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THE REVIEW OF SYMBOLIC LOGIC

Volume 4, Number 2, June 2011

IDENTITY AND INDISCERNIBILITY

JEFFREY KETLAND

Department of Philosophy, University of Edinburgh

Abstract. The notion of strict identity is sometimes given an explicit second-order definition:
objects with all the same properties are identical. Here, a somewhat different problem is raised: Under
what conditions is the identity relation on the domain of a structure first-order definable? A structure
may have objects that are distinct, but indiscernible by the strongest means of discerning them given
the language (the indiscernibility formula). Here a number of results concerning the indiscernibility
formula, and the definability of identity, are collected and a number of applications discussed.

§1. Introduction. Informally, the Principle of Identity of Indiscernibles (PII) states
that objects with “all the same properties”—that is, “indiscernible objects”—are identical.
PII is usually formulated as the second-order principle:1

∀x∀y[∀X (X x → Xy) → x = y)]. (1)

The antecedent ∀X (X x → Xy) may informally be read as “any property of x is a
property of y.” This formula provides a second-order definition of identity, as follows:2

∀x∀y[x = y ↔ ∀X (X x → Xy)]. (2)

To see how this works, suppose M = (D, R1, . . . , Rk) is a relational structure, but
where the identity relation is not necessarily taken as primitive. Let L be the corresponding
first-order language. We may expandM to a (standard, monadic) second-order structure
(M, S), where S is P(D), and consider the language L2 obtained by adding (monadic)
second-order quantifiers and variables. Then the formula ∀X (X x → Xy) defines the
identity relation on the structure M. That is, for all a, b ∈ D, a = b if and only if
(M, S) � ∀X (X x → Xy)[a, b]. The left-to-right direction of this follows immediately
from the fact that the formula ∀X (X x → Xy) is reflexive. In the other direction, suppose
a and b are distinct elements of D. Then b /∈ {a}. Hence, since S contains all subsets of
D, there is some X ∈ S such that a ∈ X and b /∈ X . Thus, the formula ∀X (X x → Xy) is
false of (a, b). The crucial point for this argument is that, for each element d ∈ D, its unit
set {d} belongs to the range of second-order quantifiers.3

Received: August 25, 2007
1 See, for example, Shapiro, 1991, p. 63; van Dalen, 1994, pp. 151–152; Manzano, 1996, pp. 2,

53–55
2 Here we mean the notion of strict identity—that is, “a = b” means that a and b are one and the

same object—and not some notion of similarity or qualitative indiscriminability.
3 There has been a substantial debate concerning the status of PII. This includes a subliterature on

alleged counterexamples to PII in metaphysics and physics (see Black, 1962; Cortes, 1976; French
and Redhead, 1988; Saunders, 2002, 2003); and a subliterature on whether identity is, or should
be, definable at all (see Frege, 1891; Savellos, 1990; Ketland, 2006); and a subliterature on the
role of PII for structuralist views of mathematics. This is the “identity problem” for mathematical
structuralism (see Burgess, 1999; Keränen, 2001; Ladyman, 2005; Ketland, 2006; Leitgeb &
Ladyman, 2008; Shapiro, 2008).

c© Association for Symbolic Logic, 2011
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There are other second-order definitions. One may use the fact that the identity relation
on a domain D is the smallest reflexive binary relation on D to define identity:

∀x∀y[x = y ↔ ∀R(∀z Rzz → Rxy)]. (3)

To prove this, note first that the left-to-right direction follows from the fact that the
formula ∀R(∀z Rzz → Rxy) is reflexive. For the other direction, fix some domain D and
let R be the diagonal on D: that is, {(a, a) ∈ D2}. This is obviously reflexive. Suppose
a, b ∈ D and a �= b. Thus, (a, b) /∈ R. So, ∃R(∀z Rzz ∧ ¬Rab). And contraposition
gives the result we want. Indeed, the above definition is equivalent to ∀x∀y[x �= y ↔
∃R(∀z Rzz ∧ ¬Rxy)], itself equivalent to:

∀x∀y[x �= y ↔ ∃R(∀z¬Rzz ∧ Rxy)] (4)

So, x is distinct from y if and only if there is an irreflexive relation R such that Rxy.
This, as we shall see, is intimately connected to Quine’s notion of “weak discernibility,”
explained below.

Of course, the identity relation =D on a domain D can be defined as the diagonal of D.
That is, =D is {(a, a) : a ∈ D}. However, if we examine the instance of comprehension
needed to define this, the defining formula contains the identity predicate: that is, an
arbitrary pair (a, b) is in =D if and only if a ∈ D ∧ b ∈ D ∧ a = b.

The definitions of identity (1) and (3) above are second-order.
However, we might feel some dissatisfaction with such second order definitions and

instead ask whether identity is first-order definable. This is the central topic to be examined
in this article: Under what conditions is the identity relation in a structure first-order
definable (without parameters)?4

Another reasonable question concerns whether identity is implicitly definable by a set
of first-order sentences. That is, if L is a first-order language without identity, containing
some binary predicate symbol P , is there a set � of L-sentences such that, for any model
M � �, we have that PM is the identity relation on the domain of M? The answer is
quickly seen to be “no.” For if M is a structure where PM is the identity relation on
M, then there is an elementarily equivalent structureM+ where PM+

is not the identity
relation on its domain.5

The primary tool of investigation used here will be, for the kind of first-order lan-
guage L under consideration, the first-order indiscernibility formula, written x ≈L y.6

Throughout, let M be a relational structure of the form (D, R1, . . . , Rk), with finitely
many distinguished relations Ri, and the identity relation is not assumed as a primitive.
The identity relation on D is denoted by “=M.” Let L be the corresponding first-order
language without identity, interpreted overM such that for each i = 1 to k, the primitive
predicate symbol Pi denotes the distinguished relation Ri.7 Let (M, =) be the result of
expanding the structure M with the identity relation on D, and let L(=) be the result

4 Some of the technical material below appears in Ketland (2006).
5 This is pointed out also in Shapiro (2008). A proof is given below, Theorem 3.14.
6 In model theory, a different notion of indiscernibility is studied: instead of a binary relation of

indiscernibility, one defines the notions of a set of indiscernibles and a set of order-indiscernibles
(see Hodges, 1997, pp. 152–153).

7 The situation where one allows M to contain primitive functions (or constants) is left-open.
However, L must contain only finitely many primitive predicate symbols. If L contains infinitely
many predicate symbols, the corresponding indiscernibility formula x ≈L y is no longer a
formula of L itself. Rather, it is an infinitary conjunction.
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of extending the language L by adding the identity symbol. Then, identity is first-order
definable (without parameters) in a structureM if and only if there is an L-formula ϕ(x, y)
such that (M, =) � ∀x∀y(x = y ↔ ϕ(x, y)). This is equivalent to the demand that there
exist a formula whose extension inM is indeed =M.

§2. Definitions. In the definitions below, “formula” always means “L-formula.” We
shall always have a, b ∈ D; d is a finite sequence (d1, . . . , dn) ∈ Dn, and z is a finite
sequence of variables. If f : D → D, then f (d) is ( f (d1), . . . , f (dn)). “X” ranges over
subsets of D and “R” ranges over subsets of Dn, for n > 1. If ϕ(x) is a formula with exactly
x free, then we use “ϕ(a)” as a convenient shorthand for “a ∈ ϕ(M)” (equivalently:
“M � ϕ(a)”), where ϕ(M) is the set defined by ϕ(x); similarly, “ϕ(a, b)” is shorthand
for “(a, b) ∈ ϕ(M2),” where ϕ(M2) is the relation defined by ϕ(x, y), where x and y are
distinct variables; and so on.8 If ϕ(x) is a formula with y substitutable for x , then ϕ(y)
is the result of substituting y for all occurrences of x whenever x is free for y; and so
on. And ϕx(y) is the result of substituting y for some or all occurrences of x , wherever
y is substitutable for x ; and so on. We will sometimes write “Rd1d2 . . . dn” instead of
“(d1, d2, . . . , dn) ∈ R.”

On several occasions, W.V. Quine considers whether the notion of strict identity for a
domain of individuals is definable or not, or whether some surrogate of identity, akin to
indiscernibility, is sufficient for the relevant purposes.9

DEFINITION 2.1. We say that a structureM is Quinian just in case =M is first-order
definable (without parameters) inM. Otherwise,M is non-Quinian.10

DEFINITION 2.2. A formula ϕ(x, y) is a Leibniz formula forM just in case,

(a) M � ∀xϕ(x, x);

(b) For any formula θ(x, z),M � ∀x∀y(ϕ(x, y) → ∀z(θ(x, z) → θx(y, z))).

If ϕ(x, y) is a Leibniz formula, then we say that it defines a Leibniz relation onM. If a
formula ϕ(x, y) satisfies condition (b) above, we say it supports substitutivity.11 Reasoning
from ϕ(a, b) and θ(a, d) to θa(b, d) is reasoning by substitutivity (of the formula ϕ(x, y)).
Not all occurrences of a need be replaced by b.

DEFINITION 2.3. Let P be a primitive n-ary predicate symbol (n ≥ 1) of L. Let
z1, . . . , zn−1 be a sequence of distinct variables, all distinct from x and y. Let x ≈P y
be the formula

8 This is a non-standard convention, but saves on repetitions of the context “M �”. If the reader
find this at all confusing in the proofs below, just replace occurrences of expressions like “φ(a)”,
“a ≈ b”, etc., by “M � ϕ(a)”, “M � a ≈ b”, and so on.

9 See, for example, Quine, 1960, pp. 230–232, 1976, pp. 129–133, 1986, pp. 62–64.
10 The adjective “Quinian” seems preferable to the commonly used “Quinean”; for, on the only

occasion I am aware of Quine referring to himself this way, he writes: “. . . any more than there
need be some peculiarly Quinian textural quality common to the protoplasm of my head and feet”
(Quine, 1960, p. 171).

11 As is well known, there are violations of substitutivity involving natural language predicates. For
example, even though “Superman = Clark Kent” and “Lois believes that Superman can fly” are
true, the result of substituting “Clark Kent” for “Superman” yields the sentence “Lois believes
that Clark Kent can fly,” which is false. It is a matter of contention what to say about such cases;
but, in any case, here we shall ignore this kind of nonextensionality phenomenon, and concentrate
entirely on extensional predicate logic.
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∀z(Pxz1 . . . zn−1 ↔ Pyz1 . . . zn−1)∧∀z(Pz1xz2 . . . zn−1 ↔ Pz1 yz2 . . . zn−1)∧
. . . ∧ ∀z(Pz1 . . . zn−1x ↔ Pz1 . . . zn−1 y).

The first-order indiscernibility formula for L, written x ≈L y, is the conjunction∧{x ≈P y : P is a primitive predicate symbol of L}.12

Henceforth, for ease of notation, we shall drop the subscript on x ≈L y.
Some familiar definitions:

DEFINITION 2.4. Given a function f : D → D and a relation R ⊆ Dk, the image
f [R] is defined to be: { f (d) : d ∈ R}. We say that R is invariant under f if f [R] = R.
A permutation π : D → D is called an automorphism of M if, for each distinguished
relation Ri, f [Ri] = Ri.M is called rigid if its only automorphism is the identity mapping.
Aut (M) is the class of automorphisms ofM, and this is obviously a group under compo-
sition of permutations. The transposition πab : D → D is defined as follows: πab(a) = b
and πab(b) = a and πab(d) = d otherwise.

Thus, a permutation π : D → D is an automorphism of M just when every distin-
guished relation Ri is invariant under π . (Note that the identity relation is trivially invariant
under a permutation.) As is well known, if a relation R ⊆ Dk is definable in a structure
M, then R is invariant under every π ∈ Aut (M).

We introduce the main notions of indiscernibility as follows:13

DEFINITION 2.5.

(1) a and b are first-order indiscernible inM iff a ≈ b.

(2) a is monadically indiscernible from b inM iff there is no formula ϕ(x) with exactly
x free such that ϕ(a) and ¬ϕ(b).

(3) a is polyadically indiscernible from b in M iff, for any formula ϕ(x, z), M �
∀z(ϕ(a, z) ↔ ϕ(b, z)).

(4) a is relatively indiscernible from b inM iff there is no formula ϕ(x, y) with exactly
x and y free such that ϕ(a, b) and ¬ϕ(b, a).

(5) a is weakly discernible from b inM iff there is a formula ϕ(x, y) such that ¬ϕ(a, a)
and ϕ(a, b).

(6) a is strongly indiscernible from b inM iff a is not weakly discernible from b inM
(7) a and b are structurally indiscernible inM iff there is a π ∈ Aut (M) such that

b = π(a).

Although we shall often omit explicit reference, each of these notions is defined relative
to some structureM.

DEFINITION 2.6. We say that a set X separates a and b just in case (a ∈ X iff b /∈
X). And, where R is an n-ary relation and d an (n − 1)-tuple, then we say that (R, d)
separates a and b just in case (Rad1 . . . dn−1 iff ¬Rbd1 . . . dn−1) or(Rd1ad2 . . . dn−1 iff

12 The first-order indiscernibility formula was first discussed by Hilbert & Bernays (1934, Vol 1, pp.
381), who noted that it plays the role of a surrogate for identity. The formula is also discussed by
Quine (1960, p. 230, and 1986, pp. 63–64). As noted above, the relevant first-order language L
must have only finitely many primitive symbols.

13 Some of the notions below are borrowed from Quine, 1960, pp. 230–232, 1976, with some
differences of terminology. Quine (1976) uses the term “discriminable.” Instead, we follow some
contemporary terminology and use “discernible.”
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¬Rd1bd2 . . . dn−1) or . . . or (Rd1 . . . dn−1a iff ¬Rd1 . . . dn−1b). If it is clear what the
intended relation is, we just say that the sequence d separates a and b. We say that a and
b are separable just in case some X, or some (R, d), separates a and b. And, otherwise,
inseparable. If the set, or relation, happens to be definable in a structureM, we say that
a and b are definably separable inM.

If elements a and b of a structure are distinct, then obviously the set {a} (or, similarly,
the set {b}) separates a and b. So, objectively speaking, distinct elements a and b are
always separable. However, the separating set (or relation) might not be definable in some
particular structureM under consideration.

Note finally that all of the notions of indiscernibility defined above are model relative.
For example, we might consider a structure M containing the natural numbers 0 and 1,
which are discernible in N, but they may be indiscernible in this particular structure.

§3. Main results.

3.1. Properties of x ≈ y. The second-order definition of identity says that a and b are
identical just when they are not discernible by any property. However, when we restrict to
a particular structureM, and the usual first-order language for describingM, then not all
properties and relations need be definable. And, to speak loosely, we have a ≈ b exactly
when a and b are not discerned by the properties and relations definable in the structure.
Unsurprisingly then, we may have that a and b are indiscernible in a structure even though
they are, in “reality,” distinct elements of the domain.

Quite deliberately, the notion of definable separability is formulated so that each condi-
tion corresponds to a clause in the definition of x ≈ y. It quickly follows that,

LEMMA 3.1. a ≈ b if and only if a and b are not definably separable.

The notion of a Leibniz formula encodes the basic formal properties of identity (i.e.,
reflexivity and substitutivity). It quickly follows that:

LEMMA 3.2. If ϕ(x, y) defines the identity relation, then ϕ(x, y) is a Leibniz formula.

And:

LEMMA 3.3. If ϕ(x, y) is a Leibniz formula, then the relation it defines is an equiva-
lence relation.

LEMMA 3.4. Any definable reflexive subset of a Leibniz relation is also a Leibniz
relation.

Proof. Let ϕ(x, y) be a Leibniz formula. Thus ϕ(x, y) is reflexive. Suppose θ(x, y) is
reflexive andM � ∀x∀y(θ(x, y) → ϕ(x, y)). Suppose θ(x, y) is not a Leibniz formula.
So, there is some formula ψ(x, z) such thatM � ∃x∃y(θ(x, y)∧∃z(ψ(x, z)∧¬ψ(y, z))).
Thus, there are a, b, d ∈ D such that θ(a, b) and ψ(a, d) and ¬ψ(b, d). Hence, by
substitutivity of ϕ(x, y), we have ¬ϕ(a, b). Thus ¬θ(a, b). Contradiction. �

A proof by induction on the complexity of θ gives:

LEMMA 3.5. For any formula θ(x, z),M � ∀x∀y(x ≈ y → ∀z(θ(x, z) → θx(y, z))).

Since x ≈ y is reflexive, this gives:

LEMMA 3.6. The formula x ≈ y is a Leibniz formula.
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LEMMA 3.7. If ϕ(x, y) is a reflexive formula, thenM � ∀x∀y(x ≈ y → ϕ(x, y)).

Proof. Suppose that ϕ(x, y) is a reflexive formula and also M � ∃x∃y(x ≈ y ∧
¬ϕ(x, y)). So, there are a, b such that a ≈ b but ¬ϕ(a, b). Since ϕ(x, y) is reflexive,
ϕ(a, a). But, by substitutivity, ¬ϕ(a, a). Contradiction. �

Thus, the Leibniz relation ≈M is a subset of any definable reflexive relation. In partic-
ular, this implies that ≈M is a subset of any Leibniz relation onM.

LEMMA 3.8. If ϕ(x, y) is a Leibniz formula, thenM � ∀x∀y(ϕ(x, y) → x ≈ y).

Proof. For suppose that ϕ(x, y) is a Leibniz formula, and we have a, b such that ϕ(a, b)
and ¬(a ≈ b). Thus, since ϕ(x, y) satisfies substitutivity, ¬(a ≈ a). Contradiction. �

Thus, if ϕ(x, y) is a Leibniz formula, then the relation it defines is a subset of the relation
≈M.

Next, we may combine Lemmas 3.7 and 3.8 to give a uniqueness result:

THEOREM 3.9. If ϕ(x, y) is a Leibniz formula, thenM � ∀x∀y(ϕ(x, y) ↔ x ≈ y).

Thus any Leibniz formula is equivalent overM to the first-order indiscernibility formula
x ≈ y. There is, up to equivalence inM, exactly one Leibniz relation.14 Of course, in a
particular relational structureM, a formula ϕ(x, y) much simpler than x ≈ y may exist.
However, it will be coextensive overM with x ≈ y.

THEOREM 3.10. If ϕ(x, y) defines identity inM, then x ≈ y defines identity too.

Proof. It is obvious that if a = b, then a ≈ b. Then suppose that ϕ(x, y) defines identity
inM. So, ϕ(a, b) implies a = b. And ϕ(x, y) is a Leibniz formula. Thus, a ≈ b implies
ϕ(a, b). Hence, a ≈ b implies a = b. �

We have seen that any Leibniz relation is coextensive, in any structure M, with the
first-order indiscernibility relation ≈M.

The indiscernibility relation ≈M is an equivalence relation. So, we can examine the
quotient structureM/ ≈M, defined as follows.

DEFINITION 3.11. For each element a ∈ D, we set [a] to be the equivalence class
{b ∈ D : b ≈Ma}. The reduced domain D− is {[a] : a ∈ D}. For an n-ary distinguished
relation R inM, we define the reduced relation R− to be {([a1], . . . , [an]) : a1, . . . , an ∈
D}. ThenM/ ≈M is the reduced structure (D−, R1

−, . . . , Rk
−).

THEOREM 3.12. M ≡M/ ≈M.

Proof. For ease of notation, letM− be the quotient structureM/ ≈M. If σ : V ar(L) →
M is aM-valuation, then theM−-valuation σ− : V ar(L) →M− is defined as follows:
for any variable x , σ−(x) = [σ(x)] (and thus σ−(x) ∈ D−). Then we
prove:

(*) For any L-formula ϕ, anyM-valuation σ :M, σ � ϕ if and only if
M−, σ− � ϕ.

This is proved by induction. Let σ be an arbitraryM-valuation.

14 This result is mentioned and quickly proved in Quine (1962, p. 180).
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(a) First, suppose ϕ is Px1 . . . xn. Then,M, σ � ϕ if and only ifM, σ � Px1 . . . xn, iff
(σ (x1), . . . , σ (xn)) ∈ PM, iff ([σ(x1)], . . . , [σ(xn)]) ∈ PM−

, iffM−, σ− � Px1 . . . xn,
iffM−, σ− � ϕ, as required.
(b) Next let ϕ be of the form ¬θ , where θ satisfies (*). Then, M, σ � ϕ if and only
if M, σ � ¬θ , if and only if M, σ � θ , if and only if M−, σ− � θ , if and only if
M−, σ− � ¬θ , if and onlyM−, σ− � ϕ, as required.
(c) Let ϕ be of the form θ → ψ , where both θ and ψ satisfy (*). It quickly follows that ϕ
satisfies (*) too, as required.
(d) Let ϕ be of the form ∀xθ where θ satisfies (*). Then, M, σ � ϕ if and only if
M, σ � ∀xθ , if and only if, for all a ∈ D, M, σ (x |a) � θ , if and only if, for all
a ∈ D,M−, σ−(x |[a]) � θ , if and only ifM−, σ− � ∀xθ , if and onlyM−, σ− � ϕ, as
required.
Thus (*) is established. Elementary equivalence ofM andM− follows by taking ϕ to be
a closed formula. �

LEMMA 3.13. [a] ≈M− [b] if and only if a ≈M b.

Proof. [a] ≈M− [b] if and only ifM−, σ− � x ≈ y, where σ−(x) = [a] and σ−(y) =
[b]. Let σ be any M-valuation such that σ(x) = a and σ(y) = b. By the result (*)
above, we get [a] ≈M− [b] if and only ifM, σ � x ≈ y. So, [a] ≈M− [b] if and only if
a ≈M b �

THEOREM 3.14. M/ ≈M is Quinian.

Proof. We need to show that, for any elements c, d ∈ D−, c �= d implies ¬(c ≈M− d).
Now, suppose that c and d are distinct elements of D−. Since c and d are distinct, there are
distinct equivalence classes c = [a] and d = [b] with ¬(a ≈M b). By the previous lemma,
¬([a] ≈M−[b]), and thus ¬(c ≈M−d), as required. �

We might call the structureM/ ≈M the Quinian quotient ofM. In a sense, we can “in-
vert” this construction by taking a structure (possibly Quinian) and adding “indiscernible”
elements.

The idea is quite simple. For a nonempty relation R, take any object a in its field. Let
b be any object not in the field of R. Then we force a and b to be “indiscernible” relative
to a new relation R+ by first defining a new relation R+ to be the union R ∪ {(b, d) :
(a, d) ∈ R}∪ {(d, b) : (d, a) ∈ R}∪ {(b, b) : (a, a) ∈ R}. One may check that a and b are
now indiscernible relative to the relation R+. To apply this to a structureM, we consider
any object a in the domain, and take any object b not in the domain; for each distinguished
relation Ri inM, we define the new relations Ri

+. Then the new structureM+ has domain
dom(M) ∪ {b} and all the relations Ri

+ as primitive. Then we shall have a ≈ b inM+.
A proof by induction shows thatM andM+ are elementarily equivalent.

Suppose that D is a nonempty domain of objects. We might wonder if there is a set of
formulas which implicitly defines the identity relation on D. In other words, is there a set
of formulas all of whose models are isomorphic to (D, =)? The answer is no.

THEOREM 3.15. Identity is not implicitly definable.

Proof. Suppose that identity on D is implicitly definable. There is thus a first-order
language Lwith a binary symbol P, and a set � of L-sentences such that (D, =) is a model
of � and, ifM � �, thenM is isomorphic to (D, =). The structure (D, =) is a model of
� and the relation PM is {(d, d) : d ∈ D}. Let a be any element of the domain and let b
be an object not in D. Define the new relation PM ∪ {(a, b), (b, a), (b, b)}. Then, a and b
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are now indiscernible. And the new structureM+, where this relation is the denotation of
P, is elementarily equivalent toM, but not isomorphic to (D, =). Contradiction. �

This holds for domains of whatever cardinality: in general, we can add arbitrarily many
elements to an original Quinian structure M to obtain an elementary equivalent non-
Quinian structure (whose Quinian quotient isM).

3.2. Notions of indiscernibility. There is a slightly different criterion for weak dis-
cernibility.

LEMMA 3.16. a is weakly discernible from b if and only if there is a formula θ(x, y)
such thatM � ∀x¬θ(x, x) and θ(a, b).

Proof. The right-to-left direction is immediate. For the other direction, suppose that
ϕ(x, y) weakly discerns a and b. So, ¬ϕ(a, a) and ϕ(a, b). By substitutivity, ¬(a ≈ b). Let
θ(x, y) be the formula ϕ(x, y)∧¬(x ≈ y). Then, θ(d, d) iff ϕ(d, d) and ¬(d ≈ d). Thus,
¬θ(d, d), for all d; and so θ(x, y) is irreflexive. Also, θ(a, b) iff ϕ(a, b) and ¬(a ≈ b).
And thus θ(a, b). �

Recall that a and b are strongly indiscernibile iff a and b are not weakly discernible.

THEOREM 3.17. a ≈ b iff a and b are strongly indiscernible.

Proof. For the right-to-left direction, suppose a and b are not weakly discernible, but
¬(a ≈ b). Then for any ϕ(x, y), if ¬ϕ(a, a), then ¬ϕ(a, b). Let ϕ(x, y) be ¬(x ≈ y).
Then ¬ϕ(a, a). Thus, ¬¬(a ≈ b). Contradiction. For the left-to-right direction, suppose
that a is weakly discernible from b and a ≈ b. Hence, for some ϕ(x, y), we have ϕ(a, b)
and ¬ϕ(a, a). But by substitutivity, ϕ(a, b) implies ϕ(a, a). Contradiction. �

LEMMA 3.18. a ≈ b if and only if a and b are polyadically indiscernible.

Proof. Suppose that a ≈ b and suppose that, for some formula ϕ(x, z), for some se-
quence d, we have ϕ(a, d). By substitutivity, we have ϕ(b, d). Hence, ϕ(a, d) → ϕ(b, d).
Since d is arbitrary, we haveM � ∀z(ϕ(a, z) → ϕ(b, z)). Thus, a and b are polyadically
indiscernible.
For the other direction, suppose that a and b are polyadically discernible. Then, for all
ϕ(x, z), we haveM � ∀z(ϕ(a, z) → ϕ(b, z)). So, for all d, if a ≈ d, then b ≈ d. So, if
a ≈ a, then b ≈ a. But trivially a ≈ a. So, b ≈ a. And thus, a ≈ b, as required. �

Thus polyadic indiscernibility corresponds exactly to first-order indiscernibility also.

LEMMA 3.19. If a and b are first-order indiscernible, then a and b are relatively
indiscernible.

Proof. Suppose ϕ(x, y) relatively discerns a and b. So, ϕ(a, b) and ¬ϕ(b, a). Suppose
a ≈ b. Then, ϕ(a, a) and ¬ϕ(a, a). Contradiction. �

LEMMA 3.20. If a and b are relatively indiscernible, then a and b are monadically
indiscernible.

Proof. Suppose that the formula ϕ(x) monadically discerns a and b, and so ϕ(a) and
¬ϕ(b). Let θ(x, y) be the formula ϕ(x) ∧ ¬ϕ(y). Thus θ(a, b). And θ(b, a) just in case
ϕ(b) and ¬ϕ(a), and thus ¬θ(b, a). Thus θ(x, y) relatively discerns a and b. �

Both of these inclusions are in fact proper. Given binary relations R1 and R2, say that
R1 is at least as strong as R2 just in case R1 ⊆ R2. The (real) identity relation on a domain
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D is the strongest reflexive binary relation on D. From what we already have, given a
structure M, the first-order indiscernibility relation ≈M is the strongest indiscernibility
notion which is first-order definable (without parameters) inM. The other notions of indis-
cernibility may be properly weaker (i.e., proper supersets of the indiscernibility relation).

Consider the discrete linear order (Z ,<) of the integers. Then, any distinct pair is
relatively discernible by the formula x < y, but no distinct pair is monadically discernible,
since for any z1, z2 ∈ Z there is a π ∈ Aut (Z ,<) such that π(z1) = z2.

For a toy example of a structure M with elements which are discernible but neither
monadically nor relatively discernible, consider the simplest possible binary structure: just
a set of objects with the identity relation as the sole primitive relation. That is, M has
the form (D, =). For example, let D = {0, 1}. Then, 0 and 1 are neither monadically nor
relatively discernible, but obviously they are discernible.

3.3. Indiscernibility and automorphisms.

LEMMA 3.21. If a and b are structurally indiscernible inM, then a and b are monad-
ically indiscernible.

Proof. Suppose that a and b are structurally indiscernible. So, we have π ∈ Aut (M)
such that π(a) = b. Suppose that ϕ(a). Since the set defined by ϕ(x) is invariant under
any automorphism π ∈ Aut (M), we have ϕ(a) iff ϕ(π(a)). Thus, ϕ(b). So, a and b are
monadically indiscernible. �

Similarly,

LEMMA 3.22. If there is some π ∈ Aut (M) such that π(a) = b and π(b) = a, then a
and b are relatively indiscernible.

Proof. Suppose that a and b are relatively discerned by ϕ(x, y). Thus, ϕ(a, b)
and ¬ϕ(b, a). Suppose we have π ∈ Aut (M) such that b = π(a) and a = π(b). Since
π ∈ Aut (M), we have ϕ(a, b) iff ϕ(π(a), π(b)) iff ϕ(b, a). Thus, ϕ(b, a).
Contradiction. �

The next result is quite useful:

THEOREM 3.23. If a ≈ b then πab ∈ Aut (M).

Proof. Suppose a ≈ b. Then, for any distinguished set X or relation R, a and b are
indiscernible. For ease of notation, let π be the transposition πab. We aim to show that
π is an automorphism of M. First, we show that if a and b are not discernible by a set
X , then π[X ] = X (where π [X ] is the image of X under π ). For suppose a ∈ X iff
b ∈ X . Then π(b) ∈ X iff π(a) ∈ X . Since π also leaves all other elements invariant,
it follows that π [X ] = X . We similarly show that if a and b are not discernible by a
binary relation R, then π [R] = [R]. For suppose, for all d, (a, d) ∈ R iff (b, d) ∈ R
and (d, a) ∈ R iff (d, b) ∈ R. It then follows (running through possible cases) that, for
all (d1, d2), (π(d1), π(d2)) ∈ R iff (d1, d2) ∈ R. Thus, π [R] = R. And so on for all
relations of higher arity. So, every distinguished set or relation is invariant under π . So, π
is an automorphism. �

We can sometimes use this result to show that a distinct pair of elements in a given
structureM are discernible. However, the converse of this result is not true. πab may be an
automorphism even though a and b are first-order discernible. For example, let D = {0, 1}
and consider the structure (D, =). Obviously, π01 is an automorphism, but 0 and 1 are
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discernible. So, in general, if πab is an automorphism, it will follow that a and b are
relatively indiscernible (by Lemma 3.22); but it need not follow that a ≈ b. However, the
following is a near converse:

LEMMA 3.24. Suppose some (R, d) separates a and b and none of the di is either a or
b. Then πab is not an automorphism.

Proof. Suppose a and b are separated by (R, d), and none of the di is either a or b. So,
either Rad1 . . . dn iff ¬Rbd1 . . . dn, or . . . or Rd1 . . . a iff ¬Rd1 . . . dnb. Since none of
the di is either a or b, πab(di) = di. Suppose πab is an automorphism. So, Rad1 . . . dn

iff Rbd1 . . . dn, and . . . Rd1 . . . dna iff Rd1 . . . dnb. This contradicts the claim that (R, d)
separates a and b. �

The converse of Theorem 3.23 is true for monadic structures. Suppose that M is a
monadic structure and πab is an automorphism. Thus, no distinguished set Xi separates a
and b. So, a ∈ Xi iff b ∈ Xi. Hence, a ∈ Xi iff πab(a) ∈ Xi. So, a ≈ b.

3.4. Criteria for the definability of identity. Recall that M is called Quinian just in
case =M is first-order definable (without parameters) inM. Quine himself drew attention
to non-Quinian structures:

It may happen that the objects intended as values of the variables of
quantification are not completely distinguishable from one another by
the four predicates. When this happens, [the indiscernibility formula]
fails to define genuine identity. Still such failure remains unobservable
from within the language (Quine, 1986, p. 63).

We proceed now to identify some criteria for a structure to be Quinian.

THEOREM 3.25. M is Quinian if and only if every distinct pair a, b inM is definably
separable.

Proof. For the left-to-right direction, suppose =M is definable. Then, by Theorem 3.10,
x ≈ y defines =M. In particular, a ≈ b implies a = b. So, if a and b are distinct, then they
are discernible, and thus separable, and definably so. In the other direction, suppose that
every distinct pair is separable, but identity is not definable. Thus, x ≈ y does not define
identity. Hence, for some a �= b we have a ≈ b. But a and b are separable, thus ¬(a ≈ b).
Contradiction. �

Let T be T h(M). Let T = be T h(M, =). Clearly:

LEMMA 3.26. M is Quinian if and only if T = � ∀x∀y(x = y ↔ x ≈ y).

Proof. The right-to-left direction is immediate. For the left-to-right direction, we use
Theorem 3.10. �

We may use the Beth definability theorem to show the following:

THEOREM 3.27. M is Quinian iff, for all R ⊆ D2, if (M, R) � T = then R is =M.

Proof. Suppose =M is definable inM and (M, R) � T =. Then, (M, R) � ∀x∀y(x =
y ↔ x ≈ y). Thus, R is identical to ≈M. But ≈ defines =M, and thus R is =M. For
the converse, suppose that for all R ⊆ D2, if (M, R) � T =, then R is =M. It follows
that =M is implicitly defined in T =. By the Beth Definability Theorem, T = contains an
explicit definition of =M. �
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The following two theorems set out some general and useful criteria for the definability
of identity.

THEOREM 3.28. Each of the three conditions below is both necessary and sufficient for
M to be Quinian:

(a) for all a, b ∈ D, a ≈ b implies a = b;

(b) for all R ⊆ D2, if (M, R) � T = then R is the identity relation on D.

(c) some surjective total function is definable inM.

Proof. (a) and (b) have been established above.
(c) Necessity is trivial. For if identity is definable, then it is definable by x ≈ y, and
this formula defines the identity function, which is surjective and total! For sufficiency,
suppose that, for some n ≥ 1, the formula ϕ(z, w) defines some surjective total function
f : Dn → D, where z is an ordered n-tuple of distinct variables. So, ϕ(d, a) if and only if
f (d) = a. Let θ(x, y) be the formula ∃z(ϕ(z, x) ∧ ϕ(z, y)). Then θ(x, y) defines identity.
For θ(a, a) if and only if ∃zϕ(z, a), iff, for some d, f (d) = a, and by surjectivity, this is
so. And suppose ∃z(ϕ(z, a) ∧ ϕ(z, b)). Then, by functionality, a = b. �

THEOREM 3.29. Each of the three conditions below is sufficient (but not necessary) for
M to be Quinian:

(a) M is rigid;

(b) no nontrivial transposition πab is an automorphism ofM;

(c) a strict linear order is definable inM.

Proof. (a) Suppose identity is not definable. Then we have a ≈ b for some a �= b. Then,
by Theorem 3.23, πab is an automorphism. But πab is nontrivial. So,M is not rigid.
(b) Suppose identity is not definable. Then we have a ≈ b for some a �= b. Thus, πab is an
automorphism.
(c) Suppose that ϕ(x, y) defines a strict linear order. Then ¬ϕ(x, y) ∧ ¬ϕ(y, x) defines
identity. �

None of these three conditions is, in general, necessary.15 To see the nonnecessity of
(a)–(c), consider the structure (D, =), with D any set with cardinality greater than 1. For
definiteness, suppose D = {0, 1}. Trivially (D, =) is Quinian, but every permutation of the
domain is an automorphism (and thus any nontrivial transposition is an automorphism).
Note that 0 and 1 are not relatively discernible in (D, =). If a linear order were definable,
then 0 and 1 would be relatively discernible. So, a linear order is not definable in (D, =).
So, (D, =) is a Quinian structure in which a linear order is not definable. A slightly fancier
example is the complex field C, thought of as a relational structure. Although C is Quinian
(since a surjective total function is definable), C is nonrigid and no linear order is definable
in C.

§4. Some applications.

4.1. Conservation of identity. It is unsurprising that extending a theory T in L with
the usual axioms for identity (reflexivity and some version of substitutivity) results in a

15 Condition (a) is necessary in the somewhat uninteresting case of monadic structures. If M =
(D, X1, . . . , Xn) is a monadic structure, then identity is definable inM if and only ifM is rigid.
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conservative extension. This may be seen by the fact that any modelM of such a theory T
can be (trivially) expanded to the model (M, =) of the theory with the axioms of identity
added. It is worth noting here that a proof-theoretic proof of this result can also be obtained,
using the properties of the first-order indiscernibility formula x ≈ y.

First note that the reflexivity, and substitutivity, of the first-order indiscernibility formula
are provable in logic alone (without identity):

LEMMA 4.1. � ∀x(x ≈ x).

LEMMA 4.2. For any ϕ(x, z), � ∀x∀y(x ≈ y → ∀z(ϕ(x, z) → ϕx(y, z))).

Second, for a formula ϕ containing the identity predicate, we can define a formula
ϕ≈, with the same free variables, obtained by substituting the first-order indiscernibility
formula for occurrences of the identity predicate (i.e., any occurrence of x = y is replaced
by x ≈ y).

Next, suppose that T in L is a theory in a language lacking the identity symbol, and T =
is obtained by adding the usual axioms for identity in the language L(=). Then, we have:

THEOREM 4.3. For any L-formula ϕ, if T = � ϕ then T � ϕ.

Proof. Consider a derivation (ϕ1, . . . , ϕn) in T = of an L-formula ϕ. Replace each
ϕi by the corresponding =-free L-formula ϕi

≈, and for each axiom of identity ϕ that
appears, insert the corresponding subderivation in predicate logic of ϕ≈. The result is then
a derivation in T of ϕ. �

4.2. Quinian and non-Quinian structures Let D be {0, 1} and let R be the relation
{(0, 0), (1, 1), (0, 1), (1, 0)}. We can show that (D, R) is non-Quinian. We have that, for
all d1, d2 ∈ {0, 1}, Rd1d2. So, for all d, R0d iff R1d and Rd0 iff Rd1. Thus, no element
d definably separates 0 and 1. And thus identity is not definable. More generally, letM =
(D, R), where D is any set with |D| > 1 and R = {(d1, d2) : d1, d2 ∈ D}. ThenM is
non-Quinian. For suppose that identity is definable. Then some element d would definably
separate some pair a, b ∈ D. Thus, either Rda iff ¬Rdb or Rad iff ¬Rbd . But both cases
are impossible. Notice that every permutation of the domain ofM is an automorphism.

Although we have required thatM be a relational structure of the form (D, R1, . . . , Rk),
we of course allow that one of the relations Ri may, in fact, extensionally be a function on
D. And, as we have seen, if one of relations these Ri is a surjective total function, then
identity is definable inM. So, consider algebraic structures regarded as relational struc-
tures, but wherein identity is not treated as primitive. Theorem 3.28(c) shows, for example,
that any group G = (G, ·) is Quinian, for the primitive ternary relation · is a surjective total
function on the domain G (i.e., for all a ∈ G, there exist c, d ∈ G such that c · d = a).

Similarly, Theorem 3.29 shows that any strict linear order (D,<) is Quinian. For ex-
ample, the formula ¬(x < y) ∧ ¬(y < x) defines identity. Similarly, identity is definable
in any ordinal when it is thought of as a relational structure. However, in a strict partial
ordering (D,<), one may have two incomparable elements a, b such that a ≮ b and
b ≮ a, but a and b have all the same smaller elements and all the same larger ele-
ments. In this case, a and b are nonseparable, and thus indiscernible. Then, (D,<) is
non-Quinian.

Turning to geometry, consider R3 with its natural Euclidean geometric structure. More
precisely, let E3 be the structure with domain R3 and distinguished betweenness rela-
tion Bet (R3) and congruence relation Cong(R3). The structure E3 can be regarded as
the unique-up-to-isomorphism structure characterized by Hilbert’s second-order system of
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axioms for geometry.16 The space E3 has a great many symmetries, best understood as
coordinate transformations φ : R3 → R3 (translations, rotations, reflections, inversions,
and dilations), and thus is nonrigid. But it is Quinian. Indeed, identity is very simply
definable, since one of the axioms of geometry is ∀x∀y(Bxyx ↔ x = y).17

4.3. A topological application. The notion of separability defined above hints of a
connection with the usual topological notions of separability. Let S = (D,U) be a topo-
logical space, with U ⊆ P(D) satisfying usual conditions. Then we say that elements a
and b are topologically distinguishable in S just in case there is an open set O ∈ U such
that a ∈ O and b /∈ O . We say that S is T 0 (or Kolmogorov) if and only if any pair
of distinct elements a, b ∈ D are topologically distinguishable. The usual example of a
T 0 space is the standard topology of the reals, generated from the open intervals as basis:
since if r1, r2 are distinct reals, then there is an open interval (s, t) such that r1 ∈ (s, t)
and r2 /∈ (s, t).

To see the connection with our notion of separability, define an associated binary rela-
tional structureMS = (D ∪U, ∈� D∪U ). We will show that, with a certain side condition,
the T 0 separability of S implies the definable separability ofMS , and thus the definability
of identity inMS by the indiscernibility formula x ≈ y (i.e., the formula ∀z[(z ∈ x ↔
z ∈ x) ∧ (x ∈ z ↔ y ∈ z)]).

However, a small wrinkle appears here because the domain of our structure is the union
D ∪ U , and we need to ensure that the base set D and the topology U are disjoint. This is
achieved by imposing the following conditions:

(i) ∅ /∈ D

(ii) ∀x, y ∈ D(x /∈ y).

Then, we obtain

LEMMA 4.4. Let D be a set. Then, if conditions (i) and (ii) hold, no element d ∈ D
coincides with any subset X ⊆ D.

Proof. Suppose d ∈ D and X ⊆ D. If X is ∅, then d and X are clearly distinct. If X is
not ∅, then a ∈ X , for some a. So, a ∈ D. Hence, a /∈ d. So, d and X are distinct. �

This gives the following result:

THEOREM 4.5. Suppose that S = (D,U) is a topological space, and that D satisfies
conditions (i) and (ii) above. ThenMS is Quinian if and only if S is T 0.

Proof. For the left-to-right direction, suppose that identity is definable in MS . Then
a ≈ b implies a = b. In particular, for any elements a, b ∈ D, a ≈ b implies a = b.
Suppose a and b are distinct. Then, ¬(a ≈ b). Thus, there is some d ∈ D ∪ U such that
a ∈ d iff b /∈ d or d ∈ a iff d /∈ b. In the latter case, it follows that either a or b has an

16 To be more exact—a version of Hilbert’s axiom system in which only points are treated as basic.
One may formulate a first-order theory E3 of this structure and prove a representation theorem:
M � E3 iffM is isomorphic to (F3, Bet (F3), Cong(F3)), where F is a real-closed field. The
theory E3 is complete and decidable. See Tarski (1959, pp. 169–170) for more details.

17 See Tarski (1959, p. 166). It needs to be stressed that identity is taken to be a primitive in the
language of this theory, and one of the axioms is ∀x∀y(Bxyx ↔ x = y). If identity is not taken
to be a primitive, and one tries to reformulate the theory with just Bxyz and Cxyzw as primitives
(and then, say, introducing x = y as defined by Bxyx), then the models of the theory are no
longer what was intended.
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element in D, which is impossible since, by (ii), ∀x, y ∈ D(x /∈ y). Suppose the former
case. It follows that d is nonempty, and thus is some O ∈ U . Thus, a ∈ O iff b /∈ O , and
thus S is T 0.
For the right-to-left direction, suppose S is T 0. Hence, for any distinct a, b ∈ D, there is
some open set O ∈ U such that a ∈ O and b /∈ O . Hence, for any distinct a, b ∈ D, there
is an element d ∈ D ∪ U such that a ∈ d iff b /∈ d. Hence, ¬(a ≈ b). Furthermore, each
distinct pair in U is discernible using ∈, by extensionality. Finally, by the above lemma, if
d ∈ D is distinct from O ∈ U , then they are separable. Thus, identity is definable, by the
formula x ≈ y. �

This theorem provides a general method for constructing non-Quinian structures, in
which identity is not definable. Begin with any non-T 0 topological space S satisfying the
side condition, and then the corresponding relational structureMS is non-Quinian.

For a simple example, let D = {0, 1} and let the topology U be the trivial one: {∅, {0, 1}}.
Clearly, S is not T 0: the elements 0 and 1 are topologically indistinguishable. Then, by the
theorem above, the relational structure (D ∪ U, ∈� D∪U ) is non-Quinian. This 4-element
structure is isomorphic to the binary structure (D′, R) where D′ is {0, 1, 2, 3} and R is
{(0, 3), (1, 3)} (the element 2 corresponds to the empty set ∅ and the element 3 corresponds
to {0, 1}). It is clear that 0 and 1 are first-order indiscernible, for there is no element d which
separates them.
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