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Abstract. Due to limitations in available instrumentation and observation time, a spectroscopic
determination of distance is not feasible for all objects in the sky. Therefore statistical methods
that estimate redshifts, based on photometric measurement are of tremendous importance to
many astrophysical questions. Determining cosmological parameters and understanding evolu-
tionary processes in the universe are just two examples. When perform astrophysical analyses,
it is necessary to treat the uncertainties of the estimates correctly. Over-simplification of results
and the usage of wrong tools to evaluate the performance of probabilistic redshift estimates were
commonly found in the literature. We present proper tools for evaluating uncertain redshift es-
timates and discuss the necessity of multimodal redshift distributions.
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1. Introduction

Photometric redshift estimation is a regression problem where the redshift of an object
should be derived from a set of low resolution photometric measurements. It is more
efficient to derive photometric measurements instead of performing a full spectroscopic
analysis. Multiple objects can be observed simultaneously with a much better signal-to-
noise-ratio instead of being individually dispersed. Thereby bandpass filters of different
widths can be combined to roughly reconstruct the spectral energy distribution of the
objects and hence provide a basis for estimating the redshift of the object. The estimation
of photometric redshift is done with different approaches. Some approaches are based
on fitting a set of template spectra via minimizing the residuals between the observed
photometric measurements and the integrated template fluxes. Other approaches make
use of a very large set of photometric references and estimate the redshift with methods
from the field of statistical learning. A different class of models tries to generalize the
regression problem and uses machine learning techniques to learn a relation between the
photometric input values and the redshift values.

In order to describe our continuous way of improving photometric redshift estimation
techniques, the following subsections present our individual steps in a historically ordered
listing.

1.1. Improving Methods

In the past, we started working on optimizing the photometric redshift estimation models.
To improve the quality of photometric redshift estimates, we tried different approaches.
We compared the performance of generalizing models and models that are local in the
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space of reference objects (Gieseke et al. 2012). In this publication we learned how im-
portant the ability to generalize is, in case you have a severe shift between your reference
data and the data, you want to apply your model to. Domain shift is a serious problem
in the field of photometric redshift estimation, especially when dealing with high-redshift
quasars. The limited number of good references is a problem for methods that are not
generalizing. Therefore in Polsterer et al.(2013) we constrained the scientific question
on detecting quasar that exceed a certain redshift limit. By using a limiting redshift of
z > 4.8 instead of demanding accurate photometric redshift estimates, we could make use
of a simple nearest neighbour model. This kind of model is limited to the reference values
in the vicinity with respect to the high-dimensional feature space and therefore does not
generalize. Due to the extreme size of the available reference data of spectroscopically
confirmed quasars, this is an efficient and computationally not too demanding model to
filter a very large data-set.

To further improve the performance of our photometric redshift estimation, we ap-
plied different machine learning techniques and dealt with different reference data-sets.
Besides using random forest based approaches, we employed artificial neural networks and
support vector regression models. We observed severe differences in the results obtained,
when comparing them with other approaches in the literature. Even when using the same
reference data-sets, differences could be observed. E.g. when estimating the photometric
redshifts based on the quasars of Schneider et al.(2010), differences are introduced by
interpreting the photometric flags individually, rejecting quasars and therefore changing
the quality of the reference sample. The community should start working on generat-
ing a reference data-set that can be used for evaluating the performance of estimation
approaches. Besides a non homogeneous set of quality measures, another source of dif-
ferences in the results are unused cross-validations techniques and missing uncertainty
quantification for the quality measurements. In Section 2 we introduce a set of proper
tools and measures that should become standard when dealing with uncertain photomet-
ric redshift estimations.

1.2. Performing Feature Selection

A detailed analysis of the performances of the different approaches lead us to the op-
timization of the selection of the input features. We started with standard colors from
neighboring filter bands. Back then, it could be observed in the literature that some
other approaches started to incorporate the errors of the feature extraction mechanisms.
Therefore we started adding more and more features, too. At a certain point, we could
not understand how further improvements were achieved by adding more and more fea-
tures. Especially, as some of the features like model- or petrosian-magnitudes had no
physical relation to the redshift estimation task of quasars. Besides the used algorithms
and techniques, the used features and feature-combinations are considerably contributing
to the performance of the methods, too.

To further investigate the impact of feature combinations on the prediction perfor-
mance, we started working on a systematic testing of feature combinations. In Heiner-
mann et al.(2013), Polsterer et al.(2014) and Gieseke ef al.(2014) we made used of fast
graphical processing units to explore which kind of feature combinations help to improve
the performance of the predictions. By employing features that are typically not used
for photometric redshift estimation and creating all possible colors between these raw
features, we could further improve our prediction performance by more than 25 percent.
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1.3. Adding Uncertainty

When improving the selection of input features for the regression models, we ended up
using the measurement errors of the feature extraction pipeline. Those errors are re-
flecting the uncertainty of the measured magnitudes in the different filter bands. A first
approach by us to generate output uncertainties was to apply sampling techniques. By
sampling over the given variances of the input features and statistically combining the
individually retrieved point estimates, very simple probability density functions (PDF's)
were generated. In order to evaluate the performance of the photometric redshift prob-
ability distributions, proper tools have been analyzed and studied. The tools we finally
ended up using are described in Section 2.

We found that sampling over the input uncertainties had just minor effect on the
distribution of the output uncertainties. Due to the fact that a simple model was used
that is trained to generate point estimates, the main source of model uncertainty was
ignored. The uncertainty and the degeneracies that are introduced when recovering a
complex spectral energy distribution via a few broad-band filters, are the dominating
source of prediction uncertainty. By applying a proper model that has the flexibility to
produce more complex predictive distributions, a significant improvement of the quality
of the estimates could be achieved. In the next sections we discuss the necessity of complex
PDFs as uncertain redshift estimates in more details.

Qutline: This work is structured as follows: In Section 2 we present a set of proper tools
to evaluate and inspect probabilistic redshift estimates. Next, we motivate the necessity
of multimodal redshift distributions in Section 3. After presenting some experiments and
results in Section 4 we conclude this work in Section 5.

2. Proper Tools

We provided a detailed description of proper measures and tools to evaluate the per-
formance of uncertain redshift estimates in Polsterer et al.(2016). Therefore we put a
copy of the important parts from this publication in this section.

As stated by Gneiting et al.(2007), when comparing forecasting distributions and ob-
servations, the goal is to maximize the sharpness of the predictive distributions subject
to calibration. In the context of photometric redshift estimation this refers to comparing
PDFs with spectroscopic redshifts. The term calibration describes the consistency be-
tween the predictive distribution and the true redshift. Sharpness is used to express the
concentration of the PDF.

2.1. Probability Integral Transform

In Dawid (1984) the probability integral transform (PIT) was proposed to be used as
a diagnostic tool to check the calibration and the sharpness of the generated predictive
distributions. The PIT is a visual tool which is based on the histogram of the values of
the cumulative probability at the true value. Therefore the PDF's have to be transferred
into cumulative distribution functions (CDF's) (see Equation 2.1).

CDF,(z) = /Zt PDF;(2)dz (2.1)

— 00
With respect to photometric redshift estimations, the PIT is calculated with the CDF
of the estimated redshift CDF; at the true redshift z; (see Equation 2.2). Hereby t €
{1,2,... N} indexes the corresponding tuple of a predicted redshift distribution and the
matching true redshift for NV data items.
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Figure 1. Four different probability integral transforms (PIT's). In the case of underdispersed
PDF's an u-shaped, concave distribution is observed (a). Overdispersed PDF's result in a peaked,
convex distribution (b). When a slope in the PIT is observed, the analysed PDF's are biased
(c). Only when the PIT exhibits a flat distribution, the PDF's are well calibrated (d).

pr = CDFy(2) (2.2)

When the anaylsed PDF's are of Gaussian nature with p and ¢ as mean and variance,
the CDF's can be evaluated by using Equation 2.3. For a Gaussian mixture model, the
corresponding CDF is a additive mixture of single Gaussian CDF's multiplied with their
weights, respectively.

1 2t —
CDF;(z) 5 {l—i—erf (@)] (2.3)
In case the predictions are optimal, the distribution of p;,t € {1,2,... N} has to be
uniform. As shown in Figure 1, multiple aspects can be verified by plotting the histogram
of this distribution. Only if the distribution of p; exhibits a uniform shape, the PDF's
are well calibrated. When the dispersion of the estimates is to small in relation to the
distribution of the true redshifts, an underdispersed distribution of p; can be observed.
This will be reflected by a u-shaped, concave histogram. The opposite case is observed
with overdispersed PDF's that generate a peaked, concave histogram. As soon as a bias
is present in the PDF's, a slope is added to the distribution of p;.

The histogram of the PIT values allows to visually check the calibration and sharpness,
i.e. testing how well the distribution of the p; values is of uniform nature. It provides
intuitive access to multiple aspects of the PDF's with respect to the corresponding true
redshifts. Therefore we recommend this tool to be always used when evaluating PDF's.

2.2. Continuous Ranked Probability Score

When comparing different approaches that generated PDF's based on photometric fea-
tures, a proper score should be used to measure the individual prediction performances.
In this context, prediction performance refers to how well the generated PDF's represents
the true redshifts of the objects in a test data-set. Please see Gneiting et al.(2007) for a
detailed introduction to the topic of proper scoring rules. In this work we make use of
the continuous ranked probability score (CRPS) as a performance measure. The CRPS
(Hersbach 2000) is widely used in the field of weather forecasting for expressing a distance
between a PDF and a true value. It compares a full distribution with an observation as
defined in:
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N
CRPS = % Zcrps(CDFt, 2t),
t=1
(2.4)
+ 00
with erps(CDF;, z) = / [CDF;(z) — CDE., (2)]” dz

— 00

C DF; is the cumulative distribution of the PDF, as defined in Equation 2.1. In Equation 2.5
the cumulative distribution of the true redshift CDF., is defined based on H(z) = H,
the Heaviside step-function.

0 forz<0

1 forz>0 (2:5)

CDF,, (z) = H(z — z), with H(z) = {
In case the PDF's are given as normal distributions, we are able to write it in the subse-
quent form (Gneiting et al. 2005).

crps[N (ue, 07), 2]

() e (22) ) oo

where ¢ and ® represent the PDF and the CDF of a normal distribution with mean 0
and variance 1, respectively. In Equation 2.6 the % term represents the normalized
prediction error. Representing a PDF as a Gaussian mixture model (GMM) (Bishop
2007) provides some advantages in calculating the CRPS for even more complicated
distribution. A Gaussian mixture model (see Equation 2.7) defines a distribution as a

combination of M number of Gaussians with independent means y and variances o?.
GMM (u, 0%, w) Zw/\fuu ,
" (2.7)
with Y w; =1 and w; >0,i € {1,2,... M}
i=1

Hereby the weights w control the contributions of the individual Gaussians to the final
distribution. With

A(p,0?) =20¢ (g) +pu {2@ (g) — 1] and (2.8)

crps(GM M (p, 02, w), %)
M MM
= i A — I 2y _ —W;W; A i — Wi 2 _ 52 2.9
izzlw * (zt M7Uz) ;;20‘}(‘%* (M l'l/]’o-l U]) ( )

we can calculate the CRPS of a GMM (Grimit et al. 2006). Besides GMMs there are
many other mixture models that could be used to represent the PDF's. For a lot of scores
the properscoring package provides a Python implementation that can be easily used
for calculating the CRPS. This package includes the calculation of the CRPS for an
ensemble of predictions, too.
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Figure 2. Example of 12 randomly chosen quasars from SDSS (DR7). The individual nearest
neighbors are plotted at the top together with the histogram in the background. In addition,
a Gaussian mixture model with three components and the true redshift are marked. A large
fraction of the randomly selected objects show a complex or clear multimodal nature.

3. Multimodal Redshift Distributions

In order to understand the uncertainties that are introduced through the degeneracies
of observing the complex spectral energy distribution of an object through a very broad
and limited set of photometric filters, we did a very simple analysis. To be able to
perfectly predict the true redshifts based on photometric measurements, there needs
to be a bidirectional unique relation between the photometric input features and the
spectroscopic redshifts. Under the assumption, that object that appear to be similar in
the photometric filters should have similar spectroscopic redshift, as set of objects was
randomly selected. The distribution of the true redshifts of the neighbors with respect to
their distribution in the feature space was analyzed. As shown in Figure 2 our assumption
is wrong. For each object we used the 128 nearest neighbors with respect to the distance
in the feature space. Most of the objects show a clear multimodal distribution of the
redshift values of the neighbouring objects. This distribution has no correlation to the
distance in the feature space and therefore clearly indicates that our assumption is wrong.

In the case of photometric redshift estimation of quasars based on the broadband filters
of SDSS there exists no unique relation between input and output values. This explains,
why objects can be, e.q. equally likely at two different redshifts and a simple point
estimate is not able to capture the whole problem. The fitted Gaussian mixture models
gives a much smoother and a continuous representation of the probability densities. In
addition, this representation makes it easier to compute and process the estimated PDF's.
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Producing single outputs with an uncertainty and dealing with unimodal distributions
is not a correct approach to add uncertainties to photometric redshift estimations.

4. Experiments

As motivated above, photometric redshift estimation requires a more complex descrip-
tion of the probability distribution, than single point estimated with symmetric uncer-
tainties could deliver. In this section we perform experiments that visualize the good
prediction performances that can be achieved when using multimodal descriptions for
the estimates.

4.1. Reference Data and Data Preprocessing

The data for our experiments is taken from SDSS (DR7). Based on the quasar cata-
log by Schneider et al.(2010), we extracted 80,000 objects together with their ugriz psf
magnitudes. This data-set was shuffled to prevent unwanted correlations which might be
introduced by a previous ordering of the objects. We ended up with 15 input features,
by creating all possible color combinations and using the plain magnitudes, too. Even
though, only the Euclidean distance based nearest neighbor model demands a renormal-
ization of the input features, a min-max normalization was applied to all features of the
whole data-set. The data-set was split in 30,000 objects for training and 50,000 objects
for testing. As a performed k-fold cross validation did not show significant differences
between the individual results, only the results of a single fold are presented.

4.2. Redshift Estimation Methods

The estimation of the photometric redshift distributions was done with three different
methods that are described in more detailed, next. All models generate a mixture of
Gaussian components to represent the PDF's of the redshift estimates.

4.2.1. Nearest Neighbor Prediction Model

For each object in the test sample, we have to generate an uncertain photometric
redshift estimate. Similarly to the Gedankenexperiment in Section 3, the 256 nearest
neighbors from the reference/training sample are extracted. Thereby the neighborhood
is defined by the Euclidean distance within the 15-dimensional feature space. Instead of
dealing with the mean value of the spectroscopic redshifts of the neighboring objects,
a Gaussian mixture model with 5 components is fitted to the redshift distribution of
the neighboring references. This representation is continuous and more smoother than
dealing with an ensemble of individual redshift values. Furthermore, there are some
computational advantages and it provides a compression of the amount of data that has
to be stored and handled.

4.2.2. Random Forest Prediction Model

Similarly to the nearest neighbor approach, the random forest approach makes use
of a partitioning of the high-dimensional feature space. 256 individual decision trees
are build where bootstrapping and bagging ensure different feature space partitionings.
Hereby the training data is used to generate the individual trees. For each of the test
objects, the spectroscoping redshift of the final leaf of each decision tree is determined.
Those reference redshift values are used to fit a Gaussian mixture model, likewise to
the nearest neighbor approach. The resulting mixture model is considered to reflect the
estimated redshift PDF. Both, the nearest neighbor and the random forest approach are
local within the feature space and therefore do not provide a generalization. The next
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Figure 3. Comparison of the performance of Nearest Neighbors, Random Forest and Mixture
Density Network based uncertain redshift estimates. The upper plots show a comparison between
the estimated redshift and the true spectroscopic redshift. In contrast to plotting the point
estimates against the true values, a probability distributy is plotted in y-direction. The lower
plots visualize the PIT and CRPS values.

method is generalizing much better, but hence might not get all tiny difference that might
be locally reflected by the reference data.

4.2.3. Mixture Density Network Prediction Model

A mixture density network is a modification of a simple multilayer perceptron. Instead
of training to predict a single value, this kind of network predicts in the parameter
of a mixture model. In our case we used a Gaussian mixture model, as it was used
in both other approaches. Based on the means, sigmas and weights of the Gaussian
component, the CRPS is used as the loss function for training. This ensures, that during
training the weights of the network architecture are modified to minimize the CRPS and
hence produce better results. By applying an early stopping technique, effects caused by
overfitting are minimized.

4.3. Results

The results of the three different PDF' generating approaches are presented in Figure 3.
All three results show a very nice symmetry. This is a clear indication that multimodality
is recovered in bot directions. E.g. some objects at z = 0.5 have a certain probability
of being at z = 1.5 and vice versa. With respect to CRPS, the random forest based
estimation shows the best performance. Taking into account the number of variables
required to represent the reference objects / decision trees / weight and bias matrices,
this is easy to understand. Both, the nearest neighbor and the random forest approach
are slightly overdispersed. This indicates, that the estimated distributions are to broad
with respect to their deviations from the true redshifts. The mixture density network
instead generalizes much better and shows nearly a perfectly calibrated PIT.
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5. Conclusions

Multimodal Redshifts: We presented and motivated the necessity of multimodal red-
shift probability distributions. Especially in the case of estimating the redshift based on
broadband photometry with objects that cover a larger redshift range and have errors
in their measurements, multimodal probability distribution have to be expected. Those
estimates can be either represented by an ensemble of individual estimates, by an ap-
proximation via a mixture model or by providing a full PDF. We have to learn how to
propagate those uncertain estimates correctly, instead of using point estimates only.

Proper Tools and Measures: To have a correct and fair comparison between different
approaches, we have to built reference data-sets and have clearly defined redshift esti-
mation challenges. Further more, a standard set of proper scoring measures and tools to
evaluate the performances of estimated probabilistic redshift distributions is demanded.
We presented two well accepted proper tools from the field of weather forecasting that
should be used in astronomy, too.

Future Work: In order to improve the quality of the predictions, we currently work
on combining deep convolutional networks with mixture density networks. The work
presented by Antonio D’Isanto at this meeting shows how well we can produce PDF's
based on imaging data only. This enables us to skip the challenging steps of feature
extraction and feature selection and makes a discrimination between quasars and galaxies
in an extra step obsolete.
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Discussion

GIUSEPPE LONGO: Comment: In the Euclid mission, photometric redshift estimation
play an important role and therefore needs a proper treatment, as presented in the talk.
Selecting objects

KA1 POLSTERER: Comment: For photometric redshift estimation challenges, we should
define a set of accepted proper scoring rules to ensure a fair comparison of methods.

RAY NORRIS: Question: Should the surveys be preserving the PDF's and how should the
values be stored and returned? Currently just single values are returned.

KA1 POLSTERER: Answer: We should start defining standards to preserve PDF's and
have databases methods that allow to transform the PDF's into the format we need.
Sometime the mean could be sufficient, sometimes we could make use of a mixture of
Gaussians and sometimes the probability of being in a certain redshift range have to be
returned.

RAy NoORRIis: This will require a change in the way the community deals with photo-
metric redshifts.

KA1 POLSTERER: Yes, indeed, and this is probably more complex than providing stan-
dards and interfaces.

EriCc FEIGELSON: Question: When fitting Gaussian mixture models the number of com-
ponents can be estimate via the Bayesian information criterion. Why did you pick a fixed
number of Gaussians instead of using the most plausible one.

KA1 POLSTERER: Answer: We calculated both, the Bayesian information criterion and
the Akaike information criterion when fitting the Gaussian mixture model. In order to
keep the presentation simple, we choose to use a fixed number of components.

https://doi.org/10.1017/51743921316013089 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921316013089

