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Abstract. Various natural deduction formulations of classical, minimal, intuitionist, and inter-
mediate propositional and first-order logics are presented and investigated with respect to satisfaction
of the separation and subformula properties. The technique employed is, for the most part, seman-
tic, based on general versions of the Lindenbaum and Lindenbaum–Henkin constructions. Careful
attention is paid (i) to which properties of theories result in the presence of which rules of inference,
and (ii) to restrictions on the sets of formulas to which the rules may be employed, restrictions
determined by the formulas occurring as premises and conclusion of the invalid inference for which
a counterexample is to be constructed. We obtain an elegant formulation of classical propositional
logic with the subformula property and a singularly inelegant formulation of classical first-order
logic with the subformula property, the latter, unfortunately, not a product of the strategy otherwise
used throughout the article. Along the way, we arrive at an optimal strengthening of the subformula
results for classical first-order logic obtained as consequences of normalization theorems by Dag
Prawitz and Gunnar Stålmarck.

§1. Introduction. Although what follows can be seen as containing a contribution
to the debate over proof-theoretic semantics and the revisionist challenge posed by such
authors as Dag Prawitz, Michael Dummett, and Neil Tennant, its original motivation lies
in two technical concerns. One of these starts out from the observation that in providing
counterexamples to invalid inference patterns one does not follow the sequence set out
in standard completeness proofs employing the Lindenbaum and Henkin–Lindenbaum
constructions: when we come to construct Kripke models with a view to showing a certain
sequent underivable in intuitionist logic, be it propositional or first order, we attend at
most to the behavior of subformulas of the formulas in the sequent and, in the first-order
case, instances of quantified formulas, subformulas of these, instances of these, and so
on, at nodes in a suitable model; we do not attend to all formulas of the language in
question, tacitly we let our model take care of the others—soundness guarantees that
nothing untoward happens.

Put another way, we can see this as a delimiting of the language of interest, a very
narrow delimiting indeed to the formulas of the sequent in question and their subformulas.
This ties the first motive to the second: the fact that, given completeness of, say, intuitionist
propositional logic with respect to a semantics, the separation property yields completeness
results for various subsets of the rules when applied to semantically valid sequents
composed of formulas containing only connectives governed by those rules, and the
subformula property yields completeness under an even greater restriction, namely that
the rules governing connectives that occur in a valid sequent be confined in application
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to subformulas of the formulas occurring in that sequent. We have, in other words,
completeness for fragments of the original logic, and we have, then, a reason to come
at this from the opposite direction, to derive the subformula and separation properties
semantically by obtaining appropriate completeness results for fragments of the original
logic directly using Kripke semantics, a technique pioneered by Krister Segerberg in
obtaining a semantic proof of the separation property for intuitionist propositional logic.1

We go further, both in looking at classical propositional logic and first-order logics and in
obtaining not only the separation property but, in some cases, the subformula property too.
The fundamental thought that underpins the construction of appropriate Kripke models is
that we restrict the Lindenbaum and Lindenbaum–Henkin constructions to particular sets
of formulas determined by the sequent of interest.2

A formulation of a logic, whether sequent calculus or natural deduction, enjoys the
(strict) subformula property if any derivable sequent has a derivation employing only
subformulas of the premises and conclusion(s). A sequent calculus formulation of a logic
enjoys the separation property if any sequent derivable in the logic has a derivation employ-
ing neither left nor right introduction rules governing connectives and (where appropriate)
quantifiers not occurring in members of the sequent. For natural deduction formulations,
which are the focus of attention here, we say: a formulation of a logic enjoys the separation
property if any derivable sequent has a derivation employing neither introduction nor
elimination rules governing connectives and, where appropriate, quantifiers not occurring
in members of the sequent.3

In the case of propositional logics, a subformula is any part (not necessarily a proper
part) of a formula that is itself a formula. (Here I say ‘formula’ where others might say
‘well-formed formula’.) For first-order logics the notion of a subformula is looser: we must
allow among subformulas instances of universal and existential generalizations employing
both constants occurring in the sequent in question and “parametric” constants not occur-
ring in the sequent, subformulas of such instances, and, where appropriate, instantiations

1 See the final section, sec. 7, of Segerberg (1968). An algebraic proof of the separation property for
intuitionist propositional logic was given by Horn (1962). Horn’s proof proceeds by embedding in
Heyting algebras algebraic structures of various kinds depending on the connectives occurring in
formulas. Horn and Segerberg both work with a Hilbert-style axiomatic formulation of intuitionist
propositional logic; in that setting separation means that any theorem of the system is provable
using only axioms for the conditional together with those axioms containing connectives that
occur in the theorem. One could find a close parallel between Horn’s technique and Segerberg’s.

2 The Lindenbaum construction is used by Segerberg (1968) for a number of propositional logics,
the Lindenbaum–Henkin construction by Fitting (1969, chap. 5, sec. 6) and by Thomason (1970)
for first-order intuitionist logic. In proving the weak completeness of intuitionist first-order logic,
Kripke (1965) took a rather different approach. (I should perhaps acknowledge that some authors,
witness Thomason (1970), do not literally consider all formulas of the language. Rather, they
consider only all existential generalizations and all disjunctions, relying on the logical equivalence
of A and A ∨ A to take care of formulas of other forms. This is hardly an example to follow when
interested in the separation and subformula properties.)

3 To be strictly accurate, we should allow for impure rules, introduction and elimination rules
in whose formulation connectives and/or quantifiers other than the connectives introduced or
eliminated feature. The separation property should then allow that these other connectives may
occur in inferences even if they occur in neither premise(s) nor conclusion. Authors differ in
their attitudes to impure rules: compare Dummett (1991, pp. 257–258) and Tennant (1997,
pp. 314–315). Impure rules play no role in what is to follow (unless one counts the formulations
of ∨-elimination, Rule of Dilemma, and Tarski’s Rule in 3.7 as impure).
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in turn of these, and so on.4 When the subformula property fails to hold of a formulation
of a logic we may find, nonetheless, that quite tight constraints on the range of formulas
occurring in a derivation, determined by the derivable sequent in question and the rules
available in the formulation of the logic, are respected—for example, it may be that only
subformulas of formulas in the sequent and negations of such need occur in a derivation.
It may be that while the subformula property fails to hold, the formulation under consider-
ation enjoys the separation property.

As commonly presented, intuitionist and minimal propositional and first-order logics
enjoy the subformula and, therefore, the separation properties. The standard way to demon-
strate these facts is to use the sequent calculus formulation of the logic in question and
obtain them as corollaries to cut elimination: in a cut-free sequent calculus derivation every
formula occurring in the derivation is a subformula of a formula occurring in the antecedent
or succeedent of the derived sequent.5 Dag Prawitz obtained subformula and separation
properties for natural deduction derivations in intuitionist and minimal first-order logic and
a restricted subformula property for natural deduction derivations in classical first-order
logic as corollaries to his proofs of the normalizability of natural deduction derivations.6

Our focus here will likewise be on (single-conclusion) natural deduction formulations of
minimal, intuitionist, and classical propositional and first-order logics. (A couple of inter-
mediate propositional logics will also be considered briefly. The intermediate first-order
logic for constant domains—and its Kripke semantics—figures more prominently.) What
novelty there is lies in the approach’s being semantic, a fact that may be of pedagogical
value.

When we present classical logic (propositional or first order) by adding schematic rules
to a formulation of minimal or intuitionist logic—an extension-by-rules, as we might say,
of minimal or intuitionist logic (propositional or first order)—we find that, in addition to
subformulas of an invalid sequent, we may have to attend to certain other formulas too in
order to obtain Kripke models of the appropriate kind. Exactly which formulas depends
on the additional rules—exactly how the propositional part of classical logic is formulated
becomes crucial. Nevertheless we can still obtain separation results when the subformula
property fails. We obtain the strict subformula property for a particular formulation of
classical propositional logic. However, even separation can only be obtained at the expense

4 Prawitz (1965, p. 16) gives something very close to this inductive definition:
(1) A is a subformula of A;
(2a) If B ∧ C , B ∨ C , or B → C is a subformula of A, then so are B and C ;
(2b) If ¬B is a subformula of A, then so is B;
(3) If ∀vB or ∃vB is a subformula of A, then so is B(v/c).
Here B(v /c) represents the outcome of dropping the quantifier at the head of ∀vB or ∃vB and

uniformly substituting the constant c for all occurrences of the variable v bound by the dropped
quantifier. (In what follows we eschew function symbols and identity. We choose to formulate
our natural deduction systems without free-variable formulas.) Prawitz’s notion of subformula
coincides with what Troelstra & Schwichtenberg (1996, p. 4) call Gentzen subformula.

5 See, for example, Troelstra & Schwichtenberg (1996, secs. 4.1 and 4.2). Classical propositional
and first-order logics differ in their sequent calculus formulation from their intuitionist correlates
only by a structural feature, namely the possibility that the succeedent contain two or more
formulas. Sequent calculus formulations of these logics also enjoy the subformula and separation
properties (again see, e.g., Troelstra & Schwichtenberg, 1996). The case of the natural deduction
formulations of these logics is much less straightforward—a matter we take up below.

6 See Prawitz (1965, secs. 3.1, 3.2, 4.1, and 4.2). Prawitz’s results have subsequently been
strengthened. See, for example, Stålmarck (1991). Below we obtain an optimal strengthening.
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of redundancy: we must take as basic rules obtainable as derived rules given the other rules
present. That outcome is, however, predicated on formulating classical propositional logic
by adding rules to intuitionist propositional logic. In that setting, redundancy can only be
avoided either by taking ¬A to abbreviate A → ⊥, where ⊥ is the familiar 0-ary falsum
constant (rather than treating negation as a connective in its own right), or by taking A → B
to be merely an abbreviation for ¬A ∨ B.

However, taking both negation and implication as primitive we succeed in finding a
natural deduction formulation of classical propositional logic in which all rules governing
connectives are pure rules (i.e., each concerns only one connective), in which no rule is
redundant, and that has the (strict) subformula (hence the separation) property. It is not an
extension-by-rules even of minimal propositional logic as the standard introduction rule
for negation is absent and the standard introduction rule for the conditional is severely
restricted. The Rule of Dilemma governs negation; Tarski’s Rule (as I call it), a close
relative of Peirce’s Rule, governs the conditional.

The first-order version of that formulation of classical logic, obtained by adding the
orthodox introduction and elimination rules for the universal and existential quantifiers,
does not have the subformula property, nor even the separation property—unsurprisingly,
for the “constant domains” inference pattern ∀x(Fx ∨ A) 	 ∀xFx ∨ A, where x does not
occur free in A, is classically but not intuitionistically valid. To obtain a formulation of
classical first-order logic satisfying the strict subformula property (and doing so without
redundancy), we have to weaken the restrictions customarily imposed on applications
of the standard introduction rule for the universal quantifier, and, to compensate, add
restrictions on the use of ∨-elimination, Dilemma, and Tarski’s Rule. In well-defined
circumstances we allow generalization on a name that does occur in assumptions on which
the instance generalized upon depends. Very roughly, inferring a universal generalization
is permissible (classically!) even when the name does occur in undischarged assumptions
if those assumptions containing the name are assumptions for the subproofs in applica-
tions of ∨-elimination, Dilemma, and Tarski’s Rule, and, all importantly, in the case of
∨-elimination have an ancestry that can be traced back to assumptions not containing those
names. Unfortunately, the completeness proof for this formulation of first-order classical
logic is the one place where I have been unable to find an application for the general
technique deployed elsewhere in this article. I do not know whether this is due merely to
lack of imagination and ingenuity on my part or whether there is a deeper cause, but the
complexity of extant completeness proofs for the constant domains extension of first-order
intuitionist logic—Görnemann (1971), Gabbay (1981)—suggests the latter.

In what follows we begin with a natural deduction formulation of intuitionist proposi-
tional and first-order logics with negation as primitive. We have then the standard intro-
duction and elimination rules for ∧, ∨, →, ¬, ∀, and ∃.
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We take the standard rules for negation to be:

For certain purposes it is useful to think of ¬-I as derived from these two more primitive
rules:

With our theme in mind, it is a significant, if obvious, fact that obtaining ¬-I as a derived
rule from weak ¬-I and ¬-inversion (henceforth, ¬-inv) introduces no new formula:

Minimal propositional logic may be obtained from intuitionist propositional logic by
dropping the ¬-E rule.

That a set of natural deduction rules should enjoy the subformula and separation prop-
erties is undoubtedly a boon where the practical aim of constructing (or searching for)
derivations is concerned and this paper concerns itself solely with the technical matter of
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the derivation of, for the most part, known proof-theoretic results by a semantic technique.
Nevertheless, a very brief word ought, perhaps, to be said regarding the philosophical
import of these formal results. It is conceptually an important matter that one’s chosen
set of rules of inference enjoy the separation property should one take the line that these
rules give the meaning of the connectives, for only if the chosen rules enjoy the separation
property can one go on to declare validity to turn on nothing other than the meanings of
the connectives involved. And in that setting the subformula property takes on the guise of
something very like a compositionality principle.

These all too cryptic observations will perforce suffice, for our present purpose is to
sketch and apply a simple semantic method with which to investigate to what extent various
sets of natural deduction rules do enjoy the separation and subformula properties.

§2. Propositional logics.

2.1. The basic Lindenbaum construction. The Lindenbaum construction for classical
propositional logic yields a maximal, consistent, deductively closed set of formulas. In
the classical case, maximality implies negation- and implication-completeness: for any
formulas A and B in the language, the maximal set contains exactly one of A and ¬A,
and at least one of A and A → B. For weaker logics, maximality may not entail these
properties. The set produced by the construction is always deductively closed—a theory.
Which properties it possesses depends closely on which rules of inference, whether as
primitive or derived, are available. For example, ¬-E ensures consistency.

Compared to the standard construction there is in what follows a double relativization.
Given a sequent � : A underivable in some logic, we confine attention to theories con-
taining only formulas in some set determined by � ∪ {A}, a set that includes at least
all subformulas of A and the formulas in �. The second relativization is to some not
necessarily proper superset of this set of formulas. These are the formulas that are allowed
to turn up in inferences—we restrict application of the rules of the logic in question to
formulas in this second set.

We suppose given a language L comprising a set At(L ) of atomic formulas and com-
plex formulas built up using the connectives ∧, ∨, →, and ¬. We say that a connective
occurs in a set of formulas just in case it occurs in at least one member of the set.

Given a set � of formulas of L and a set R of rules of inference we have the following
definitions:

(i) a set of formulas � is a �,R-theory if

for all formulas A in �, A ∈ � if, and only if, �	R A

(where 	R stands for derivability governed by the rules in the set R);7

(ii) a set of formulas � is �-prime if
for all formulas A, B in �, if A ∨ B ∈ � then A ∨ B ∈ � if, and only if, A ∈ � or
B ∈ �;

(iii) a set of formulas � is �-consistent if

for all formulas A in �, if ¬A ∈ � then ¬A ∈ � only if A /∈ �;

7 Notice that by this definition a �,R-theory may contain formulas not in �.
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(iv) a set of formulas � is �-negation-complete if

for all formulas A in �, if ¬A ∈ � and A /∈ � then ¬A ∈ �;

(v) a set of formulas � is �-implication-complete if

for all formulas A, B in �, if A → B ∈ � and A /∈ � then A → B ∈ �.8

2.1.1. The Generic Lindenbaum Lemma (GLL) In what follows, we take for granted
that all rules of inference, and proofs constructed in accordance with them, are finitary. We
also take for granted that any set of rules considered allows us to derive a formula from
any set containing that formula. We must allow that some rules of inference may be derived
rules. Here a little care is needed. I shall speak of a derived rule being “safely �-derived”,
where � is a set of sentences. In this there is implicit reference to some set of primitive
rules R. What is meant is that in the application or applications in question of the derived
rule to formulas in �, there need be no application of rules in R to formulas outside �
when the derived rule is expanded in terms of the primitive rules.

THEOREM 1 Given R, when ��R A let �0 and � be sets of formulas such that �∪{A}
⊆ �0 and �0 is closed under subformulas (i.e., any subformula of a member of �0 belongs
to �0), �0 ⊆ �, and let R�� stand for the restriction of the rules in R obtained by
excluding rules governing those connectives that do not occur in any member of � and
restricting those that remain to formulas in �, that is, only formulas in � may occur as
assumptions, major and minor premises, and/or conclusions in applications of these rules,
hence only formulas in � may occur in proofs constructed using the rules in R��. Then

(i) there is a �0,R��-theory � such that � ⊆ � ⊆ �0, A /∈ �, and

(a) for all formulas B in �0, B /∈ � if, and only if, �, B	R�� A,

(b) if ∧ occurs in �0 and the rules of ∧-I and ∧-E either belong to R or are
safely �-derived rules given the rules in R, then for all formulas B, C in �0,
if B ∧ C ∈ �0 then B ∧ C ∈ � if, and only if, B ∈ � and C ∈ �,

(c) if → occurs in �0 and the rule of →-I either belongs to R or is a safely �-
derived rule given the rules in R, then for all formulas B, C in �0, if B →
C ∈ �0 then B → C ∈ � if C ∈ �,

(d) if → occurs in �0 and the rule of →-E either belongs to R or is a safely �-
derived rule given the rules in R, then for all formulas B, C in �0, if B →
C ∈ �0 then B → C ∈ � only if B /∈ � or C ∈ �;

(ii) if ∨ occurs in �0 and the rules of ∨-I and ∨-E either belong to R or are safely
�-derived rules given the rules in R, � is �0-prime;

(iii) if ¬ occurs in �0 and the rule of ¬-E either belongs to R or is a safely �-derived
rule given the rules in R, � is �0-consistent;

(iv1) if A = ¬D, for some D ∈ �0 and the rule ¬-inv either belongs to R or is a safely
�-derived rule given the rules in R, � is �0-consistent;

(iv2) if A = ¬D, for some D ∈ �0 and the rule of ¬-I either belongs to R or is a safely
�-derived rule given the rules in R, � is �0-consistent and �0-negation-complete;

8 By these definitions, if ∨ does not occur in � any set of formulas is �-prime; likewise, if ¬ does
not occur in � any set of formulas is �-consistent and �-negation-complete, and if → does not
occur in � any set of formulas is �-implication-complete.
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(v) if A = ¬D, for some D ∈ �0, → occurs in �0 and the rules of weak ¬-I, ¬-E,
and →-I either belong to R or are safely �-derived rules given the rules in R, � is
�0-implication-complete.

Proof. The proof mimics the standard version.
Let B0, B1, . . . , Bn, . . . be an enumeration of the formulas in �0. This enumeration

is indexed either by N or an initial segment of N—call the indexing set I . We define a
sequence of extensions of � in the standard way:

(A) �0 = �;

(B) for all n ∈ I ,
�n+1 = �n if �n , Bn	R�� A,
�n+1 = �n∪{Bn} if �n , Bn �R�� A.

We set � = �0 ∪ ⋃
n∈I �n+1.

By construction, we have, for all n ∈ I , that �n+1 �R�� A. As proofs are finitary it
follows that � �R�� A.

(i) If B ∈ �0 and B /∈ � then, for some n ∈ I , B = Bn , and B /∈ �n+1; but then
�n , B 	R�� A and hence �, B 	R�� A. If B ∈ �0, B ∈ � and �, B 	R�� A, then
� 	R�� A, which we know not to be the case, hence �, B �R�� A when B ∈ �0
and B ∈ �. As � 	R�� A when A ∈ �, A /∈ �.
� is a �0,R��-theory: if B ∈ � then � 	R�� B; conversely, if � 	R�� B, B ∈ �0
and B /∈ � then � 	R�� A as �, B 	R�� A, but we know this not to be the case.
(b), (c), and (d) are straightforward consequences of the �0,R��-theoryhood of �.
These properties are therefore enjoyed by any �0,R��-theory.

(ii) If ∨ occurs in �0 and R gives us the rules of ∨-I and ∨-E, � is �0-prime: firstly,
if B, C , B ∨ C ∈ �0 and B ∈ � or C ∈ �, then, by ∨-I, � 	R�� B ∨ C and, by
�0, R��-theoryhood of �, B ∨ C ∈ �; secondly, if B, C , B ∨ C ∈ �0, B /∈ � and
C /∈ �, then �, B 	R�� A and �, C 	R�� A, whence, by ∨-E, �, B ∨ C 	R�� A,
and so B ∨ C /∈ �.

(iii) If ¬ occurs in �0 and R gives us the rule of ¬-E, � is �0-consistent: if B ∈ �0,
¬B ∈ �0, B ∈ �, and ¬B ∈ � then, by ¬-E, � 	R�� A, which we know not to be
the case.

(iv) If A = ¬D, and R gives us the rule ¬-inv, � is �0-consistent; if, in addition, R
gives us weak ¬-I, � is also �0-negation-complete: firstly, if B ∈ �0, ¬B ∈ �0,
B ∈ �, and ¬B ∈ � then, by ¬-inv, � 	R�� ¬D (= A), which we know not to be
the case; secondly, if B ∈ �0, ¬B ∈ �0, B /∈ �, and ¬B /∈ � then �, B 	R�� ¬D
and �, ¬B 	R�� ¬D, whence, from the former, by ¬-inv, �, D 	R�� ¬B, and so,
from this and the latter, �, D 	R�� ¬D, yielding, by weak ¬-I, � 	R�� ¬D(= A),
which we know not to be the case.

(v) If A = ¬D, → occurs in �0, and R gives us the rules of weak ¬-I, ¬-E, and
→-I then � is �0-implication-complete: if B, C , B → C ∈ �0, B /∈ �, and
B → C /∈ �, then �, B 	R�� ¬D and �, B → C 	R�� ¬D, whence, from the
former, by ¬-E, �, B, D 	R�� C , and so, by →-I, �, D 	R�� B → C and from this
and the latter we have �, D 	R�� ¬D, yielding, by weak ¬-I, � 	R�� ¬D(= A),
which we know not to be the case. �

With � and �0 as above and the antecedents of (i)(a) - (d) fulfilled, a �0-consistent,
�0-prime, �0-negation-complete, �0-implication-complete �0,R-theory � corresponds
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to a classical assignment of truth-values to the formulas in �0 under which all and only
members of � receive the value true.

The proof allows that �0 may contain more than subformulas of members of �∪{A}
and that � may contain formulas not in �0. When we wish to indicate that some set R of
rules is to be restricted in application exactly to subformulas of members of some set ���,
we shall lazily write R���� rather than coin a special notation for the least set containing ���
and closed under subformulas.

2.1.2. Strong Glivenko Theorems for classical propositional logic (CPL) Indepen-
dently of any particular formulation of classical propositional logic as an extension of
minimal propositional logic (MPL), for the first, and intuitionist propositional logic (IPL),
for the second, we have, as immediate consequences of GLL, the following, where RM
denotes the set of rules in our chosen formulation of MPL, and, likewise, RI denotes the
set of rules in our chosen formulation of IPL. Given a set of formulas � we write C(�)
for the set of connectives that occur in at least one member of �.

2.1.2.1. Strong Glivenko Theorem for the {∧, ∨, ¬}-fragment of CPL

THEOREM 2 If C(� ∪ {¬A}) ⊆ {∧, ∨, ¬} and � 	CPL ¬A then � 	MPL ¬A.

Proof. Let � contain all and only subformulas of the members of � ∪ {¬A}. ¬-I is one
of the rules of MPL, so if � �MPL ¬A, there is, by GLL (i)–(iv), a �-prime, �-consistent,
�-negation-complete, vacuously �-implication-complete, �,RM ��-theory �, a subset of
�, extending � and not containing ¬A. This determines a classical assignment of truth-
values under which all members of � are assigned the value true and ¬A is assigned the
value false. By the soundness of CPL with respect to classical truth-value assignments,
� �CPL ¬A. �

2.1.2.2. Strong Glivenko Theorem for full CPL

THEOREM 3 If � 	CPL ¬A then � 	IPL ¬A.

Proof. →-I and ¬-E are among the rules of IPL, so, over and above what we appealed
to in the proof of the previous theorem, by GLL (v) the RI ��-theory � is �-implication-
complete. �

2.2. Intuitionist propositional logic (IPL).

2.2.1. Kripke semantics for intuitionist propositional logic A Kripke model is a triple
< T, 
, u > where

(a) T is a nonempty set (whose elements are called nodes);

(b) 
⊆ T 2 and partially orders T ;

(c) the function u: T × At(L ) → {0, 1} satisfies the constraint: if us(A) = 1 and s 
 t
then ut (A) = 1.

The function v:T × L → {0, 1} extends u in the following ways:

(d) for all A ∈ At(L ) and t ∈ T , vt (A) = ut (A);

(e) for all A,B ∈ L , vt (A ∧ B) = min{vt (A), vt (B)};
(f) for all A,B ∈ L , vt (A ∨ B) = max{vt (A), vt (B)};
(g) for all A,B ∈ L , vt (A → B) = 1 iff ∀s � t [vs(A) = 0 or vs(B) = 1];

(h) for all A ∈ L , vt (¬A) = 1 iff ∀s � t [vs(A) = 0].
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We say that a formula A is verified at a node t in a model < T, 
, u > just in case
vt (A) = 1.

A model < T, 
, u > contains a base node if there is a node t ∈ T such that, for all
s ∈ T, s � t .

Soundness of IPL: if � 	IPL A then at any node in a Kripke model < T, 
, u > at
which every member of � is verified A is verified there too.

We note in passing that in the terminology of 2.1.1, the set of formulas verified at a
node in a Kripke model constitutes an L -consistent, L -prime L , RI(L )-theory, that is,
a consistent, prime theory on the orthodox reading of these terms.

2.2.2. Generic completeness theorem

THEOREM 4 If � �RI �(�∪{A}) A then there is a Kripke model < T, 
, u > with a base
node such that all members of � are verified at the base node but A is not verified there.

Proof. We take � to be the least subset of L extending �∪{A} and closed under sub-
formulas. (We have immediately that C(�) = C(�∪{A}) and that RI �� = RI �(�∪{A}).)
Clauses (i), (ii), and (iii) of the Generic Lindenbaum Lemma (GLL) apply so there is a
�-consistent, �-prime �,RI ��-theory � contained in �, extending � and not containing
A with the properties stated in (i)(a)–(d).

The nodes of our small Kripke model are those subsets of � extending � that are �-
consistent, �-prime �,RI ��-theories.9 � is the base node of the model. 
 is the subset
relation. We stipulate that the atomic formula B is verified at the �,RI ��-node � just in
case B ∈ �.

Claim For all �,RI ��-theory-nodes � in the model and all B ∈ �, B is verified at �
just in case B ∈ �.
As ever, proof is by induction on complexity of formula (number of occurrences of con-
nectives).
The claim holds by stipulation for atomic formulas.
The induction hypothesis states that the claim holds for all formulas in � up to some given
complexity. We consider the next higher level of complexity.
Induction step. Cases:

Conjunction If B ∧ C ∈ � then the rules of ∧-I and ∧-E belong to RI ��. We then have
that
B ∧ C ∈ � iff B ∈ � and C ∈ � (by GLL (i)(b)), iff v�(B) = 1 and v�(C) = 1
(by the induction hypothesis), iff v�(B ∧ C) = 1 (by definition of v).

Disjunction If B ∨ C ∈ � then the rules of ∨-I and ∨-E, restricted to formulas in �,
belong to RI �� and we have that
B ∨ C ∈ � iff B ∈ � or C ∈ � (by �-primeness of �), iff v�(B) = 1 or
v�(C) = 1 (by the induction hypothesis), iff v�(B ∨ C) = 1 (by definition of v).

Implication If B → C ∈ � then the rules of →-I and →-E belong to RI ��.
If B → C ∈ � then, for all �,RI ��-theories � extending �, B → C ∈ �; by
the induction hypothesis, if v�(B) = 1, B ∈ �; as B → C ∈ �, by GLL (i)(d),
C ∈ �; by another appeal to the induction hypothesis, v�(C) = 1; so we have
that ∀� ⊇ � [v�(B) = 0 or v�(C) = 1], that is, v�(B → C) = 1.
If B → C /∈ � then, by �,RI ��-theoremhood of �, � �RI�� B → C , in
which case, �, B �RI�� C (as follows by considering →-I restricted to formulas

9 Every �,RI ��-theory is an extension of itself.
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in �); by GLL, there is a �,RI ��-theory � satisfying GLL (i)–(iii) and such
that �∪{B} ⊆ � ⊆ � and C /∈ �; by the induction hypothesis, v�(B) = 1 and
v�(C) = 0, whence v�(B → C) = 0.

Negation If ¬B ∈ � then the rules of ¬-I and ¬-E, restricted to formulas in �, belong to
RI �� and we have that
If ¬B ∈ � then, for all �,RI ��-theories � extending �, ¬B ∈ �; as the
�,RI ��-theories in our model are all �-consistent, none of the �,RI ��-theories
of interest extending � contains B; by the induction hypothesis we have that
∀� ⊇ � [v�(B) = 0], that is, v�(¬B) = 1.
If ¬B /∈ � then, by �,RI ��-theoremhood of �, � �RI �� ¬B, in which case
�, B �RI �� ¬B (as follows by considering weak ¬-I restricted to formulas in
�); by the GLL, there is a �,RI ��-theory � satisfying GLL (i)–(iii) and such
that �∪{B} ⊆ � ⊆ � (and ¬B /∈ �); by the induction hypothesis, v�(B) = 1,
whence v�(¬B) = 0.

We have shown that the claim holds.
As � ⊆ �, all members of � are verified at the base node, �, but A is not. �
2.2.3. Subformula and separation properties for intuitionist propositional logic As an

immediate consequence of the soundness of IPL with respect to Kripke models and the
previous result we have that IPL enjoys the subformula and separation properties when
formulated using the standard natural deduction rules. Formally:

THEOREM 5 If � 	IPL A then � 	RI �(�∪{A}) A. �
It is well known that none of the introduction or elimination rules of IPL is redun-

dant. The quickest way to show this is this: give the other connectives their classical
interpretation—their introduction and elimination rules are all sound; if showing an in-
troduction rule nonredundant treat formulas with the connective in question dominant as
uniformly false—the elimination rule is then classically sound but the introduction rule
is not; if showing an elimination rule nonredundant treat formulas with the connective in
question dominant as uniformly true—the introduction rule is then classically sound but
the elimination rule is not.

2.2.4. The smallness of small Kripke models

2.2.4.1. Example ¬¬P �IPL P Here � = {P , ¬P , ¬¬P}. C(�) = {¬}. � = {¬¬P}
and the only �-consistent (and vacuously �-prime) �,RI ��-theory contained in � that
properly extends � is � = {P, ¬¬P}. We obtain the Kripke model Figure 1

Fig. 1.

No atomic formula is verified at the node �; P is the only atomic formula verified at the
node �. This is the smallest possible Kripke model showing the failure of double negation
elimination in IPL.

2.2.4.2. Example ¬(P ∧ Q) �IPL ¬P ∨ ¬Q Here � = {P , Q, ¬P , ¬Q, P ∧ Q,
¬P ∨ ¬Q, ¬(P ∧ Q)}. C(�) = {∧, ∨, ¬}. � = {¬(P ∧ Q)}. There are three �-consistent,
�-prime �,RI ��-theories contained in � that properly extend �: �1 = {P , ¬Q, ¬P∨¬Q,
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¬(P ∧ Q)}; �2 = {Q, ¬P , ¬P ∨¬Q, ¬(P ∧ Q)}; �3 = {¬P , ¬Q, ¬P ∨¬Q, ¬(P ∧ Q)}.
These give us the Kripke model Figure 2

Fig. 2.

No atomic formulas are verified at the nodes � and �3. The indicated atomic formulas,
and only these, are verified at the nodes �1 and �2.

While certainly small this is not the smallest Kripke model showing failure of the De
Morgan inference from ¬(P∧Q) to ¬P∨¬Q in IPL—the node �3 can be excised without
loss.

2.2.5. An application of small Kripke models: the {∧, ∨, →}-fragment of the interme-
diate logic KC The intermediate propositional logic commonly known as KC but which
I shall call KPL10 may be obtained by adding to IPL the rule

It is known to be sound and complete with respect to Kripke models for IPL satisfying
this constraint on the ordering of nodes:

(K ) ∀t, s [if ∃r(r 
 t & r 
 s) then ∃w(t 
 w & s 
 w)].11

THEOREM 6 If C(� ∪ {A}) ⊆ {∧, ∨, →} and � 	KPL A then � 	IPL A.

Proof. Suppose that � �IPL A and let � be the least set containing �∪{A} closed
under subformulas. By the proof of Theorem 4 we know that there is a Kripke model
with a base node � at which all members of � are verified but A is not. The nodes in
the model are exactly those subsets of � extending � that satisfy GLL (i) and (ii), that
is, they are exactly the �-prime �,RI ��-theories extending � and contained in �. GLL

10 Segerberg (1968) calls it IK.
11 See, for example, Segerberg (1968, pp. 37–38).
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(iii) is satisfied vacuously. � itself is such a �-prime �,RI ��-theory. Consequently, the
constraint (K ) on the ordering of nodes is satisfied; by soundness of KPL, � �KPL A. �

2.3. Minimal propositional logic (MPL).

2.3.1. Kripke semantics for minimal propositional logic A Kripke model for minimal
propositional logic is a quadruple < T, 
, u, F > where

(a) T is a nonempty set of nodes;

(b1) 
⊆ T 2 and partially orders T ;

(b2) F is a possibly empty, not necessarily proper, subset of T satisfying the constraint
that if s ∈ F and s 
 t then t ∈ F ;

(c) the function u: T × At(L ) →{0,1} satisfies the constraint: if us(A) = 1 and s 
 t
then ut (A) = 1.

The function v:T × L → {0,1} extends u in the same ways as for Kripke models for
IPL with the exception of the clause dealing with negations. Here we have

(h′) for all A ∈ L , vt (¬A) = 1 iff ∀s � t[vs(A) = 0 or s ∈ F ].

As above, we say that a formula A is verified at a node t in a model < T, 
, u, F > just
in case vt (A) = 1.

Soundness of MPL: if � 	MPL A then at any node in a Kripke model < T, 
, u, F >
at which every member of � is verified A is verified there too.

We note that, in the terminology of 2.1.1, the set of formulas verified at a node in a
Kripke model constitutes an L -prime L ,RM �L -theory, that is, a prime theory on the
orthodox reading of these terms. The set is (L -) consistent if, and only if, the node does
not belong to F .

2.3.2. Completeness theorems

2.3.2.1. Generic completeness theorem

THEOREM 7 If � �RM�(�∪{A}) A then there is a Kripke model < T, 
, u, F > with
a base node such that all members of � are verified at the base node but A is not verified
there.

Proof. As above, let � be the least subset of L extending �∪{A} and closed under
subformulas. We have immediately that C(�) = C(�∪{A}) and that RM �� = RM �(� ∪
{A}). Clauses (i) and (ii) of GLL apply so we have that there is a �-prime �,RM ��-theory
� contained in �, extending � and not containing A. (As we no longer have the rule of
¬-E, we cannot guarantee that � is �-consistent when ¬ occurs in �.)

The nodes of our Kripke model are those subsets of � that constitute �-prime �,RM ��-
theories extending �. F is the set of �-inconsistent, �-prime, �,RM ��-theories in �
extending �. � is the base node of the model. 
 is the subset relation. We stipulate that the
atomic formula B is verified at the �,RM ��-theory-node � iff B ∈ �.

Claim For all (�-prime) �,RM ��-theory-nodes � in the model and all B ∈ �, B is
verified at � just in case B ∈ �.

As before, proof is by induction on complexity of formula, the claim holding by stipu-
lation for atomic formulas. Except for dropping mention of �-consistency and writing RM
for RI, proof proceeds exactly as in Theorem 4 in the cases of conjunction, disjunction, and
implication. The only interesting case in the induction step is, then,
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Negation If ¬B ∈ � then the rule of ¬-I, restricted to formulas in �, belongs to RM ��
and we have that
If ¬B ∈ � then, for all �,RM ��-theories � extending �, ¬B ∈ �; if v�(B) = 1 at
the theory-node � then, by the induction hypothesis, B ∈ � and � is �-inconsistent;
so we find that ∀� ⊇ � [v�(B) = 0 or � ∈ F ], that is, v�(¬B) = 1.
If ¬B /∈ � then, by �,RM ��-theoremhood of �, � �RM�� ¬B, in which case �,
B �RM�� ¬B (as follows by considering weak ¬-I restricted to formulas in �); by the
GLL, there is a �,RM��-theory � satisfying GLL (i) and (ii) and such that �∪{B}
⊆ � ⊆ � and ¬B /∈ �; we must show that � is �-consistent: if it is not, then, for
some formula C ∈ � such that ¬C ∈ �, we have that C ∈ � and ¬C ∈ �, but then,
in virtue of the ¬-inv rule applied only to formulas in �, � 	RM�� ¬B, and, by the
�, RM ��-theoryhood of �, ¬B ∈ �, which is not the case; we have that � /∈ F
and, by the induction hypothesis, v�(B) = 1, hence v�(¬B) = 0.12

The claim therefore holds.
As � ⊆ �, all members of � are verified at the base node, �, but A is not. �

2.3.3. Subformula and separation properties for minimal propositional logic

THEOREM 8 If � 	MPL A then � 	RM�(�∪{A}) A.

Proof. Immediate by soundness of MPL with respect to the appropriate class of Kripke
models and the previous result. �

2.3.4. Example ¬P �MPL P → Q Here � = {P, Q, ¬P, P → Q}. C(�) = {¬, →}.
� = {P , ¬P}. The only (vacuously �-prime) �, RM ��-theory properly extending � and
contained in � is � itself. � and � are both �-inconsistent. So the nodes of our model are
� and � and both belong to F . Our Kripke model is Figure 3

Fig. 3.

P is the only atomic formula verified at �; both P and Q are verified at �.
This is one of the smallest possible Kripke models showing the failure of the nega-

tive paradox of implication in MPL. However, it is perhaps not the most natural. Asked
to produce a model showing its failure, one is, I think, much more likely to come up
with this Figure 4

12 It’s the last step here that requires an unavoidable use of full strength ¬-I in the absence of ¬-E.
In the completeness theorem for IPL we used only of weak ¬-I, making no appeal to ¬-inv.
Consequently, IPL can be formulated using weak ¬-I alone. Minimal propositional logic cannot,
as was known by Wajsberg by 1939—see Curry (1963, p. 285).
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Fig. 4.

P is the only atomic formula verified at s; no atomic formula is verified at the base
node t .

2.4. Classical conjunction and disjunction. It is well known that the introduction
and elimination rules for ∧ and ∨ that we find in minimal and intuitionist propositional
logic suffice to derive all classically valid sequents containing occurrences of only these
connectives. That this is so falls out directly from the proof of completeness in 2.3.2.1
above.

2.4.1. Subformula and separation properties for the {∧, ∨}-fragment of classical propo-
sitional logic

THEOREM 9 If � 	CPL A and C(�∪{A}) ⊆ {∧, ∨} then � 	RM�(�∪{A}) A.

Proof. Suppose that C(�∪{A}) ⊆ {∧,∨} and that � �RM�(�∪{A}) A. Let � contain all
and only subformulas of the members of �∪{A}. By the GLL, there’s a �-prime, vacu-
ously �-consistent, vacuously �-negation-complete, vacuously �-implication-complete,
�,RM ��-theory �, a subset of �, extending � and not containing A. As noted in 2.1.1
above, membership of � maps to the value true under a classical assignment of truth-values
to the formulas in � under which all and only the atomic formulas in � are true: under this
assignment all members of � are true and A is false. �

2.4.2. Example

P ∨ Q �MPL P ∧ Q.� = {P, Q, P ∧ Q, P ∨ Q}; C(�) = {∧, ∨}.
Here there are two possible base nodes: �1 = {P , P ∨ Q}; �2 = {Q, P ∨ Q}. � itself is

the only �-prime �,RM ��-theory in � extending these. �1 and �2 both generate classical
valuations: the first has P true, Q false, the second the other way around. To labour the
obvious, both make P ∨ Q true, P ∧ Q false, as required.

The full Kripke model construction in 2.3.2.1 would give us a model with either of the
two theories �1 or �2 as the base node and � as the other. As any classical valuation
constitutes a one-node Kripke model we would again fail to obtain one of the smallest
Kripke models showing the nonderivability of P ∨ Q 	 P ∧ Q in MPL.

2.5. Classical negation. Before proceeding further we note the well-known fact that
no formulation of CPL that adds either to MPL or IPL solely a pure rule dealing with
negation such as those to be investigated immediately below—double negation elimination
(DNE), classical reductio ad absurdum (CRA), Dilemma—has the separation property as
various classically valid, intuitionistically invalid ¬-free sequents are derivable in CPL: for
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example, (P → Q) → P 	 P, 	 (P → Q) ∨ (Q → P), ((P → Q) → Q) ∧ ((Q →
P) → P) 	 P ∨ Q.

2.5.1. Double negation elimination

2.5.1.1. CPL as MPL + DNE Perhaps the commonest way to obtain a natural deduction
presentation of classical propositional logic (CPL) is to add the rule of double negation
elimination (DNE) to minimal propositional logic (MPL). We write RC �� for the restric-
tion of this set of rules to formulas in �.

2.5.1.1.1. Generic Lindenbaum Lemma: first extension

THEOREM 10 Where �0 and � are sets of formulas such that �∪{A} ⊆ �0 ⊆ � and
�0 is closed under subformulas,

(ivDNE) provided �0∪{¬A,¬¬A} ⊆ �, if ¬ occurs in �0 and the rules of ¬-I and DNE
either belong to R or are safely �-derived rules given the rules in R, � is �0-
consistent and �0-negation-complete.

Proof. �0-consistency: if B ∈ �0, ¬B ∈ �0, B ∈ �, and ¬B ∈ � then, by ¬-inv,
� 	R�� ¬¬A and hence, by DNE, � 	R�� A, which we know not to be the case.

�0-negation-completeness: if B ∈ �0, ¬B ∈ �0, B /∈ �, and ¬B /∈ � then �, B 	R��
A and �, ¬B 	R�� A; from the former, by ¬-I �, ¬A 	R�� ¬B, whence, with the second,
�, ¬A 	R�� A; by ¬-I again, �, 	R�� ¬¬A and hence, by DNE, � 	R�� A, which we
know not to be the case. �

2.5.1.1.2. A weak subformula property for the {∧, ∨, ¬}-fragment of CPL as MPL +
DNE

THEOREM 11 When CPL = MPL + DNE, the {∧, ∨, ¬}-fragment of classical proposi-
tional lacks the strict subformula property.

Proof. ¬(P ∧ Q) 	 ¬P ∨¬Q is classically valid but not intuitionistically so, hence any
classical derivation must employ DNE at least once. As no formula in {P , Q, ¬P , ¬Q,
P ∧ Q, ¬P ∨ ¬Q, ¬(P ∧ Q)} is headed by ‘¬¬’, the subformula property fails.13 �

However, Theorem 10 in conjunction with what has already been established tells us that
in the derivation of any →-free sequent � 	 A that is classically valid but not derivable in
MPL, only subformulas of members of �∪{¬¬A} need occur. As a corollary to Theorem 2
(Strong Glivenko Theorem) we have that DNE, which must be used in deriving the sequent,
need be used only once and we may further insist that its application be the last step.
Natural deduction proofs complying with that last constraint can be somewhat indirect—
witness derivation of ¬¬P , ¬¬Q 	CPL P ∧ Q.

2.5.1.1.3. The {∧, ∨, ¬}-fragment of CPL as MPL + DNE has the separation property
This fact follows from Theorem 9 and the preceding remark.

2.5.1.1.4. Generic Lindenbaum Lemma: second extension

THEOREM 12 Where �0 and � are sets of formulas such that �∪{A} ⊆ �0 ⊆ � and
�0 is closed under subformulas,

13 It is characteristic of the logic KPL that ¬(P ∧ Q) 	 ¬P ∨ ¬Q is derivable in it (i.e., it is the
weakest intermediate logic in which this is a theorem schema). By an argument like that used
here, the formulation of KPL given in 2.2.5 does not have the subformula property. On the other
hand, in the light of Theorems 5, 6 and 9, it does have the separation property.
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(vDNE) provided �0∪{¬A}∪{¬¬B : B ∈ �0} ⊆ �, if → occurs in �0 and the rules of
¬-I, →-I, and DNE either belong to R or are safely �-derived rules given the
rules in R, � is �0-implication-complete.

Proof. If B, C , B → C ∈ �0, B /∈ �, and B → C /∈ �, then �, B	R�� A and �,
B → C 	R�� A, whence, from the former by ¬-I, �, ¬A, B 	R�� ¬¬C ; by DNE,
�, ¬A, B 	R�� C and so, by →-I, �, ¬A 	R�� B → C ; from there �, ¬A 	R�� A, as
�, B → C 	R�� A; by ¬-I, �, 	R�� ¬¬A and finally, by DNE, � 	R�� A, which we know
not to be the case. �

2.5.1.1.5. A weak subformula property for CPL as MPL + DNE If � 	CPL A is
classically valid but not derivable in MPL, then there is a CPL derivation of A from
premises in � in which at most subformulas of formulas in �∪{A}, the double negations
of such formulas, and ¬A occur.

2.5.1.2. CPL as IPL + DNE We obtain a sharper restriction on subformulas in CPL
derivations if we are prepared to accept redundancy in our rules governing negation. We
know by GLL (iii) that ¬-E guarantees �-consistency. If, in addition to DNE, we also take
¬-E as a basic rule of CPL, the use of double negations of members of �0 other than A is
circumvented: if �, B 	R�� A then, by ¬-E, �, ¬A, B 	R�� C directly.

2.5.1.2.1. A weak subformula property for CPL as IPL + DNE In the derivation of
any sequent � 	 A that is classically valid but not derivable in IPL, only subformulas
of members of �∪{¬¬A} need occur. As a corollary to Theorem 3 (Strong Glivenko
Theorem) we have that DNE, which must be used in deriving the sequent, need be used
only once and we may further insist that its application be the last step.

2.5.2. Classical reductio ad absurdum The proof-theoretic results of the previous sub-
section concerning classical negation are sensitive to the exact formulation of CPL. Instead
of adding DNE to IPL, we can add the following weak rule of classical reductio ad absur-
dum (CRA) to IPL:

(When we do so, ¬-E is not redundant.) With this formulation of CPL we obtain this
result:

2.5.2.1. A weak subformula property for CPL as IPL + CRA

THEOREM 13 In the derivation of any sequent � 	 A that is classically valid but not
derivable in IPL, only subformulas of members of �∪{¬A} need occur. CRA, which must
be used in deriving the sequent, need be used only once and we may further insist that its
application be the last step.

Proof. If � 	CPL A, then � 	CPL ¬¬A and so, by the Strong Glivenko Theorem,
� 	 IPL ¬¬A. But then, by ¬-E, �, ¬A 	 IPL A. As our formulation of IPL has the
subformula property, �, ¬A 	RI �(�∪{¬A}) A. A final application of CRA gives us a CPL
derivation meeting the stated constraints. �

2.5.3. Dilemma We replace CRA with Dilemma to obtain yet a third formulation of
CPL.
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¬−I and CRA in effect just are the special cases when B = ¬A and B = A, respectively.
It is as if Dilemma were designed to give us

2.5.3.1. Generic Lindenbaum Lemma: third extension

THEOREM 14 Where � is a set of formulas closed under subformulas and such that
�∪{A} ⊆ �,

(ivDi) if ¬ occurs in � and the Rule of Dilemma either belongs to R or is a safely �-
derived rule given the rules in R, � is �-negation-complete. �

The instances we need in order to establish negation-completeness are of the form

�, B 	 A and �, ¬B 	 A therefore � 	 A.

2.5.3.2. The {∧, ∨, ¬}-fragment when CPL = IPL + Dilemma In view of Theorem 14
and GLL (i)–(iii) we have immediately

THEOREM 15 When Dilemma is the only strictly classical rule the {∧, ∨, ¬}-fragment
of CPL has the subformula property (and therefore the separation property). �

2.5.3.3. A weak subformula property for CPL as IPL + Dilemma

THEOREM 16 In the derivation of any sequent � 	 A that is classically valid but not
derivable in IPL, only subformulas of members of �∪{¬A} need occur. Dilemma, which
must be used in deriving the sequent, need be used only once and we may further insist
that its application be the last step.

Proof. If � 	CPL A, then, exactly as in the proof of Theorem 13, we find that �,
¬A 	RI �(�∪{¬A}) A. As A 	RI �(�∪{¬A}) A, a final application of Dilemma gives us a CPL
derivation satisfying the stated constraints. �

2.6. Classical implication.

2.6.1. Peirce’s Rule As is well known, we obtain CPL when we add Peirce’s Rule to
IPL.

No formulation of CPL that adds to IPL solely a pure rule dealing with implication,
such as Peirce’s Rule, has the separation property as the classically valid, intuitionistically
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invalid →-free sequent ¬¬P 	 P is derivable in CPL. (As is well known, each of DNE
and Peirce’s Rule is a derived rule in any extension of IPL containing the other.)14

2.6.1.1. Generic Lindenbaum Lemma: fourth extension

THEOREM 17 Where �0 and � are sets of formulas such that �∪{A} ⊆ �0 ⊆ � and
�0 is closed under subformulas,

(vP’rce ) provided that �0∪{A → C: B → C ∈ �0} ⊆ �, if → occurs in � and Peirce’s
Rule and the rules of →-I and →-E either belong to R or are safely �-derived
rules given the rules in R, � is �0-implication-complete.

Proof. If B ∈ �0, C ∈ �0, B → C ∈ �0, B /∈ �, and B → C /∈ � then �, B 	R�� A
and �, B → C 	R�� A. As �, B 	R�� A, we have, by →-E, that �, B, A → C 	R�� C ,
whence, by →-I, �, A → C 	R�� B → C ; but �, B → C 	R�� A, so �, A → C 	R�� A
and thus, by Peirce’s Rule, � 	R�� A, which we know not to be the case. �

2.6.1.2. A weak subformula property for the {∧, ∨, →}-fragment of CPL as IPL +
Peirce’s Rule When CPL = IPL + Peirce’s Rule, in the derivation of any ¬-free sequent
� 	 A that is classically valid only subformulas of members of �∪{A} and conditionals
of the form A → C where B → C is a subformula of a member of �∪{A} need
occur. �

2.6.1.3. The {∧, ∨, →}-fragment of CPL as IPL + Peirce’s Rule has the separa-
tion property That the {∧, ∨, →}-fragment of CPL, with Peirce’s Rule as the only
strictly classical rule, has the separation property follows from the previous result and
Theorem 9. �

2.6.1.4. Generic Lindenbaum Lemma: fifth extension

THEOREM 18 Where �0 and � are sets of formulas such that �∪{A} ⊆ �0 ⊆ � and
�0 is closed under subformulas,

(ivP’rce ) provided that �0∪{A → ¬B: ¬B ∈ �0} ⊆ �, if ¬ occurs in � and Peirce’s Rule
and the rules of (weak) ¬-I and →-E either belong to R or are safely �-derived
rules given the rules in R, � is �0-negation-complete.

Proof. If B ∈ �0, ¬B ∈ �0, B /∈ �, and ¬B /∈ � then �, B 	R�� A and �, ¬B 	R�� A.
As �, B 	R�� A, we have, by →-E, that �, B, A → ¬B 	R�� ¬B and so, by (weak) ¬-I,
�, A → ¬B 	R�� ¬B; as �, ¬B 	R�� A, we have that �, A → ¬B 	R�� A, whence, by
Peirce’s Rule, � 	R�� A, which we know not to be the case. �

2.6.1.5. Weak subformula property for CPL as IPL + Peirce’s Rule

THEOREM 19 When CPL = IPL + Peirce’s Rule, in the derivation of any sequent �
	 A that is classically valid only subformulas of members of �∪{A} and conditionals of
the forms A → C, where B → C is a subformula of a member of �∪{A}, and A → ¬B,
where ¬B is a subformula of a member of �∪{A}, need occur. �

14 The axiom system corresponding to the formulation of classical propositional logic that we
are now considering has the separation property (in the sense appropriate to axiom systems).
In addition the axioms are logically independent and dropping the axiom, Peirce’s Law,
corresponding to Peirce’s Rule, gives an axiomatization of intuitionist propositional logic,
dropping a further axiom corresponding to ¬-elimination gives an axiomatization of minimal
propositional logic. See Kanger (1955) and Curry (1963, pp. 288, 307).
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COROLLARY 1 If at most the connectives ¬ and → occur in �∪{A} and � 	CPL A
then there is a derivation in which only rules governing ¬ and → are employed. �

2.6.2. Tarski’s Rule The rule that most directly allows us to establish �-implication-
completeness is this

As Dilemma stands to (weak) CRA in shape, so this rule stands to Peirce’s Rule. And
as Peirce’s Rule stands to Peirce’s Law, so this rule stands to Tarski’s Law. For that reason
I shall call it “Tarski’s Rule”.15 In any logic containing the standard →-I and →-E rules,
Peirce’s Rule and this rule are interderivable. Exactly because this rule, Tarski’s Rule,
gives us implication-completeness directly, we can improve upon our subformula results
for CPL. Tarski’s Rule is classically sound.

2.6.2.1. Strict subformula property for the {∧, ∨, →}-fragment of CPL as IPL + Tarski’s
Rule

THEOREM 20 If � 	CPL A and ¬ does not occur in �∪{A} then there is a derivation
of A from premises in � in which at most subformulas of formulas in �∪{A} occur.16 �

2.6.2.2. Weak subformula property for CPL as IPL + Tarski’s Rule

COROLLARY 2 If � 	CPL A then there is a derivation of A from premises in � in which
at most subformulas of formulas in �∪{A} and formulas of the form A → ¬B, where ¬B
is a subformula of a formula in �∪{A}, occur. �

2.7. A formulation of CPL with the (strict) subformula property. We add to IPL both
Dilemma and Tarski’s Rule. As is clear in the light of 2.5.3 and 2.6.2, this gives us a
formulation of CPL in which, for any classically valid sequent � 	 A, there is a derivation
in which only subformulas of formulas in �∪{A} occur.

The most obvious drawback to this most recent formulation of CPL is that there is redun-
dancy: doubly so, for on the one hand Dilemma and Tarski’s Rule are each derived rules
in any extension of IPL containing the other, and, on the other, ¬-I is a derived rule in any
logic containing Dilemma and ¬-E. These two sources of redundancy are not quite on a par.
In obtaining ¬-I from Dilemma and ¬-E, we need introduce no formulas not in the original
application of ¬-I:

15 For the name ‘Tarski’s Law’, see Thomas (1960). What Thomas calls ‘Tarski’s Law with
antecedents commuted’ occurs in the statement of a result due to Tarski in Łukasiewicz & Tarski
(1930, sec. 4). Prior (1962, p. 302), credits a version of the uncommuted form with propositional
quantifiers to an unnamed 1921 publication of Tarski’s. On p. 319 he calls the axiom schema
‘Tarski or Dilemma’, explaining the latter by a substitution of, first, a falsum constant for ‘q’ then
a negation Np for Cp0 to obtain the familiar form of Dilemma. Prior’s index features the entry
‘Law of’ under ‘Tarski’.

16 Given the strict subformula property, the {∧, ∨, →}-fragment of CPL as IPL + Tarski’s Rule =
the {∧, ∨, →}-fragment of MPL + Tarski’s Rule. We have, then, that if C(� ∪ A) ⊆ {∧, ∨, →}
and � 	CPL A then � 	MPL+Tarski A. Compare Parsons (1966, p. 254, theorem 1).
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The remedy is straightforward: drop ¬-I. But, just for a moment, we’ll hold off doing
that.

We can obtain the effect of Dilemma from Tarski’s Rule, ¬-I, and →-E but we may have
to introduce the conditional A → ¬A, where A and ¬A are the assumptions discharged
in the application of Dilemma, to do so; we can obtain the effect of Tarski’s Rule from
Dilemma, ¬-E, and →-I but we may have to introduce the negated formula ¬A, where A
and A → B are the assumptions discharged in the application of Tarski’s Rule, to do so.
(There’s a fairly obvious symmetry here.)

There are, of course, other ways to obtain the effect of each of Tarski’s Rule and
Dilemma by employing the other. There is none, however, that succeeds in doing so
without, in some cases, introducing formulas that do not occur as subformulas in the
original application. For suppose that one could, say, obtain the effect of Tarski’s Rule
from Dilemma without introducing new formulas; then we could simply drop Tarski’s
Rule from our formulation of CPL while still respecting the subformula property for
derivations in CPL, but we know, by the theoremhood of ((P → Q) → P) → P,that
this is impossible. Likewise, the derivability of ¬¬P 	 P shows the same for attempts
to obtain Dilemma from Tarski’s Rule. Tarski’s Rule and Dilemma are pure rules. By an
argument parallel to that just given we see that

THEOREM 21 There is no formulation of CPL as an extension of IPL employing pure
rules such that: (i) ¬ and → are both primitive; (ii) the rules governing connectives are
pure rules; (iii) none of the rules is redundant, that is, derivable given the others; (iv)
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for any derivable sequent � 	CPL A, there is a derivation in which only subformulas of
members of �∪{A} occur. �

2.7.1. Excising the Tarski’s Rule/Dilemma redundancy We can rid ourselves of the
Tarski’s Rule/Dilemma redundancy by treating negation not as primitive but as defined.
Let ⊥ be a 0-ary connective with the single elimination rule

¬A abbreviates A → ⊥. Dilemma is now revealed as merely a special case of Tarski’s
Rule, just as ¬-I, which we know to be dispensable, is a combination of →-E followed by
→-I, and ¬-E comprises →-E followed by ⊥-E. Theorem 20 takes care of the rest. This
is, perhaps, the orthodox modern approach.

What we might call the “old time classical approach”, an approach presumably moti-
vated from a strictly classical point of view only, treats A → B as an abbreviation of
¬A ∨ B. →-I is obtained as ∨-I followed by Dilemma; →-E is ¬-E followed by ∨-E; and
∨-I and Dilemma give us Tarski’s Rule. Theorem 15 takes care of the rest.

We have noted that ¬-I is redundant. If we drop it we block the derivation above of
Dilemma from Tarski’s Rule—and, as we’ll see shortly, block any derivation of it. On the
other hand, we’ll still be able to derive Tarski’s Rule from Dilemma, ¬-E, and →-I. Now, as
careful attention to our completeness theorems will show, in the presence of Tarski’s Rule
we make a single type of use of →-I in the completeness theorem: we infer a conditional
directly from its consequent. That’s it. We no longer make use of the full strength of the
rule →-I in the completeness theorem. This suggests that we may restrict →-I. We can.
Given Tarski’s Rule and this weak form of →-I

we can derive the standard introduction rule for implication. Notice that in obtaining the
standard →-I from Tarski’s Rule and weak →-I we need introduce no formulas not in the
original application of →-I:

Our chosen formulation of CPL, then, has the rules ∧-I, ∧-E, ∨-I, ∨-E, weak →-I,
Tarski’s Rule, →-E, Dilemma, and ¬-E. The rules are independent. We need check this
only in the case of negation and implication. Giving the other connectives their classical
interpretations, reading negations as uniformly true makes Dilemma sound but not ¬-E,
reading negations as uniformly false makes ¬-E sound but not Dilemma. Giving the other
connectives their classical interpretations, reading conditionals as uniformly true makes
weak →-I and Tarski’s Rule sound but not →-E; reading A → B as B (i.e., as true if and
only if its consequent is true) makes weak →-I and →-E sound but not Tarski’s Rule (as
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A ∨ B is not a classical theorem schema); reading A → B as ¬A (i.e., as true if and only
if its antecedent is false) makes Tarski’s Rule and →-E sound but not weak →-I.

2.7.2. Further proof-theoretic consideration regarding this formulation of CPL I shall
treat Dilemma and Tarski’s Rule as introduction rules for, respectively, negation and impli-
cation: each allows the introduction of formulas with the respective connective dominant
as dischargeable assumptions. (Weak →-I and Tarski’s Rule are both introduction rules for
implication.) Doubtless this strikes the reader as odd. Neither satisfies the general form for
introduction rules proposed by Prawitz,17 and Tarski’s Rule is a generalization of Peirce’s
Rule, a variation on which has been, at Kanger’s suggestion, used by Hugues Leblanc as the
sole elimination rule for the conditional.18 On the other hand, introduction rules satisfying
Prawitz’s general form can be rewritten to appear, like Dilemma and Tarski’s Rule, as
rules for the discharging of assumptions. The idea is this: the orthodox formulation of an
introduction rule presents certain grounds as sufficient for inferring a formula with some
connective dominant; if, instead of inferring that formula, one has already used it as an
assumption, then these grounds suffice to show that the assumption is unnecessary, it can
be discharged, for one has to hand all that is needed to make do without it. Turning this on
its head, I suggest that we can take introduction rules to be rules licensing the discharge of
assumptions with connectives dominant. For example, in place of the orthodox introduction
rule for ∧, we would have

Similarly, the orthodox rule of →-introduction, with which we are, of course, dispens-
ing, would take this form:

The standard rules are immediately recoverable from these, so we shall retain the stan-
dard introduction rules for conjunction and disjunction.

The discharge-as-assumption format for introduction rules is more general than the
orthodox one. It allows us to count Dilemma and Tarski’s Rule as introduction rules. I
am not here going to defend the claim that we should so count them.20

17 See Prawitz (1979, p. 35).
18 The classically valid (P → Q) → P , P → R 	 R underpins Leblanc’s elimination rule. See,

for example, Beth & Leblanc (1960) and Leblanc (1982, pp. 285, 291).
19 Compare the style of rule used in Michel Parigot’s “free deduction” in, for example, Parigot

(1993). I owe this reference to James McKinna.
20 As we retain the standard elimination rules— ¬-E and →-E —and the standard introduction rules

for negation and the conditional are derived rules, these new introduction rules are in harmony
with the elimination rules in the sense of Tennant’s (1978, pp. 74–75) Natural Logic.
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As Stephen Read pointed out to me, we can put weak →-I in this dischargeable-
complex-assumption form:

In what follows we may let ‘weak →-I’ refer indifferently to either form of the rule.

2.8. The extension of MPL variously known as LD, JX, and MC+++.21

This logic, which I shall call DPL, can be formulated by adding Dilemma to MPL. In
what follows, RD denotes the set of rules obtained by adding Dilemma to the formulation
of MPL above.

As formulated here, DPL shares with our earlier formulation of IPL the following three
properties: (i) ¬ and → are both primitive; (ii) the rules governing connectives are pure
rules; (iii) none of the rules is redundant. Only (iii) requires argument. To secure the
conclusion we need only show that ¬-inv and Dilemma are independent of each other.
First, let ¬A be read as an abbreviation for A → P , for some atomic formula P: then
Dilemma, which turns out to be special case of Tarski’s Rule, is intuitionistically invalid
but ¬-inv is intuitionistically acceptable. Second, let φ associate with each formula of L
a formula of L and let ¬A abbreviate A → φ(A): then Dilemma, being a case of Tarski’s
Rule is classically valid, but by appropriate choices of A, B, and φ it is easy to arrange for
an instance of ¬-inv to be classically invalid.

2.8.1. Kripke semantics for DPL DPL is known to be sound and complete with respect
to Kripke models < T, 
, u, F > for MPL satisfying the additional constraint:

∀s, t[ if t ≺ s then s ∈ F ];
“no node is more than one step away from F ”.22

2.8.2. Strong Glivenko Theorem for DPL

THEOREM 22 If � 	DPL ¬A then � 	MPL ¬A.23

Proof. Let � contain all and only subformulas of the members of �∪{¬A}. ¬-I is one of
the rules of MPL, so if � �MPL ¬A then � �RM�� ¬A and there is, by GLL (i)–(iv), a �-
prime, �-consistent, �-negation-complete, �,RM ��-theory �, a subset of �, extending
� and not containing ¬A and such that for B ∈ �, B /∈ � iff �, B 	RM�� ¬A. As ¬A /∈
� and � is �-negation-complete, A ∈ � and hence every �-prime �,RM ��-theory �

21 LD is Curry’s name for its sequent calculus formulation; he calls its natural deduction
formulation, for which he adds our (weak) CRA to MPL, TD (Curry, 1963, pp. 260, 280). MC+
and JX are from Parsons (1966), and Segerberg (1968), respectively.

Curry calls LD the system of complete refutability or strict negation, prompted, he says, by a remark
of Johansson’s (1937, p. 260, n. 2, cf. pp. 286, 306) that ‘it might be suitable as a theory of strict
implication’. Johansson (1937, p. 129) was rather more circumspect than Curry’s footnote suggests,
saying only that ‘some similarity with Lewis’s calculus of strict implication is to be expected but a
complete agreement is out of the question [ausgeschlossen]’.
22 See Segerberg (1968, p. 38).
23 Compare Curry (1963, p. 279).
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contained in � and properly extending � is �-inconsistent. As F contains exactly the �-
inconsistent �,RM ��-theories in � that extend �, the model satisfies the constraint that
� ∈ F when � � �, and hence is a model for DPL. �

2.8.3. The {∧, ∨, →}-fragment of DPL

THEOREM 23 If C(� ∪ A) ⊆{∧, ∨, →} and � 	DPL A then � 	MPL A.24

Proof. Suppose that � �MPL A. Let � be the least subset of L extending �∪{A} and
closed under subformulas. By the proof of Theorem 7, the generic completeness theorem
for MPL, there is a Kripke model whose nodes, ordered by inclusion, are those subsets
of � that constitute �-prime �,RM ��-theories extending the base node �; � ⊆ � and
A /∈ �. As �∪{A} is ¬-free, F , the set of �-inconsistent, �-prime, �,RM ��-theories
in � extending �, is empty. (Our model is thereby a Kripke model for IPL, showing that
� �IPL A.) The set F in a Kripke model for MPL plays no role in the evaluation of ¬-free
formulas. We can therefore modify the model the generic completeness theorem delivers
by reassigning F as we please: rather than be the empty set, we take it to include all
nodes. We now have a Kripke model for DPL at the base node of which all members of �
are verified and A is not. By the soundness of DPL, � �DPL A. �

2.8.4. Weak subformula property for DPL We aim to show that when � 	DPL A there
is a derivation of A from premises in � in which at most subformulas of formulas in
�∪{¬A} occur. Exactly because ¬-E is not a (derived) rule of DPL, we cannot emulate
the quick line of argument used in Theorem 16 for CPL as IPL + Dilemma. Consequently,
we have to sketch a proof of completeness. As the proof closely mimics the completeness
theorem for MPL in Theorem 7 we can be brief.

2.8.4.1. Generic completeness theorem

THEOREM 24 If � �RD�(�∪{¬A}) A then there is a Kripke model < T, 
, u, F > with
a base node such that all members of � are verified at the base node but A is not verified
there and all members of T other than perhaps the base node belong to F .

Proof. Let � be the least subset of L extending �∪{¬A} and closed under subformulas.
By GLL, (i) and (ii), there is a �-prime, not necessarily �-consistent, �,RD ��-theory
� contained in �, extending � and not containing A. For all B ∈ �, B /∈ � iff �,
B 	RD�(�∪{¬A}) A. By Theorem 14, � is �-negation-complete as ¬A ∈ �. The nodes of
our Kripke model are those subsets of � that constitute �-prime, �-negation-complete �,
RD ��-theories extending �. F is the set of �-inconsistent, �-prime, �, RD ��-theories
in � extending �. As ever, � is the base node, 
 is the subset relation, and we stipulate
that the atomic formula B is verified at the �,RD ��-theory-node � iff B ∈ �. ¬A ∈ � by
�-negation-completeness, and A belongs to any �-prime, �-negation-complete �,RD ��-
theory properly extending �, hence every such theory is a member of F . �

COROLLARY 3 If � 	DPL A then there is a derivation of A from premises in � in which
at most subformulas of formulas in �∪{¬A} occur.

2.8.4.2. DPL has the separation property

COROLLARY 4 This is an immediate consequence of the last result, Theorem 23, and
MPL’s possession of the (subformula hence) separation property.

24 Parsons (1966, p. 257, Theorem 3). Parsons offers a rather different proof.
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2.8.5. DPL as MPL + Dilemma does not have the subformula property

Fig. 5.

vs(P → ¬Q) = vt (P → ¬Q) = 0, hence vt ((P → ¬Q) → P) = 1; vt (Q) = 1; but
vt (P) = 0.

THEOREM 25 DPL as MPL + Dilemma does not have the subformula property.

Proof. In view of Facts 1 and 3, if DPL were to have the subformula property there
would be a DPL proof of P from (P → ¬Q) → P in which, of necessity, Dilemma
is used and in any such use the assumptions discharged are Q and ¬Q. Consider such a
putative derivation. This being propositional logic, the last use of Dilemma can be deferred
so as to be the last step in the derivation (cf. Tennant, 1978, p. 94). Thus the (rearranged)
proof contains two subproofs, one with undischarged assumptions belonging to the set {Q,
(P → ¬Q) → P}, the other to {¬Q, (P → ¬Q) → P}. In view of Fact 2, the subproof
in which ¬Q occurs as undischarged assumption either is or can be replaced without loss
by a Dilemma-free MPL derivation of P from ¬Q and (P → ¬Q) → P . Should there
be an application of Dilemma in the subproof with Q as undischarged assumption, there
is a last such and we can carry out the same procedure, deferring its application until the
penultimate step of the proof; this subproof must itself contain a subproof in which ¬Q
occurs as undischarged assumption and, again, this subproof either is or can be replaced
without loss by a Dilemma-free MPL derivation of P from ¬Q and (P → ¬Q) → P .
(This in fact renders the first application of Dilemma considered redundant, so it can be
deleted without loss.) Repeating as many times as need be, what we end up with is a proof
in which there is an application of Dilemma above which stands a Dilemma-free MPL
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derivation of P from Q and (P → ¬Q) → P , but Fact 3 assures us that there is none
such. �

§3. First-order logics

3.1. The basic Lindenbaum–Henkin construction. We suppose given a first-order
language L with a countable infinity of variables, countable, possibly empty collections of
constants and unary, binary, tertiary, . . . , predicates, the connectives ∧, ∨, →, and ¬, and
the quantifier-forming prefixes ∀ and ∃.25 Rules of formation for formulas are standard.
As is common in systems of natural deduction we do not countenance free variables.
Instead, we have at our disposal a countable infinity of parameters (constants) distinct
from all formulas and components of formulas in L . We expand the stock of formulas by
permitting parameters to take the place of constants. Such formulas, containing parameters,
may occur in derivations. (Parameters enter and exit in the course of derivations. Typically
they are not interpreted in furnishing models of formulas in the language.)

As is standard, where v is a variable, an instance of a formula headed by the quantifier
∀v or ∃v is obtained by dropping the quantifier and uniformly substituting a name or
parameter for all occurrences of the variable bound by that quantifier; a parametric instance
is obtained when a parameter is used to make the substitution. Given formulas ∀vA or ∃vA
and the constant or parameter c, we write A(v/c) for the formula that results when the
quantifier is dropped and c is uniformly substituted for all occurrences of v bound by
whichever of ∀v or ∃v heads the formula; A(v/c) is a subformula of both ∀vA and ∃vA.
We call a formula headed by a universal quantifier a universal generalization; likewise, an
existential generalization is headed by an existential quantifier.

Given any of the logics of Part I, its first-order correlate is obtained by adding the
standard introduction and elimination rules for the universal and existential quantifiers.
We obtain an abbreviation for it by replacing ‘P’ by ‘Q’ in the abbreviation for the
propositional logic, for example, IQL is intuitionist first-order logic.

Given a set � of formulas of a language L and a set R of rules of inference, to the
definitions at the beginning of 2.1 we add:

(vi) a set of formulas � is �-witness-complete if
for all existential generalizations ∃vA in �, ∃vA ∈ � only if A(v/c) ∈ � for some
constant c in L .

3.1.1. The Generic Lindenbaum–Henkin Lemma (GLHL)

THEOREM 1 Given R, when � �R A and where c0, c1, . . . , cn,. . . , is an infinite
sequence of constants all foreign to �∪{A} let �0 contain all subformulas of members
of � ∪ {A} formed using c0, c1, . . . , cn, . . . and whatever other constants may occur in
members of � ∪ {A}. Let �0 ⊆ �, and let R�� stand for the restriction of the rules
in R obtained by excluding rules governing those connectives and quantifiers that do
not occur in any member of � and restricting those that remain to formulas in � and
parametric instances of these, that is, only formulas in � and instances of them obtained
by instantiating with parameters alien to �, may occur as assumptions, major and minor
premises, and/or conclusions in applications of these rules, hence only formulas in �

25 A cursory glance through a number of texts shows that there’s no agreement in usage: some
authors call ∀ and ∃ quantifiers, some, as I shall do here, reserve that title for the combinations
∀x, ∀y, ∃x, ∃y, and their like, and yet others make no clear commitment between these alternatives.
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and parametric instances of these may occur in proofs constructed using the rules in
R��.26 Then

(i) there is a �0,R ��-theory � such that � ⊆ � ⊆ �0, A /∈ �, and

(a) for all formulas B in �0, B /∈ � if, and only if, �, B 	R�� A,

(b) if ∧ occurs in �0 and the rules of ∧-I and ∧-E either belong to R or are
safely �-derived rules given the rules in R, then for all formulas B, Cin�0,
if B ∧ C ∈ �0 then B ∧ C ∈ � if, and only if, B ∈ � and C ∈ �,

(c) if → occurs in �0 and the rule of →-I either belongs to R or is a safely �-
derived rule given the rules in R, then for all formulas B, C in �0, if B →
C ∈ �0 then B → C ∈ � if C ∈ �,

(d) if → occurs in �0 and the rule of →-E either belongs to R or is a safely
�-derived rule given the rules in R, then for all formulas B, C in �0, if
B → C ∈ �0 then B → C ∈ � only if B /∈ � or C ∈ �,

(e) if a universal generalization belongs to �0 and the rule of ∀-E either belongs
to R or is a safely �-derived rule given the rules in R, then any universal
generalization in �0 belongs to � only if all its instances employing constants
in �0 belong to � too,

(f) if an existential generalization belongs to �0 and the rule of ∃-I either belongs
to R or is a safely �-derived rule given the rules in R, then an existential
generalization in �0 belongs to � when any of its instances belonging to �0
belongs to �;

(ii) if ∨ occurs in �0 and the rules of ∨-I and ∨-E either belong to R or are safely
�-derived rules given the rules in R, � is �0-prime;

(iii) if ¬ occurs in �0 and the rule of ¬-E either belongs to R or is a safely �-derived
rule given the rules in R, � is �0-consistent;

(iv1) if A = ¬D, for some D ∈ �0 and the rule ¬-inv either belongs to R or is a safely
�-derived rule given the rules in R, � is �0-consistent;

(iv2) if A = ¬D, for some D ∈ �0 and the rule of ¬-I either belongs to R or is a
safely �-derived rule given the rules in R, � is �0-consistent and �0-negation-
complete;

(v) if A = ¬D, for some D ∈ �0, → occurs in �0 and the rules of weak ¬-I, ¬-E,
and →-I either belong to R or are safely �-derived rules given the rules in R, �
is �0-implication-complete;

(vi) if an existential generalization belongs to �0 and the rule of ∃-E belongs to
R or is a safely �-derived rule given the rules in R then � is �0-witness-
complete.

Proof. Here again we mimic the standard proof.

Let B0, B1, . . . , Bn, . . . be an enumeration of the formulas in �0, an enumeration in-
dexed by N. We define a sequence of extensions of � as follows:

26 Given that proofs are finite we could always use constants belonging to � but as we allow infinite
sets of premises (all but finitely many unused in any given derivation) we would keep having to
speak of derivations from subsets. It’s just neater to allow parametric instances using constants
alien to �.
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(A) �0 = �;
for all n ∈ N,

(B) �n+1 = �n if �n , Bn 	R�� A,
�n+1 = �n ∪ {Bn} if �n , Bn �R�� A and Bn is not an existential generalization,
�n+1 = �n ∪ {∃vD, D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �n ∪ {Bn, A}, if Bn is the formula ∃vD and �n, Bn �R�� A.

We set � = ⋃
n∈N �n .

Supplementary to the proof of Theorem 2.1, it does not follow by definition of the
sequence (�n)n∈N that �n+1 �R�� A for when Bn is an existential generalization and �n ,
Bn �R�� A we add two formulas to �n to obtain �n+1, not just Bn itself. Suppose, then, that
Bn = ∃vD and that �n, ∃vD, D(v/c) 	R�� A. As c is, by design, foreign to �n ∪ {∃vD, A},
its occurrence in an R��-proof of A from �n ∪ {∃vD, D(v/c)} is essentially parametric,
and so, as ∃-E belongs to R�� (and without overstepping the bounds of what counts as an
R��-proof), we have that �n, ∃vD 	R�� A, which, by hypothesis, is not the case. This, and
the theoryhood of �, ensures that � is �0-witness-complete. (i)(e) and ( f ) are immediate
in the light of the �0,R��-theoryhood of �. �

To save on repetition below, we shall call a �0,R��-theory well behaved when it satisfies
Clauses (i)(b)–( f ) in the statement of GLHL.

3.1.2. Strong Glivenko Theorems for fragments of classical first-order logic (CQL) By
the GLHL we obtain a set � that contains an existentially quantified formula just in case
it contains an instance of that formula. Bearing that fact in mind and independently of
any particular formulations of classical first-order logic as an extension of minimal and
intuitionist first-order logics we have, as immediate consequences of GLHL, the following,
where RMQ denotes the set of rules in our chosen formulation of MQL, and, likewise, RIQ
the set of rules in our chosen formulation of IQL. Putting our earlier notation to a related
use, given a set of formulas � we write C(�) for the set of connectives and quantifier
prefixes that occur in at least one member of �.

3.1.2.1. Strong Glivenko Theorem for the {∧, ∨, ¬, ∃}-fragment of CQL

THEOREM 2 If C(� ∪ {¬A}) ⊆ {∧, ∨, ¬, ∃} and � 	CQL ¬A then � 	MQL ¬A.

Proof. Let � contain all subformulas of members of � ∪ {¬A} formed using
c0, c1, . . . , cn, . . . and whatever other constants may occur in members of � ∪ {¬A}.
Adding to the proof of Theorem 2.2, if � �MQL ¬A, there is, by GLHL (i)–(iv) and
(vi), a �-prime, �-consistent, �-negation-complete, vacuously �-implication-complete,
�-witness-complete, �,RMQ ��-theory �, a subset of �, extending � and not containing
¬A. This determines a classical assignment of truth-values under which all members of �
are assigned the value true and ¬A is assigned the value false. By the soundness of CQL
with respect to (classical) truth-value semantics, � �CQL ¬A. �

3.1.2.2. Strong Glivenko Theorem for the {∧, ∨, ¬, → ∃}-fragment (the ∀-free fragment)
of CQL

THEOREM 3 If C(� ∪ {¬A}) ⊆ {∧, ∨, ¬, →, ∃} and � 	CQL ¬A then � 	IQL ¬A.27

Proof. Building on the proofs of Theorems 2 and 2.3, GLHL (v) ensures �-implication-
completeness of �. �

27 This is a strengthening of Fitting (1969, Theorem 8.3, p. 52).
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3.2. Intuitionist first-order logic (IQL).

3.2.1. Kripke semantics for intuitionist first-order logic A Kripke model is a quadruple
< T, 
, D, u > where

(a) T is a nonempty set (of nodes);

(b) 
⊆ T 2 and partially orders T ;

(c) the function D associates with each node t a set Dt in such a way that if s 
 t then
Ds ⊆ Dt and ∩t∈T Dt is nonempty;

(d) the function u associates with each constant an element of ∩t∈T Dt and with each
node t and n-ary predicate φ a subset of Dn

t in such a way that if s 
 t then us(φ) ⊆
ut (φ);

(e) we expand the language L by adding a name for each element of ∪t∈T Dt ; we take
d̄ to be the name of d, so that u(d̄) = d; we call the expanded language LD .

The function v:T × LD → {0, 1} builds on u in the following ways:

(f) where c1, c2, . . . , cn are not necessarily distinct constants of LD and φ an n-ary
predicate in L , for the atomic formula φc1c2 . . . cn we have that vt (φc1c2 . . . cn) = 1
iff < u(c1), u(c2), . . . , u(cn) >∈ ut (φ);

(g) for all A,B ∈ LD , vt (A ∧ B) = min{vt (A), vt (B)};
(h) for all A,B ∈ LD , vt (A ∨ B) = max{vt (A), vt (B)};
(i) for all A,B ∈ LD, vt (A → B) = 1 iff ∀s � t [vs(A) = 0 or vs(B) = 1];

(j) for all A ∈ LD, vt (¬A) = 1 iff ∀s � t [vs(A) = 0];

(k) in the case of an existential generalization ∃vA, vt (∃vA) = 1 iff vt (A(v/d̄)) = 1 for
some d ∈ Dt ;

(l) in the case of a universal generalization ∀vA, vt (∀vA) = 1 iff ∀ s � t [ ∀ d ∈
Dsvs(A(v/d̄) = 1].

As before, we say that a formula A is verified at a node t in a model < T, 
, D, u >
just in case vt (A) = 1 and that a model < T, 
, D, u > contains a base node if there is a
node t ∈ T such that, for all s ∈ T , s � t .

Soundness of IQL: where A and the formulas in � belong to L , if � 	IQL A then at
any node in a Kripke model < T, 
, D, u > at which every member of � is verified A is
verified there too. We note that, where Lt is the extension of L obtained by adding names
for all and only the elements of Dt to L , the set of formulas verified at a node in a Kripke
model constitutes an Lt -consistent, Lt -prime, Lt -witness-complete, Lt , RIQ �Lt -theory.

3.2.2. Generic completeness theorem Given a set of formulas �, when we wish to
indicate that some set R of rules is to be restricted in application exactly to the subformulas
of � formed using the constants that occur in members of � or in some notional fixed
countably infinite set of parameters foreign to �, we may write R��.

THEOREM 4 If � �RIQ�(�∪{A}) A then there is a Kripke model < T, 
, D, u > with a
base node such that all members of � are verified at the base node but A is not verified
there.

Proof. We take a countably infinite collection C of countably infinite sets of constants
foreign to � ∪ {A}, together with a set of parameters disjoint from all these sets of con-
stants, and let � be the least set of formulas extending � ∪ {A} containing subformulas
constructed using constants in � ∪ {A} and in C0, one of the members of C . Clauses (i),
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(ii), (iii), and (vi) of the Generic Lindenbaum–Henkin Lemma (GLHL) apply so there is a
�-consistent, �-prime, �-witness-complete �,RIQ��-theory � contained in �, extending
�, not containing A, and with the properties stated in (i)(a)–( f ) of 3.1.1.

Given �, consider a set of formulas that differs from � only in that the (countable)
set used to obtain instances of existential generalizations extends the set used in forming
�—it is a union of a finite collection, including C0, of members of C . Call such a set a
witness extension of �. The nodes of our small Kripke model are those subsets of witness-
extensions �′ of � that extend � and that are, relative to the appropriate �′, �′-consistent,
�′-prime, �′-witness-complete �′,RIQ ��′-theories. � is the base node of the model. 

is the subset relation. The domain D� associated with the �′,RIQ ��′-theory-node �
comprises those constants used in forming members of �′ (so, obviously, D� ⊆ D�

when � 
 �); these constants occur autonymously, that is, for any such constant c, c̄ = c
and u(c) = c.28 Where φ is an n-ary predicate, we stipulate that the n-tuple of constants
< c1, . . . cn > belongs to u�(φ) just in case φc1c2 . . . cn ∈ �.

Claim For all �′, RIQ ��′-theory-nodes � in the model and all B ∈ �′, B is verified at
� just in case B ∈ �.

As ever, proof is by induction on complexity of formula (number of occurrences of
connectives and quantifiers).

The claim holds for atomic formulas:
v�(φc1c2 . . . cn) = 1 iff < u(c1), u(c2), . . . , u(cn) >∈ u�(φ) iff < c1, c2, . . . , cn >∈

u�(φ) iff φc1c2 . . . cn ∈ �.
The induction hypothesis states that the claim holds for all formulas in each witness-

extention �′ up to some given complexity. We consider the next higher level of complexity.
Induction step. The connectives are dealt with as in 2.2.2. We need only consider

quantifiers.
Existential quantifiers If ∃vB ∈ �′ then the rules of ∃-I and ∃-E, restricted to formulas

in �′ and parametric instances of such, belong to RIQ ��′ and we have that

If ∃vB ∈ � then, by the �′-witness-completeness of �, for some pa-
rameter c, B(v/c) ∈ �; so c ∈ D� and, by the induction hypothesis,
v�(B(v/c)) = 1, whence v�(∃vB) = 1.

If ∃vB /∈ � then, by �’s �′,R ��′-theoryhood, � �R��′ ∃vB; as ∃-I
is one of our rules, there is no constant c in �′, for which B(v/c) ∈ �;
there is, then, no member c of D� for which v�(B(v/c)) = 1, and hence
v�(∃vB) = 0.

Universal quantifiers If ∀vB ∈ �′ then the rules of ∀-I and ∀-E, restricted to formulas in
�′ and parametric instances of such, belong to RIQ ��′ and we have that

If ∀vB ∈ � then, for all �′′, RIQ ��′′ -theories � extending �, ∀vB ∈
�—here �′′ differs from �′ only in that more witnesses may be present;
for any constant c in �′′, the rule ∀-E, applied only to formulas in �′′,
ensures that � 	R��′′ B(v/c); by the �′′,RIQ, ��′′-theoryhood of �, for
all such constants c, B(v/c) ∈ �; by the induction hypothesis, we have
that ∀� ⊇ �[∀c ∈ D�, v�(B(v/c)) = 1 ] and so v�(∀vB) = 1.

If ∀vB /∈ � then, by the �′,RIQ ��′-theoryhood of �, � �R��′ ∀vB;
let a be a constant foreign to �′—we know there are such available for

28 By design, D� is nonempty, indeed countably infinite.
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the constants in �′ belong to only finitely many of the members of C ;
� �R�(�′∪{B(v/a)}) B(v/a), for, a being foreign to �′, were there to be a
R�(�′ ∪ {B(v/a)})-proof of B(v/a) from �, as a would behave essen-
tially as a parameter, by an application of ∀-I, we would have a R��′-
proof of ∀vB from �, which we know there not to be; let �′′ expand �′
to include all subformulas employing the extra constants belonging to
the same member of C as a; by the GLHL there’s a �′′-consistent, �′′-
prime, �′′-witness-complete �′′,RIQ��′′-theory �, extending � and
not containing B(v/a); � 
 �, a ∈ D� and, by the induction hypothe-
sis, v�(B(v/a)) = 0, hence v�(∀vB) = 0. �

3.2.3. Subformula and separation properties for IQL As an immediate consequence
of Theorems 4 and 2.5 we have that IQL has the subformula and separation properties.

3.2.4. Subformula and separation properties for MQL (minimal first-order logic) As
MPL is to IPL, so is MQL to IQL: it is obtained by dropping ¬-E from IQL; its Kripke
models are quintuples < T, 
, D, u, F > with Fan 
-open set in T (i.e., if t ∈ F
and t 
 s then s ∈ F ) and negation is evaluated as in Kripke models for MPL.
Just as in 2.3, we find that MQL has the subformula property: if � 	MQL A then
� 	RMQ�(�∪{A}) A.

3.3. Some results that build on §2 and 3.1 and 3.2.

3.3.1. The {∧, ∨, →, ∀, ∃}-fragment of the intermediate logic KQL

THEOREM 5 If C(� ∪ {A}) ⊆ {∧, ∨, →, ∀, ∃} and � 	KQL A then � 	IQL A.

— The “supernode” contains all formulas in the countably many extensions of �0. �

3.3.2. Subformula and separation theorems for the {∧, ∨, ∃}-fragment of CQL

THEOREM 6 If � 	CQL A and C(� ∪ {A}) ⊆ {∧, ∨, ∃} then � 	RMQ�(�∪{A}) A.

— GLHL adds �-witness-completeness to Theorem 2.9. �

3.3.3. A weak subformula property for the {∧, ∨, ¬, ∃}-fragment of CQL as MQL+DNE
In the derivation of any →-free, ∀-free sequent � 	 A that is classically valid but not
derivable in MQL, only subformulas of members of � ∪ {¬¬A} need occur. DNE, which
must be used in deriving the sequent, need be used only once and we may further insist
that its application be the last step. The {∧, ∨, ¬, ∃}-fragment of MQL + DNE has the
separation property.

3.3.4. A weak subformula property for the {∧, ∨, →, ¬, ∃}-fragment of CQL as IQL +
DNE In the derivation of any ∀-free sequent � 	 A that is classically valid but not
derivable in IQL, only subformulas of members of � ∪ {¬¬A} need occur. DNE, which
must be used in deriving the sequent, need be used only once and we may further insist
that its application be the last step.

3.3.5. A weak subformula property for the {∧, ∨, →, ¬, ∃}-fragment of CQL as IQL +
CRA or IQL + Dilemma In the derivation of any ∀-free sequent � 	 A that is classically
valid but not derivable in IQL, only subformulas of members of � ∪ {¬A} need occur.
CRA or Dilemma, one of which must be used in deriving the sequent, need be used only
once and we may further insist that, whichever we use, its application be the last step.
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3.3.6. The {∧, ∨, ¬, ∃}-fragment of CQL as IQL+Dilemma has the subformula property

3.3.7. The {∧, ∨, →, ∃}-fragment of CQL as IQL + Peirce’s Rule has the separation
property

3.3.8. The {∧, ∨, →, ∃}-fragment of CQL as IQL + Tarski’s Rule has the subformula
property

3.3.9. A formulation of the {∧, ∨, →, ¬, ∃}-fragment of CQL with the (strict) subfor-
mula property and no redundancy of rules The rules are: ∧-I, ∧-E, ∨-I, ∨-E, weak →-I,
Tarski’s Rule, →-E, Dilemma, ¬-E, ∃-I, and ∃-E.

3.3.10. The shape of things to come Adding the standard introduction and elimination
rules for the universal quantifier to those listed immediately above yields a formulation of
CQL. That the sequent ∀x(Fx ∨ Ga) 	 ∀xFx ∨ Ga is classically valid but not intuition-
istically so shows, however, that even the separation property fails for this formulation.
Consequently, if we are to achieve a formulation of CQL with the subformula property that
builds on what we have obtained so far, we cannot make do with the standard rules for both
disjunction and the universal quantifier.

3.4. Keeping small Kripke models small. In the construction used in the proof of the
GLHL in 3.1.1 we help ourselves to a countable infinity of additional names and use them
in forming a stock of substitution instances of quantified formulas in � ∪{A}. This has the
effect that though the number of nodes involved in any model may be small, the domain at
each node is countably infinite. One might, with some justice, complain, as a referee did,
that the models are no longer small. A first step—and the only one to be taken here—in
the direction of keeping models small is to alter as follows the basic construction used in
proof of the GLHL when the initial set of formulas � ∪ {A} is finite.

�0 contains all subformulas of � ∪ {A} obtained using names occurring in � ∪ {A}, if
there are any, and all subformulas formed using one new name, if there is none. Additional
names are added as needed, need being determined by the details of the Lindenbaum–
Henkin construction, details we amend as follows.

Taking note of the fact that �0 is finite, we let B0, B1, . . . , Bk be an initial enumeration
of the formulas in �0. We define a sequence of extensions of � as follows:

(A) �0 = �; I0 = {0, 1, . . ., k};
if n + 1 /∈ In , stop and set � = ∪m∈In �m ;
otherwise

(B) �n+1 = �n if �n , Bn 	R�� A, In+1 = In;
�n+1 = �n ∪ {Bn} if �n , Bn �R�� A and Bn is not an existential generalization,
In+1 = In ;
�n+1 = �n ∪ {∃vD, D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �n ∪ {Bn, A}, if Bn is the formula ∃vD and �n, Bn �R�� A; in this last
case, add B j+1, B j+2, . . ., Bm to the current enumeration of formulas B0, B1, . . . , B j ,
where j = max In and B j+1, B j+2, . . ., Bm are substitution instances of quantified
formulas in {Bi : i ∈ In} created using the new constant c and whatever constants
already occur in {Bi: i ∈ In}. In+1 = {0, 1, . . ., j, j + 1, . . ., m}.

(C) � = ∪n∈N�n if for no n ∈ N is it the case that n+1 /∈ In .
In some cases this works beautifully to yield the smallest possible Kripke model. For

example, ∀x(Fx ∨ Ga) �IQL ∀xFx ∨ Ga: the construction delivers a model of two nodes;
the base node contains a single element, denoted by a, which, at the base node, is in the
extension of F but not of G; the second node has a domain of two elements, one being the
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denotation of a, which at this node is in the extension of G, and in the extension of F, but
the other element of the domain is not in the extension of F.

In some cases the method delivers small but not the smallest possible models exactly
because the way built in to the construction of Kripke models to have a universally quanti-
fied formula fail to be verified at the base node is to introduce a new node (see 3.2.2). So
in applying the method to the classically invalid ∃xFx 	 ∀xFx we obtain a model with two
nodes. Like the previous model, the base node has a domain containing one element that
falls within the extension of F there, the second node contains an additional element that
does not fall in the extension of F at that node.

Comparably to what happens with semantic tableaux/trees, where the amended method
falls down badly is in the case of mixed quantification and relations. Showing the clas-
sically invalid quantifier-shift fallacy—from ∀x∃yRxy to ∃y∀xRxy—to be fallacious, the
amended method yields a model with a base node with a countably infinite domain in
which all pairs of elements are in the extension of R, the base node having a count-
ably infinity of distinct successor nodes, one for each element in the domain of the base
node, each branching off on its own; for each element a in the domain of the base node,
in its successor node (if I may put it that way) there is some new element not in the
base node, da , say, for which the pair < da, a > is not in the extension of R at that
node.

Doubtless one could attempt to refine the construction in the proof of the GLHL
(cf. Boolos, 1984). But whether the game is worth the candle is moot. At some point
systematicity and the desire for small models with small domains run up against unde-
cidability considerations. And there is a definite cost in terms of the simplicity of the
construction. In what follows no attempt will be made to keep domains small.

3.5. Strong �-counter-witness-completeness. Given a set � of formulas of a lan-
guage L we say that a set of formulas � is �-counter-witness-complete if

for all universal generalizations ∀vA in �, ∀vA ∈ � if A(v/c) ∈ � for all constants
c in L .

Absence, for some name c in L , of A(v/c) from � then provides a witness to �’s
failure to endorse the universal generalization ∀vA. A more forceful marker—assuming
consistency of �—than mere failure on �’s part to affirm A(v/c) is presented when �
affirms the contrary of A(v/c).

3.5.1. Contraries If A = ¬B, for some formula B, then −A, the contrary of A, is B;
otherwise −A = ¬A.

3.5.2. Generic Lindenbaum–Henkin Lemma: first extension

THEOREM 7 Given R, when � �R A and where c0, c1, . . . , cn, . . ., is an infinite
sequence of constants all foreign to � ∪ {A} let �0 contain all subformulas of members
of � ∪ {A} formed using c0, c1, . . . , cn, . . . and whatever other constants may occur in
members of �0. Let �1 be the smallest extension of �0 that contains −A and, for each
constant d in �0, contains −D(v/d) when ∀vD ∈ �0. Let �1 ⊆ � and, as usual, let
R�� stand for the restriction of the rules in R obtained by excluding rules governing those
connectives and quantifiers that do not occur in any member of � and restricting those
that remain to formulas in � and parametric instances of these. By design, ¬ occurs in
formulas in �1. If �0 = �1 and the rules ¬-I and ¬-E either belong to R or are safely
�-derived rules given the rules in R, or if �0 � �1 and the rules ¬-I, Dilemma, and ¬-E
either belong to R or are safely �-derived rules given the rules in R, then
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(i) there is a well-behaved �1,R��-theory � such that � ⊆ � ⊆ �1, A /∈ �, and
(a) for all formulas B in �1, B /∈ � if, and only if, �, B 	R�� A;

(ii) if ∨ occurs in �1 and the rules of ∨-I and ∨-E either belong to R or are safely
�-derived rules given the rules in R, � is �1-prime;

(iii) � is �1-consistent;

(iv) � is �1-negation-complete;

(v) if → occurs in �1 and the rule of →-I either belongs to R or is a safely �-derived
rule given the rules in R, � is �1-implication-complete;

(vi1) if an existential generalization belongs to �1 and the rule of ∃-E belongs to R or
is a safely �-derived rule given the rules in R then � is �1-witness-complete;

(vi2) if a universal generalization belongs to �1 and the rule of ∀-I belongs to R or is a
safely �-derived rule given the rules in R then � is �1-counter-witness-complete.

Proof. Let B0, B1, . . . , Bn, . . . be an enumeration of the formulas in �0, an enumeration
indexed by N. We define a sequence of extensions of � as follows:

(A) �0 = �;
for all n ∈ N,

(B) �n+1 = �n ∪ {Bn} if �n, Bn �R�� A and Bn is not an existential generalization,
�n+1 = �n if �n, Bn 	R�� A and Bn is not a universal generalization,
�n+1 = �n ∪ {∃vD, D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �n ∪ {Bn, A}, if Bn is the formula ∃vD and �n, Bn �R�� A,
�n+1 = �n ∪ {−D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �n ∪ {Bn, A}, if Bn is the formula ∀vD and �n, Bn 	R�� A.

We set � = ∪n∈N�n and show, for all n ∈ N, that �n �R�� A. As ever, the proof goes by
induction. Supplementary to what has been done above, we must show that �n+1 �R�� A
when �n+1 = �n ∪ {−D(v/c)}, where c is foreign to �n ∪ {∀vD, A}, because �n , ∀vD
(= Bn) 	R�� A.

Suppose that �n, −D(v/c) 	R�� A. Then, by ¬-E, �n, −A, −D(v/c) 	R�� D(v/c).
Whence, by Dilemma if −D(v/d) = ¬D(v/d) and by ¬-I if not, �n, −A 	R�� D(v/c).
As c is foreign to �n ∪ {A}, �n, −A 	R�� ∀vD, whence �n, −A 	R�� A. By Dilemma
if −A = ¬A and by ¬-I if not, �n 	R�� A, which, by the appropriate inductive hypothesis,
we know not to be the case.

(iii) ¬-E gives us �1-consistency.

(iv) if −A = ¬A, Dilemma secures �1-negation-completeness; otherwise ¬-I suffices.

(v) if B ∈ �1, B → C ∈ �1, B /∈ �, and B → C /∈ �, then �, B 	R�� A and
�, B → C 	R�� A. By ¬-E, �, −A, B 	R�� C , whence, by →-I, �, −A− 	R��
B → C . But then �, −A 	R�� A. Finally, by Dilemma if −A = ¬A and by ¬-I
otherwise, � 	R�� A, which we know not to be the case.

(vi2) If ∀vD /∈ �, then �n, ∀vD 	R�� A, where ∀vD= Bn . Hence −D(v/c)∈�n+1 ⊆�.
By �1-consistency of �, D(v/c) /∈ �. �

3.5.3. Weak subformula property for CQL as IQL + Dilemma and IQL + CRA At-
tending to the details of the proof in the previous section, we find that we can do better.
Making use of the observation at 2.5.3.1, we see that in the presence of ¬-I, the only
applications of Dilemma/CRA that we need in order to establish negation-completeness
deduce A from a subproof in which A is deduced from its contrary—and clearly we only
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need Dilemma/CRA in case −A = ¬A, for otherwise ¬-I suffices. Consequently we can
restrict the possible applications permitted of Dilemma or CRA to obtain:

THEOREM 8 When CQL is formulated as IQL + Dilemma, then when � 	CQL A there
is a proof in which, over and above subformulas of members of � ∪ {A}, only ¬A and
negations of instances of universal generalizations that are themselves subformulas of
members of � ∪ {A} occur. But ¬A need not occur if A itself has negation dominant, and,
likewise, the negation ¬D(v/c) of an instance of a subformula ∀vD need not occur if D has
negation dominant. Furthermore, those nonsubformulas that do occur need occur only as
assumptions discharged in applications of Dilemma and these are the only applications
of Dilemma in the proof. Lastly, if a nonsubformula that is the negation ¬D(v/c) of
an instance of a subformula ∀vD does so occur, it occurs in an application of Dilemma
whose immediate conclusion is D(v/c), and, likewise, if ¬A does occur as an assumption
discharged in an application of Dilemma, it is an application whose immediate conclusion
is A. Such applications of Dilemma are, in effect, applications of CRA, for the subproof
that “does the work” is a derivation of a formula in which its own negation occurs as
assumption. �

This is an optimal strengthening of the subformula results obtained by Prawitz (1963,
secs. 3.1, 3.2, 4.1, and 4.2), for the ∨- and ∃-free fragment of CQL, and by Stålmarck
(1991), for full CQL, as consequences of normalization theorems. Optimality is shown
by two considerations. (1) We cannot make do with only the negations of instances of
universal generalizations that are subformulas, for there are ∀-free, ¬-free classically valid,
intuitionistically invalid inferences. (2) We cannot dispense with all the negations of in-
stances of universal generalizations that are subformulas other than the negation of the
conclusion, for if we could we would obtain a fallacious strong Glivenko Theorem: we
would have that � 	CQL ¬A only if � 	IQL ¬A. But this is well known to be false. —
The standard counterexample:

∀x¬¬Fx 	CQL ¬¬∀xFx but {∀x¬¬Fx, ¬∀xFx} is intuitionistically consistent.

3.5.3.1. Weak subformula property for CQL as IQL + Peirce’s Rule Zimmermann
(2002) has obtained a normalization theorem for classical first-order logic formulated with
a falsum constant as primitive (and negation a mere abbreviatory device) and Peirce’s Rule,
taken, following Curry (1963), as an extra elimination rule for the conditional.29 In this
setting, bearing the immediately above and Theorem 2.19 in mind, it is not difficult to show

THEOREM 9 When � 	CQL A there is a proof in which, over and above subformulas
of members of � ∪ {A}, only A → ⊥, conditionals of the form A → C where C is the
consequent of a conditional that is a subformula of a member of � ∪{A}, and conditionals
of the form D(v/c) → ⊥ where D(v/c) is an instance of a universal generalization that
is a subformula of a member of � ∪ {A} occur. But A → ⊥ need not occur if A itself is
of the form E → ⊥, and, likewise, the conditional D(v/c) → ⊥ involving an instance
of a subformula ∀vD need not occur if D is of the form E → ⊥. Furthermore, those
nonsubformulas that do occur need occur only as assumptions discharged in applications
of Peirce’s Rule and these are the only applications of Peirce’s Rule in the proof. �

3.5.4. Strong Glivenko Theorem for CQL From Theorem 7 we see that when the
conclusion A of the underivable sequent � 	 A is of the form ¬E , for some E, � is

29 I owe this reference to Roy Dyckhoff.
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�1-negation- and �1-implication-complete and the only appeals to Dilemma in the proof
of the extension of GLHL occur in showing that �n 	R�� ¬E when �n, ∀vD(= Bn) 	R��
¬E and �n, −D(v/c) 	R�� ¬E (where c does not occur �n ∪ {∀vD, E}). The rule that
most directly establishes this is

MH is an inessential variant of Seldin’s (1986) Mh. As an addition to IQL it is equivalent
to the Double Negation Shift rule (cf. Seldin,1986)

DNS is the most obvious rule to add to IQL in order to render {∀x¬¬Fx, ¬∀xFx}
inconsistent. By adding MH in its place and adapting the proof of Theorem 7 we obtain an
elegant proof of

THEOREM 10 If � 	CQL ¬A then � 	IQL+MH ¬A. �
We also obtain information regarding subformulas. When � 	CQL ¬A there is a proof of

¬A from � in IQL+MH in which, over and above subformulas of members of � ∪{¬A},
only negations of instances of universal generalizations that are themselves subformulas
of members of � ∪ {¬A} occur. But the negation ¬D(v/c) of an instance of a subformula
∀vD need not occur if D has negation dominant. Furthermore, those nonsubformulas that
do occur need occur only as assumptions discharged in applications of MH and these are
the only applications of MH in the proof. Lastly, if a nonsubformula that is the negation
¬D(v/c) of an instance of a subformula ∀vD does so occur, it occurs in an application of
MH whose immediate conclusion is ¬A.

3.6. Weak ���-counter-witness-completeness. The Kripke semantics for first-order
IQL (and MQL) allows domains to grow: it is required only that, for any nodes s and t in
a model < T, 
, D, u >, Ds ⊆ Dt when s 
 t . If we confine attention to those models
in which the domain is constant, that is, ∀s, t ∈ T Ds = Dt (�= Ø), then, given the other
properties of Kripke models, we can simplify radically the verification conditions at a node
for universal generalizations:

(lCD) vt (∀vA) = 1 iff [∀d ∈ Dvt (A(v/d̄)) = 1],

where D is the (nonempty) domain common to all nodes in the model. If we are to mimic
this condition in the theories we obtain via the Lindenbaum–Henkin construction, we must
aim at the very least for �-counter-witness-completeness: we want a Lindenbaum–Henkin-
style construction to deliver a base node that is �0-counter-witness-complete.

3.6.1. The Generic Lindenbaum–Henkin Lemma: second extension

THEOREM 11 Given R, when � �R A and where c0, c1, . . . , cn, . . ., is an infinite
sequence of constants all foreign to � ∪ {A} let �0 contain all subformulas of members
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of � ∪ {A} formed using c0, c1, . . . , cn, . . . and whatever other constants may occur in
members of � ∪ {A}. Let �0 ⊆ �, and let R�� stand for the restriction of the rules in R
obtained by excluding rules governing those connectives and quantifiers that do not occur
in any member of � and restricting those that remain to formulas in � and parametric
instances of these. Then, keeping the lettering and numbering of clauses from previous
sections,

(i) there is a well-behaved �0,R��-theory � such that � ⊆ � ⊆ �0, A /∈ �;

(iii) if ¬ occurs in �0 and the rule of ¬-E either belongs to R or is a safely �-derived
rule given the rules in R, � is �0-consistent;

(iv1) if A = ¬D, for some D ∈ �0 and the rule of weak ¬-I either belongs to R or is a
safely �-derived rule given the rules in R, � is �0-consistent;

(vi1) if an existential generalization belongs to �0 and the rule of ∃-E belongs to R or
is a safely �-derived rule given the rules in R then � is �0-witness-complete;

(vi2) if a universal generalization belongs to �0 and the rule of ∀-I belongs to R or
is a safely �-derived rule given the rules in R then � is �0-counter-witness-
complete.

Proof. Let B0, B1, . . . , Bn , . . . be an enumeration of the formulas in �0, an enumeration
indexed by N. We define a sequence of extensions of � and a sequence of extensions of
{A} as follows:

(A) �0 = �; Z0 = {A}; for all n ∈ N,

(B) �n+1 = �n ∪ {Bn}, Zn+1 = Zn if Bn is not an existential generalization and for no
C ∈ Zn is it the case that �n , Bn 	R�� C ,
�n+1 = �n , Zn+1 = Zn if �n , Bn 	R�� C , for some C ∈ Zn , and Bn is not a universal
generalization,
�n+1 = �n ∪ {∃vD, D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �n ∪ Zn ∪ {Bn}, Zn+1 = Zn if Bn is the formula ∃vD and for no C ∈ Zn

is it the case that �n , Bn 	R�� C ,
�n+1 = �n , Zn+1 = Zn∪{D(v/c)}, where D(v/c) is an instance employing a constant
not occurring in �n ∪ Zn ∪ {Bn}, if Bn is the formula ∀vD and �n , Bn 	R�� C , for
some C ∈ Zn .

We set � = ∪n∈N�n , Z = ∪n∈NZn .
First we show, for all n ∈ N, that �n �R�� C for any C ∈ Zn .
True by hypothesis for n = 0. Induction hypothesis (IH): suppose that it’s true for n = k.

Cases:

(1) �k+1 = �k ∪ {Bk}, Zk+1 = Zk and Bk is not an existential generalization: if �k ,
Bk 	R�� C for some C ∈ Zk , then, by construction, �k+1 = �k and hence, contrary
to IH, �k 	R�� C for some C ∈ Zk ;

(2) �k+1 = �k , Zk+1 = Zk and Bk is not a universal generalization: by IH, �k+1 =
�k �R�� C , for any C ∈ Zk = Zk+1;

(3) �k+1 = �k ∪ {∃vD, D(v/c)}, where D(v/c) is an instance employing a constant
not occurring in �k ∪ Zk ∪ {Bk}, Zk+1 = Zk and Bk is the formula ∃vD: if
�k, Bk, D(v/c) 	R�� C for some C ∈ Zk , then, as c is foreign to �k ∪ Zk ∪ {Bk},
we have that �k, Bk, ∃vD 	R�� C , that is, �k, Bk 	R�� C , for some C ∈ Zk , and the
argument now proceeds as in (1);
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(4) �k+1 = �k , Zk+1 = Zk∪{D(v/c)}, where D(v/c) is an instance employing a constant
not occurring in �k ∪{Bk}, and Bk is the formula ∀vD: suppose that �k 	R�� D(v/c),
IH ruling out any other possibility; by IH, D(v/c) /∈ Zk ; the only possibility is that
�k , ∀vD 	R�� C , for some C ∈ Zk ; as c is foreign to �k ∪ Zk ∪ {∀vD}, �k 	R�� ∀vD
and hence �k 	R�� C , for some C ∈ Zk , contrary to IH.

Consequently, if C ∈ Z then � �R�� C , for if, on the contrary, C ∈ Zk , for some
k ∈ N, then, proofs being finite, for some m ∈ N, �m 	R�� C ; letting n = max{k, m}, we
contradict what has just been shown. It follows that � is a �0,R��-theory.

(iii) If ¬ occurs in �0 and R gives us the rule of ¬-E, � is �0-consistent: if B ∈ �0,
¬B ∈ �0, B ∈ �, and ¬B ∈ � then, by ¬-E, � 	R�� C , for all C ∈ Z, which we know
not to be the case.

(iv1) If A = ¬D, and R gives us the rule ¬-inv, � is �0-consistent: if B ∈ �0, ¬B ∈
�0, B ∈ �, and ¬B ∈ � then, by weak ¬-I, � 	R�� ¬D, and, as ¬D ∈ Z, we know this
not to be the case.

(vi) �0-witness-completeness and �0-counter-witness-completeness are built into the
construction (given the �0, R��-theoryhood of �). �

Notice the complete absence of mention of disjunctions and therewith primeness of �0.
The steps in the argument for primeness in Theorem 2.1 (GLL), for negation-completeness
in Theorems 2.1, 2.10, and 2.14, and implication-completeness in Theorems 2.1, 2.12, 2.17,
and 2.18 and 2.6.2 all turn on the property that B /∈ � iff �, B 	 A; here, where we have
replaced A by a class of formulas entailment, in conjunction with �, of any one of which
suffices for nonmembership of �, we cannot make the moves we made in those earlier
proofs. Our extension of GLHL does allow us to establish

THEOREM 12 If C(� ∪ {A}) ⊆ {∧, ∃, ∀} and � 	CQL A then � 	 IQL A.30 �
As IQL has the subformula property and IQL and MQL do not differ as to the rules

governing ∧, ∃, and ∀, this can obviously be strengthened to read:

THEOREM 13 If C(� ∪ {A}) ⊆ {∧, ∃, ∀} and � 	CQL A then � 	MQL A. �
3.6.2. The Rule CD We add to IQL this strong form of ∨-elimination and its twin

where the featured disjunction is B ∨ A. We shall call both forms CD:

Obviously we can derive the twin from the other using ∨-I and ∨-E but as we want to
be careful about subformulas we shall adopt both forms.

We should note that this rule renders both ∨-E and ∀-I redundant, although not in such
a way as to guarantee the entry of no new formulas. When no occurrences of v in A are
free (more briefly, given present conventions: when A is a formula) we get this imitation
of ∨-E:31

30 For a proof-theoretic proof of this result see Leblanc & Thomason (1966, Theorem 5) (Leblanc,
1982, p. 402).

31 This relies on the admission of vacuous quantification.
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Mimicking ∀-I we have:

We can “liberalize” the rule CD, lifting the ban on the featured constant’s not occurring
in both disjuncts. This requires a little care:

subject to the restrictions that c not occur in any assumption on which A ∨ B depends,
and if B contains c then c does not occur in C nor in any assumption other than B in the
subproof in which B occurs as the assumption featured for discharge.

In the presence of ∃-I and ∃-E this is a derived rule, for, on the one hand, A ∨ B
entails A ∨ ∃vB(c/v) by ∨-I, ∨-E, and ∃-I, and, on the other, the restrictions imposed
when B contains c are exactly such as to allow, through a single application of ∃-E, the
transformation of the subproof in which B occurs as an assumption into a subproof in
which ∃vB(c/v) occurs as assumption in its stead.

3.6.3. Kripke semantics for IQL + CD The logic IQL + CD is known to be sound and
complete with respect to Kripke models with constant domains.32

3.6.4. The Generic Lindenbaum–Henkin Lemma: third extension

THEOREM 14 Given R, when � �R A and where c0, c1, . . . , cn, . . ., is an infinite
sequence of constants all foreign to � ∪ {A} let �0 contain all subformulas of members
of � ∪ {A} formed using c0, c1, . . . , cn, . . . and whatever other constants may occur in
members of �0. Let �1 be the least set such that A ∈ �1 and B ∨ C(v/d) ∈ �1 when
B ∈ �1, ∀vC ∈ �0 and d is a constant occurring in �0. Let �0 ∪ �1 ⊆ �, and let
R�� stand for the restriction of the rules in R obtained by excluding rules governing those
connectives and quantifiers that do not occur in any member of � and restricting those
that remain to formulas in � and parametric instances of these. If the rules ∨-I, ∨-E, and

32 See, for example, Görnemann (1971) or Gabbay (1981, Lemmata 3–7, Corollary 8, pp. 50–53.)
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CD either belong to R or are safely �-derived rules given the rules in R, then, keeping the
numbering of clauses from previous sections,

(i) there is a well-behaved �0,R��-theory � such that � ⊆ � ⊆ �0, A /∈ �;

(ii) � is �0-prime;

(iii) if ¬ occurs in �0 and the rule of ¬-E either belongs to R or is a safely �-derived
rule given the rules in R, � is �0-consistent;

(iv1) if A = ¬D, for some D ∈ �0 and the rule ¬-inv either belongs to R or is a safely
�-derived rule given the rules in R, � is �0-consistent;

(vi1) if an existential generalization belongs to �0 and the rule of ∃-E belongs to R or
is a safely �-derived rule given the rules in R then � is �0-witness-complete;

(vi2) � is �0-counter-witness-complete.

Proof. Let B0, B1, . . . , Bn, . . . be an enumeration of the formulas in �0, an enumeration
indexed by N. We define a sequence of extensions of � and a sequence of �1-formulas
(ζn)n∈N as follows:

(A) �0 = �; ζ0 = A;
for all n ∈ N,

(B) �n+1 = �n∪{Bn}, ζn+1 = ζn if Bn is not an existential generalization and �n , Bn �R��
ζn ,
�n+1 = �n , ζn+1 = ζn if �n , Bn 	R�� ζn , and Bn is not a universal generalization,
�n+1 = �n ∪ {∃vD, D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �n ∪ {Bn, ζn}, ζn+1 = ζn if Bn is the formula ∃vD and �n , Bn �R�� ζn ,
�n+1 = �n , ζn+1 = ζn ∨ D(v/c), where D(v/c) is an instance employing a constant
not occurring in �n ∪ {Bn, ζn}, if Bn is the formula ∀vD and �n , Bn 	R�� ζn .

We set � = ∪n∈N �n and show, for all n ∈ N, that �n �R�� ζn .
True by hypothesis for n = 0. Induction hypothesis (IH): suppose that it’s true for n = k.

Cases:

(1) �k+1 = �k ∪ {Bk}, ζk+1 = ζk and Bk is not an existential generalization: if �k ∪
{Bk} 	R�� ζk then, by construction, �k+1 = �k and �k 	R�� ζk , contrary to IH;

(2) �k+1 = �k , ζk+1 = ζk and Bk is not a universal generalization: by IH, �k+1 =
�k �R�� ζk = ζk+1;

(3) �k+1 = �k ∪{∃vD, D(v/c)}, where D(v/c) is an instance employing a constant not
occurring in �k ∪ {Bk, ζk}, ζk+1 = ζk and Bk is the formula ∃vD: much as in the
proof of Theorem 11;

(4) �k+1 = �k , ζk+1 = ζk ∨ D(v/c), where D(v/c) is an instance employing a constant
not occurring in �k ∪ {Bk, ζk}, and Bk is the formula ∀vD: suppose that �k 	R��
ζk ∨ D(v/c); by IH, �k �R�� ζk so it must be the case that �k, ∀vD 	R�� ζk ; on the
other hand, as c is foreign to �k ∪ {∀vD, ζk}, we have, by an application of the rule
CD, that �k 	R�� ζk , contrary to IH.

By repeated appeals to ∨-I, ζn 	R�� ζn+k , k > 0. Consequently, � �R�� ζn , n ∈ N,
for if, on the contrary, � �R�� ζk for some k, then, proofs being finite, for some m ∈ N,
�m 	R�� ζk ; letting n = max{k, m}, we contradict what has just been shown. If � 	R�� B
then �, B �R�� ζn , for any n ∈ N. In particular, then, as B = Bm , for some m ∈ N, �m ,
Bm � ζm and so B = Bm ∈ �m+1 ⊆ �. � is a �0, R��-theory. B /∈ � iff, for some n ∈ N,
�, B 	R�� ζn , iff, for some n ∈ N, �, B 	R�� ζn+k , k ≥ 0.
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(ii) � is �0-prime: if B, C, B ∨ C ∈ �0 and if B /∈ � and C /∈ � then �, B 	R�� ζn

and �, C 	R�� ζm , hence, by ∨-I, if necessary, and ∨-E, �, B ∨ C 	R�� ζmax{n,m}, and so
B ∨ C /∈ �.

(iii) and (iv1) Proof is as in proof of Theorem 11.
(vi) �0-witness-completeness and �0-counter-witness-completeness are built into the

construction (given the �0,R��-theoryhood of �). �
Although an improvement over the second extension in that we have obtained �0-

primeness of �, just as in 3.6.1 we cannot go on to obtain �0-negation- and �0-
implication-completeness, for even when A is of the form ¬D the disjunctions ζn need not
all be logically equivalent to formulas with negation dominant.

As a corollary to the �0-primeness guaranteed by the construction we have this parallel
to Leblanc and Thomason’s result in 3.6.1:

THEOREM 15 If C(� ∪ {A}) ⊆ {∧, ∨, ∀, ∃} and � 	CQL A then � 	 IQL+CD A. �
3.6.5. IQL + CD does not have the subformula property ∀x(Fx ∨ Ha), ∀x(Gx ∨

Ha) 	 IQL+CD ∀x(Fx∧Gx)∨Ha. As the sequent is not intuitionistically valid, CD must be
used. Subformulas are: ∀x(Fx ∨ Ha), ∀x(Gx ∨ Ha), ∀x(Fx ∧ Gx) ∨ Ha, ∀x(Fx ∧ Gx), Ha,
Fa∨Ha, Ga∨Ha, Fa∧Ga, Fa, Ga, Fb∨Ha, Fb∨Ha, Fb∧Gb, Fb, Gb, and so on for other
constants. Applying CD to Fb ∨ Ha (Gb ∨ Ha) requires ∀xFx(∀xGx), a nonsubformula, as
assumption; applying CD to obtain ∀x(Fx ∧ Gx) ∨ Ha requires applying it to an instance
like (Fb ∧ Gb) ∨ Ha, which is not a subformula.

3.6.6. An unlikely formulation of CQL without redundant rules The rules are: ∧-I,
∧-E, ∨-I, weak →-I, Tarski’s Rule, →-E, Dilemma, ¬-E, ∀-E, ∃-I, ∃-E, CD. A derivation
of � 	 A need contain only subformulas of members of � ∪ {A}, disjunctions in the
set ∪n∈Nδn where δ0 = {A} and δn+1 = {B ∨ D(v/c) : B ∈ δn , ∀vD a subformula of a
member of � ∪ {A}, c ∈ C}, with C some countable set of constants foreign to � ∪ {A},
and (vacuously quantified) universal generalizations of these (to make up for the absence
of ∨-E).

3.7. A formulation of CQL with the (strict) subformula property.

3.7.1. CQL with CD If we formulate CQL employing our favored version of CPL (∧-I,
∧-E, ∨-I, ∨-E, weak →-I, Tarski’s Rule, →-E, Dilemma, ¬-E) and add, in addition to the
standard quantifier rules ∀-I, ∀-E, ∃-I, and ∃-E, the rule CD then minor modifications to
3.6.4’s third extension of GLHL will deliver:

THEOREM 16 Let RCCDQ be the just specified set of rules. When � �RCCDQ A and
where c0, c1, . . . , cn, . . ., is an infinite sequence of constants all foreign to � ∪ {A} let
�0 contain all subformulas of members of � ∪ {A} formed using c0, c1, . . . , cn, . . . and
whatever other constants may occur in members of �0. Let �1 be the least set such that
A ∈ �1 and B ∨ C(v/d) ∈ �1 when B ∈ �1, ∀vC ∈ �0 and d is a constant occurring
in �0. Let �0 ∪ �1 ⊆ �, and let R�� stand for the restriction of the rules in RCCDQ
obtained by excluding rules governing those connectives and quantifiers that do not occur
in any member of � and restricting those that remain to formulas in � and parametric
instances of these. Then, keeping the numbering of clauses from previous sections,

(i) there is a well-behaved �0,R��-theory � such that � ⊆ � ⊆ �0, A /∈ �;

(ii) � is �0-prime;

(iii) � is �0-consistent;
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(ivDi) � is �0-negation-complete;

(vT’ski) � is �0-implication-complete;

(vi1) � is �0-witness-complete;

(vi2) � is �0-counter-witness-complete.

Proof. Theorem 14 takes care of all except (ivDi) and (vT’ski).
(ivDi) � is �0-negation-complete: if B, ¬B ∈ �0 and if B /∈ � and ¬B /∈ � then �,

B 	R�� ζn and �, ¬B 	R�� ζm , hence, by ∨-I if necessary, �, B 	R�� ζmax{n,m} and �,
¬B 	R�� ζmax{n,m}, whence, by Dilemma, � 	R�� ζmax{n,m}, which we know not to be the
case.

(vT’ski) � is �0-implication-complete: proved analogously with Tarski’s Rule for
Dilemma. �

Furthermore, from careful inspection of the proof of Theorem 14 we learn that when �
	RCCDQ A

(1) the only nonsubformulas that need occur in a proof in this version of CQL be-
long to a sequence A, A ∨ D1(v1/c1), (A ∨ D1(v1/c1)) ∨ D2(v2/c2), . . .(. . .(A ∨
D1(v1/c1)) ∨ . . .) ∨ Dn(vn/cn) where each of the Di (vi/ci )’s is an instance of a
universal generalization ∀vi Di that is a subformula of some member of �∪{A} and
ci+1 is foreign to �∪{A, A∨ D1(v1/c1), (A∨ D1(v1/c1))∨ D2(v2/c2), . . .(. . .(A∨
D1(v1/c1))∨. . .)∨Di (vi/ci )} (although, obviously, not all members of the sequence
are nonsubformulas);

(2) as the sequence contains the only nonsubformulas (if any), the longest nonsubfor-
mula must enter in an application of ∨-I;

(3) that once entered such nonsubformula can only occur as (a) the premise to an
application of ∨-I, (b) as the “major premise”, that is, as the disjunction to which
the rule is applied, to an application of the rule CD, or (c) as the conclusion of
the subproof in an application of ∃-E or as the conclusion of both subproofs in an
application of ∨-E, Dilemma, Tarski’s Rule, or the rule CD, whose conclusion must
itself be an instance of that same formula;

(4) that the conclusion of an application of CD eliminating a member of the sequence
is the previous member of the sequence;

(5) that in the application of CD eliminating (. . .(A ∨ D1(v1/c1)) ∨ . . .) ∨ Di (vi/ci ),
in the subproof in which (. . .(A ∨ D1(v1/c1)) ∨ . . .) is derived from ∀vi Di no
undischarged assumption contains the constant ci .

3.7.2. The lie of the land

3.7.2.1. Quantifying within the scope of a disjunction A naı̈ve attempt, the most naı̈ve,
to derive ∀xFx∨Ga from ∀x(Fx∨Ga) without the CD rule fails very straightforwardly
because of the restrictions placed on ∀-I. It looks like this:
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It fails exactly because we are precluded from applying ∀-I at the point marked ‘???’ in
the subproof as b occurs in the assumption Fb.

Naı̈vely, we should ask, what exactly is wrong with this application of ∀-I? Cer-
tainly it breaches the standard restrictions but these are motivated by the need to have
the name generalized upon stand, in some sense, for “the general case”, not a par-
ticular named case, for we certainly do not want to be entitled to infer ∀xFx from
Fb in all circumstances, but here, plausibly given its provenance, standing for
the general case is exactly what the name b is doing. The guiding thought in what
follows is that we ought to be allowed to generalize in this sort of case. We must,
then, weaken the restrictions on ∀-I—and specify what “this sort of case”
amounts to.

If we have names b0, b1, . . ., bn, . . . for everything, ∀x(Fx ∨ Ga) amounts (loosely!)
to (Fb0 ∨ Ga) ∧ (Fb1 ∨ Ga) ∧ . . . ∧ (Fbn ∨ Ga) ∧ . . . from which, extrapolating
from the finite case, we should feel justified in inferring (Fb0 ∧ Fb1 ∧ . . . ∧ Fbn ∧
. . .) ∨ Ga, which amounts to ∀xFx ∨ Ga. So, when we have names for everything,
or, rather, when it makes sense to think that we could have names for everything,
it does make sense to think of Fb as standing for the general case and universally
generalizing on it in the “proof” above. When does it make sense to think that we
could have names for everything?—When we are dealing with a fixed domain. On the
other hand, in the Kripke semantics for IQL the domain may grow, and when growth
occurs talk of having a name for everything makes little sense for when there is growth
we must end up having either nondenoting names at some nodes or unnamed things at
others.

The standard natural deduction formulations of IQL and CQL do not differ as to the
restrictions placed on application of ∀-I. What the last three paragraphs aim to motivate is
the thought that in the classical setting those restrictions are unduly tight. What “this sort
of case” amounts to is having a fixed domain, and so it makes sense to suppose that there
could be names for everything in that domain. With that in mind, we want to be able to
derive all the following:

∀x(Fx ∨ Ha) 	 ∀xFx ∨ Ha; ∀x(Fx ∨ Ha), ∀x(Gx ∨ Ha) 	 ∀x(Fx ∧ Gx) ∨ Ha; ∀x∀y

(Fx ∨ Gy) 	 ∀xFx ∨ ∀yGy; ∀x(Fx ∨ Gx) 	 ∀xFx ∨ ∃xGx.

On the other hand, we do not want to be able to derive:

∀x(Fx ∨ Gx) 	 ∀xFx ∨ ∀xGx; ∀x∀y(Rxy ∨ Ryx) 	 ∃x∀yRxy ∨ ∃x∀yRyx.

Finally, we note the “existential reading” given one of the disjuncts in the liberalized
version of the rule CD at the end of 3.6.2.

3.7.2.2. Raising and eliminating applications of CD to nonsubformulas Let E ∨ D(v/c)
be the longest nonsubformula in an RCCDQ derivation of A from �. It enters any branch
of the proof in which it occurs by ∨-I. Immediately below it stand zero or more further
occurrences as conclusions of applications of ∃-E, ∨-E, Dilemma, Tarski’s Rule, or CD,
until it is eliminated by an application of CD. Let the depth of an application of CD in
which E ∨ D(v/c) is eliminated be the largest number of contiguous occurrences of that
very formula standing above it.

If the depth is zero E ∨ D(v/c) occurs in a proof segment of one of these
forms:



SUBFORMULA AND SEPARATION PROPERTIES 219

The first involves an obviously eliminable detour. The second too involves a pointless
detour given that, in its standard setting, in an application of CD c does not occur in any
assumption on which E ∨ D(c/v) depends.

In the case of occurrences at greater depth we have something that looks more like this:

where at (*) we have an application of one of ∨-E, Dilemma, Tarski’s Rule, or CD. In
first and last cases there is a major premise B1 ∨ B2; in the last case one of the disjuncts
occurs universally generalized as an assumption in the subproof in which it occurs as minor
premise, that is, as an assumption to be discharged in the application of the rule.

It would be nice if we could reduce the depth at which the application of CD eliminates
E ∨ D(v/c) by performing two applications of CD in the subproofs before the application
of whichever rule it is at (*). That is, we would like to be able to transform the above into:

Unfortunately, we have no guarantee that the constant c does not occur in one or both
of B1 and B2, so we have no guarantee that such applications would meet the letter of the
rule CD.
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3.7.2.3. Mimicking the classical sequent calculus The sequent calculus formulation of
classical first-order logic has the subformula property but allows a multiplicity of formulas
in the succeedent. On the standard reading, at least one of these is true if all formulas in
the antecedent are true. Consequently the disjunction of all formulas in the succeedent is
true when all formulas in the antecedent are true. Thinking in terms of this disjunction,
what the classical sequent calculus allows is quantification on a disjunct subordinate to an
occurrence of ∨. For example, we have:

If we are to emulate the simplicity of application of the rules in the left-hand derivation
in a single-conclusion system, thereby avoiding introduction of a quantifier into a position
subordinate to ∨, we must allow the universal generalization ∀xFx to enter “as soon as
possible”, that is, right at the top of the right-hand derivation, for that is the only oppor-
tunity we have to introduce the universal quantifier not subordinate to an occurrence of
disjunction. We must then ensure that, as Fb	∀xFx is not generally valid, we constrain its
possible occurrences so that by the point at which we have completed application of ∨-E
(or Dilemma or Tarski’s Rule), validity is not compromised.

3.7.2.4. Peculiar practices The techniques we have used above fail in the presence of
the rule CD. An indication of this is provided by the details of the completeness proofs for
IQL + CD obtained by Görnemann (1971) and Gabbay (1981). Another is provided by the
following example. The classically valid, intuitionistically invalid ∃x(∃x¬Fx → ¬Fx) is
derivable in KQL + CD. (Exercise for the reader.) Its negation-free analogue ∃x(∃xFx →
Fx) is not derivable in the stronger LQL + CD. However, models showing this have an
unexpected property. LQL + CD is sound (and, I assume, complete) with respect to Kripke
models for IQL in which the nodes are linearly ordered and every node has the same
domain. ∃x(∃xFx → Fx) can only fail to be verified at the base node if there is an infinite
descending 
-chain of distinct nodes above the base node at each of which ∃xFx is verified,
for there must be no first node (with respect to the ordering 
) at which ∃xFx is verified.
The standard methods of construction, which proceed by the addition of formulas, will
not produce such a sequence: here we seem to be concerned rather with the subtraction of
formulas.

3.7.3. The rule ∀ -I′

3.7.3.1. Flagging Call the assumptions occurring undischarged in the subproofs and
discharged in applications of ∨-E, Dilemma, and Tarski’s Rule the minor premises to the
application of the rule. In the case of ∨-E, call the eliminated disjunction the major premise.
One may flag one or both of the minor premises to an application of ∨-E, Dilemma, or
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Tarski’s Rule by a constant occurring in it. In the case of ∨-E this is subject to the proviso
that no assumption on which the major premise depends and which contains that constant
is not flagged by that constant.

3.7.3.2. Weakening the restrictions on ∀ -I The rule ∀-I′:

One may infer ∀vD(c/v) from D provided c flags each occurrence of any
assumption containing c on which D depends.

3.7.4. CQL reformulated The propositional component is as before, save for restric-
tions to be entered immediately below: ∧-I, ∧-E, ∨-I, ∨-E, weak →-I, Tarski’s Rule, →-E,
Dilemma, ¬-E. To this we add ∀-I′, ∀-E, ∃-I , and ∃-E. We shall call this CQL′.

In single flagging, that is, in flagging only one of the minor premises, we are reading
minor premises containing a of, say, an application of Dilemma—φ(v/a) and ¬φ(v/a)—
as in effect being either the pair ∀vφ and ∃v¬φ or the pair ∃vφ and ∀v¬φ. This is legiti-
mated by two facts: from assumptions φ(v/a) and ¬φ(v/a) we can use, firstly, ∨-I to get
φ(v/a)∨¬φ(v/a) in each subproof, and hence, by Dilemma, φ(v/a)∨¬φ(v/a) no longer
dependent on those assumptions; from there, classically, we can get to each of ∀vφ ∨∃v¬φ
and ∃vφ ∨ ∀v¬φ in which the disjuncts may serve as minor premises to an application of
∨-E. In effect single flagging collapses those several steps to one. With that in mind, we
note a limitation that must be observed when several names occur flagged. Consecutive
applications of CD allow us to pass from ∀x∀y(Rxy ∨ ¬Rxy) first to ∀x(∀yRxy ∨ ∃y¬Rxy)
then to ∃x∀yRxy ∨ ∀x∃y¬Rxy, but we cannot go on to reach ∃x∀yRxy ∨ ∃y∀x¬Rxy (and
rightly so). In allowing separate treatment of the disjuncts, we must add a restriction that
has this limitative effect:

Restrictions under single flagging If in an application of ∨-E, Dilemma, or Tarski’s Rule
there are constants common to both minor premises and both minor premises are flagged
by some but different ones among these common constants then, if there are applications in
both of the subproofs of both ∀-I′ and ∃-I in which these common constants are generalized
upon, the order in which these constants are generalized upon in both subproofs must be
the same to within permutations for generalizations employing the same quantifier.

If in an application of ∨-E, Dilemma, or Tarski’s Rule a constant flagging one of
the minor premises is generalized upon using ∀-I′, then that constant must not occur in
the conclusion of the application of the rule, nor may it occur in any assumption other than
the other minor premise in the other subproof.

Examples may make the intention clearer. The proof immediately below goes through;
the annotation indicates the sense in which the order of generalization is the same (to within
permutations with the same quantifier).

The next “proof” rightly fails to go through; what blocks it is exactly the order-tracking
restriction.
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Without the second restriction, this slightly devious “proof” would be acceptable (which
clearly it ought not to be):

At first sight double flagging may look as though, with minor premises φ(v/a) and
¬φ(v/a) containing a in an application of Dilemma, we are in effect reading these as
∀vφ and ∀v¬φ. In fact the inspiration is quite other, and indeed less convoluted than with
single flagging. The aim is to have the pair of disjuncts, φ(v/a) and ¬φ(v/a), do duty for
the universally generalized disjunction ∀v(φ ∨ ¬φ). Thus if in each of the subproofs, one
headed by φ(v/a), the other by ¬φ(v/a) we obtain the same formula containing a, we want,
provided no other assumptions contain specific information about the object named by a,
to say that that conclusion holds generally. With that in mind we introduce this restriction
on applications of ∨-E, Dilemma, and Tarski’s Rule:

Restriction on double flagging If, in an application of ∨-E, Dilemma, or Tarski’s Rule
there are constants common to both minor premises and both minor premises are flagged
by a constant c common to both, then in the subproofs headed by these minor premises
∀-I′ must be applied to the same formula containing c in both subproofs. This restriction
blocks this attempt to derive ∀xFx ∨ ∀xGx from ∀x(Fx ∨ Gx):

Notice that it is the putative application of ∨-E that is incorrect; the two applications of
∀-I′ are perfectly fine.

3.7.4.1. A remark on the soundness of CQL′ With the explanations just given in mind,
it perhaps needs little argument that CQL′ is sound. Any doubt must focus on uses of ∀-I′
that are not also uses of orthodox ∀-I and the restrictions just introduced on applications
of ∨-E, Dilemma, and Tarski’s Rule. In any application of ∀-I′ all assumptions containing
the name generalized upon must be flagged by that name. In single flagging this means
that the assumption is doing duty for the formula obtained by universally generalizing
on that name. If double flagging is involved, the minor premises stand in for the universal
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generalization of their disjunction. Now, in the case of applications of ∨-E one may have to
track back some way through a proof to locate the part of the derivation which licenses the
flagging, that is, licenses the general reading but there must be some such point where flag-
ging of the name in question first appears and there we are dealing with either a disjunction
to which ∀-I is applicable in virtue of its containing the name in question but depending on
no assumptions containing that name or on minor premises in applications of Dilemma and
Tarski’s Rule the universal generalization of the disjunction of which can legitimately be
inferred.

The soundness of applications of ∀-I′ then follows from the classical soundness of the
inferences ∀v(φv∨ψ) 	 ∀vφv∨ψ , ∀v(φv∨ψv) 	 ∀vφv∨∃vψ , and ∀v(φv∨ψv) 	 ∃vφv∨
∀vψ , and, under double flagging, the (intuitionist) validity of ∀v(φv ∨ ψv), ∀v(φv → χv),
∀v(ψv → χv) 	 ∀vχv.

The first restriction under single flagging on ∨-E, Dilemma, and Tarski’s Rule is needed
to ensure consistency of the ∀/∃ disjunction reading with multiple quantifiers. Starting
from ∀v∀u(φ(v, u) ∨ ψ(v, u)) we can “push” one or other of the quantifiers “through the
brackets” and, indeed, both but in the case of both they should be thought of being pushed
through one at a time, to get, say, first ∀u(∀vφ(v, u) ∨ ∃vψ(v, u)) then ∃u∀vφ(v, u) ∨
∀u∃vψ(v, u).

The second restriction under single flagging ensures that the unflagged minor premise is
treated as equivalent to the existential generalization obtained by generalizing the occur-
rences of the flagging constant in it.

3.7.4.2. CQL′ has the subformula property We transform RCCDQ proofs. Recall from
3.7.1 that when � 	RCCDQ A

(1) the only nonsubformulas that need occur in a proof in this version of CQL be-
long to a sequence A, A ∨ D1(v1/c1), (A ∨ D1(v1/c1)) ∨ D2(v2/c2), . . .(. . .(A ∨
D1(v1/c1)) ∨ . . .) ∨ Dn(vn/cn) where each of the Di (vi/ci )’s is an instance of a
universal generalization ∀vi Di that is a subformula of some member of �∪{A} and
ci+1 is foreign to �∪{A, A∨ D1(v1/c1), (A∨ D1(v1/c1))∨ D2(v2/c2), . . .(. . .(A∨
D1(v1/c1))∨. . .)∨Di (vi/ci )} (although, obviously, not all members of the sequence
are nonsubformulas);

(2) as the sequence contains the only nonsubformulas (if any), the longest nonsubfor-
mula must enter in an application of ∨-I;

(3) that once entered such nonsubformula can only occur as (a) the premise to an
application of ∨-I, (b) as the “major premise”, that is, as the disjunction to which
the rule is applied, to an application of the rule CD, or (c) as the conclusion of
the subproof in an application of ∃-E or as the conclusion of both subproofs in an
application of ∨-E, Dilemma, Tarski’s Rule, or the rule CD, whose conclusion must
itself be an instance of that same formula;

(4) that the conclusion of an application of CD eliminating a member of the sequence
is the previous member of the sequence;

(5) that in the application of CD eliminating (. . .(A ∨ D1(v1/c1)) ∨ . . .) ∨ Di (vi/ci ),
in the subproof in which (. . .(A ∨ D1(v1/c1)) ∨ . . .) is derived from ∀vi Di no
undischarged assumption contains the constant ci .

Consider the last occurrence of the longest nonsubformula, say E ∨ D(v/c). It stands
as major premise in an application of CD containing a subproof comprising E alone and
a subproof with ∀vD as assumption and E as conclusion. By construction, c need occur in
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no formulas below the last occurrence of E ∨ D(v/c) and its last occurrence depends on no
assumption in which c occurs unflagged. We know that this last occurrence of E ∨ D(v/c)
can be done away with if it is of depth zero (3.7.2.2). We show that if the depth is greater
than zero it can be reduced through uses of ∀-I′.

(i) If the topmost occurrence of E ∨ D(v/c) in the sequence of contiguous occurrences
above the last occurs in a subproof of ∃-E, then introduction of E ∨ D(v/c) (by ∨-I)
can be deferred until after the application of ∃-E: the application of ∃-E then yields
either E or D(v/c) as conclusion.

(ii) If the topmost occurrence occurs as conclusion to both subproofs of ∨-E, Dilemma,
Tarski’s Rule, or CD then, being introduced in both subproofs by ∨-I, if both
applications obtain it from the same disjunct, application of ∨-I can be deferred
until after application of the rule in question.

(iii) If the topmost occurrence occurs as conclusion to both subproofs of ∨-E, Dilemma,
Tarski’s Rule, or CD and in one subproof is obtained by ∨-I from E and in the other
from D(v/c), then drop the application of ∨-I to E and, in the other subproof, flag
all assumptions containing c upon which the occurrence of D(v/c) depends with c,
apply ∀-I′ to obtain ∀vD, and introduce beneath it the subproof of E with ∀vD as
assumption from the application of CD that eliminates E ∨ D(v/c). (This may re-
quire duplication of subproofs, depending on the number of occurrences of ∀vD as
an undischarged assumption in that subproof.) Now apply the deferred rule—∨-E,
Dilemma, Tarski’s Rule, or CD—to obtain E as interim conclusion; introduce
E ∨ D(v/c) using ∨-I.
In carrying out this step we find that our restrictions on flagging are just flex-
ible enough to allow the reduction in depth that we are looking for. Although
the instruction above may look as though it only gives rise to single flagging,
it may be that we find that we have flagged both minor premises in an applica-
tion of ∨-E, Dilemma, Tarski’s Rule, or CD with the same constant. However,
whenever that happens, we can proceed in compliance with the restriction under
double flagging. This sort of case arises when we have two applications of ∨-E,
Dilemma, Tarski’s Rule, or CD occurring in the subproofs of a further application
of one of these rules. With Dilemma, if one minor premise contains the constant
c the other must; with ∨-E, Tarski’s Rule, and CD, the constant c may occur
in both minor premises. Without loss of generality we may consider a case like
this:

Following the instructions above and noting that c occurs in both disjuncts, we obtain
this proof.
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Because ∀-I′ is applied to the same formula containing c in both subproofs the restriction
under double flagging is met.

By repeated application of Steps (i), (ii), and (iii), the depth of occurrence of E ∨ D(v/c)
can be reduced to zero, at which point the last occurrence may itself be eliminated. The
procedure is then applied to the remaining occurrences (if any) of E ∨ D(v/c), working up
from the bottom. When all occurrences of the longest nonsubformula have been eliminated,
we turn to its predecessor in the sequence of nonsubformulas (which is E if E is not a
subformula).

Lastly, applications of CD to subformulas are rewritten as follows. Where we have

subject to the restrictions that c not occur in any assumption on which A ∨ B depends,
and if B contains c then c does not occur in C nor in any assumption other than B in the
subproof in which B occurs as the assumption featured for discharge, we replace it with

This completes the proof that the system CQL′ is a formulation of classical first-order
logic with the subformula property.
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