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Abstract

Galles and Pearl [1998] claimed that “for recursive models,the causal model framework does not
add any restrictions to counterfactuals, beyond those imposed by Lewis’s [possible-worlds] frame-
work.” This claim is examined carefully, with the goal of clarifying the exact relationship between
causal models and Lewis’s framework. Recursive models are shown to correspond precisely to a
subclass of (possible-world) counterfactual structures.On the other hand, a slight generalization of
recursive models, models where all equations have unique solutions, is shown to be incomparable
in expressive power to counterfactual structures, despitethe fact that the Galles and Pearl arguments
should apply to them as well. The problem with the Galles and Pearl argument is identified: an ax-
iom that they viewed as irrelevant, because it involved disjunction (which was not in their language),
is not irrelevant at all.

1 Introduction

Counterfactual reasoning arises in broad array of fields, from statistics to economics to law. Not sur-
prisingly, there has been a great deal of work on giving semantics to counterfactuals. Perhaps the
best-known approach is due to Lewis [1973] and Stalnaker [1968], and involves possible worlds. The
idea is that a counterfactual of the form “ifA were the case thenB would be the case”, typically written
A � B, is true at a worldw if B is true at all the worlds closest tow whereA is true. Of course, making
this precise requires having some notion of “closeness” among worlds.

More recently, Pearl [2000] proposed the use of causal models based onstructural equationsfor
reasoning about causality. In causal models, we can examinethe effect ofinterventions, and answer
questions of the form “if random variableX were set tox, what would the value of random variableY
be”. This suggests that causal models can also provide semantics for (at least some) counterfactuals.

The relationship between the semantics of counterfactualsin causal models and in counterfactual
structures (i.e., possible-worlds structures where the semantics of counterfactuals is given in terms of

∗A preliminary version of this paper appears in the Proceedings of the Twelfth International Conference on Principles of
Knowledge Representation and Reasoning (KR 2010), 2010.
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closest worlds) was studied by Galles and Pearl [1998]. Theyargue that the relationship between the
two approaches depends in part on whether we considerrecursive(i.e., acyclic) models (those without
feedback—see Section 2 for details). They reach the following conclusion [Pearl 2000, p. 242].1

In sum, for recursive models, the causal model framework does not add any restrictions to
counterfactuals beyond those imposed by Lewis’s framework; the very general concept of
closest worlds is sufficient. Put another way, the assumption of recursiveness is so strong
that it already embodies all other restrictions imposed by structural semantics. When we
consider nonrecursive systems, however, we see that reversibility [a particular axiom intro-
duced by Galles and Pearl] is not enforced by Lewis’s framework.

This conclusion seems to have been accepted by the community. For example, in the Wikipedia arti-
cle on “Counterfactual conditional” (en.wikipedia.org/wiki/Counterfactualconditional; Sept., 2009), it
says “[The definition of counterfactuals in causal models] has been shown to be compatible with the
axioms of possible world semantics.”

In this paper I examine these claims and the proofs given for them more carefully, and try to settle
once and for all the relationship between causal models and counterfactual structures. The first sentence
in the statement above says “for recursive models, the causal model framework does not add any restric-
tions to counterfactuals beyond those imposed by Lewis’s framework”. It is not clear (at least to me)
exactly what this means. Recursive models are a well-definedsubclass of causal models. Galles and
Pearl themselves show that there are additional axioms thathold in recursive models over and above
those that hold in counterfactual structures. Indeed, theyshow that the reversibility axiom mentioned
above is valid in recursive models and is not valid in possible-worlds models. They also show that all
the axioms of causal reasoning in the possible-worlds framework that they view as relevant (specifi-
cally, axioms that do not mention disjunction, since it is not in their language) hold in recursive causal
models. Thus, the only conclusion that can be drawn from their argument is just the opposite to what
they claim, namely, that the possible-worlds approach doesnot add any restrictions to causal reasoning
beyond those imposed by causal models, since causal models satisfy all the axioms that counterfactual
structures do, and perhaps more.2

Pearl [private communication, 2010] intended the clause “for recursive models” to apply to coun-
terfactual structures as well as to structural models. However, the notion of a recursive counterfactual
structure is not defined either by Galles and Pearl [1998] or Pearl [2000]. In fact, in general, the notion
of recursive model as defined, for example, in [Pearl 2000, Definition 7.3.4], does not even make sense
for counterfactual structures. I show that, if we focus on the language considered by Galles and Pearl
and counterfactual structures appropriate for this language, there is a well-defined subclass of counter-
factual structures that can justifiably be viewed as recursive (counterfactual) structures. I then show that
precisely the same formulas in this language are valid in recursive causal models and recursive counter-
factual structures. Put another way, at least as far as Galles and Pearl’s language goes, recursive causal
models and recursive counterfactual structures are equally expressive. Thus, by restricting to recursive
counterfactual structures (as Pearl intended), the Galles-Pearl claim is, in a sense, correct (although the

1The discussion in Section 7.4.2 of [Pearl 2000] is taken almost verbatim from [Galles and Pearl 1998]; since the former
is more widely available, that is what I cite in this paper.

2Although it is not relevant to the focus of this paper, I in fact also do not understand the second sentence in the Pearl quote
above. As for the third sentence, while it is the case that reversibility does not hold in counterfactual structures in general,
reversibility holds in recursive causal structures as wellas more general causal structures, as Pearl and Galles themselves show.
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claim does not follow from their argument—see below). However, it should be noted that Galles and
Pearl’s language cannot, for example, express statements with disjunctive antecedents, such as “if he
had chosen a different running mate or had spent his campaignfunding more wisely then he would have
won the election”. The claim applies only to their restricted language.

Galles and Pearl try to prove their claims by considering axioms; my proof works at the level of
structures. Specifically, I show that a recursive causal model satisfying a particular formula can be
effectively converted to a recursive counterfactual structures satisfying this formula, and vice versa. It
is actually important to work at the level of structures to prove this claim, rather than working at the
level of axioms. I show that the argument that Galles and Pearl give for their claim is incorrect in some
significant respects. The problem lies with their claim thataxioms involving disjunctive antecedents
are irrelevant. As I show, they are quite relevant; a proof ofa formula not involving disjunction in the
antecedent may need to use an axiom that does. This possibility is illustrated by considering a class of
models slightly larger than recursive models. In a recursive model, given a context, there is a unique
solution to every equation. In earlier work [Halpern 2000],I showed that there are nonrecursive causal
models where every equation has a unique solution. Galles and Pearl’s argument applies without change
to causal models where the equations have a unique solution.However, as I show here, these models are
actuallyincomparablein expressive power to counterfactual structures. The reversibility axiom remains
valid in causal models where the equations have a unique solution. But, as I show by example, there is
a formula that does not involve disjunction that is valid in counterfactual structures but isnot valid in
causal models where the equations have a unique solution. Not surprisingly, proving that this formula
is valid from the axioms requires the use of an axiom that involves disjunction.

These results show that the quote from Wikipedia is not quitetrue. While it is true thatrecursive
causal structures are, in a certain sense, compatible with the axioms of possible worlds semantics, the
slightly more general class of causal structures with unique solutions to the equations is not. Thus, in
general, the semantics of counterfactuals in causal structurescannotbe understood in terms of closest
worlds.

The rest of this paper is organized as follows. In Section 2, Ireview the causal models and coun-
terfactual structures. The main technical results are in Section 3, which also includes a discussion of
the problems with the Galles-Pearl argument. I conclude in Section 4 with some discussion of these
results.

2 Causal models and possible-worlds models: a review

In this section I review the relevant material on causal models and possible-worlds models.

2.1 Causal models

(The following discussion is taken, with minor modifications, from [Halpern 2000].) Causal models
describe the world in terms of random variables, some of which have a causal effect on others. It is
conceptually useful to split the random variables into two sets, theexogenousvariables, whose values
are determined by factors outside the model, and theendogenousvariables, whose values are ultimately
determined by the exogenous variables. The values of the endogenous variables are characterized by a
set ofstructural equations.
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For example, if we are trying to determine whether a forest fire was caused by lightning or an
arsonist, we can take the world to be described by four randomvariables:

• FF for forest fire, whereFF = 1 if there is a forest fire andFF = 0 otherwise;

• L for lightning, whereL = 1 if lightning occurred andL = 0 otherwise;

• MD for match dropped (by arsonist), whereMD = 1 if the arsonist dropped a lit match, and
MD = 0 otherwise;

• E, which captures the external factors that determine whether the arsonist will drop a match, or
whether lightning will strike.

The variablesFF , L, andMD are endogenous, whileE is exogenous. If we want to model the fact
that if the arsonist drops a matchor lightning strikes then a fire starts, then we would have the equation
FF = max(L,MD); that is, the value of the random variableFF is the maximum of the values of the
random variablesMD andL. This equation says, among other things, that ifMD = 0 andL = 1, then
FF = 1. Alternatively, if we want to model the fact that a fire requires both a lightning strikeand a
dropped match (perhaps the wood is so wet that it needs two sources of fire to get going), then the only
change in the model is that the equation forFF becomesFF = min(L,MD); the value ofFF is the
minimum of the values ofMD andL. The only way thatFF = 1 is if bothL = 1 andMD = 1.

Formally, asignatureS is a tuple(U ,V,R), whereU is a finite set of exogenous variables,V is a
finite set of endogenous variables, andR associates with every variableX ∈ U ∪ V a finite setR(X)
of possible values forX (the rangeof possible values ofX). A causal modelis a pairT = (S,F),
whereS is a signature andF associates with each variableX ∈ V a function denotedFX such that
FX : (×Z∈(U∪V−{X})R(Z)) → R(X). FX characterizes the value ofX given the values of all the other
variables inU∪V. BecauseFX is a function, there is a unique value ofX once all the other variables are
set. Notice that we have such functions only for the endogenous variables. The exogenous variables are
taken as given; it is their effect on the endogenous variables (and the effect of the endogenous variables
on each other) that is modeled by the structural equations.

Given a causal modelT = (S,F), a (possibly empty) vector~X of variables inV, and a vector
~x of values for the variables in~X, we can define a new causal model denotedT ~X=~x

. Intuitively, this

is the causal model that results when the variables in~X are set to~x. We can think of setting~X to ~x
as an intervention. For example, ifT is the causal model for the forest fire described above, where
FF = max(L,MD), thenTL=0 is the model where the lightning definitely does not occur, sothat there
is a forest fire if and only if the arsonist drops a match. IfT ′ is the model whereFF = min(L,MD),
thenT ′

L=0 is the model where there is no forest fire, since there is no lightning.

Formally,T ~X=~x
= (S,F

~X=~x}), whereF ~X=~x is identical toF except that the equation forX is
replaced by the equationX = x. The modelT ~X=~x

describes a possiblecounterfactualsituation; that is,
even though, under normal circumstances, setting the exogenous variables to~u results in the variables
~X having value~x′ 6= ~x, this submodel describes what happens if they are set to~x due to some “external
action”, the cause of which is not modeled explicitly.

In general, given acontext~u, that is, a setting for the exogenous variables, there may not be a
unique vector of values that simultaneously satisfies all the equations inT ~X=~x

; indeed, there may not
be a solution at all. One special case where the equations in acausal modelT are guaranteed to have
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a unique solution is when there is a total ordering≺T of the variables inV such that ifX ≺T Y , then
FX is independent of the value ofY ; that is,FX(. . . , y, . . .) = FX(. . . , y′, . . .) for all y, y′ ∈ R(Y ). In
this case,T is said to berecursiveor acyclic. Intuitively, if T is recursive, then there is no feedback; if
X ≺T Y , then the value ofX may affect the value ofY , but the value ofY has no effect on the value
of X. It should be clear that ifT is a recursive model, then, given a context~u, there is always a unique
solution to the equations inT ~X=~x

, for all ~X and~x, (We simply solve for the variables in the order given
by ≺T .)

Following [Halpern 2000], I consider three successively more general classes of causal models for
a given signatureS (with a focus on the first two):

1. Trec(S): the class of recursive causal models over signatureS;

2. Tuniq(S): the class of causal modelsT overS where, for all ~X ⊆ V, ~x, the equations inT ~X=~x

have a unique solution for all contexts~u;

3. T (S): the class of all causal models overS.

I often omit the signatureS when it is clear from context or irrelevant, but the reader should bear in
mind its important role.

Syntax and Semantics: In [Halpern 2000], a number of languages for reasoning aboutcausality are
considered. The choice of language is significant. As Gallesand Pearl already point out, we cannot
in any obvious way give a meaning in causal models to counterfactual implications where there is a
disjunction on the left-hand side of the implication, that is formulas of the form(A ∨ A′) � B. Thus,
our results effectively consider a language with no disjunction on the left-hand side of�. As mentioned
in the introduction, one of the results of this paper have theform “for every recursive causal model,
there is a recursive causal structure that satisfies the sameformulas”, and vice versa. For this result to
have any bite, we must choose a reasonably rich language.

In [Halpern 2000], I considered a number of languages appropriate for reasoning about causality in
causal models. I briefly review two of them here. The languages are parameterized by the signatureS. A
basic causal formulais one of the form[Y1 = y1, . . . , Yk = yk]ϕ, whereϕ is a Boolean combination of
formulas of the formX = x, Y1, . . . , Yk,X are variables inV, Y1, . . . , Yk are distinct, andx ∈ R(X).
I typically abbreviate such a formula as[~Y = ~y]ϕ. The special case wherek = 0 is abbreviated asϕ.
A causal formulais a Boolean combination of basic causal formulas. LetL+(S) consist of all causal
formulas over the signatureS. (Again, I often omit the signatureS if it is clear from context or not
relevant.)

Roughly speaking, we can think ofL+(S) as the language that results by starting with primitive
propositions of the formX = x, whereX is a random variable inV andx ∈ R(X), and closing
under modal operators of the form[~Y = ~y]. The restriction to primitive propositions of this form is
not a major one. Given a propositional language with primitive propositionsP1, . . . , Pn, we can define
binary random variablesX1, . . . ,Xn (i.e., variables whose range is{0, 1}) and identifyXi = 1 with
“Pi is true”. That is, as long as we can we define structural equations that characterize how a change in
one primitive propositions affects the other primitive propositions, taking the primitive propositions to
have the formX = x is not a major restriction.

The formula[~Y = ~y]X = x can be interpreted as “in all possible solutions to the structural equations
obtained after settingYi to yi, i = 1, . . . , k, and the exogenous variables to~u, random variableX has

5



valuex”. This formula is true in a causal modelT in a context~u if in all solutions to the equations in
T~Y=~y

in context~u, the random variableX has valuex. Note that this formula is trivially true if there
are no solutions to the structural equations.

A formula in L+(S) is true or false in a causal model inT (S), given a context~u. As usual, we
write (T, ~u) |= ϕ if the causal formulaϕ is true in causal modelT given context~u.3 For a basic causal

formula [~Y = ~y]ϕ, we define(T, ~u) |= [~Y = ~y]ϕ if ϕ holds in all solutions to the equationsF ~Y=~y with
the values of the variables inU set to~u. Thus, for example, ifϕ has the formX1 = x1 ∨X2 = x2, then
(T, ~u) |= ϕ iff every vector of values for the endogenous variables thatsimultaneously satisfies all the
equations inF has eitherX1 = x1 orX2 = x2.4 We define the truth value of arbitrary causal formulas,
which are just Boolean combinations of basic causal formulas, in the obvious way:

• (T, ~u) |= ϕ1 ∧ ϕ2 if (T, ~u) |= ϕ1 and(T, ~u) |= ϕ2

• (T, ~u) |= ¬ϕ if (T, ~u) 6|= ϕ.

As usual, a formulaϕ is said to bevalid with respect to a classT ′ of causal models if(T, ~u) |= ϕ for
all T ∈ T ′ and contexts~u in T .

L+ is the most general language that I consider in [Halpern 2000]. To compare my results to those
of GP, who use a more restricted language, I also consider some restrictions ofL+. Specifically, let
Luniq be the sublanguage ofL+ that consists of Boolean combinations of formulas of the form [~Y =
~y](X = x). Thus, the difference betweenLuniq andL+ is that inLuniq, onlyX = x is allowed after
[~Y = ~y], while in L+, arbitrary Boolean combinations of formulas of the formX = x are allowed.
As the following lemma, proved in [Halpern 2000], shows, forreasoning about causality inTuniq, the
languageLuniq is adequate, since it is equivalent in expressive power toL+.

Lemma 2.1 [Halpern 2000]In Tuniq andTrec, the languageL+ andLuniq are expressively equivalent;
for every formulaϕ ∈ L+, we can effectively find a formulaϕ′ ∈ Luniq such thatTuniq |= ϕ⇔ ϕ′.

The equivalence described in Lemma 2.1 no longer holds when reasoning about causality in the
more general classT of structures. However, since I focus in this paper onTrec andTuniq, in the rest of
the paper I consider the languageLuniq; this suffices to make my points.

3In [Halpern 2000], following [Galles and Pearl 1998], the context was included in the formula. The definition of(T, ~u) |=
X = x given here is intended to be equivalent to that ofT |= X(~u) = x. The advantage of having~u on the left-hand side
of |= (which is also the formalism used in [Halpern and Pearl 2005]) is that it enforces the intuition that the context consists
of background information that is typically suppressed. Itdoes lead to loss in expressive power, since it is not possible to
consider formulas of the formX1(~u1) = x1 ∧X2(~u2) = x2, where~u1 6= ~u2. But this turns out to be an advantage—see the
next footnote.

4In [Halpern 2000], truth was defined for formulas of the form[~Y = ~y](X = x), and extended in “the obvious way” to
Boolean combinations; that isϕ1 ∨ ϕ2 was taken to be true if eitherϕ1 was true orϕ2 was true. This is equivalent to the
approach described above as long as all equations have a unique solution, that is, inTuniq. However, the two approaches are
not equivalent if equations can have more than one solution.The approach suggested here is what is required to make the
axioms given in [Halpern 2000] sound in the general case. We do not want to say thatX1 = x1 ∨X2 = x2 is true ifX1 = x1

is true in all solutions to the equations orX2 = x2 is true in all solutions to the equations; rather, we want eitherX1 = x1 or
X2 = x2 to be true in all solutions. With the approach given above, itis not clear how to give semantics to formulas such as
X1(~u1) = x1 ∨X2(~u2) = x2 if ~u1 6= ~u2, which is perhaps another good reason for not allowing such formulas.
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Axiomatizations I briefly recall some standard definitions from logic. Anaxiom systemAX consists
of a collection ofaxiomsandinference rules. An axiom is a formula (in some predetermined language
L), and an inference rule has the form “fromϕ1, . . . , ϕk infer ψ”, whereϕ1, . . . , ϕk, ψ are formulas in
L. A proof in AX consists of a sequence of formulas inL, each of which is either an axiom in AX or
follows by an application of an inference rule. A proof is said to be aproof of the formulaϕ if the last
formula in the proof isϕ. We sayϕ is provable in AX, and write AX⊢ ϕ, if there is a proof ofϕ in AX;
similarly, we say thatϕ is consistent with AXif ¬ϕ is not provable in AX.

An axiom system AX is said to besoundfor a languageL with respect to a classT ′ of causal models
if every formula inL provable in AX is valid with respect toT ′. AX is completefor L with respect to
T ′ if every formula inL that is valid with respect toT ′ is provable in AX.

Consider the following axioms, taken from [Halpern 2000], modified slightly for the language used
here:

C0. All instances of propositional tautologies in the languageLuniq.

C1. [~Y = ~y](X = x) ⇒ ¬[~Y = ~y](X = x′), if x, x′ ∈ R(X), x 6= x′. (Equality)

C2. ∨x∈R(X)[~Y = ~y](X = x). (Definiteness)

C3. ([ ~X = ~x](W = w) ∧ ([ ~X = ~x](Y = y)) ⇒ [ ~X = ~x;W = w](Y = y)). 5 (Composition)

C4. [X = x; ~W = ~w](X = x). (Effectiveness)

C5. ([ ~X = ~x;W = w](Y = y) ∧ [ ~X = ~x;Y = y](W = w))
⇒ [ ~X = ~x](Y = y), if Y 6=W .6 (Reversibility)

The key axioms C3–C5 were introduced (and named) by Galles and Pearl [1998]. Perhaps most relevant
to this paper is the reversibility axiom, C5. It says that if setting ~X to ~x andW tow results inY having
valuey and setting~X to ~x andY to y results inW having valuew, thenY must already have valuey
when we set~X to x (andW must already have valuew).

Let AXuniq(S) consist of C0–C5 and the rule of inferencemodus ponens(from ϕ andϕ ⇒ ψ infer
ψ).

Theorem 2.2 ([Halpern 2000]) AXuniq(S) is a sound and complete axiomatization forLuniq(S) with
respect toTuniq(S).

Using Lemma 2.1, it is possible to get a complete axiomatization for L+ with respect toTuniq(S),
simply by adding axioms for converting a formula inL+ to an equivalent formula inLuniq. A complete
axiomatization forLuniq with respect toTrec(S) is also given in [Halpern 2000]; it requires adding a
somewhat complicated axiom called C6 to AXuniq that captures acyclicity. The details are not relevant
for our purposes, so I do not discuss C6 further.

5Galles and Pearl use a stronger version of C3:([ ~X = ~x](W = w) ⇒ ([ ~X = ~x](Y = y)) ⇔ [ ~X = ~x;W = w](Y = y)).
The stronger version follows from the weaker version in the presence of the other axioms. (This is actually shown in the proof
of Proposition 3.3.)

6The assumption thatY 6= W was not made by Galles and Pearl [1998] nor by Halpern [2000],but it is necessary. For
example, ifW = Y , then one instance of C5 would be([ ~X = ~x;Y = y](Y = y) ∧ [ ~X = ~x;Y = y](Y = y)) ⇒ [ ~X =
~x](Y = y). The antecedent is true by C4, while the conclusion is not true in general.
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Finally, a complete axiomatization forL+ with respect toT (S), the class of all causal models, is
given. The axioms are similar in spirit to those in AXuniq. In particular, there is the following analogue
to reversibility (where〈 ~X = ~x〉ϕ is an abbreviation for¬[ ~X = ~x]¬ϕ):

(〈 ~X = ~x;Y = y〉(W = w ∧ ~Z = ~z) ∧ 〈 ~X = ~x;W = w〉(Y = y ∧ ~Z = ~z))

⇒ 〈 ~X = ~x〉(W = w ∧ Y = y ∧ ~Z = ~z)), where~Z = V − ( ~X ∪ {W,Y }).

2.2 Possible-worlds models for counterfactuals

There have been a number of semantics for counterfactuals. Ifocus here on one due to Lewis [1973].
Let Φ be a finite set of primitive propositions. Acounterfactual structureM is a tuple(Ω, R, π),
whereΩ is a finite set ofpossible worlds,7 π is an interpretation that maps each possible world to
a truth assignment overΦ, andR is a ternary relation overΩ. Intuitively, (w, u, v) ∈ R if u is as
close/preferred/plausible asv when the real world isw. Letu �w v be an abbreviation for(w, u, v) ∈ R,
and defineΩw = {u : u �w v ∈ R for somev ∈ Ω}; thus, the worlds inΩw are those that are at least
as plausible as some world inΩ according to�w. Definev ≺w v′ if v �w v′ andv′ 6�w v. We require
thatw ∈ Ωw, that�w be reflexive and transitive onΩw, and thatw ≺w u for all u 6= w. Thus,≺w puts
an ordering on worlds that can be viewed as characterizing “closeness tow”, andw is the closest world
to itself.

Let LC(Φ) be the language formed by starting withΦ and closing off under∧, ¬, and� (where
� denotes counterfactual implication). The languageLC allows arbitrary nesting of counterfactual
implications. By way of contrast, the languageL+ and its sublanguages have only one level of nesting,
if we think of [ ~X = ~x]ϕ as( ~X = ~x) � ϕ. LetLC

1 be the sublanguage ofLC consisting of all formulas
with no nested occurrence of� (including formulas with no occurrence of� at all).

We can give semantics to formulas inLC (and henceLC
1 ) in a counterfactual structuresM =

(Ω, R, π) as follows. The first few clauses are standard:

• (M,w) |= p, whenp ∈ Φ, if π(w)(p) = true.

• (M,w) |= ϕ ∧ ψ if (M,w) |= ϕ and(M,w) |= ψ.

• (M,w) |= ¬ϕ if it is not the case that(M,w) |= ϕ.

To give semantics toϕ � ψ, assume inductively that we have already given semantics toϕ at all worlds
inM . DefineclosestM (w,ϕ) = {v ∈ Ωw : (M,v) |= ϕ and there is no worldv′ such that(M,v′) |= ϕ

andv′ ≺w v}. Thus,closestM (w,ϕ) is the set of worlds closest tow whereϕ is true. (Notice that if
there are no worlds whereϕ holds, thenclosestM (w,ϕ) = ∅.)

• (M,w) |= ϕ � ψ if (M,v) |= ψ for all v ∈ closestM (w,ϕ).

7Giving semantics to counterfactual formulas in structureswith infinitely many worlds adds an extra level of complexity.
As shown by Friedman and Halpern [1994], if a formula in the language I am about to introduce is satisfiable at all, it is
satisfiable in a structure with finitely many worlds, so as faras validity goes, there is no loss of generality in restricting to finite
structures.
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Axioms: There are a number of well-known sound and complete axiomatizations for counterfac-
tual logic (see, e.g., [Burgess 1981; Bell 1989; Chellas 1980; Grahne 1991; Katsuno and Satoh 1991;
Lewis 1971; Lewis 1973; Lewis 1974]). Here is one, based on Burgess’s axiomatization, similar in
spirit to the well-known KLM properties [Kraus, Lehmann, and Magidor 1990].

A0. All instances of propositional tautologies in the languageLC .

A1. ϕ � ϕ.

A2. ((ϕ � ψ1) ∧ (ϕ � ψ2)) ⇒ (ϕ � (ψ1 ∧ ψ2)).

A3. ((ϕ1 � ϕ2) ∧ (ϕ1 � ψ)) ⇒ ((ϕ1 ∧ ϕ2) � ψ).

A4. ((ϕ1 � ψ) ∧ (ϕ2 � ψ)) ⇒ ((ϕ1 ∨ ϕ2) � ψ).

A5. ¬(true � false).

A6. ϕ⇒ (ψ ⇔ (ϕ � ψ)).

There are three rules of inference: modus ponens, and the following two rules:

RA1. Fromϕ⇔ ϕ′ infer (ϕ � ψ) ⇒ (ϕ′ � ψ).

RA2. Fromψ ⇒ ψ′ infer (ϕ � ψ) ⇒ (ϕ � ψ′).

A1–A4 and RA1–RA2 correspond to the KLM postulates REF (for reflexivity), AND, CM (cautious
monotonicity), OR, LLE (left logical equivalence), and RW (right weakening), respectively. A5 captures
the requirement thatΩw is nonempty. Finally, A6 is the axiom that makes� a counterfactual operator,
and not just a “normality” or “typicality” operator (so that“normally birds have wings” becomesbird �
wing). Suppose that it is the case that ifϕ were true, thenψ would be true. Then ifϕ is actually true,
we would expectψ to be true. Moreover, ifϕ andψ are both true, then it seems reasonable to assert that
if ϕ were true, thenψ would be true. On the other hand, it is not in general the case that if ϕ andψ are
both true, thenϕ’s are normally or typicallyψ’s.

In his semantics, Lewis allows there to be more than one worldclosest to a worldw whereϕ is true
(except in the special case thatϕ is true atw; in this case,w is the unique world closest tow satisfying
ϕ). By way of contrast, Stalnaker [1968] essentially assumesthat for each worldw and formulaϕ,
there is a unique world closest tow satisfyingϕ. The standard approach to getting uniqueness is to
require that�w be a strict total order (whose least element isw); that is, for all worldsw′ 6= w′′, either
w′ ≺w w

′′ orw′′ ≺w w
′. This assumption is captured by the following axiom:

A7. (ϕ � (ψ1 ∨ ψ2)) ⇒ ((ϕ � ψ1) ∨ (ϕ � ψ2)).

Let AX be the axiom system consisting of axioms A0–A6 and rules of inference RA1, RA2, and
modus ponens; let AX′ be AX together with the axiom A7. LetM(Φ) be the collection of all counter-
factual structures over the primitive propositions inΦ (i.e., structures whereπ interprets formulas inΦ);
let M+(Φ) be the subset ofM(Φ) consisting of all counterfactual structures where�w is a total strict
order. As usual, I omit theΦ when it is clear from context or irrelevant.

Theorem 2.3 [Burgess 1981]AX (resp., AX′) is a sound and complete axiomatization for the language
Luniq with respect toM (resp.,M+).
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3 Relating causal models to counterfactual structures

As the title suggests, in this section I take a closer look at the relationship between causal models and
counterfactual structures. On the surface, the two approaches are quite different. Consider the causal
model for the forest fire example, discussed in Section 2.1. If we want to capture the forest fire using
counterfactual structures, perhaps the most natural way todo it is to have worlds in the counterfactual
structure that correspond to the eight possible settings ofthe three exogenous variables (MD , L, and
FF ). We can take primitive propositions that correspond to thesettings of these variables as well; that is,
the primitive propositions have the formMD = i, L = i, andFF = i, for i = 0, 1. The actual worldw
is the one whereMD = 1∧L = 1∧FF = 1 holds. The closest world relation is described in the obvious
way by the equations. For example, if we consider the conjunctive model, whereFF = min(MD , L),
so that both the match and the lightning are required to startthe fire, then the closest world tow where
MD = 0 is the one whereMD = 0 ∧ L = 1 ∧ FF = 0 holds. On the other hand, in the disjunctive
model, whereFF = max(MD , L), the closest world tow whereMD = 0 holds is the one where
MD = 0 ∧ L = 1 ∧ FF = 1 holds. There is a sense in which the causal model and the corresponding
counterfactual structure(s) constructed this way satisfythe same formulas. In this section, I make this
intuition precise. More generally, I show that to every causal model inTrec, there is a corresponding
counterfactual structure that satisfies the same formulas;however, this is not the case for every causal
model inTuniq.

Given a signatureS = (U ,V,R), consider the setΦS of primitive propositions of the formX = x

for X ∈ V andx ∈ R(x). We restrict to counterfactual structuresM = (Ω, R, π) for this set of
primitive propositions, whereπ is such that, for each worldw ∈ Ω and variableX ∈ V, exactly one of
the formulasX = x is true. Call such structuresacceptable. In an acceptable counterfactual structure, a
world can be associated with an assignment of values to the random variables. An acceptable structure
(Ω, R, π) is full if, for each assignmentv of values to variables and allw ∈ Ω, there is a world inΩw

wherev is the assignment. (I discuss the consequences of fullness shortly.) LetMa(ΦS) consist of all
acceptable counterfactual structures overS; let Mf (ΦS) consist of all full acceptable counterfactual
structures overS; letM+

a (ΦS) = Ma(ΦS) ∩M+(ΦS); and letM+
f (ΦS) = Mf (ΦS) ∩M+(ΦS).

As before, I identify[~Y = ~y](X = x) ∈ Luniq(S) with the formula~Y = ~y � (X = x) ∈ LC
1 (ΦS).

I abuse notation and useLuniq(S) to denote the sublanguage ofLC
1 (ΦS) that arises via this identification.

The following is easy to show.

Proposition 3.1 C3 and C4 are valid inMa(ΦS); C2 is valid inM+
a (ΦS); C1 is valid inMf (ϕS).

Notice that, inMa(ΦS) (and hence all of its subsets), the following two formula schemes are valid:

V1. ∨x∈R(X)X = x

V2. If x 6= x′, thenX = x⇒ X 6= x′.

In Mf (ΦS), the following axiom is valid:

V3. ¬[ ~X = ~x]false .
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V3 is valid in a structure where, for all worldsw, there is a closest world tow such that~X = ~x, that is,
closestM(w, ~X = ~x) 6= ∅, which is exactly what fullness ensures.8

With this background, I can give an “axiomatic” proof of Proposition 3.1:

• C1 follows easily from A0, A2, A5, and V2.

• C3 is a special case of A3.

• C4 follows easily from A1 and RA2.

• C2 is not provable in AX (and is not valid inMa(ΦS)), but it is provable in AX′ together with the
axiom V1. Indeed, it follows easily from A1, A7, RA2, and V1 (sinceϕ ⇒ ∨x∈R(X)X = x is
valid in M(ΦS)). The fact that C2 requires A7 is not surprising. C2 is essentially expressing the
uniqueness of solutions, which is being captured by the assumption that there is a unique closest
world where the antecedent is true, an assumption captured by A7.

Reversibility (C5) is conspicuously absent from this list.Indeed, as the following example shows, C5 is
not sound in counterfactual structures.

Example 3.2 Suppose thatV = {X1,X2,X3}, andR(X1) = R(X2) = R(X3) = {0, 1}. Consider a
structure(Ω, R, π) ∈ M+

f where there is exactly one world inΩ corresponding to each of the 8 possible
assignments of values to the variables. Thus, we can identify a worldw in Ω with a triple (b1, b2, b3),
where, inw, Xi = bi. All that matters aboutR is that(0, 0, 0) ≺(0,0,0) (1, 0, 0) ≺(0,0,0) (1, 1, 1), with
the other 5 worlds being further from(0, 0, 0) than(1, 1, 1). Then it is immediate that

(M, (0, 0, 0)) |= [X1 = 1;X2 = 1](X3 = 1) ∧ [X1 = 1;X3 = 1](X2 = 1) ∧ [X1 = 1](X2 = 0).

Thus, C5 is violated.

For the remainder of this section, fixS = (U ,V,R). Say that a counterfactual structureM =
(Ω, R, π) in M+

f (ΦS) is recursiveif there is a total ordering≺M of the variables inV such that if

W ≺M Y , then for all ~X ⊆ V−{Y,W}, for each worldw ∈ Ω, in the closest world tow where ~X = ~x

andY = y, the value ofW is the same as in the closest world tow where ~X = ~x. Intuitively, setting
Y to y has no further effect on the value ofW once ~X is set to~x. Let Mrec consist of the recursive
structures inM+

f . It is easy to see that the structureM considered in Example 3.2 is not inMrec. For
if it were, then we would have eitherX2 ≺M X3 orX3 ≺M X2. If X3 ≺M X2, then the value ofX3

would have to be the same in the closest world to(0, 0, 0) whereX1 = 1 andX2 = 1 as in the closest
world to (0, 0, 0) whereX1 = 1. But it is not. The same problem occurs ifX2 ≺M X3.

Proposition 3.3 C5 is valid inMrec.

Proof: Suppose thatM = (Ω, R, π) ∈ Mrec, w ∈ Ω, and the antecedent of C5 holds at(M,w). If
Y ≺M W , then it is immediate from the fact that(M,w) |= [ ~X = ~x;Y = y](W = w) that we
also have(M,w) |= [ ~X = ~x](W = w). Now suppose thatW ≺M Y . Then from(M,w) |= [ ~X =
~x;W = w](Y = y) it follows that (M,w) |= [ ~X = ~x](Y = y). Suppose, by way of contradiction,

8Galles and Pearl did not discuss the axioms V1–V3, but it is clear that they are implicitly assuming that they hold.
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that (M,w) |= [ ~X = ~x](W = w′) for somew′ 6= w. By C3 (which, by Proposition 3.1, is sound
in M ), it follows that (M,w) |= [ ~X = ~x;Y = y](W = w′). This, combined with the fact that
(M,w) |= [ ~X = ~x;Y = y](W = w), contradicts C1 (which, by Proposition 3.1, is also sound in
M ). (Note that this argument actually shows that the strongerversion of C3 used by Galles and Pearl,
discussed in Footnote 4, follows from the weaker version used here.)

Not surprisingly, the proof of Proposition 3.3 is essentially identical to the argument given by Galles
and Pearl that reversibility holds in recursive structures. Indeed, it is not hard to show that the axiom
C6 that characterizes recursive structures is valid inMrec, and C5 follows from the other axioms in the
presence of C6.

Even more can be shown. In a precise sense, every causal modelin Trec(S) can be identified
with a counterfactual structure inMrec(S) where the same formulas are true. It follows that recursive
counterfactual structures are at least as general as recursive causal models. The converse is also true. I
now make these claims precise.

Given a causal modelT = (S,F) ∈ Trec, we construct a modelMT = (Ω, R, π) as follows. LetΩ
consist of all the assignments of values to the variables inU ∪ V. The interpretationπ is defined in the
obvious way:X = x is true inw if w assignsX valuex. For each context~u, let ~v~u be the assignment
to the variables inV that is forced by the equations. (SinceT ∈ Trec, ~v~u is uniquely determined.) More
generally, for each assignment~X = ~x, let ~v

~u, ~X=~x
be the assignment to the variables inV determined

by the equationsF ~X=~x in the context~u. Letw~u = (~u,~v~u) and letw
~u, ~X=~x

= (~u,~v
~u, ~X=~x

). Finally, let

R be such that the closest world tow~u where ~X = ~x is w
u, ~X=~x

, and for all assignments~u and~v to the
exogenous and endogenous variables, respectively,Ω~u,~v consists of all worlds(~u,~v′) such that~v′ is an
arbitrary assignment to the endogenous variables. This does not uniquely determineR. Indeed, it places
no constraints on�w if w is not of the formw~u and does not completely determineR even ifw does
have the formw~u. It is easy to define a relationR that satisfies these constraints such that (1)≺w~u

is a
strict total order onΩw~u

and (2) forw not of the formw~u, ≺w is a strict total order onΩw that satisfies
the recursiveness constraint.

Theorem 3.4 MT ∈ Mrec and, for all formulasϕ ∈ Luniq(S), we have(T, ~u) |= ϕ iff (MT , w~u) |= ϕ.

Proof: It is easy to see that we can take≺MT
=≺T , soMT ∈ Mrec. Using the definition ofR, it is easy

to show by induction on the structure of formulas that(T, ~u) |= ϕ iff (MT , w~u) |= ϕ. I leave the details
to the reader.

Theorem 3.4 shows that we can embedTrec in Mrec. I next give an embedding ofMrec in Trec.
Now the causal model inTrec depends both on the counterfactual structure and a world in that structure.
(I discuss why this is so after Theorem 3.5.) Suppose thatM = (Ω, R, π) ∈ Mrec(S) andw ∈ Ω.
Suppose thatV = {X1, . . . ,Xn} and, without loss of generality, thatXi ≺M Xj iff i < j. Consider
the causal modelTM,w = (S,F), whereFX is defined by induction on the≺M -ordering. That is,
we first defineFX1

, sinceX1 is the≺-minimal variable, then defineFX2
, and so on. Suppose that

(M,w) |= X1 = x1. Then defineFX1
so that, for all contexts~u and assignments~v to the variables

in V − {X1}, FX1
(~u,~v) = x1. Suppose that we have definedFXi

for i ≤ k. DefineFXk+1
so that,

for all contexts~u and all assignments~v to the variables inV − {Xk+1}, we haveFXk+1
(~u,~v) = x iff

(M,w) |= [X1 = v1; . . . ,Xk = vk](Xk+1 = x).
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Theorem 3.5 TM,w ∈ Trec and, for all formulasϕ ∈ Luniq(S) and all contexts~u, we have(M,w) |= ϕ

iff (TM,w, ~u) |= ϕ.

Proof: It is easy to see thatTM,w ∈ Trec; the definition ofF guarantees that≺TM,w
=≺M . The definition

of FX is independent of the context; it easily follows that for allcontexts~u and~u′, we have(TM,w, ~u) |=
ϕ iff (TM,w, ~u

′) |= ϕ. Again, an easy induction on the structure ofϕ shows that, for all contexts~u,
(M,w) |= ϕ iff (TM,w, ~u) |= ϕ.

It is easy to modify the construction slightly so that each context~u corresponds to a different world
w ∈ Ω. Thus, if the number of contexts is at least|Ω|, then we can get a closer analogue to Theorem 3.4,
where we can associate with each worldw ∈ Ω a context~uw and show that(M,w) |= ϕ iff (T, ~uw) |=
ϕ. However, Theorem 3.5 suffices for the following corollary.

Corollary 3.6 The same formulas inLuniq(ΦS) are valid in bothTrec(S) andMrec(S).

Proof: If ϕ is not valid inTrec, then there is some causal modelT ∈ Trec and context~u such that
(T, ~u) |= ¬ϕ. By Theorem 3.4,(MT , w~u) |= ¬ϕ, soϕ is not valid inMrec. For the converse, ifϕ
is not valid inMrec, then there is some counterfactual structureM ∈ Mrec and worldw such that
(M,w) |= ¬ϕ. By Theorem 3.5,(TM,w, ~u) |= ¬ϕ. Thus, the same formulas are satisfiable in bothTrec
andMrec, and hence the same formulas are valid.

What happens if we considerTuniq rather thanTrec? Now causal models and counterfactual struc-
tures are incomparable. Consider the formula

ϕ =def [X1 = 1](X2 = 1 ∧X3 = 0)∧
[X2 = 1](X3 = 1 ∧X1 = 0)∧
[X3 = 1](X1 = 1 ∧X2 = 0).

Theorem 3.7 ¬ϕ is valid inTrec andMf (and henceM+
f ), butϕ is satisfiable inTuniq.

Proof: The validity of¬ϕ in Trec follows from its validity inMf , in light of Corollary 3.6 and the
fact thatMrec ⊆ Mf . Nevertheless, I prove the validity of¬ϕ in Trec first, since the proof is short
and gives some insight. Consider a causal modelT ∈ Trec, and suppose, by way of contradiction, that
(M,w) |= ϕ. Let ≺T be the total ordering on the variables inV in T . One ofX1, X2, andX3 must
be minimal with respect to≺T . Suppose it isX1 and that(T, ~u) |= X1 = i. Then we must have
(T, ~u) |= [X2 = 1](X1 = i) and(T, ~u) |= [X3 = 1](X1 = i). But since(T, ~u) |= ϕ, it follows that
(T, ~u) |= [X2 = 1](X1 = 0) and(T, ~u) |= [X3 = 1](X1 = 1). Thus,X1 cannot be minimal with
respect to≺T . An analogous argument shows thatX2 andX3 also cannot be minimal with respect to
≺T . Thus, we have a contradiction.

I next show that¬ϕ is valid inMf . Suppose by way of contradiction thatM ∈ Mf and(M,w) |=
ϕ. Consider a worldw′ closest tow that satisfiesX1 = 1 ∨ X2 = 1 ∨ X3 = 1. (SinceM ∈ Mf ,
there is guaranteed to be such a world.) Suppose that(M,w′) |= X1 = 1. Note thatw′ must be one
of the worlds closest tow that satisfiesX1 = 1. Since(M,w) |= [X1 = 1](X2 = 1), we must have
(M,w′) |= X2 = 1. Thus,w′ must also be one of the worlds closest tow that satisfiesX2 = 1.
Since(M,w) |= [X2 = 1](X3 = 1), we must have that(M,w′) |= X3 = 1. On the other hand,
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since(M,w) |= [X1 = 1](X3 = 0), we must have have that(M,w′) |= X3 = 0. This gives a
contradiction. A similar contradiction arises if(M,w′) |= X2 = 1 or if (M,w′) |= X3 = 1. Since
(M,w′) |= X1 = 1 ∨X2 = 1 ∨X3 = 1 by construction, this gives a contradiction to the assumption
that(M,w) |= ϕ.

Finally, I must show that there is a causal modelT ∈ Tuniq and a context~u such that(T, ~u) |= ϕ. Let
V = {X1,X2,X3} and letU = {U}. TakeR(X1) = R(X2) = R(X3) = {0, 1} andR(U) = {0}. In
definingF , I writeFi instead ofFXi

, and omit theU argument (since it is always 0). Thus,F1(0, 0) = 0
means that whenX2 = X3 = 0, thenX1 = 0. Define

• F1(0, 0) = 0; F1(0, 1) = 1; F1(1, 0) = 0; F1(1, 1) = 0;

• F2(0, 0) = 0; F2(0, 1) = 0; F2(1, 0) = 1; F2(1, 1) = 0;

• F3(0, 0) = 0; F3(0, 1) = 1; F3(1, 0) = 0; F3(1, 1) = 0.

I must now verify thatT = (S,F) ∈ Tuniq, and that(T, 0) |= ϕ. This is straightforward, although
tedious. First observe that(0, 0, 0) is the only solution to all the equations in the basic causal model. It
is easy to see that(0, 0, 0) is a solution. To see that it is the only solution, observe that (0, 0, 1) cannot
be a solution becauseF3(0, 0) = 0; similarly, (0, 1, 0) and(1, 0, 0) cannot be solutions;(0, 1, 1) cannot
be a solution becauseF2(0, 1) = 0; (1, 1, 0) cannot be a solution becauseF1(1, 0) = 0; (1, 0, 1) cannot
be a solution becauseF3(1, 0) = 0; finally, (1, 1, 1) cannot be a solution becauseF1(1, 1) = 0.

It is clear that there must be a unique solution if we set two ofthe three variables (forced by the
equation for the third variable); for example, ifX1 = 1 andX2 = 0, then the unique solution is
(1, 0, 0). If X1, X2, orX3 is set to 0, then one solution is(0, 0, 0). The solution is unique for the same
reasons that(0, 0, 0) was the unique solution to the original collection of equations. Finally, ifX1 = 1,
then (1, 1, 0) is a solution; ifX2 = 1, then(0, 1, 1) is a solution; and ifX3 = 1, then(1, 0, 1) is a
solution. We must show that there are no other solutions in all three cases. IfX1 = 1, (1,0,0) is not
a solution sinceF2(1, 0) = 1; (1, 0, 1) is not a solution becauseF3(1, 0) = 0; and (1, 1, 1) is not a
solution becauseF3(1, 1) = 0. If X2 = 1, (0, 1, 0) is not a solution becauseF3(0, 1) = 1; (1, 1, 0) is
not a solution becauseF1(1, 0) = 0; (1, 1, 1) is not a solution becauseF1(1, 1) = 0. Finally, if X3 = 1,
(0, 0, 1) is not a solution becauseF1(0, 1) = 1; (0, 1, 1) is not a solution becauseF2(0, 1) = 0; and
(1, 1, 1) is not a solution becauseF1(1, 1) = 0. Thus,T ∈ Tuniq.

It is now straightforward to check that(T, u) |= ϕ.

In Section 2.1, I argued that the choice of language was significant. All the results of this section are
stated for the languageLuniq. In light of Lemma 2.1, Theorems 3.4 and 3.5 apply without change to the
languageL+. Moreover, sinceTuniq ⊆ T andLuniq ⊆ L+, the formula¬ϕ from Theorem 3.7 (which
is in Luniq, and hence also inL+) continues not to be valid inT , while being valid in counterfactual
structures. While C5 is not valid inT , the generalization of C5 mentioned at the end of Section 2.1is
valid in T [Halpern 2000], and is not valid in counterfactual structures. So the full classT of causal
models is incomparable in expressive power to counterfactual structures with respect the languageL+

(which is the language arguably most appropriate forT ). Formally, we have:

Corollary 3.8 T is incomparable in expressive power toM with respect to the languageL+.
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4 Discussion

I have shown that the expressive power of causal models as models for counterfactuals is incomparable
to that of the Lewis-Stalnaker “closest-world” possible-worlds semantics for counterfactuals; thus, the
definition of counterfactuals in causal models isnot, in general, compatible with the axioms of possible
world semantics, although it is if we restrict to recursive causal models.

Specifically, causal models where the equations are recursive can be viewed as defining a strict
subclass of the standard possible-worlds semantics. More precisely, a set of structural equation defines a
worldw (characterized by the unique solution to the equations) andcan be implicitly viewed as defining
an ordering relation on worlds such that, for every formula~X = ~x, the solution to the equations when
~X is set to~x determines a worldw ~X=~x

that is the world closest tow according to the ordering such that
~X = ~x. Somewhat surprisingly, this is not the case if we go to the larger class of causal models defined
by equations that are not recursive, but have a unique solution for all settings~X = ~x. Of course, it is
still the case that there is a worldw ~X=~x

determined by the equations when~X is set to~x. However, there
is, in general, no ordering on worlds such thatw ~X=~x

is the closest world tow according to the ordering.
A closeness ordering on worlds places some restrictions (e.g., those characterized by the formula¬ϕ in
Theorem 3.7) that do not hold in all causal models inTuniq.

So where does this leave us? It is still the case that, in causal models, a formula such asϕ � ψ is
true at a worldw if ψ is true at some appropriate worldw′ satisfyingϕ. However,w′ cannot be viewed
as the “closest” world tow satisfyingϕ. This leaves open the question of whether there are other ways
of defining “appropriateness” other than “closeness”. I do not have strong intuitions here, but it is a
question that is perhaps worth pursuing. My own feeling is that these arguments show that models in
Tuniq − Trec are actually not good models for causality. It is quite difficult to verify that a nonrecursive
causal model is inTuniq, as the modelT given in Theorem 3.7 satisfyingϕ shows. I am not aware of
any interesting real-world situation that is captured by a model inTuniq − Trec. Further evidence of the
“unreasonableness” of models inTuniq − Trec is given by recent work of Zhang, Lam, and de Clerq
[2012]. They show that although the reversibility axiom blocks cycles of counterfactual dependence of
length two, it does not block longer cycles. Indeed, they observe that the causal modelT of Theorem 3.7
has a cycle of length three.

Does this mean that we should restrict to recursive models? There are certainly equations in physics
(e.g., those connecting pressure and volume) that exhibit circular dependencies. Perhaps nonrecursive
models would be appropriate for them (although once we add time to the picture, we may well be able
to use a recursive model to capture any particular scenario). In a general nonrecursive model, there
may be several solutions to an intervention (see [Halpern and Pearl 2005, Appendix A.4] for further
discussion of this point). But this just corresponds to there being several worlds satisfying a formulaϕ
that are closest to a given world, which is certainly allowedin Lewis’s framework. I suspect that there is
an interesting class of nonrecursive causal models that canbe captured in Lewis’s framework, and that
these will turn out to be the models that actually arise in practice.

Zhang [2012] makes some progress on this issue. He proposes two condition on causal models,
which he callssolution-fulandsolution-conservativeness. The former condition is easy to understand:
a causal modelT is solution-ful if, for every context~u, the equations have a solution (not necessarily
unique). The second condition is somewhat more complicated. T is solution-conservative if, for every
context~u, if a solution toT ~X=~x

is consistent with~Y = ~y, then every solution toT ~X=~x∧~Y=~y
is a solution

to T ~X=~x
. Zhang shows that a causal model satisfies these two conditions iff it satisfies analogues of all
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the axioms in one of Lewis’s axiomatizations of causal counterfactuals [Lewis 1973, p. 973]. Thus,
these two conditions are necessary for a causal model to be translatable to a counterfactual structure.
They are not sufficient, since they are satisfied by all modelsin Tuniq. There is clearly more to be done
in understanding the connections between causal models andcounterfactual structures.

Turning to a more technical point, it is worth trying to understand in more detail exactly what
goes wrong in the Galles-Pearl argument. When making the comparison, Galles and Pearl did not
use the axiom system AX. Rather, they used one of Lewis’ axiomatizations of conditional logic from
[Lewis 1973]. Nevertheless, the problem with their argument can be understood in terms of AX. Galles
and Pearl show that all but one of the axioms in the system theyconsider follows from C3, C4, and C5.
(They actually also implicitly use C1 and C2, but this is a minor point.) The remaining axiom is

((ϕ1 ∨ ϕ2) � ϕ1) ∨ ((ϕ1 ∨ ϕ2) � ϕ2)∨
[((ϕ1 ∨ ϕ2) � ψ) ⇔ ((ϕ1 � ψ) ∨ (ϕ2 � ψ))].

For this axiom, they say “Because actions in causal models are restricted to conjunctions of literals that
is, in the language of this paper, because in a formula inLuniq of the formϕ � ψ, ϕ is a conjunction
of formulas of the formX = x], this axiom is irrelevant.” They thus ignore the axiom. Unfortunately,
this argument is flawed. If it were true, then it would be the case that the class of causal models inTuniq
would belessgeneral than counterfactual structures since causal models would satisfy more axioms—all
the relevant axioms satisfied by counterfactual structures, and, in addition, C5 (reversibility). However,
as we have seen, the formulaϕ of Theorem 3.7 is satisfiable inTuniq, while ¬ϕ is valid inMf . The
formula¬ϕ is equivalent to

([X1 = 1](X2 = 1 ∧X3 = 0) ∧ [X2 = 1](X3 = 1 ∧X1 = 0)
⇒ ¬[X3 = 1](X1 = 1 ∧X2 = 0).

Thus,¬ϕ is a formula whose antecedent and conclusion are both formulas inLuniq. The argument for
the validity of¬ϕ given in the proof of Theorem 3.7 is purely semantic, but, as Ishow in the appendix,
¬ϕ can also be derived from AX together with V2 and V3. The derivation uses A4 in a crucial way.
Note that A4 has disjunctions on the left-hand side of� and thus cannot be expressed inLuniq. But
it is not irrelevant! Indeed, an easy argument (given in the appendix) shows that¬ϕ cannot be derived
using AX− {A4} together with V2 and V3 if we restrict to formulas inLuniq. Thus, we can start with
assumptions in the languageLuniq, end up with a conclusion inLuniq, but have a derivation that, along
the way, uses A4 and has steps that involve formulas with disjunctions on the left-hand side of�. The
Galles and Pearl argument ignores this possibility.

Acknowledgments: Thanks to Franz Huber, Judea Pearl, Jiji Zhang, and the anonymous reviewers of
the paper for useful comments.

A A derivation of ¬ϕ

In this appendix, I show that the formula

([X1 = 1](X2 = 1 ∧X3 = 0) ∧ [X2 = 1](X3 = 1 ∧X1 = 0) ⇒ ¬[X3 = 1](X1 = 1 ∧X2 = 0)
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can be derived from AX together with V2 and V3. To simplify notation, I write⊢ ϕ′ if the formulaϕ′

can be derived from AX, and⊢+ ϕ′ if ϕ′ can be derived from AX +{V2, V3}.

I first need a technical lemma.

Lemma A.1 ⊢ (ϕ1 � ϕ2 ∧ ϕ2 � ϕ3) ⇒ (ϕ1 ∨ ϕ2) � ϕ3.

Proof: By A1, ⊢ ϕ2 � ϕ2, and by A4,ϕ1 � ϕ2 ∧ ϕ2 � ϕ2 ⇒ (ϕ1 ∨ ϕ2) � ψ. Thus,

⊢ (ϕ1 � ϕ2) ⇒ (ϕ1 ∨ ϕ2) � ϕ2. (1)

Next observe that it easily follows from A1 and A4 that (a)⊢ (ϕ1 ∧ ¬ϕ2) � (ϕ2 ⇒ ϕ3) (since
(ϕ1 ∧ ¬ϕ2) ⇒ (ϕ2 ⇒ ϕ3) is a tautology) and (b)⊢ (ϕ2 � ϕ3) ⇒ ϕ2 � (ϕ2 ⇒ ϕ3) (since
ϕ3 ⇒ (ϕ2 ⇒ ϕ3) is a tautology). By A4, RA1, and the observation that((ϕ1∧¬ϕ2)∨ϕ2) ⇔ (ϕ1∨ϕ2)
is a tautology, we can conclude that

⊢ (ϕ2 � ϕ3) ⇒ ((ϕ1 ∨ ϕ2) � (ϕ2 ⇒ ϕ3)). (2)

Letψ be the formula(ϕ1 � ϕ2 ∧ ϕ2 � ϕ3). From (1) and (2), it follows that

⊢ ψ ⇒ ((ϕ1 ∨ ϕ2) � ϕ2) ∧ (ϕ1 ∨ ϕ2) � (ϕ2 ⇒ ϕ3)).

Applying A2 and RA1, it follows that

⊢ ψ ⇒ ((ϕ1 ∨ ϕ2) � ϕ3,

as desired.

Now the proof is easy. By Lemma A.1, it follows that

⊢ (X1 = 1 � X2 = 1) ∧ (X2 = 1 � X3 = 1) ⇒
(X1 = 1 ∨X2 = 1) � X3 = 1.

Applying the lemma again, we get that

⊢ (X1 = 1 ∨X2 = 1) � X3 = 1 ∧ (X3 = 1 � X1 = 0) ⇒
(X1 = 1 ∨X2 = 1 ∨X3 = 1) � X1 = 0.

Letψ′ be an abbreviation forX1 = 1∨X2 = 1∨X3 = 1. Thus,⊢ ϕ⇒ (ψ′ � X1 = 0). An analogous
argument shows that⊢ ϕ⇒ ψ′ � X2 = 0) and⊢ ϕ⇒ (ψ′ � X3 = 0). By A2, we have that

⊢ ϕ⇒ (ψ′ � (X1 = 0 ∧X2 = 0 ∧X3 = 0). (3)

By V2, we have that⊢+ ψ′ ⇒ (X1 6= 0 ∨X2 6= 0 ∨X3 6= 0). Thus, by A1 and RA2, we have that

⊢+ ϕ⇒ (ψ′ � (X1 6= 0 ∧X2 6= 0 ∧X3 6= 0). (4)

By A2, RA1, (3), and (4), we have that

⊢+ ϕ⇒ (ψ′ � false).

By V3, it follows that⊢+ ¬ϕ, as desired.

Note that all the axioms in AX other than A4 can be expressed using the languageLuniq (pro-
vided that the formulasϕ andψ mentioned in these axioms are taken to be conjunctions of primitive
propositions or just single primitive propositions, as appropriate). It is easy to check that all these ax-
ioms are valid inTuniq, as are V2 and V3. Sinceϕ is satisfiable inTuniq, ¬ϕ cannot be proved from
(AX − {A4}) ∪ {V2,V3}.
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