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Abstract. In the present paper we propose a system of propositional logic for reasoning about 
justification, truthmaking, and the connection between justifiers and truthmakers. The logic of 
justification and truthmaking is developed according to the fundamental ideas introduced by 
Artemov. Justifiers and truthmakers are treated in a similar way, exploiting the intuition that 
justifiers provide epistemic grounds for propositions to be considered true, while truthmakers 
provide ontological grounds for propositions to be true. This system of logic is then applied 
both for interpreting the notorious definition of knowledge as justified true belief and for ad-
vancing a new solution to Gettier counterexamples to this standard definition. 
 
Keywords: epistemic logic; justification logic; justifiers; truthmaking; truthmakers; knowledge 
definition; Gettier problems. 
 
1. Introduction 
In [4] Artemov shows the usefulness of the logic of justification for analysing funda-
mental issues concerning epistemic justification and epistemology. The present paper 
builds on his logical framework in order to develop a more comprehensive logic of jus-
tification and truthmaking and to introduce a new definition of knowledge on the basis 
of it. The paper is organized as follows. In sections 2 and 3 both the current definition 
of knowledge as justified true belief and the present debate concerning the impact of 
Gettier cases are briefly reviewed. In particular, a general schema for interpreting and 
constructing Gettier cases is proposed. In section 4 a logic of justification and truthmak-
ing is developed and shown to be sound and strongly complete with respect to a suitable 
semantics. Finally, in section 5 a new definition of knowledge is introduced and the im-
pact of Gettier cases on this definition is scrutinized. 
 
2. The current definition of knowledge 
The definition of knowledge we are going to assess stems from the classical definition 
of knowledge codified by Aristotle. According to Aristotle’s seminal analysis, knowl-
edge can be acquired by either evidential or inferential processes. Intuition, i.e. the basic 
evidential process, provides direct justification relative to the first principles that consti-
tute a certain science, whereas deduction, i.e. the basic inferential process, provides in-
direct justification to the propositions that are inferred from the principles. In accor-
dance with this conception, scientific knowledge is thought of as the outcome of the in-
dicated processes. Hence, an epistemic subject knows that a proposition p is true pre-
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cisely when he assumes the truth of p on the basis of either evidence or inference, pro-
vided both evidence and inference are dependable. As a consequence, knowledge is de-
termined as justified true conviction, where justification ensures truth. In particular, in 
cases of inferential justification, two conditions are to be met: (i) the inferential process 
must be sound and (ii) the premises on which the inference is based must be true1. 
 
This classical definition of knowledge can be analyzed by using epistemic logic and its 
possible worlds semantics. In such framework, K(p), for p is known, is construed as p is 
true in every epistemic world that is possible from the point of view of the total knowl-
edge of an epistemic subject. In a similar sense, J(p), for p is justified, can be construed 
as p is true in every epistemic world that is possible from the point of view of the total 
evidence that is available to an epistemic subject. In order to specify knowledge and jus-
tification, several axioms on K and J can be introduced. In particular, the concept of 
knowledge is typically determined by introducing the following axioms: 
 
TK: K(p) → p. 
Knowledge is reflexive: what is known is true. 
 
4K: K(p) → K(K(p)). 
Knowledge is introspective: what is known is known to be known. 
 
5K: ¬K(p) → K(¬K(p)). 
Knowledge is perfectly introspective: what is unknown is known to be unknown2. 
 
The logic of justification is less established and different kinds of justification can be 
classified according to their connection with truth and belief. In particular, we propose 
and adopt the following classification. 
 

JUSTIFICATION insufficient for truth sufficient for truth 

insufficient for belief moderate objectively strong 

                                                
1 The structure of scientific knowledge is described by Aristotle in his Posterior Analytics. In 71 b 20-25 Aristotle 

says that “if knowledge is such as we have assumed, demonstrative knowledge must proceed from premises which 
are true, primary, immediate, better known than, prior to, and causative of the conclusion. On these conditions only 
will the first principles be properly applicable to the fact which is to be proved. Syllogism indeed will be possible wi-
thout these conditions, but not demonstration; for the result will not be knowledge”. 

2 The first two axioms are commonly accepted as axioms characterizing a standard notion of knowledge. In what 
follows we assume a certain familiarity with epistemic logic (see [6], ch.2 and ch.3, and [11], ch.1, for an introduc-
tion to the key concepts and systems). 
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sufficient for belief subjectively strong absolutely strong 

 
In order to denote these kinds of justification we introduce the following notation: 
 
• J(p) := the agent has moderate justifiers for p. 
• J1(p) := the agent has objectively strong justifiers for p. 
• JS(p) := the agent has subjectively strong justifiers for p. 
• JABS(p) := the agent has absolutely strong justifiers for p. 
 
It follows from this definitions that: 
1) JABS(p) → JS(p) ∧ J1(p); 
2) J1(p) → J(p) ∧ p; 
3) JS(p) →J(p). 
 
Aristotle identified knowledge with the outcome of absolutely strong justification, so 
that to know p implies to believe p and p. 
 
Definition 2.1: knowledge (classical concept). 
K(p) := JABS(p): to know is to have absolutely strong justifiers. 
 
In the current debate about knowledge the concept of justification that is in use is the 
moderate one, according to which to possess a justifier for a proposition cannot be a 
sufficient condition either for an agent to believe the proposition or for the proposition 
to be true. In the subsequent discussion, we will intend as current definition of knowl-
edge the definition of knowledge as justified true belief, where the belief is justified by 
a moderate justifier. Still, in order to avoid the explicit introduction of the belief opera-
tor, we will always make use of the concept of subjectively strong justification, so that 
knowledge can be identified with having a subjectively strong justifier for a true propo-
sition. 
 
Definition 2.2: knowledge (current concept) 
K(p) := JS(p) ∧ p: to know is to have subjectively strong justifiers for a truth. 
 
In this definition two elements can be distinguished: the subjective element of justifica-
tion, JS(p), and the objective element of truth, p. Since these elements are not con-
nected, the possibility of challenging the correctness of the definition is open. 
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3. The challenge to the current definition 
As well-known, the current definition of knowledge was challenged by Gettier’s paper 
[8], that opened a massive debate both on the appropriateness of the definition and on 
the possibility of analyzing knowledge as a conjunction of more basic conditions.3 
In this section we will introduce and consider two schemas allowing the construction of 
Gettier-style counterexamples4 to the current definition of knowledge: the deceptive de-
duction schema and the deceptive classification schema. 
The basic idea underlying the deceptive deduction schema stems from the critical analy-
sis of the definition of knowledge as true belief proposed by Russell ([15], ch. XIII). 
According to Russell, who is following Aristotle’s analysis, a true belief cannot count 
as knowledge if one of the following conditions occurs: (i) the believed proposition is 
deduced from a false premise; (ii) the believed proposition is deduced by a fallacious 
inferential process. The critical cases proposed by Russell are instances of the following 
schemas, where  is to be interpreted as logical necessity and is introduced in order to 
model the relation of logical consequence between the premises and the conclusions of 
inferences. 
 
Russell Schema I:5 
1)   JS((ϕ1 → ϕ) ∧ ϕ1) 
2)   ¬ϕ1 
3)   (ϕ2 → ϕ) ∧ ϕ2 
   –––––––––––––––– 
4) conclusion:  JS(ϕ) ∧ ϕ 
 
Russell Schema II:6 
1)   JS((ϕ1 → ϕ) ∧ ϕ1) 
2)   ¬(ϕ1 → ϕ) 
3)   (ϕ2 → ϕ) ∧ ϕ2 
   –––––––––––––––– 
4) conclusion:  JS(ϕ) ∧ ϕ 
 

                                                
3 See [9, Part III, ch.8] for a suitable introduction to the debate. 
4 It is not our intention to cover the mass of examples proposed in the literature. Still, a little thought suffices to 

conclude that almost all of them can be classified as instances of either of the schemas. 
5 Russell says: “If a man believes that the late Prime Minister's last name began with a B, he believes what is true, 

since the late Prime Minister was Sir Henry Campbell Bannerman. But if he believes that Mr. Balfour was the late 
Prime Minister, he will still believe that the late Prime Minister's last name began with a B, yet this belief, though 
true, would not be thought to constitute knowledge”. 

6 Russell says: “If I know that all Greeks are men and that Socrates was a man, and I infer that Socrates was a 
Greek, I cannot be said to know that Socrates was a Greek, because, although my premisses and my conclusion are 
true, the conclusion does not follow from the premisses”. 



 5 

The previous schemas can be subsumed under the following general schema. 
 
DDS (deceptive deduction schema): 
1)   JS((ϕ1 → ϕ) ∧ ϕ1) 
2)   ¬((ϕ1 → ϕ) ∧ ϕ1) 
3)   (ϕ2 → ϕ) ∧ ϕ2 
   –––––––––––––––– 
4) conclusion:  JS(ϕ) ∧ ϕ 
 
In DDS cases, ϕ cannot be said to be known. Still, if we define knowledge as justified 
true belief, we are enforced to conclude that ϕ is known by the epistemic subject. 
 
Remark 1: Gettier original cases can be subsumed under Russell schema I. To be sure, 
the simplest versions of Gettier cases are instances of the following two schemas7. 
 
Gettier Schema I: 
1)   JS((P(a1) → ∃xP(x)) ∧ P(a1)) 
2)   ¬P(a1) 
3)   (P(a2) → ∃xP(x)) ∧ P(a2) 
   ––––––––––––––––––––––––––––– 
4) conclusion:  JS(∃xP(x)) ∧ ∃xP(x) 
 
Gettier Schema II: 
1)   JS((P(a1) → P(a1)∨P(a2)) ∧ P(a1)) 
2)   ¬P(a1) 
3)   (P(a2) → P(a1)∨P(a2)) ∧ P(a2) 
   ––––––––––––––––––––––––––––– 
4) conclusion:  JS(P(a1)∨P(a2)) ∧ (P(a1)∨P(a2)) 
 
To subsume them under Russell schema I, put 
 
 ϕ1 = P(a1) 
 ϕ2 = P(a2) 
 ϕ = ∃xP(x) / P(a1)∨P(a2) 
 

                                                
7 An extended analysis of the original Gettier case I is proposed in [4, §10]. 
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Hence, (ϕ1 → ϕ) is a valid implication; condition 2) is simply ϕ1; condition 3) is 
(ϕ2 → ϕ) ∧ ϕ2; the conclusion is JS(ϕ) ∧ ϕ. Hence, DDS captures the basic ideas un-
derlying the simplest Gettier cases. 
 
Let us now focus on the deceptive classification schema. Suppose that x1 and x2 are ob-
jects of types T1 and T2 and that both x1 and x2 have the typical aspect of an object of 
type T1. Suppose I see x1 and x2 and correctly identify their aspects as the typical aspects 
of objects of type T1, concluding that both x1 and x2 are objects of type T1. Let ϕ1 be the 
proposition that x1 has the typical aspect of an object of type T1 and ϕ be the proposition 
that x1 is of type T. Let τ be the assumption that the context is typical, i.e. it is such that 
every object having the typical aspect of an object of type T is indeed an object of type 
T. 
 
DCS (deceptive classification schema): 
1)   JS((τ ∧ ϕ1 → ϕ) ∧ τ ∧ ϕ1) 
2)   ¬τ 
3)   ϕ 
   –––––––––––––––––––––– 
4) conclusion:  JS(ϕ) ∧ ϕ 
 
In this case, ϕ cannot be said to be known, because the assumption that the context in 
which we are is typical is false and it is just by chance that our belief comes out to be 
true.8 Now, DCS is a special case of Russell schema I, and so of DDS: indeed, it suf-
fices to take (τ ∧ ϕ1) as the antecedent of the boxed implication and to note that ¬τ im-
plies ¬(τ ∧ ϕ1).9 
 
Remark 2. The Aristotelian definition is not affected by DDS. In effect, according to 
the Aristotelian conception, the kind of justification involved in knowledge is absolutely 
strong. As a consequence, the epistemic condition is JABS((ϕ1 → ϕ) ∧ ϕ1) and implies 
(ϕ1 → ϕ) ∧ ϕ1, which excludes premise 2). 
 

                                                
8 Many well-known cases (the fake sheep case; the fake barn case; the sure-fire match case) are instances of the 

deceptive classification schema (see [10], §3, for a presentation of these cases). Take the fake sheep case as para-
digm: Looking into a field, a sees an animal that looks just like a sheep; a forms a tacitly inferential belief that there 
is a sheep in the field; actually, what a sees is an animal of a different species, but there is an actual sheep not so far 
away. In this case, a is justified in believing that there is a sheep in the field and there is indeed a sheep in the field. 

9 I want to thank an anonymous referee for pointing out this fact, thus allowing me to concentrate on DDS only. 
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Now, our operative aim is to find a version of the current definition of knowledge that is 
not challenged by instances of DDS10. The idea is as follows. The deceptive deduction 
schema highlights that there is no knowledge when a justified and true conclusion is de-
duced from some justified, but untrue, premise. If we dig deeper, we observe that the 
conclusion is justified by a justifier that depends on the justifier of an untrue premise, 
but it is made true by a truthmaker for which the epistemic subject possesses no justi-
fier. Indeed, the problem arises because of the combination of four conditions: (1) we 
possess a justifier for the truth of a certain proposition; (2) such justifier consists in the 
evidence that a certain state of affairs is actual; (3) such state of affairs is not a truth-
maker for that proposition; (4) we possess no justifier which consists in the evidence 
that the right state of affairs is actual. Thus, if the combination of these conditions is 
sufficient for excluding knowledge, the definition of knowledge we are looking for has 
to disallow it. In which way? Intuitively, if we know that a proposition ϕ is true, then 
the state of affairs we are justified to assume as truthmaker for ϕ has both to be mani-
fest and to coincide with the state of affairs making ϕ true. Hence, we have to be justi-
fied in assuming that ϕ is made true by a truthmaker to which we have access and such 
state of affairs has to be the actual truthmaker for ϕ. 
The end of the following section is to provide a logical tool for making such intuition 
precise. In order to achieve this end, we introduce a system of logic of justification and 
truthmaking that extends the system J4 of logic of justification proposed by Artemov 
([4], §3) as a development of the logic of proof (see [2] and [3] for an extended descrip-
tion). This system will enable us to cope with both justification, explicit and implicit, 
and truthmaking, and will provide the resources to introduce the definition of knowl-
edge we are looking for. In particular, we will be able both to explicitly refer to justifi-
ers and truthmakers and to define the relations of dependence (between justifiers) and 
extension (between truthmakers). Such relations will play an important role in making 
precise the conditions under which the deceptive deduction schema can be applied. 
 
4. A system of logic of justification and truthmaking. 
The logic of justification provides an appropriate framework for characterizing the con-
cept of explicit justification, where a proposition is said to be explicitly justified when 
the subject is aware of a justifier for it. To this framework we adjoin (1) the tools for 
treating the concept of implicit justification, where a proposition is said to be implicitly 
justified when it is a consequence of explicitly justified propositions11, and (2) the tools 

                                                
10 We do not claim that the definition we will introduce is immune to every possible counterexample. In any case 

the comprehensive schema seems to be general enough to justify optimism. 
11 Systems of logic concerning both explicit and implicit knowledge, as well as systems concerning explicit justi-

fication and implicit knowledge, have already been studied (see [11], ch. 2, and [5] for instance). Still, systems con-
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for treating the concept of truthmaker, where a truthmaker for a proposition is any ac-
tual state of affairs that makes such proposition true. The basic system of logic of justi-
fication and truthmaking will be denoted by LJT. 
 
Let L(LJT) be the language of LJT. 
The alphabet of L(LJT) contains the following signs: 
 
• logical constants: ¬, ∧. 
• a countable set of propositional variables. 
• a countable set JTm0 of justification constants. 
• a countable set of justification variables. 
• operators on justifiers: ×, +, ! . 
• a countable set of truthmaking variables. 
• the structural state of affairs constant: 1. 
• a composition operator: • . 
• the access operator: A. 
• explicit modality constructor: [ ]. 
• implicit modality constructor: [ ]*. 
 
The other logical connectives are defined in the usual way. 
 
Two sorts of terms occur. 
 
1) the set of terms for justifiers (JTm) is defined by the following rules: 
 j := c | x | j×i | j+i | !j   where c / x is a constant / variable for justifiers. 
 
2) the set of terms for truthmakers (TTm), defined by the following rules: 
 t  := 1 | v | t•s , where v is a variable for truthmakers. 
 
The set of formulas is defined by the following rules: 
 ϕ := p | ¬ϕ | ϕ∧ϕ | [j]ϕ | [j]*ϕ | [t]ϕ | A(t) 
 
Here p is a propositional variable, j a term for justifiers and t a term for truthmakers. 
 
The intended interpretation of the propositions of L(LJT) is the following one. 
 
                                                                                                                                          
cerning both explicit and implicit justification, where implicit justification is defined in terms of what is explicitly 
justified, have not yet been advanced. 
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1) justification propositions. 
A justification proposition like [j]ϕ is interpreted in the present context as j is a subjec-
tively strong explicit justifier for ϕ. Analogously, a justification proposition like [j]*ϕ is 
interpreted as j is a subjectively strong implicit justifier for ϕ.12 The operators +, ×, and 
! are used to construct new, complex justifiers. Intuitively, j+i provides justification for 
all the propositions that can be justified either by j or by i, while j×i provides justifica-
tion to all the propositions that can be justified by applying modus ponens to premises 
justified by j and by i. Finally, ! is a justification checker: if j is a justifier for ϕ, !j justi-
fies that j is such a justifier. 
 
2) truthmaking propositions. 
A truthmaking proposition like [t]ϕ is interpreted as state of affairs t is an actual truth-
maker for ϕ, while a truthmaking proposition like [t•s]ϕ is interpreted as the composed 
state of affairs t•s is an actual truthmaker for ϕ. On this interpretation it is evident that 
[t]ϕ implies [t•s]ϕ, for any state of affairs s. In what follows it is also assumed that the 
truth of ϕ is a necessary condition for a state of affairs to be a truthmaker for ϕ, i.e. that 
no proposition possesses a truthmaker in a world in which it is not true. 
 
3) access propositions. 
A proposition like A(t) is to be interpreted as the epistemic subject has access to state of 
affairs t, or state of affairs t is manifest to the epistemic subject.13 The access operator is 
introduced in order to make explicit an element that is common to all Gettier cases, i.e. 
the distinction between the state of affairs t that the subject assumes as a truthmaker for 
a proposition and the state of affairs s that actually makes that proposition true. Indeed, t 
is a state of affairs to which the epistemic subject has access, whereas s is typically hid-
den. In addition, the access operator allows us to model the difference between having a 
justifier for [t]ϕ and having a justifier for [t]ϕ in case t is accessible to the epistemic 
subject. In effect, an explicit justifier for [t]ϕ is always an implicit justifier for [t•s]ϕ, 
since the truth of the first proposition implies the truth of the second one, whereas an 
explicit justifier for A(t) ∧ [t]ϕ is not necessarily an implicit justifier for A(t•s) ∧ [t•s]ϕ, 
since to have an access to t cannot imply to have an access to any larger state of affairs. 
This difference is crucial, because the value of the definition of knowledge we are going 
to propose depends on it. 
                                                

12 According to the proof-theoretical interpretation an explicit justifier is a proof and justifies every line of that 
proof. Along similar lines, an implicit justifier can be taken to be an ideal proof where every sound inference has 
been made. Analogously, if an explicit justifier is construed as being a piece of evidence, then an implicit justifier can 
be taken to be an ideal proof based on that piece of evidence. 

13 Note that A is an operator that applies to states of affairs, not to justifiers. A(t) states that the epistemic subject 
has access to state of affairs t, not that she has access to a justifier for the actuality of t. In this sense, the introduction 
of A is neutral with respect to the internalism / externalism debate. 
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A key characteristic that LJT shares with the logic of justification is that logical axioms 
are a priori justified. Intuitively, the epistemic subject accepts logical axioms, including 
the ones concerning justification and truthmaking, as immediately justified. In order to 
make these assumptions precise the tool of constant specifications is introduced. In 
what follows we only consider constant specifications construed as functions from the 
set of justification constants to the set of logical axioms. In particular, we only consider 
axiomatically appropriate constant specifications, i.e. constant specifications that are 
onto the set of logical axioms (see [7], §8). As a consequence, to every logical axiom a 
justification constant is assigned, witnessing that the axiom is accepted by the subject. 
 
Definition 4.1: constant specification. 
CS is a constant specification if and only if 
 
i) CS: JTm0 → {ϕ | ϕ is a logical axiom} 
ii) CS is onto {ϕ | ϕ is a logical axiom} 
 
4.1. The system LJT 
The system LJT(CS) of logic for justification and truthmaking, with constant specifica-
tion CS, is defined by the following groups of axioms and rules. 
 
Group 1: propositional axioms and modus ponens. 
 
Group 2: axioms and rules concerning explicit justification. 
 
J1: [j](ϕ→ψ) → ([i]ϕ → [j×i]ψ) 
J2: [j]ϕ ∨ [i]ϕ → [j+i]ϕ 
J3: [j]ϕ → [!j][j]ϕ 
RJ: [c]ϕ, where ϕ is an axiom instance of LJT and ϕ∈CS(c) 
 
Group 2 introduces the axioms characterizing the system J4 of Artemov (see [4], §7). 
J1 states that, given two justifiers, j and i, the complex justifier j×i provides justification 
to any proposition that can be deduced from implications justified by j and propositions 
justified by i by applying modus ponens. Thus, modus ponens is internalized and pro-
positional deduction is accepted by the epistemic subject as providing justification. J2 
states that given two justifiers, j and i, the complex justifier j+i provides justification to 
any proposition justified by either j or i. J3 states that justification is accessible: all jus-
tified propositions can be acknowledged as such. Therefore, justification itself is com-
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pletely internalized. Finally, RJ takes care of the fact that axioms are justified as such. 
Indeed, the role of an axiomatically appropriate constants specification is precisely to 
ensure that all the logical axioms are a priori justified. 
 
Group 3: axioms and rules concerning implicit justification. 
J*1: [j]*(ϕ→ψ) → ([i]*ϕ → [j×i]*ψ) 
J*2: [j]*ϕ ∨ [i]*ϕ → [j+i]*ϕ 
J*3: [j]*ϕ → [!j]*[j]*ϕ 
J*4: [j]ϕ → [j]*ϕ 
J*5: [c]ϕ → [j]*ϕ 
J*6: [j×j]*ϕ ↔ [j+j]*ϕ ↔ [!j]*ϕ ↔ [j]*ϕ 
 
Group 3 is the group of axioms we propose to characterize the system of logic of im-
plicit justification. The first three axioms state that implicit justification, as far as the 
basic operations are involved, works like explicit justification. J*4 says that what is ex-
plicitly justified is implicitly justified by the same justifier. J*5 says that what is a priori 
justified is implicitly justified by any justifier. J*6 says that j×j, j+j and j provide im-
plicit justification to the same propositions. J*6 turns out to be intuitive once we reflect 
on the standard interpretation of ×, +, ! (see [3], §6) and consider the fact a proposition 
is implicitly justified by j when it is a consequence of what is explicitly justified by j.  
 
Group 4: axioms and rules concerning truthmaking. 
T1: [t](ϕ→ψ) → ([s]ϕ → [t•s]ψ) 
T2: [t]ϕ → [t•s]ϕ 
T3: [t]ϕ ↔ [t•t]ϕ 
T4: [t•s]ϕ ↔ [s•t]ϕ 
T5: [t•(s•r)]ϕ ↔ [(t•s)•r]ϕ 
T6: [t]ϕ ↔ [1•t]ϕ 
T7: [t][t]ϕ ∨ [t]¬[t]ϕ 
T8: [t]ϕ → ϕ 
RT: ϕ / [1]ϕ 
 
Group 4 provides a basic characterization of the logic of truthmakers.14 The idea under-
lying the present selection of axioms is that truthmakers are states of affairs that can be 

                                                
14 See [1, ch.1] for an introduction to the general theory of truthmaking. A discussion concerning what axioms are 

to be assumed in order to characterize the truthmaking relation can be found in [13] and [14]. The assumptions we 
have made are consistent with the ideas exposed in these texts. Finally, we will assume that truthmakers are states of 
affairs, as characterized e.g. in [1, ch.4]. Nevertheless, any conception allowing both for an operation of composition 
of truthmakers and for the existence of a structural truthmaker could be adopted. 
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composed to give rise to larger states of affairs. A logically closed set of propositions 
(T1 and RT) is associated to each state of affairs, in such a way that a more inclusive 
set is associated with a larger state of affairs (T2). Any proposition that is associated to 
a certain state of affairs is made true by it, and so is true (T8), while the set of all the 
propositions made true by a certain state of affairs t is determined by t itself (T7). As a 
consequence, the same sets of propositions are associated to the same states of affairs in 
every world that is possible from the point of view of a reference world. The composi-
tion operation is assumed to induce a semilattice structure on the set of states of affairs 
with unit element 1. The basic idea is that there is no difference between a state of af-
fairs and the same state of affairs composed with itself and that the order of composition 
is not significant. (T3 through T6). The unit element plays the role of a structural state 
of affairs, common to all possible worlds, and allows us to express the thesis that every 
logical truth is made true by the same structural state of affairs (RT), and so by any 
state of affairs (by T3 and T6). 
 
Group 5: linking axioms and rules. 
JT1: [c]ϕ → [1]ϕ 
JT2: [1]ϕ → [j]*ϕ 
JT3: A(t•s) ↔ A(t) ∧ A(s) 
 
Since every proposition that is justified by a constant is a logical truth, JT1 states that 
what is justified by a constant is made true by the structural state of affairs. Further-
more, since the structural state of affairs is introduced as a truthmaker for every logical 
truth and every logical truth is implicitly justified by any justifier, JT2 states that what 
is made true by 1 is implicitly justified by j, for any j. Finally, JT3 states that the epis-
temic subject has access to a composed state of affairs precisely when she has access to 
its components, thus highlighting that the operation of composition on states of affairs 
reflects the operation of conjunction on propositions. 
 
Before introducing the semantics for L(LJT), let us prove some theorems.  
 
Th1: |–LJT [t](ϕ→ ψ) → ([t]ϕ → [t]ψ). 
|–LJT [t](ϕ→ψ) → ([t](ϕ → [t•t]ψ), by T1 
|–LJT [t](ϕ→ψ) → ([t](ϕ → [t]ψ), by T3 
 
Th2: |–LJT [t]ϕ → [t][t]ϕ. 
|–LJT [t]¬[t]ϕ → ¬[t]ϕ, by T8 
|–LJT [t]ϕ → ¬[t]¬[t]ϕ 
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|–LJT [t]ϕ → [t][t]ϕ, by T7 
 
Th3: |–LJT ¬[t]ϕ → [t]¬[t]ϕ. 
|–LJT [t][t]ϕ → [t]ϕ, by T8 
|–LJT ¬[t]ϕ → ¬[t][t]ϕ 
|–LJT ¬[t]ϕ → [t]¬[t]ϕ, by T7 
 
Th4: |–LJT [1]ϕ → [t]ϕ. 
|–LJT [1]ϕ → [1•t]ϕ, by T2 
|–LJT [1]ϕ → [t]ϕ, by T6 
 
Theorems Th2-Th4 will turn out to be useful in proving completeness. 
 
Th5: |–LJT [j][t]ϕ → [i][t•s]ϕ, for a certain i. 
|–LJT [t]ϕ → [t•s]ϕ, by T2 
|–LJT [c]([t]ϕ → [t•s]ϕ), by RJ 
|–LJT [j][t]ϕ → [c×j][t•s]ϕ), by J1 
 
Th6: |–LJT [c]ϕ → [j][1]ϕ, for a certain j. 
|–LJT [c]ϕ → [1]ϕ, by JT1 
|–LJT [c’]([c]ϕ → [1]ϕ), by RJ 
|–LJT [!c][c]ϕ → [c’×!c][1]ϕ, by J1 
|–LJT [c]ϕ → [c’×!c][1]ϕ, by J3 
 
Furthermore, given JT1, rule RT turns out to be derivable. 
 
RT: |–LJT ϕ => |–LJT [1]ϕ. 
 
Proof. By induction on the length of a derivation. 1) If ϕ is an axiom instance, then the 
conclusion follows from RJ and JT1. 2) If ϕ is derived by RJ, then ϕ has the form [c]ψ 
for some c and ψ, and so |–LJT [!c]ϕ, by J3, and |–LJT [1]ϕ, by JT1. 3) If ϕ is derived 
from ψ and ψ→ϕ by modus ponens, then, by induction hypothesis, |–LJT [1]ψ and |–LJT 
[1](ψ→ϕ), and the conclusion follows by T1 and T6. 
 
Finally, in LJT the following versions of the modal rule of necessitation are derivable. 
 
RJ1 (Rule of explicit justification): |–LJT ϕ => |–LJT [j]ϕ, for some term j. 
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Proof. By induction on the length of a derivation. 1) If ϕ is an axiom instance, the con-
clusion follows from RJ. 2) If ϕ is derived by RJ, then ϕ has the form [c]ψ for some c 
and ψ, and so |–LJT [!c]ϕ, by J3. 3) If ϕ is derived from ψ and ψ→ϕ by modus ponens, 
then, by induction hypothesis, |–LJT [i]ψ and |–LJT [j](ψ→ϕ). Hence |–LJT [j×i]ϕ, by J1. 
 
RJ2 (Rule of implicit justification): |–LJT ϕ => |–LJT [j]*ϕ, for every term j. 
 
Proof. By induction on the length of a derivation. 1) If ϕ is an axiom instance, the con-
clusion follows from RJ and J*5. 2) If ϕ is derived by RJ, then ϕ has the form [c]ψ for 
some c and ψ, and so |–LJT [j]*ϕ, by J3 and J*4. 3) If ϕ is derived from ψ and ψ→ϕ by 
modus ponens, then, by induction hypothesis, |–LJT [j]*ψ and |–LJT [j]*(ψ→ϕ). Hence |–
LJT [j×j]*ϕ, by J*1, and so |–LJT [j]*ϕ, by J*6. 
 
4.2. Semantics for LJT. 
The semantics for LJT is an extension of the currently standard semantics for justifica-
tion logic introduced by Fitting in [7]15. Within the framework of Fitting semantics we 
can model explicit justification by introducing a function that, given a justifier j and a 
possible world w, selects the set of all formulas for which j provides explicit justifica-
tion at w. In a similar way, we model implicit justification by introducing a function 
that, given a justifier j and a possible world w, selects the set of all formulas for which j 
provides implicit justification at w. In addition, as in the case of explicit and implicit 
justification, we can model actual truthmaking by introducing a function that, given a 
truthmaker t and a possible world w, selects the set of all formulas for which t provides 
truth at w. Intuitively, the formulas associated to t at w represent the propositions that 
are made true by the state of affairs that is represented by t at w. 
 
Thus, a frame for L(LJT) is a tuple = (W,RT,RJ,T,J,J*) where 
 
– W is a non-empty set of worlds 
– RT ⊆ W×W is a reflexive relation 
– RJ ⊆ W×W is a transitive relation 
– T: W×TTm → ℘(L(LJT)) is the truthmaking selection function 
– J: W×JTm → ℘(L(LJT)) is the explicit justification selection function 
– J*: W×JTm → ℘(L(LJT)) is the implicit justification selection function 
 

                                                
15 See also [4] and [12] for extensions. 
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The intended interpretation of the accessibility relations is the following one. RJ is the 
epistemic possibility relation: RJ(w,v) states that v is consistent with the set of proposi-
tions for which the epistemic subject has justification at w. RT is the truthmaking possi-
bility relation: RT(w,v) states that v is qualitatively indistinguishable with respect to the 
states of affairs that are actual at w.16 It is assumed that RJ is transitive, so that the 
propositions for which the epistemic subject has explicit justification at w are explicitly 
justified in any world that is accessible to w. Finally, since every world is qualitatively 
indistinguishable relative to itself, RT is assumed to be reflexive. 
 
The intended interpretation of the selection functions is the one proposed above. These 
functions are furthermore constrained by a set of conditions which reflect the meaning 
of the axioms that characterize the corresponding operators. 
 
Conditions on J: 
J1) ϕ→ψ∈J(w,j) and ϕ∈J(w,i) => ψ∈J(w,j×i) 
J2) ϕ∈J(w,j) or ϕ∈J(w,i) => ϕ∈J(w,j+i) 
J3) ϕ∈J(w,j) => [j]ϕ∈J(w,!j) 
RJ) RJ(w,v) => J(w,j) ⊆ J(v,j) 
 
Conditions on J*: 
J*1) ϕ→ψ∈J*(w,j) and ϕ∈J*(w,i) => ψ∈J*(w,j×i) 
J*2) ϕ∈J*(w,j) or ϕ∈J*(w,i) => ϕ∈J*(w,j+i) 
J*3) ϕ∈J*(w,j) => [j]*ϕ∈J*(w,!j) 
J*4) J(w,j) ⊆ J*(w,j) 
J*5) J(w,c) ⊆ J*(w,j) 
J*6) J*(w,j×j) = J*(w,j+j) = J*(w,!j) = J*(w,j) 
RJ*) RJ(w,v) => J*(w,j) ⊆ J*(v,j) 
 
Conditions on T: 
T1) ϕ→ψ∈T(w,t) and ϕ∈T(w,s) => ψ∈T(w,s•t) 
T2) ϕ∈T(w,t) => ϕ∈T(w,t•s) 
T3) T(w,t) = T(w,t•t) 
T4) T(w,t•s) = T(w,s•t) 
T5) T(w,(t•s)•r) = T(w,t•(s•r)) 

                                                
16 Note that, depending on the ontology one accepts, qualitatively indistinguishable worlds could still be numeri-

cally distinguishable. This idea can be clarified through the following example (due to Armstrong). Let us consider 
two toy worlds consisting of two states of affairs: a world w1, described by Fa ∧ Gb, and a world w2, described by Fb 
∧ Ga. Since a and b are not qualitatively different, these worlds are qualitatively indistinguishable. Still, since a and b 
are numerically different, the worlds are, or can be assumed to be, numerically distinguishable. 
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T6) T(w,t) = T(w,1•t) 
T7) [t]ϕ∈T(w,t) or ¬[t]ϕ∈T(w,t) 
RT) RT(w,v) => T(w,t) = T(v,t) 
 
Conditions on J, J* and T: 
JT1) J(w,c) ⊆ T(w,1) 
JT2) T(w,1) ⊆ J*(w,j) 
 
A model for L(LJT) is a tuple M = (W,RT,RJ,T,J,J*,V), where V is a modal valuation 
that assigns to every propositional variable and every basic access proposition a set of 
possible worlds. 
 
Definition 4.2: M,w |= ϕ (ϕ is true at w in M). 
1) M,w |= p <=> w∈V(p) 
2) M,w |= A(v) <=> w∈V(A(v)) 
3) M,w |= ¬ϕ <=> not M,w |= ϕ 
4) M,w |= ϕ∧ψ <=> M,w |= ϕ and M,w |= ψ 
5) M,w |= [t]ϕ <=> ∀v∈W(RT(w,v) => M,v |= ϕ) and ϕ∈T(w,t) 
6) M,w |= [j]ϕ <=> ∀v∈W(RJ(w,v) => M,v |= ϕ) and ϕ∈J(w,j) 
7) M,w |= [j]*ϕ <=> ∀v∈W(RJ(w,v) => M,v |= ϕ) and ϕ∈J*(w,j) 
 
Note that ∀v∈W(RT(w,v) => M,v |= ϕ) states that ϕ is true in all the worlds that are 
qualitatively indistinguishable relative to w, i.e. that the truth of ϕ is fixed by the quali-
tative aspects of the actual states of affairs of w. Hence, M,w |= [t]ϕ states that, given 
the aspects of the actual states of affairs of w, the truth of ϕ is fixed and, in particular, 
that t is a truthmaker for ϕ. 
 
Definition 4.3: M is a model for LJT(CS). 
M is a model for LJT(CS) <=> ∀c,w∈W(CS(c) ⊆ J(w,c)). 
 
Definition 4.4: M respects the justification condition (JC). 
M respects JC: ∀j,w∈W(M,w |= [j]*ϕ <=> ϕ∈J*(w,j)). 
 
Definition 4.5: M respects the truthmaking condition (TC). 
M respects TC <=> ∀t,w∈W(M,w |= [t]ϕ <=> ϕ∈T(w,t)). 
 
Definition 4.6: M respects the access condition (AC). 
M respects AC <=> ∀t,s,w∈W(M,w |= A(t•s) <=> M,w |= A(t) and M,w |= A(s)). 
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Theorem 4.1: Let CS be a fixed constant specification. Then LJT(CS) is sound with re-
spect to the class of all models for LJT(CS) respecting JC, TC and AC. 
 
The proof is by induction on the derivations in LJT(CS). 
We only check axioms T1-T2, T7-T8, and JT1-JT3. Indeed, the validity of axioms T3-
T6 is straightforward given conditions T3-T6 and the validity of axioms on explicit and 
implicit justification is proved in a similar way. 
 
T1: [t](ϕ→ψ) → ([s](ϕ → [t•s]ψ). 
Suppose M,w |= [t](ϕ→ψ) and M,w |= [s]ϕ. Then 
i) ∀v∈W(RT(w,v) => M,v |= ϕ→ψ) and ϕ→ψ∈T(w,t) 
ii) ∀v∈W(RT(w,v) => M,v |= ϕ) and ϕ∈T(w,s). 
Thus, ∀v∈W(RT(w,v) => M,v |= ψ) and ψ∈T(w,t•s), by T1. 
 
T2: [t]ϕ → [t•s]ϕ 
Suppose M,w |= [t]ϕ. Then ∀v∈W(RT(w,v) => M,v |= ϕ) and ϕ∈T(w,t). 
Thus, ∀v∈W(RT(w,v) => M,v |= ϕ) and ϕ∈T(w,t•s), by T2. 
 
T7: [t][t]ϕ ∨ [t]¬[t]ϕ 
Suppose not M,w |= [t][t]ϕ. Then [t]ϕ∉T(w,t), by TC. 
Thus, ¬[t]ϕ∈T(w,t), by T3 and M,w |= [t]¬[t]ϕ, by TC again. 
 
T8: [t]ϕ → ϕ 
Suppose M,w |= [t]ϕ. Then ∀v∈W(RT(w,v) => M,v |= ϕ) and ϕ∈T(w,t). 
Thus, M,w |= ϕ, since RT is reflexive. 
 
JT1: [c]ϕ → [1]ϕ 
Suppose M,w |= [c]ϕ. Then ϕ∈CS(c). 
Since CS(c) ⊆ J(w,c) ⊆ T(w,1) by CS and JT1, ϕ∈T(w,1). 
Thus, M,w |= [1]ϕ, by TC. 
 
JT2: [1]ϕ → [j]*ϕ 
Suppose M,w |= [1]ϕ. Then ϕ∈T(w,1), by TC. 
Thus, ϕ∈J*(w,j), by JT2, and so M,w |= [j]*ϕ, by JC. 
 
JT3: A(t•s) ↔ A(t) ∧ A(s) 
Straightforward, since M respects AC. 
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Theorem 4.2: Let CS be a fixed constant specification. Then LJT(CS) is strongly com-
plete with respect to the class of all models for LJT(CS) respecting JC, TC and AC. 
 
Completeness is proved by canonicity. 
 
Definition 4.7: canonical model for LJT. 
The canonical model MC = (WC,RT

C,RJ
C,TC,JC,J*C,VC) for LJT(CS) is such that: 

 
– WC is the set of maximally LJT(CS) consistent sets (denoted by w, v, ...). 
– RT

C is such that RT
C(w,v) <=> wT ⊆ v, where wT := {ϕ | ∃t∈TTm([t]ϕ∈w)}. 

– RJ
C is such that RJ

C(w,v) <=> wJ ⊆ v, where wJ := {ϕ | ∃j∈JTm([j]*ϕ∈w)}. 
– TC is such that TC(w,t) = w/t, where w/t := {ϕ | [t]ϕ∈w}. 
– JC is such that JC(w,j) = w/j, where w/j := {ϕ | [j]ϕ∈w}. 
– J*C is such that J*C(w,t) = w/j*, where w/j* := {ϕ | [j]*ϕ∈w}. 
– VC is such that V C(p) = {w | p∈w} and V C(A(t) = {w | A(t)∈w}. 
 
Note that, for each t, w/t ⊆ wT ⊆ w, by definition of wT and T8. In addition, for each j, 
w/j ⊆ w/j*, by J*4, and w/j* ⊆ wJ, by definition of wJ. 
 
Lemma 1: MC is a model for LJT(CS) respecting JC, TC and AC. 
We first show that MC respects JC and TC. 
 
MC respects JC. 
It suffices to show that ϕ∈w/j* => ∀v∈W(wJ ⊆ v => ϕ∈v). 
Suppose ϕ∈w/j*. Then ϕ∈wJ, and so ∀v∈W(wJ ⊆ v => ϕ∈v). 
 
MC respects TC. 
It suffices to show that ϕ∈w/t => ∀v∈WC(wT ⊆ v => ϕ∈v). 
Suppose ϕ∈w/t. Then ϕ∈wT, and so ∀v∈WC(wT ⊆ v => ϕ∈v). 
 
We now check that RJ

C is transitive and that RT
C is reflexive. The reflexivity of RT

C I a 
straightforward consequence of T8. The transitivity of RJ

C is proved as follows. 
 
Suppose wJ ⊆ v. 
It suffices to show that wJ ⊆ vJ. 
Suppose ϕ∈wJ, i.e. ∃j∈JTm([j]*ϕ∈w). 
Then ∃j∈JTm([j]*[j]*ϕ∈w), by J*3, and so ∃j∈JTm([j]*ϕ∈w/j*). 
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Thus, ∃j∈JTm([j]*ϕ∈v), since  MC respects JC, and so ϕ∈vJ. 
 
Finally, let us check that M meets the conditions on LJT(CS) frames. We check condi-
tions RJ, RJ* and RT, since the other ones follow without difficulty from the corre-
sponding axioms on justifiers and truthmakers. 
 
RJ: RJ

C(w,v) => JC(w,j) ⊆ JC(v,j). 
We have to show that wJ ⊆ v => w/j ⊆ v/j. 
Suppose ϕ∈w/j, i.e. [j]ϕ∈w. 
Then [!j][j]ϕ∈w, by J3; [!j]*[j]ϕ∈w, by J*4; [j]ϕ∈wJ; wJ ⊆ v; [j]ϕ∈v; ϕ∈v/j. 
 
RJ*: RJ

C(w,v) => J*C(w,j) ⊆ J*C(v,j). 
We have to show that wJ ⊆ v => w/j* ⊆ v/j*. 
Suppose ϕ∈w/j*, i.e. [j]*ϕ∈w. 
Then [!j]*[j]*ϕ∈w, by J*3; thus [j]*ϕ∈wJ and wJ ⊆ v; [j]*ϕ∈v; ϕ∈v/j*. 
 
RT: RT

C(w,v) => TC(w,t) = TC(v,t). 
We have to show that wT ⊆ v => w/t = v/t. 
Suppose ϕ∈w/t, i.e. [t]ϕ∈w. 
Thus [t][t]ϕ∈w, by Th2; [t]ϕ∈wT; [t]ϕ∈v; ϕ∈v/t. 
Suppose ϕ∉w/t, i.e. [t]ϕ∉w, i.e. ¬[t]ϕ∈w, since w∈WC. 
Thus [t]¬[t]ϕ∈w, by Th3; ¬[t]ϕ∈wT; ¬[t]ϕ∈v; [t]ϕ∉v, since w∈WC; ϕ∉v/t. 
 
Truth Lemma: ∀w∈WC(M,w |= ϕ <=> ϕ∈w). 
The only interesting cases are the new ones. 
 
MC,w |= A(t) <=> A(t)∈w. 
Straightforward, by the definition of VC. 
 
MC,w |= [j]ϕ <=> [j]ϕ∈w. 
MC,w |= [j]ϕ <=> ∀v∈WC(RJ

C(w,v) => MC,v |= ϕ) and ϕ∈JC(w,j). 
By induction hypothesis and the definition of MC we have 
MC,w |= [j]ϕ <=> ∀v∈WC(wJ ⊆ v => ϕ∈v) and ϕ∈w/j. 
Suppose [j]ϕ∈w. Then ϕ∈w/j ⊆ wJ ⊆ v, whence the conclusion. 
Suppose [j]ϕ∉w. Then ϕ∉w/j, whence the conclusion. 
 
MC,w |= [j]*ϕ <=> [j]*ϕ∈w. 
MC,w |= [j]*ϕ <=> ϕ∈w/j*, since MC respects JC. 
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MC,w |= [t]ϕ <=> [t]ϕ∈w. 
MC,w |= [t]ϕ <=> ϕ∈w/t, since MC respects TC. 
 
Note that MC respects AC: 
MC,w |= A(t•s) <=> A(t•s)∈w, by the definition of VC 
MC,w |= A(t•s) <=> A(t)∧A(s)∈w, by JT3 
MC,w |= A(t•s) <=> A(t)∈w and A(s)∈w, by the definition of w 
MC,w |= A(t•s) <=> MC,w |= A(t) and MC,w |= A(s), by the definition of VC 
 
This concludes our proof. 
 
5. A new definition of knowledge 
We are now equipped for introducing our definition of knowledge. 
 
Definition 5.1: Let j be a justifier. 
i) j is correct if and only if [j]*ϕ → ϕ, for every ϕ. 
ii) j is consistent if and only if [j]*ϕ → ¬[j]*¬ϕ, for every ϕ. 
 
As noted in section 3, if we define knowledge as possession of a correct justifier, then 
we get a simple solution to problematic instances of DDS. Yet, the concept of knowl-
edge we obtain becomes too powerful to find a general application within the current 
epistemological debate. Hence, we consider three less powerful notions of knowledge. 
 
Definition 5.2: consistent knowledge. 
Let j be a subjectively strong consistent justifier. 
 
i) K**(j,ϕ) := [j]ϕ ∧ ϕ 
(possession of a consistent justifier for a true proposition) 
 
ii) K*(j,ϕ) := [j][t]ϕ ∧ [t]ϕ, for a certain t. 
(possession of a consistent justifier for a proposition made true by t) 
 
iii) K(j,ϕ) := [j](A(t) ∧ [t]ϕ) ∧ [t]ϕ, for a certain t. 
(possession of a consistent justifier supporting the actuality of a truthmaker of ϕ) 
 
Unconditional definitions of knowledge can be obtained by existential quantification: 
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K**(ϕ) := [j]ϕ ∧ ϕ, for some j; 
K*(ϕ) := [j][t]ϕ ∧ [t]ϕ, for some t and j. 
K(ϕ) := [j](A(t) ∧ [t]ϕ) ∧ [t]ϕ, for some t and j. 
 
K**(j,ϕ) codifies an explicit version of the current definition of knowledge, where the 
justifier on which knowledge is based is displayed. K*(j,ϕ) codifies the idea according 
to which the justification must be based on the right ontological grounds. Finally, K(j,ϕ) 
codifies the idea according to which the justification must be based on the actual access 
to the state of affairs that makes true the justified proposition (note that there exist con-
stants c’ and c such that K*(j,ϕ) → K**(c’×j,ϕ) and K(j,ϕ) → K*(c×j,ϕ)).  
 
The definition of knowledge with which we will work is iii): 
to know ϕ is to possess a consistent justifier for the appearing of a truthmaker for ϕ. 
 
Theorem 5.1: if j is consistent, then [j][1]ϕ → [1]ϕ. 
|–LJT ¬[1]ϕ → [1]¬[1]ϕ      by Th.3 
|–LJT ¬[1]ϕ → [j]*¬[1]ϕ      by JT2 
|–LJT ¬[j]*¬[1]ϕ → [1]ϕ      by p.l. 
|–LJT [j]*[1]ϕ → [1]ϕ       by consistency 
|–LJT [j][1]ϕ → [1]ϕ       by J*4 
 
Theorem 5.1 shows that assuming consistency takes care of Russell’s warning concern-
ing the necessity that knowledge must not be based on a fallacious inference, since any 
consistent justifier is correct with respect to logical truths. 
 
5.1. A solution to Gettier problem 
In order to consider whether the above definitions are subjected to Gettier problem, let 
us translate the premises of Russell schema 1 in terms of justifiers and truthmakers, as-
suming that the justifier concerning the inferential part is correct. 
  
Russell Schema I: 
1) [c](ϕ1 → ϕ) ∧ [j1][t1]ϕ1 
2) ¬ϕ1 
3) [1](ϕ2 → ϕ) ∧ [t2]ϕ2 
 
Since the language of LJT is more expressive, we are now in a position to make explicit 
some constraints that are implicitly introduced when the schema is used in order to con-
struct counterexamples to a candidate definition of knowledge. 
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4) constraint on the premises: 
4.1) j1 is an explicit justifier for A(t1) 
4.2) j1 is not an implicit justifier for A(t2) or [t2]ϕ 
 
This constraint states that j1 provides justification neither for the proposition that t2 is 
manifest nor for the proposition that t2 is a truthmaker for ϕ. In this way, we make ex-
plicit the crucial assumption that the justifier of ϕ is in no way connected with the actual 
truthmaker of ϕ. Note that it is precisely this assumption that allows us to conclude that 
there is no knowledge in cases in which Russell schema is instantiated. 
 
5) constraint on the conclusion: 
5.1) constraint on j: if [j]ϕ is true, then j depends on j1 
5.2) constraint on t: if [t]ϕ is true, then t extends t2 
 
Constraint 5.1 makes explicit the assumption that j1 is the key justifier for ϕ by stating 
that every other justifier is dependent on j1. We define this kind of dependence by stat-
ing that j depends on i when, for every ϕ, [j]*ϕ → [i]*ϕ, i.e. every proposition justifi-
able by j is a logical consequence of what is justified by i. The underlying idea is that j 
depends on i when it is obtained from i by iterating the application of RJ and J1. 
 
Definition 5.3: J-dependence. 
j depends on i <=> for every ϕ, [j]*ϕ → [i]*ϕ. 
 
Constraint 5.2 makes explicit the assumption that t2 is the key truthmaker for ϕ by stat-
ing that every other truthmaker is an extension of t2. Having at our disposal an operation 
of truthmaker composition, we are able to characterize this notion by stating that t ex-
tends s when t includes s as a component. 
 
Definition 5.4: T-extension. 
t extends s <=> t coincides with s•r, for some r. 
 
Both constraint 5.1 and 5.2 are essential in order to see why a candidate definition of 
knowledge is unsuccessful. In fact, in constructing a counterexample, we typically start 
with a basic justifier and a basic unrelated truthmaker and derive the existence of both a 
(possibly complex) justifier and a (possibly composed) unrelated truthmaker together 
implying that the subject knows that a certain proposition is true. 
 



 23 

We can now pose the question as to whether the above definitions of knowledge are 
subject to Gettier problem. The following theorems give us the answers. 
 
Theorem 5.2: K** is subject to counterexamples derived from Russell schema 1. 
 
 [c](ϕ1 → ϕ) ∧ [j1][t1]ϕ1, where j1 is not related to t2 
 ¬ϕ1 
 [1](ϕ2 → ϕ) ∧ [t2]ϕ2 
 ––––––––––––––––––––––––––––––––––––––––– 
 [j]ϕ ∧ ϕ, i.e. K**(j,ϕ), for a certain j 
 
It is a straightforward corollary of the following crucial theorem. 
 
Theorem 5.3: K* is subject to counterexamples derived from Russell schema 1. 
 
 [c](ϕ1 → ϕ) ∧ [j1][t1]ϕ1, where j1 is not related to t2 
 ¬ϕ1 
 [1](ϕ2 → ϕ) ∧ [t2]ϕ2 
 ––––––––––––––––––––––––––––––––––––––––– 
 [j][t1•t2]ϕ ∧ [t1•t2]ϕ, i.e. K*(j,ϕ) for a certain j 
 
Proof: 
[t2]ϕ2 |–LJT [t2•t1]ϕ2       by T2 
[t2]ϕ2 |–LJT [t1•t2]ϕ2       by T4 
[t1•t2]ϕ2, [1](ϕ2 → ϕ) |–LJT [1•(t1•t2)]ϕ    by T1 
[t1•t2]ϕ2, [1](ϕ2 → ϕ) |–LJT [t1•t2]ϕ     by T6 
[t2]ϕ2, [1](ϕ2 → ϕ) |–LJT [t1•t2]ϕ     by p.l. 
 
Thus, from premise 3, we conclude [t1•t2]ϕ. 
 
[t1]ϕ1 |–LJT [t1•t2]ϕ1       by T2 
[t1•t2]ϕ1, [1](ϕ1 → ϕ) |–LJT [1•(t1•t2)]ϕ    by T1 
[t1•t2]ϕ1, [1](ϕ1 → ϕ) |–LJT [t1•t2]ϕ     by T6 
[t1]ϕ1, [1](ϕ1 → ϕ) |–LJT [t1•t2]ϕ     by p.l. 
[c](ϕ1 → ϕ) |–LJT [1](ϕ1 → ϕ)     by JT1 
[t1]ϕ1, [c](ϕ1 → ϕ) |–LJT [t1•t2]ϕ     by p.l. 
|–LJT [c](ϕ1 → ϕ) → ([t1]ϕ1 → [t1•t2]ϕ)    by p.l. 
|–LJT [i]([c](ϕ1 → ϕ) → ([t1]ϕ1 → [t1•t2]ϕ))    by RJ1 
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[c](ϕ1 → ϕ) |–LJT [!c][c](ϕ1 → ϕ)     by J3 
[c](ϕ1 → ϕ) |–LJT [i×!c]([t1]ϕ1 → [t1•t2]ϕ)    by J1 
[j1][t1]ϕ1, [c](ϕ1 → ϕ) |–LJT [i×!c×j1][t1•t2]ϕ    by J1 
 
Thus, from premise 1, we conclude [i×!c×j1][t1•t2]ϕ. 
 
Therefore, from premises 1 and 3, we get [i×!c×j1][t1•t2]ϕ and [t1•t2]ϕ. Note that con-
straints 5.1 and 5.2 are met. Indeed, i×!c×j1 is obtained by multiplying j1 times a number 
of constants, so that [j]ϕ → [j1]*ϕ by J*1, J*5, J*6, while t2 is a component of t1•t2. 
 
The final diagnosis is well-known: the epistemic subject cannot be said to know ϕ, even 
if ϕ is both justified by means of a consistent justifier and true. Still, if we analyse the 
structure of the second proof, we note that, in order to find a state of affairs that is both 
a truthmaker for ϕ and a justified truthmaker for ϕ, it is necessary to compose the 
truthmaker for ϕ2 with the justified truthmaker for ϕ1. Thus, in order to find the right 
truthmaker for ϕ, it is necessary to compose a state of affairs that is manifest to the epis-
temic subject with a state of affairs to which she has no actual access. 
 
Theorem 5.4: K is not affected by Gettier problem. 
Let us translate the schema DDS in terms of justifiers and truthmakers. 
 
DDS (premises): 
1) JS((ϕ1 → ϕ) ∧ ϕ1) 
2) ¬(ϕ1 → ϕ) ∨ ¬ϕ1 
3) (ϕ2 → ϕ) ∧ ϕ2 
 
Condition 1) states that the subject is in possession of a justifier both relative to the ne-
cessity of the implication and relative to the truth of its antecedent. Thus, an appropriate 
translation of the premises in terms of justifiers is the following one. 
 
DDS (premises): 
1) [j1][1](ϕ1 → ϕ) ∧ [j1][t1]ϕ1 
2) ¬[1](ϕ1 → ϕ) ∨ ¬ϕ1 
3) [1](ϕ2 → ϕ) ∧ [t2]ϕ2 
 
We have to show that K(j,ϕ) is not derivable from these premises, if the constraints 4 
and 5 are satisfied, i.e. if  
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4.1. j1 is an explicit justifier for A(t1). 
4.2. j1 is not an implicit justifier for A(t2) or [t2]ϕ. 
5.1. for any j, if [j]ϕ is true, then j depends on j1. 
5.2. for any t, if [t]ϕ is true, then t extends t2. 
 
Suppose K(j,ϕ) is true, for some consistent j. 
 
K(j,ϕ) |–LJT [j](A(t) ∧ [t]ϕ)      def. K 
K(j,ϕ) |–LJT [t]ϕ       def. K 
|–LJT [c1](A(t) ∧ [t]ϕ → [t]ϕ)      by RJ 
K(j,ϕ) |–LJT [c1×j][t]ϕ       by J1 
|–LJT [c2]([t]ϕ → ϕ)       by RJ 
K(j,ϕ) |–LJT [c2×c1×j]ϕ      by J1 
K(j,ϕ) |–LJT [c2×c1×j]ϕ ∧ [t]ϕ     by p.l. 
 
Since [c2×c1×j]ϕ, c2×c1×j depends on j1, by constraint 5.1, and so 
 
i) [c2×c1×j]*ϕ → [j1]*ϕ, for every ϕ. 
ii) [j]*ϕ → [j1]*ϕ, for every ϕ, given the axioms on [j]*. 
 
Thus, [j1]*(A(t) ∧ [t]ϕ). In addition, since [t]ϕ, t extends t2, by constraint 5.2, and so t = 
t2•t0 for some t0. Thus, [j1]*(A(t2•t0) ∧ [t2•t0]ϕ), for some t0, and so, [j1]*A(t2•t0), by the 
axioms on [j1]*, and [j1]*A(t2), by JT2 and the axioms on [j1]*. Therefore, we get that j1 
is not an implicit justifier for A(t2), in contradiction with constraint 4.2. 
 
A final point. Suppose the premises are the right ones: 
 
[j1][1](ϕ1 → ϕ) ∧ [j1](A(t1) ∧ [t1]ϕ1) ∧ [t1]ϕ1, where j1 is consistent. 
 
We can ask whether it is possible to derive K(j,ϕ), for a certain j. 
 
Theorem 5.5: derivation of correct knowledge. 
[j1][1](ϕ1 → ϕ) ∧ [j1](A(t1) ∧ [t1]ϕ1) ∧ [t1]ϕ1 → K(j,ϕ). 
 
Let H = [j1][1](ϕ1 → ϕ) ∧ [j1](A(t1) ∧ [t1]ϕ1) ∧ [t1]ϕ1. 
 
j1 is consistent. 
[j1][1](ϕ1 → ϕ) |–LJT [1](ϕ1 → ϕ)     by theorem 5.1 
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[1](ϕ1 → ϕ) ∧ [t1]ϕ1 |–LJT [1•t1]ϕ     by T1 
[1](ϕ1 → ϕ) ∧ [t1]ϕ1 |–LJT [t1]ϕ     by T6 
[1](ϕ1 → ϕ) ∧ A(t1) ∧ [t1]ϕ1 |–LJT A(t1) ∧ [t1]ϕ   by p.l. 
|–LJT [1](ϕ1 → ϕ) → (A(t1) ∧ [t1]ϕ1 → A(t1) ∧ [t1]ϕ)  by p.l. 
|–LJT [j]([1](ϕ1 → ϕ) → (A(t1) ∧ [t1]ϕ1 → A(t1) ∧ [t1]ϕ))  by RJ1 
[j1][1](ϕ1 → ϕ) |–LJT [j×j1](A(t1) ∧ [t1]ϕ1 → A(t1) ∧ [t1]ϕ))  by J1 
[j1][1](ϕ1 → ϕ) ∧ [j1](A(t1) ∧ [t1]ϕ1) |–LJT [j×j1×j1](A(t1) ∧ [t1]ϕ) by J1 
H |–LJT [j×j1×j1](A(t1) ∧ [t1]ϕ) ∧ [t1]ϕ1    by p.l. 
 
Conclusion 
The logic of explicit justification extends the standard epistemic logic enabling us to 
analyse the structure of basic epistemic states with more accuracy. The logic of implicit 
and explicit justification represents a further step in this direction, by adding the possi-
bility of distinguishing propositions that are explicitly justified and propositions justi-
fied as consequences of the former ones. Finally, the logic of justification and truthmak-
ing allows us to explore the connections between justifiers and truthmakers and to pro-
vide a new framework for interpreting classical epistemological problems. In particular, 
in studying Gettier problem within this framework, it was shown that the language of 
LJT provides the tools to accomplish a more insightful analysis of both the premises 
and the constraints on which a Gettier argument is based. As a consequence, we were 
able to isolate the element that is responsible of the problem and to find a solution built 
on the identification of a connection between the epistemic and the ontological ground 
for the truth of a proposition. 
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