectiveness and efficiency of photometric redshift estimation
of quasars. New upcoming survey projects (e.g. LSST) will provide more opportunities
and challenges for us at this issue.
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