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Abstract. The existence of multiple subclasses of type Ia supernovae (SNeIa) has been the
subject of great debate in the last decade. In this work, we show how machine learning tools
facilitate identification of subtypes of SNe Ia. Using Deep Learning for dimensionality reduc-
tion, we were capable of performing such identification in a parameter space of significantly
lower dimension than its principal component analysis counterpart. This is evidence that the
progenitor system and the explosion mechanism can be described with a small number of initial
physical parameters. All tools used here are publicly available in the Python package DRACULA

(Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy) and can
be found within COINtoolbox (https://github.com/COINtoolbox/DRACULA).

Keywords. supernovae: general – methods: machine learning, data analysis, statistical

1. Introduction
Type Ia supernovae (SNe Ia) are extremely bright objects, exhibiting a good degree

of spectroscopic and photometric homogeneity. These properties allowed SNe Ia to play
a major role in the discovery of the accelerating expansion of the Universe in the late
20th century. However, despite a remarkable similarity among the bulk of SN Ia data,
there is a significant fraction of spectroscopically peculiar objects. At this moment, it is
still unclear if there exists different spectral subclasses of SN Ia, or if subtypes defined
in the literature are just extremes of a continuum defined over the space of property
distributions.
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Parallel to such considerations derived from observational data, theoretical develop-
ments have investigated multiple hypotheses to explain SN Ia diversity. Proving the ex-
istence of well-defined and distinct subclasses would strongly support the different pro-
genitor systems or, qualitatively, different scenarios for explosion mechanisms.

In this paper we use a series of machine learning tools and demonstrate how they
can help automatize the visualization and classification of a large set of SN Ia spectra.
Our method is composed of two steps: dimensionality reduction via deep learning, and
clustering using K-means. Our goal is to provide a proof of concept, showing that the
algorithm is able to leverage the same set of spectral features one would choose through
visual recognition. This work was originally reported in Sasdelli et al. 2016 and the tools
used here are implemented in the DRACULA Python package (Dimensionality Reduction
And Clustering for Unsupervised Learning in Astronomy) and are publicly available
within the COINtoolbox†.

2. Data
We compiled a set of publicly available SN Ia spectra from a variety of sources (see

Sasdelli et al. 2016 for a complete reference list). These were smoothed with a Savitzky-
Golay filter and derived as described in Sasdelli et al. 2015. Our data matrix set contains
3677 derivative spectra (lines) and 300 wavelength bins (columns) from which ≈150
spectra correspond to observations of different SNe Ia at maximum brightness.

3. Methodology
The first step in our algorithm is to reduce the initial dimensionality of the wavelength

parameter space using Deep Learning (DL). In this context, the input data is made of
feature vectors {x}, where x = (x1 , x2 , ..., xn ). Each vector is represented as a layer of
nodes, or neurons, where each node is a wavelength bin. Additional layers of neurons
above the original input signal are built to ensure that each new layer captures a more
abstract representation of the original input signal. This is achieved by computing at
every node, a non-linear representation of the nodes in the layer below. The output
is a new new vector y ∈ Rd , d � n, that abstracts the original representation, and is
frequently better suited for classification. There are many approaches to implement a deep
learning architecture; we follow the auto-encoder approach where the output vector is the
result of encoding the original data through several layers of non-linear transformations
(Vincent et al. 2008). It is important to emphasize that unlike the eigenvectors from
principal component analysis, the elements of y do not follow a natural ordering.

Our goal is to characterize SNe Ia spectra at maximum brightness. However, as the
number of available spectra at maximum is very small (≈ 150 objects), performing di-
mensionality reduction in these data would not result in a robust low dimensional pa-
rameter space. On the other hand, we did have available a large number of spectra from
other epochs (some of them have never been used before due to the lack of epoch determi-
nation). In order to take advantage of this large data set, we used transfer learning (TL),
a recent area in machine learning that deals with the problem of leveraging information
from a variety of different environments to help learn a model in a new context where
training data is commonly scarce (Quinonero-Candela et al. 2009). In this paradigm, all
available data is used in the construction of the low dimensional parameter space, but
only those objects of particular interest are used in any subsequent analysis. Figure 1

† https://github.com/COINtoolbox
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Figure 1. Fractional variance (difference between observed and reconstructed spectra) as a
function of the dimensionality of DL space. Gray crosses show results from SNe Ia at maximum
(no transfer learning) and black circles correspond to outcomes from all epochs (with transfer
learning).

shows how using this approach improves the reconstruction power of the DL feature
space. The plot shows the difference between reconstructed and observed spectra as a
function of the number of DL features. A stable reconstruction power is achieved with
only 4 DL dimensions, which is equivalent to 10 DL features when no transfer learning
is invoked. In summary, we used all available SNe Ia spectra (3677) as an input for the
DL algorithm, which provided a stable 4-dimensional parameter space. Afterwards, only
the spectra at maximum (150) were used to investigate the existence of subgroups.

We used the K-Means clustering algorithm to test the feasibility of identifying sub-
groups of SN automatically. It is one of the most well-known clustering techniques
(MacQueen 1967). The main idea is to find k centres as cluster representatives. Start-
ing with k random centres, each data point is assigned to the cluster represented by its
closest centre candidate (adopting an Euclidean distance). Once the first set of clusters
is defined, the centre candidates are updated to the centroid defined by all the members
in each cluster. The process is repeated until the centroids turn stable (do not change
with further iterations). K-means requires to state the number of clusters, k, a priori. In
our case, we wish to demonstrate that our approach is able to grasp the main spectral
features underlying the classification proposed by Wang et al. 2009 (which is composed
by subtypes normal, high-velocity, 91T-like and 91bg-like SNe) and so we investigate the
K-Means output when requiring 1 to 4 groups.

Our results are reported in the 4-dimensional space obtained through DL, which is
much smaller than the original 300 wavelength bins. However, this is still difficult to
visualize. In order to facilitate the comparison between the results we found using K-
Means and the results reported in the literature, we used isomaps (Tenenbaum et al.
2000) - a technique which belongs to a broader class of dimensionality reduction methods
known as manifold learning. It can be seen as an extension of a multi-dimensional scaling
able to capture non-linear manifold structures. Its goal is to find a low-dimensional
embedding of the data, such that the distance between any pair of two points is preserved.
It was recently applied to stellar spectral classification by Bu et al. 2014. Here we used
isomap to provide a 2-dimensional visualization of the 4-dimensional DL feature space.
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Figure 2. Four dimensional feature space from DL reduced to 2 dimensions through isomap.
Left: Groups found by the K-Means algorithm when 4 groups are imposed. Right: Objects
separated according to the classification proposed by Wang et al. 2009.

All of the algorithms described above, and a few more, are implemented in the DRACULA
(Dimensionality Reduction And Clustering for Unsupervised Learning in Astronomy)
Python package (Aguena et al. 2015). In the next section, we present the results obtained
using this tool.

4. Results
Figure 2 shows the resulting 2-dimensional isomap space with the colours marking

the clusters found by K-Means (left panel) and the SN Ia subtypes defined by Wang
et al. 2009 (right panel). This figure not only demonstrates how isomaps can help high
dimensional data visualization, but also clarifies the potential of combining DL with
unsupervised learning algorithms. It also indicates that currently defined SNe Ia subtypes
are extremes of a continuous distribution of spectral features.

In order to probe the ability of our method to identify the same data features found
by visual inspection we go one step further and compare the spectral behaviour of each
group in both configurations. Fig. 3 shows the mean spectrum of each cluster in both
classification schemes. The agreement between them is proof that the combination of DL
and K-Means is able to automatically identify important spectral features without human
screening. The method recovers classes similar to those defined by visual inspection and
can be used to optimize the current identification of subtypes of SNe Ia.

We also took advantage of this machinery to understand if there is an order among the
physics underlying the definition of different SNe Ia subclasses. Depending on the degree
of specialization we aim to achieve, it is possible to recognize a sequence of spectral
characteristics which might be used to guide the physical basis of future data-driven
classification systems. If we run the K-Means algorithm requiring only 2 groups, the
resulting mean spectra resembles normal and high-velocity features SNe Ia. In case we
require 3 groups, it is possible to recognize normal Ias, high-velocity and 1991bg-like
spectra in the elements identified by our method. Finally, 1991T-like objects are separated
from normals when 4 groups are required (Figure 4).

https://doi.org/10.1017/S174392131601293X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131601293X


Deep learning and the spectral diversity of SNe Ia 251

Figure 3. Mean spectrum found by DL + K-Means - full lines - and mean spectrum of the
SNe Ia subtypes defined by Wang et al. 2009 - segmented lines.

5. Conclusions
We propose a framework to automatically identify subtypes of SNe Ia within a set

of measured spectra by combining modern machine learning techniques. Our method
can be summarized in 3 main steps: transfer learning, dimensionality reduction, and
unsupervised learning.

The goal of transfer learning (TL) is to ensure the stability of the low dimensional
feature space by adding a large variety of spectra in the original data matrix. In our
particular case, we use all available SNe Ia spectra, irrespective of their epoch for deter-
mining a stable low dimensional parameter space and subsequently focused only on those
spectra within ±3 days since maximum for the remaining analysis.

The dimensionality reduction stage was performed using Deep Learning (DL), which
allowed us to translate an initial data matrix of 300 wavelength bins to a 4-dimensional
feature space representation. Lastly, we use K-Means to investigate the possibility of
identifying spectroscopic features in subclasses of SN Ia spectra at maximum light. This
allows us to define a data-driven classification scheme and analyse clusters separately,
looking for their spectroscopic characteristics. A more friendly visualization of the four
dimensional feature space was achieved by the application of isomap as a further layer
of dimensionality reduction.

We find that the spectral variability of SNe Ia at maximum can be summarized by
a 4 dimensional space. This suggests that not much more than 4 underlying physical
parameters are necessary to describe SN Ia explosions and their spectroscopic variability,
including the most “peculiar” objects, such as 91bg-like and the 02cx-like SNe.

SNe Ia are well known as a uniform class of objects. Our results independently confirm
that progenitors should be a “simple” system with no more than a handful of initial
parameters. We also show that the currently identified SN Ia sub-types are extremes of
a continuous distribution of spectral features and did not find strong evidence of distinct
subclasses.

Our complete software apparatus was built under DRACULA, a publicly available Python
package that is here tested on a public data set of SN Ia spectra. We refer the reader
to Appendix B of Sasdelli et al. 2016, where a complete tutorial is presented. Although
here we focus in the SNéIa characterization problem, there is still great potential for
application of this kind of tool in astronomical problems.
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Figure 4. Sequence of groups found by K-Means (full lines) and the groups defined by Wang
et al. 2009 (segmented lines). Panels run through 1 to 4 groups (top-left to bottom-right). We
also report the deviations between each configuration mean spectra. The grey region denotes 1σ
scatter for the groups defined with the K-Means algorithm.

Our results show agreement between mean cluster spectra and those proposed by Wang
et al. 2009. Our method also confirms previous statements that high velocity features are
of the first order effect in separating currently available samples of SNe Ia Wang et al.
2013. In subsequent work we will approach the time evolution in SN Ia spectra, and the
possibility of using our tool in the classification of other supernova types.
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