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Abstract

Spectrum Exchangeability, Sx, is an irrelevance principle of Pure In-
ductive Logic, and arguably the most natural (but not the only) ex-
tension of Atom Exchangeability to polyadic languages. It has been
shown1 that all probability functions which satisfy Sx are comprised
of a mixture of two essential types of probability functions; hetero-
geneous and homogeneous functions. We determine the theory of
Spectrum Exchangeability, which for a fixed language L is the set
of sentences of L which must be assigned probability 1 by every prob-
ability function satisfying Sx, by examining separately the theories
of heterogeneity and homogeneity. We find that the theory of Sx is
equal to the theory of finite structures, i.e. those sentences true in
all finite structures for L, and it emerges that Sx is inconsistent with
the principle of Super-Regularity (Universal Certainty). As a further
consequence we are able to characterize those probability functions
which satisfy Sx and the Finite Values Property.

∗This paper is published as open access in the Review of Symbolic Logic, 8(01):108-130,
March 2015.
†Supported by a UK Engineering and Physical Sciences Research Council (EPSRC)

Studentship.
1See [6], [8], [9], [10], [15]
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Introduction

The framework of this paper is that of Pure Inductive Logic, PIL, as presented in
[12], [15], according to which PIL is the mathematical formalization of

“assigning logical, as opposed to statistical, probabilities by attempting
to formulate the underlying notions, such as symmetry, irrelevance,
relevance on which they appear to depend”.

Within PIL, reasoning is modelled by the choice of a single probability function,
from all possible probability functions defined on the sentences of a first-order
predicate language L, so that an agent’s ‘belief’ that a given sentence is true is
represented by the value in the interval [0, 1] assigned to that sentence by the
agent’s chosen function. The agent is assumed to have no interpretation of the
language; so that its choice of probability function must be based on logical con-
siderations alone.

We consider how a supposedly rational agent inhabiting a structure for L, but
having no prior knowledge concerning which such structure, should assign prob-
abilities w(θ) to the sentences θ of L. Or putting it another way, how does the
requirement of rationality restrict the agent’s choice of probability function?

A standard procedure for investigating this question is to propose purportedly ra-
tional principles which one may feel the agent should observe, and then investigate
their consequences. One approach is to examine the resulting theory ; the set of
sentences of L which must be assigned probability 1 by any probability function
which satisfies the chosen principle(s). If this set Th(P) can be identified for a
particular set of principles P, this gives a kind of ‘creed’ according to P, a set of
sentences which must be accepted with certainty by any agent who adopts P. By
the definition of a probability function, Th(P) must contain all tautologies, but
where it additionally contains non-tautologous sentences, this surely says some-
thing interesting about P, which may give a new perspective on the extent to
which P is a ‘good’ choice of rational principles.

In this paper we consider separately the theories of the two essential types of
probability functions satisfying the rational principle of Spectrum Exchangeabil-
ity, Sx, namely heterogeneous and homogeneous functions. We show that the
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theory of heterogeneity is equal to the theory of finite structures for L, i.e. those
sentences true in all finite structures for L, which in turn is equal to the theory
of Sx. It follows as a corollary that the principle of Sx is incompatible with that
of Super-Regularity (that all non-contradictory sentences should be assigned non-
zero probability).

Several other principles are known to have non-trivial theories, in particular the
Invariance Principle INV (see [15]) and, for purely unary languages Johnson’s Suf-
ficient Postulate JSP (see [5] for an explicit description of Th(JSP)). A feature of
such principles seems to be that they are rather powerful, suggesting, rather reason-
ably, that this power comes at the price of the agent accepting a non-tautological
‘creed’.

A further consequence of our investigations into the theory of Sx is that we are
able to characterize those probability functions satisfying Sx which also satisfy the
Finite Values Property, meaning that for a fixed finite number of constant symbols,
the probability function only takes finitely many different values on sentences
involving just those constant symbols.

Context and Notation

The context described in the introduction, and based on that considered in [15],
consists of a first order language L containing finitely many (possibly polyadic)
relation symbols {R1, R2, . . . , Rq}, with variables xi and constant symbols ai for
i ∈ {1, 2, 3, . . .} = N+. Equality and function symbols are assumed to be absent.
For convenience of notation, alternative symbols may be used for constants and
variables, such as b1, . . . , bm to represent a sequence of m unspecified constant
symbols ai1 , . . . , aim , assumed to be distinct unless stated otherwise. Similarly
yj , zk etc. may be used for variables.

Let SL denote the set of first order sentences of L and QFSL denote those sen-
tences of SL which are quantifier free. Similarly, let (QF )FL denote the (quantifier
free) formulae of L. Where a sentence is denoted θ(b1, . . . , bm), this expresses that
θ mentions only constants from among b1, . . . , bm, but not necessarily all (or any)
of these.

Let T L denote the set of structures for L with universe {a1, a2, a3, . . .}, where the
symbol ai is interpreted as the individual ai (and no distinction is made between
the two). Notice that by the Löwenheim-Skolem Theorems if Γ ⊆ SL and infinitely
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many constants are not mentioned by the sentences of Γ then Γ has a model just
if it has a model in T L. With this limitation on Γ then T L is complete, in the
sense that if a sentence ψ is true in all models of Γ in T L then it is true in all
models of Γ, and hence formally provable from Γ (indeed from some finite subset
of Γ). This is a property of T L that we will need later.

The central question of PIL is how a supposedly rational agent inhabiting a struc-
ture M in T L, but having no prior knowledge concerning which such structure,
should assign probabilities w(θ) to the sentences θ ∈ SL. Probability functions
defined on SL are used to model the agent’s belief, see for example [3], so in these
terms the essential question is to what extent the requirement of rationality limits
the agent’s choice of probability function.

A function w : SL → [0, 1] is a probability function on SL just if it satisfies that
for all θ, φ, ∃xψ(x) ∈ SL :

(P1) If |= θ then w(θ) = 1.

(P2) If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).

(P3) w(∃xψ(x)) = limm→∞w(
∨m
i=1 ψ(ai)).

All the standard properties of probability functions readily follow from (P1–3), see
for example [11, Proposition 2.1], [15].

Conditioning is used to model the process of the agent’s learning, or imagining
that it has learnt, that some sentence is true in M . For a probability function
w on SL and a fixed φ ∈ SL the conditional probability function of w given φ is
defined to be probability function w(· | φ) such that for θ ∈ SL

w(θ | φ) · w(φ) = w(θ ∧ φ).

In particular then, when w(φ) > 0,

w(θ | φ) =
w(θ ∧ φ)

w(φ)
.

The following principle of rationality is based on the symmetry between the con-
stant symbols of L.

Constant Exchangeability, Ex.
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A probability function w on SL satisfies Constant Exchangeability if, for any per-
mutation σ of 1, 2, . . . and θ(a1, . . . , am) ∈ SL,

w(θ(aσ(1), . . . , aσ(m))) = w(θ(a1, . . . , am)). (1)

The argument for this principle is that there is complete symmetry between the
constants, and hence between θ(a1, . . . , am) and θ(aσ(1), . . . , aσ(m)), so it would
be irrational to assign these two sentences different probabilities. All probability
functions considered in this paper are assumed to satisfy Ex.

A state description for ai1 , ai2 , . . . , aim is a quantifier free sentence Θ(ai1 , ai2 , . . . , aim)
of the form

q∧
k=1

∧
~b

±Rk(b1, b2, . . . , brk)

where rk is the arity of the relation symbol Rk and the ~b = 〈b1, b2, . . . , brk〉 range
over all possible tuples from {ai1 , . . . , aim}rk . Here, +Rk(ai) stands for Rk(ai),
while −Rk(ai) stands for ¬Rk(ai). A formula of this form for distinct variables
xi1 , . . . , xim is known as a state formula for xi1 , . . . , xim . By convention, state de-
scriptions for zero constants and state formulae for zero variables are taken to be
equivalent to some fixed tautology, denoted >, mentioning no constants. Upper
case Greek letters will always be used to denote state descriptions or state formulae.

By the Disjunctive Normal Form Theorem, every φ(ai1 , ai2 , . . . , aim) ∈ QFSL is
logically equivalent to a disjunction of (necessarily pairwise disjoint) state descrip-
tions, from which it follows that the probability of φ is the sum of the probabilities
of these state descriptions. Furthermore, by Gaifman’s Theorem [4], a probability
function is completely determined on the whole of SL, not just on QFSL, by its
values on state descriptions.

A restriction of a state description Θ(ai1 , ai2 , . . . , aim) to a subset {ais1 , . . . , aisu} of
{ai1 , . . . , aim}, i.e. the conjunction of those conjuncts in Θ which refer only to con-
stants from among {ais1 , . . . , aisu}, will be denoted Θ(ai1 , ai2 , . . . , aim)[ais1 , . . . , aisu ],
or just Θ[ais1 , . . . , aisu ] if the tuple 〈ai1 , ai2 , . . . , aim〉 is clear from the context. For
example if L has just a single binary relation symbol R and Θ(a1, a2, a3) is the
conjunction of

R(a1, a1) R(a1, a2) R(a1, a3)

¬R(a2, a1) R(a2, a2) ¬R(a2, a3)

¬R(a3, a1) ¬R(a3, a2) R(a3, a3)
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then Θ(a1, a2, a3)[a1, a3] is the conjunction of

R(a1, a1) R(a1, a3)

¬R(a3, a1) R(a3, a3).

A state description Ψ(ai1 , . . . , aim , aim+1) extends Θ(ai1 , . . . , aim), equivalently Ψ |=
Θ, if the restriction of Ψ to ai1 , . . . , aim is logically equivalent to Θ: Ψ[ai1 , . . . , aim ] ≡
Θ(ai1 , . . . , aim). The same notation is used for restrictions and extensions of state
formulae.

For a fixed language L, any n ≥ m ≥ 0 and any state description Θ(ai1 , . . . , aim)
of L, the number of state descriptions Φ(ai1 , . . . , ain) of L extending Θ depends
only on m and n (and L, which we leave implicit). This number will be denoted
SD(m,n), while the total number of state descriptions in L for n constants is
denoted SD(n) (= SD(0, n)).

Suppose that a state description Θ(b1, b2, . . . , bm) is such that for some bi, bj

Θ |= R(bk1 , . . . , bku , bi, bku+2 , . . . , bkr)↔ R(bk1 , . . . , bku , bj , bku+2 , . . . , bkr)

for any r-ary relation symbol from L and any (not necessarily distinct) bk1 , . . . , bku ,
bku+2 , . . . , bkr from {b1, b2, . . . , bm}.2 Then bi is said to be indistinguishable from
bj according to Θ. This may be expressed using an equivalence relation

bi ∼Θ bj

where the equivalence classes of ∼Θ partition b1, . . . , bm so that those in the same
class are all indistinguishable from each other, but distinguishable from any mem-
ber of another class, according to Θ. The multiset of the sizes of these equivalence
classes is called the spectrum of Θ, denoted S(Θ). The size r of this multiset will
be called the spectrum length and denoted |S(Θ)|. The spectrum length of Θ is
therefore the number of equivalence classes of ∼Θ. The spectrum consisting of
m ones (corresponding to a state description where each of m constants is distin-
guishable from every other) will be denoted 1m. The symbol ∅ will be used to
denote the spectrum of a state description for zero constants (i.e. a tautology, by
the above convention).

Given spectra m̃, ñ and a state description Θ with spectrum m̃ it can be shown, see
[6], [9], [10], [15], that the number of state descriptions with spectrum ñ extending

2Equivalently Θ∧ bi = bj would be consistent were we to add equality to the language.
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Θ depends only on m̃, ñ and not on the particular choice of Θ. We denote this
number by N (m̃, ñ).

A principle of rationality, originally introduced in [10] and based on the idea that
beyond their spectra, differences in state descriptions are irrelevant is that of

Spectrum Exchangeability, Sx

A probability function w on SL satisfies Spectrum Exchangeability if, for any state
descriptions Θ(b1, b2, . . . , bm),Φ(b1, b2, . . . , bm) such that S(Θ) = S(Φ)

w(Θ) = w(Φ).

This principle may be justified by the argument that, in the absence of any in-
terpretation of the language, there is no reason to think any one state description
more probable than any other of the same spectrum.3

The following principles are based on the identification of probability zero with
the notion of impossibility.

Regularity, Reg

A probability function w on SL satisfies Regularity if w(φ) > 0 for all consistent
φ ∈ QFSL.

Super-Regularity, SReg

A probability function w on SL satisfies Super-Regularity if w(θ) > 0 for all con-
sistent θ ∈ SL.

Super-Regularity may be thought desirable on the grounds that, if zero probability
is identified with impossibility, then any sentence which is consistent, and there-
fore theoretically possible, should receive non-zero probability. Put another way,
a probability function which satisfies SReg gives probability 1 only to tautologies,
and hence any other principle P which this probability function satisfies must have
the minimal theory, just the set of tautologies. Notice that the properties Reg and
SReg have the practical advantage of ensuring that conditional probabilities are
always uniquely defined over consistent sentences from QFSL and SL respectively.

3If L is a purely unary language then Sx is equivalent to the principle of Atom Ex-
changeability, see [15, chapter 14], which is in essence Carnap’s attribute symmetry, see [1,
p77].
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The Theory of Sx

Let L be the first order language with finitely many relation symbols (possibly
polyadic) as described above. It is shown in [6], [8], [9], [10], [15] that any prob-
ability function on SL which satisfies Sx may be expressed as a convex sum of
probability functions of two basic types: heterogeneous and homogeneous func-
tions, defined as follows.

Homogeneity

A probability function w on SL is homogeneous (abbreviated hom) if it satisfies Sx
and for each t ∈ N+

lim
n→∞

w

 ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an)

 = 0. (2)

The disjunction is taken over all state descriptions of L for constants a1, . . . , an
with spectrum length t.

We now describe a particular important family of probability functions, the up̄,L

for p̄ ∈ B, where

B = {〈p0, p1, p2, . . .〉 | p1 ≥ p2 ≥ . . . ≥ 0, p0 ≥ 0 &
∑
i

pi = 1}.

For a given state description Φ(ai1 , . . . , aim) and a given vector ~c ∈ Nm, Φ is said to
be consistent with ~c if for 1 ≤ s, t ≤ m, cs = ct 6= 0 =⇒ ais ∼Φ ait . The set of all
state descriptions for ~a which are consistent with ~c is denoted C(~c,~a). For p̄ ∈ B,
the probability function up̄,L is defined on a state description Φ(ai1 , . . . , aim) by

up̄,L(Φ(ai1 , . . . , aim)) =
∑

〈c1,...,cm〉∈Nm
Φ∈C(~c,~a)

|C(~c,~a)|−1
m∏
i=1

pci . (3)

It can be shown, see [7], [8] or [15, chapter 29] for the details, that up̄,L now extends
to a probability function on SL which will furthermore be homogeneous when

p̄ ∈ B∞ = {〈p0, p1, p2, . . .〉 ∈ B | p0 > 0 or pi > 0 for all i > 0}.

Heterogeneity
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For t ∈ N+ = {1, 2, 3, . . .}, a probability function w on SL is t-heterogeneous
(abbreviated t-het) if it satisfies Sx and

lim
n→∞

w

 ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an)

 = 1. (4)

Again, the disjunction is taken over all state descriptions of L for constants
a1, . . . , an with spectrum length t.

As with the homogeneous case we now describe a particular important family of
t-heterogeneous probability functions, the vp̄,L for p̄ ∈ Bt, where

Bt = {〈p0, p1, p2, . . . , 〉 ∈ B | p0 = 0 & pt > 0 = pt+1}.

For t ∈ N+, let Nt = {1, 2, . . . , t} and let p̄ ∈ Bt. We define the probability
function vp̄,L on state descriptions Φ(ai1 , . . . , aim) in terms of vectors ~c ∈ (Nt)m
and a function G(~c,Φ). For a fixed ~c, if Φ is not consistent with ~c, i.e. if for some
1 ≤ s, t ≤ m, cs = ct but ais 6∼Φ ait , then G(~c,Φ) is zero. Otherwise let cg1 , . . . , cgr
be the first instance of each distinct entry in ~c (supposing that ~c contains exactly r
distinct entries, i.e. |{ci | ci ∈ ~c}| = r) and let Φ′ = Φ[aig1 , . . . , aigr ]. Then G(~c,Φ)
takes the value

N (S(Φ′),1t)

N (∅,1t)
,

i.e. the number of 1t extensions of Φ′ as a proportion of the total number of 1t
state descriptions for L. The value of vp̄,L(Φ(ai1 , . . . , aim)) is defined in these terms
to be

vp̄,L(Φ(ai1 , . . . , aim)) =
∑

〈c1,...,cm〉∈(Nt)m
G(~c,Φ)

m∏
i=1

pci . (5)

It can be shown, see [7], [8] or [15, chapter 30] for the details, that vp̄,L now extends
to a t-heterogeneous probability function on SL.

Probability functions satisfying Sx are a mixture of heterogeneous and homoge-
neous probability functions as the following theorem, see [6], [10], or [15, Theorem
30.2], explains.

The Ladder Theorem 1. Any probability function w satisfying Sx can be ex-
pressed in the form

w = η0w
[0] +

∞∑
t=1

ηtw
[t]
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where the ηi ≥ 0,
∑

i ηi = 1, w[0] is homogeneous and w[t] is t-heterogeneous for
t > 0.

In turn w[0] can be expressed as a convex combination of the basic homogeneous
probability functions up̄,L, p̄ ∈ B∞, in the sense of the forthcoming Theorem 14,
whilst for t > 0 the w[t] can be expressed as convex combinations of the basic
t-heterogeneous probability functions vp̄,L, p̄ ∈ Bt, for t > 0, in the sense of the
forthcoming Theorem 2.

Our plan now is to investigate the theory of Sx, that is the set Th(Sx) of sentences
θ ∈ SL for which w(θ) = 1 for all probability functions w on L satisfying Sx,
by the separate investigation of the theory of t-heterogeneity, Th(t-het), and the
theory of homogeneity, Th(hom).

The Theory of t-heterogeneity

We begin by stating some established results concerning t-heterogeneous probabil-
ity functions, which will be needed later. The following theorem is proved in [8],
or see [15, chapter 31], and explains the sense in which t-heterogeneous probability
functions are convex mixtures of the basic t-heterogeneous probability functions
vp̄,L.

Theorem 2. Let w be a t-heterogeneous probability function on SL. Then there
is a measure4 µ on the Borel 5 subsets of Bt such that

w =

∫
Bt
vp̄,L dµ(p̄).

Conversely given such a measure µ, w defined as above is a t-heterogeneous prob-
ability function on SL.

The next result follows from the above theorem and the definition of the vp̄,L

functions given in (5), and the fact that there will be a ~c ∈ (Nt)m consistent with
Φ(b1, . . . , bm) just if |S(Φ)| ≤ t:

Lemma 3. Let w be a t-heterogeneous probability function on SL.

• w(Φ(b1, . . . , bm)) > 0 for any state description Φ(b1, . . . , bm) with spectrum
length |S(Φ)| ≤ t.

4All measures will be taken to be countably additive and normalized.
5 In other words the closure under complement and countable unions of the open subsets

of, in this case, Bt. This is sufficient to ensure that the functions p̄ 7→ vp̄,L(θ) are indeed
integrable with respect to µ for θ ∈ SL.
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• w(Ψ(b1, . . . , bm)) = 0 for any state description Ψ(b1, . . . , bm) with spectrum
length |S(Ψ)| > t.

It follows immediately that heterogenous functions do not satisfy Reg.

We now need a small technical result which is proved in [13, Lemma 1]. Let t ∈ N+,
let g be the largest arity of any relation symbol in L, and let k be the largest of
t + 1 and g. Then for any m ≥ k and any state description Φ(a1, . . . , am) with
spectrum length |S(Φ)| ≥ k ≥ t + 1, there exists some s with k ≤ s ≤ k + g =
max{t+ 1 + g, 2g}, and some distinct 1 ≤ i1, . . . , is ≤ m such that

|S(Φ[ai1 , . . . , ais ])| = s.

The significance of this is that if we let s(t) = max{t+ 1 + g, 2g}, then any state
description of L with spectrum length greater than t must have a restriction to s(t)
or fewer constants, with spectrum length greater than t. Therefore, the following
(finite) sentence ζt may be used to express the idea that some state formula of
spectrum length t is instantiated, and that any tuple of constants of any length
will have to have spectrum length at most t.

Let ζt be the sentence

∨
Θ(z1,...,zt)
S(Θ)=1t

∃x1, . . . , xt Θ(x1, . . . , xt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}→{z1,...,zt}

Θσ(y1, . . . , ys(t))


where the outermost disjunction is over all state formulae with spectrum 1t, and
for σ : {y1, . . . , ys(t)} → {z1, . . . , zt} with image {zi1 , . . . , zim}, Θσ(y1, . . . , ys(t))
is the unique (up to logical equivalence) state formula Ψ(y1, . . . , ys(t)) such that
Ψ(σ(y1), . . . , σ(ys(t))) ≡ Θ[zi1 , . . . , zim ].

In more detail, ζt firstly says that there are some ai1 , ai2 , . . . , ait satisfying some
state formula Θ of spectrum length t, so the aij are all distinguished from each
other by Θ. Additionally, ζt then says that if we take any b1, b2, . . . , bs(t) then
(taken together) they all look like clones of certain of the ai1 , ai2 , . . . , ait . As a con-
sequence of the choice of s(t) this actually forces that any number of b1, b2, . . . , bm
must look like clones of certain of the ai1 , ai2 , . . . , ait , in other words the universe
has just t distinguishable elements in it (for example these ai1 , ai2 , . . . , ait) and all
the other elements are just clones of these.

Lemma 4. If w is a t-heterogeneous probability function, then

w(ζt) = 1.

11



Proof. Suppose w is a t-heterogeneous probability function on SL and let Φ(a1, . . . , an)
be a state description with spectrum length t. Then, by restricting Φ to one rep-
resentative, ag1 , . . . , agt , of each equivalence class of ∼Φ, the result is a state de-
scription Θ(ag1 , . . . , agt) with spectrum 1t.

Furthermore, since the members of each equivalence class of ∼Φ are indistin-
guishable from each other according to Φ, there is a unique surjective map σ :
{a1, . . . , an} → {z1, . . . , zt} such that Φ(a1, . . . , an) ≡ Θσ(a1, . . . , an). So∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an) |=

∨
S(Θ(z1,...,zt))=1t

∃x1, . . . , xt Θ(x1 . . . , xt) ∧
∨

σ:{a1,...,an}→{z1,...,zt}

Θσ(a1, . . . , an)

 .

In fact, this last point applies not just to 〈a1, . . . , an〉, but to any tuple of constants
of any length taken from {a1, . . . , an}, regardless of ordering or repeats. So for
any tuple 〈ai1 , . . . , ais(t)〉 ∈ {a1, . . . , an}s(t), there is always some mapping σ (not
necessarily surjective) such that

Φ[ai1 , . . . , ais(t) ] ≡ Θσ(ai1 , . . . , ais(t)),

and so ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an) |=
∨

S(Θ(z1,...,zt))=1t

(∃x1, . . . , xt Θ(x1 . . . , xt)

∧
∧

i1,...,is(t)≤n

∨
σ:{ai1 ,...,ais(t)}→{z1,...,zt}

Θσ(ai1 , . . . , ais(t))),

which, by standard properties of probability functions, see for example [11, Propo-
sition 2.1(c)], gives that

w

 ∨
|S(Φ(a1,...,an))|=t

Φ(a1, . . . , an)

 ≤ w
 ∨
S(Θ(z1,...,zt))=1t

(∃x1, . . . , xt Θ(x1 . . . , xt)

∧
∧

i1,...,is(t)≤n

∨
σ:{ai1 ,...,ais(t)}→{z1,...,zt}

Θσ(ai1 , . . . , ais(t)))

 .

Taking the limit as n→∞ now gives

1 ≤ w(ζt)

by (4), since w is t-heterogeneous, and hence w(ζt) = 1 since w(ζt) ∈ [0, 1].
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It follows immediately from this that for any sentence θ ∈ SL such that ζt |= θ,
w(θ) = 1 for any t-heterogeneous w. We proceed to show that the converse also
holds, after introducing some notation.

Let T be the set of 1t state formulae of L, i.e. T = {Θ(z1 . . . , zt) | S(Θ) = 1t},
and define an equivalence relation ≈ on T by

Θ ≈ Φ ⇐⇒ Θ(z1 . . . , zt) ≡ Φ(zτ(1) . . . , zτ(t))

for some permutation τ of Nt. Let T1, . . . , Tu denote the equivalence classes of ≈,
and for 1 ≤ j ≤ u let Θj ∈ Tj be some representative of its equivalence class.

Let
ηjt = ∃x1, . . . , xt Θj(x1, . . . , xt)

and
ξjt = ∀y1, . . . , ys(t)

∨
σ:{y1,...,ys(t)}→{z1,...,zt}

(Θj)σ(y1, . . . ys(t))

and let
ζjt = ηjt ∧ ξ

j
t .

Since

∃x1, . . . , xt Θ(x1, . . . , xt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}→{z1,...,zt}

Θσ(y1, . . . , ys(t)),

∃x1, . . . , xt Φ(x1, . . . , xt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}→{z1,...,zt}

Φσ(y1, . . . , ys(t))

are logically equivalent whenever Θ,Φ ∈ T and Θ ≈ Φ it follows that ζt is equiva-
lent to the disjunction of the pairwise disjoint sentences ζjt

ζt ≡
u∨
j=1

ζjt =
u∨
j=1

(ηjt ∧ ξ
j
t ). (6)

Let M j ∈ T L be a model of ζjt . Then M j |= ∃x1, . . . , xt Θj(x1, . . . , xt), so suppose
that M j |= Θj(ag1 , . . . , agt). Since

M j |= ξjt , (7)

for any constant symbol ai there exists a unique σ(ai) ∈ {ag1 , . . . , agt} such that

M j |= (Θj)σ(ag1 , . . . , agt , ai).

13



Note that σ(ak) = ak for ak ∈ {ag1 , . . . , agt}, and so σ2 = σ.

Furthermore, the σ(ai) and ai are indistinguishable in M j , in the sense that for
any state formula Φ(x1, . . . , xv+1) and ak1 , . . . , akv

M j |= Φ(ai, ak1 , . . . , akv) ⇐⇒ M j |= Φ(σ(ai), ak1 , . . . , akv). (8)

For suppose otherwise. Then there must exist some constants ak1 , . . . , akv such
that, for the unique state description Φ+(ai, σ(ai), aki , . . . , akv) such that M j |=
Φ+,

ai 6∼Φ+ σ(ai).

This would mean that, for the unique state description Ψ(ag1 , . . . , agt , ai, ak1 , . . . , akv)
such that M j |= Ψ, |S(Ψ)| > t, since ag1 , . . . , agt are all distinguishable in Ψ, and
ai is distinguishable from each of them. This contradicts (7) by the above discus-
sion regarding the choice of s(t).

This discussion now yields:

Lemma 5. For any ψ(a1, . . . , an) ∈ SL

M j |= ψ(a1, . . . , an) ⇐⇒ M j |= ψ(σ(a1), . . . , σ(an)).

Proof. Straightforward by induction on the length of ψ using (8).

We now define a new structure Aj for L with universe |Aj | = {ag1 , . . . , agt} by
taking the interpretation of ai in Aj to be σ(ai) and the interpretation of the
relation symbol Rk of L in Aj to be the interpretation of Rk in M j restricted to
|Aj |. So essentially Aj is M j with all the indistinguishable elements of M j lumped
together. Given this the following lemma is hardly surprising.

Lemma 6. For any ψ(a1, . . . , an) ∈ SL

M j |= ψ(a1, . . . , an) ⇐⇒ Aj |= ψ(a1, . . . , an).

Proof. Straightforward by induction on the length of ψ using Lemma 5 .

Since |Aj | is finite with every element named by a constant, when referring to the
truth of sentences in Aj we can replace existential and universal quantifiers by
finite disjunctions and conjunctions respectively. This observation gives us:

Lemma 7. For any n ∈ N and any θ(a1, . . . , an) ∈ SL, there exists a quantifier-
free formula θ′(x1, . . . , xt, a1, . . . , an) such that

M j |= θ′(ag1/x1, . . . , agt/xt, a1, . . . , an) ⇐⇒ M j |= θ(a1, . . . , an).

14



Proof. Let θ(a1, . . . , an) ∈ SL for some n ∈ N (possibly zero). Assume, without
loss of generality, that θ is in Prenex Normal Form, so

θ(a1, . . . , an) =

Qp zp,1, . . . , zp,np Qp−1 zp−1,1, . . . , zp−1,np−1 , . . . , Q1 z1,1, . . . , z1,n1 φ(z1,1, . . . , zp,np , a1, . . . , an),

where each Qi is either ∀ or ∃ and φ(~z, a1, . . . , an) ∈ QFFL.

Now let θ′ be θ with each occurrence of

∀zk,1, . . . , zk,nk replaced by
∧

〈zk,1,...,zk,nk 〉∈{x1,...,xt}
nk

and each occurrence of

∃zk,1, . . . , zk,nk replaced by
∨

〈zk,1,...,zk,nk 〉∈{x1,...,xt}
nk

for k = 1, . . . , p, so that θ′(x1, . . . , xt, a1, . . . , an) is a quantifier free formula men-
tioning constants from a1, . . . , an and free variables x1, . . . , xt (only).

Then for M j , Aj and σ as above,

M j |= θ′(ag1/x1, . . . , agt/xt, a1, . . . , an)

⇐⇒ Aj |= θ′(ag1/x1, . . . , agt/xt, a1, . . . , an)

⇐⇒ Aj |= θ(a1, . . . , an)

⇐⇒ M j |= θ(a1, . . . , an) (9)

where the first and third implications hold by Lemma 6 and the second holds since
|Aj | = {ag1 , . . . , agt}.

Lemma 8. For θ(a1, . . . , an) ∈ SL and some fixed σ : {z1, . . . , zt, a1, . . . , an} →
{z1, . . . , zt}

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= θ(a1, . . . , an)

or
ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= ¬θ(a1, . . . , an).
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Proof. The result is clear if the left hand side is inconsistent. Assume otherwise,
so by the remark following (7), σ must be the identity on the zi. Let M j ∈ T L be
a model of ζjt such that

M j |= ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)).

Then from Lemma 7, since the representatives ag1 , . . . , agt were arbitrary up to
satisfying Θj in M j , we have that for θ′ as given there,

M j |= ∀~z (Θj(~z)→ (θ(a1, . . . , an)↔ θ′(~z, a1, . . . , an)))

regardless of the particular map σ. By earlier remarks concerning the completeness
of the structures in T L this gives

ζjt |= ∀~z (Θj(~z)→ (θ(a1, . . . , an)↔ θ′(~z, a1, . . . , an))). (10)

Since θ′ is quantifier free and

Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)

decides all the ±Rk(u1, . . . , urk) for u1, . . . , urk from a1, . . . , an, z1, . . . , zt it also
decides θ′, so

Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= θ′ or Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= ¬θ′,

which we shall abbreviate to

Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= θ′ or ¬θ′.

Hence by (10),

ζjt ∧Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an) |= θ or ¬θ.

But now since ~z does not appear on the right hand side we obtain, as required,
that

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= θ(a1, . . . , an) or ¬θ(a1, . . . , an).

Corollary 9. If w is a t-heterogeneous probability function then w satisfies the
Finite Values Property, FVP, meaning that for each n

{w(θ(a1, . . . , an)) | θ(a1, . . . , an) ∈ SL}

is finite.
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Proof. By Lemma 8, (6) and Lemma 4

w

 ∨
〈j,σ〉∈Aθ∪A¬θ

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an))

 = 1

where Aθ, A¬θ are respectively the sets of pairs 〈j, σ〉 such that

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= θ(a1, . . . , an),

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= ¬θ(a1, . . . , an).

Hence

w

 ∨
〈j,σ〉∈Aθ

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an))

 = w(θ(a1, . . . , an)),

leading to the conclusion that there can only be finitely many values of w(θ(a1 . . . , an)),
as θ(a1, . . . , an) ranges over the sentences in SL mentioning only the constants
a1, . . . , an, since there are only finitely many possibilities for j and σ (for a fixed
n) and hence only finitely many possible sets Aθ.

At the present time the status of the FVP, both from the standpoint of its mathe-
matical consequences and its arguable rationality within the context of PIL, awaits
further clarification. It seems at first sight rather demanding since although the
number of constants in θ may be bounded, no such restriction is placed on the
quantifier complexity of θ. On the other hand we already know of a number of
examples where it does hold. In particular in the case of a purely unary language
every probability function satisfies the FVP (for example by the identity (10.4) of
[15]). For polyadic languages however it can fail (as we shall shortly see), indeed
the required finiteness condition can hold for a1, . . . , an but fail for a1, . . . , an, an+1.
For more details see [5].

As far as the rationality of the FVP is concerned it is certainly to be commended
as a simplicity requirement, from which an appeal to Occam’s Razor may grant it
some measure of rationality.6

We are now ready to prove the converse to our earlier observation that for w a
t-heterogeneous probability function, if ζjt |= θ(~a) then w(θ(~a)) = 1.

6In fact, as explained in [5], this simplicity extends to a much deeper level than just
the apparently contingent fact of only taking finitely many values.
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Lemma 10. If w is a t-heterogeneous probability function, θ(a1, . . . , an) ∈ SL and
w(θ(~a)) = 1 then ζt |= θ(~a).

Proof. If ζjt 2 θ(~a) for some 1 ≤ j ≤ u then, since

ζjt ≡ ζ
j
t ∧ ∃~z (Θj(~z) ∧

∨
σ

(Θj)σ(~z, a1, . . . , an)),

there must be some σ for which

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) 2 θ(~a).

Hence this left hand side must be consistent and by Lemma 8

ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an)) |= ¬θ(~a). (11)

By Lemma 3, w(ζjt ) > 0 for each 1 ≤ j ≤ u. So if

w(ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an))) = 0

then it must be that
w((Θj)σ(a1, . . . , an)) = 0.

But since (Θj)σ(a1, . . . , an) is a state description for a1, . . . , an with spectrum
length at most t, this is false by Lemma 3. Therefore by (11),

w(¬θ(~a)) ≥ w(ζjt ∧ ∃~z (Θj(~z) ∧ (Θj)σ(~z, a1, . . . , an))) > 0.

The result follows.

Since ζt does not mention any constants we immediately obtain from this lemma
that:

Corollary 11. If w is a t-heterogeneous probability function, θ(~a) ∈ SL and
w(θ(~a)) = 1 then ζt |= ∀~x θ(~x) and so by Lemma 4, w(∀~x θ(~x)) = 1.

From Lemmas 4 and 10 we now obtain:

Theorem 12.
Th(t-het) = {θ ∈ SL | ζt |= θ}.

Let Th(Fin) denote the Theory of Finite Structures, that is the set

{θ ∈ SL |M |= θ for every finite structure M for L}.

We now show that this set is equal to the intersection over t of the theories of
t-heterogeneity.
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Theorem 13.
Th(Fin) =

⋂
t∈N+

Th(t-het).

Proof. Suppose that θ(a1, . . . , an) ∈ Th(Fin). Let M j ∈ T L be an arbitrary
model of ζjt , and let Aj be defined in terms of M j as above. Then |Aj | is finite,
so Aj |= θ(a1, . . . , an). By Lemma 6 then M j |= θ(a1, . . . , an), so since t, j and M j

are arbitrary, by earlier remarks ζt |= θ(a1, . . . , an) for each t ∈ N+. Therefore by
Theorem 12, θ(a1, . . . , an) ∈

⋂
t∈N+ Th(t-het).

Conversely suppose that θ(a1, . . . , an) ∈ Th(t-het) for each t ∈ N+. Let M be
a finite structure for L, say M has exactly t distinguishable elements. Then a
moment’s thought shows that M |= ζt, so M |= θ(a1, . . . , an) giving θ(a1, . . . , an) ∈
Th(Fin). The result follows.

Notice that by Trakhtenbrot’s Theorem, [16], Th(Fin) is complete Π0
1 so it certainly

cannot be recursively axiomatized.

The Theory of Homogeneity

It is apparent from the definition of homogeneity (2) that there can be no homo-
geneous function on a purely unary language, since the spectrum length of any
state description of a unary language can never exceed 2q (where q is the number
of predicate symbols in L). Therefore, assume for this section that the language
L contains at least one non-unary relation symbol.

We begin by stating an established result concerning homogeneous probability
functions, which will be used in this section. The following theorem, stating that
any homogeneous probability function is a convex mixture of the basic homoge-
neous probability functions up̄,L for p̄ ∈ B∞ = {〈p0, p1, p2, . . .〉 ∈ B | p0 > 0 or pi >
0 for all i > 0}, and conversely, is proved in [8], or see [15, chapter 31].

Theorem 14. Let w be a homogeneous probability function on SL. Then there is
a measure µ on the Borel subsets of B∞ such that

w =

∫
B∞

up̄,L dµ(p̄).

Conversely given such a measure µ, w defined as above is a homogeneous probability
function on SL.
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It is clear from (3) and the above theorem that any homogeneous probability func-
tion satisfies Reg, although we shall see later that it does not satisfy SReg.

We shall now show that Th(hom), that is

{θ ∈ SL | w(θ) = 1 for all homogeneous w},

is actually a variation on a well known complete theory, namely the theory of the
random structure for L. In this sense then, our results forge a potentially fruitful
connection between PIL and random structure theory. We will then refine this
result to sentences mentioning just a fixed finite set of constants in order to show
that homogeneous probability functions also satisfy the FVP.

Recall that re denotes the arity of relation Re and let ρ(z1, z2) be the formula

q∧
e=1

re∧
f=1

∀x1, . . . , xf−1, xf+1, . . . , xre

(Re(x1, . . . , xf−1, z1, xf+1, . . . , xre)↔ Re(x1, . . . , xf−1, z2, xf+1, . . . , xre))

which expresses that z1 and z2 are permanently indistinguishable from each other.

For ~S = S1, . . . , Sh a partition of Nm, let υ
~S(y1, . . . , ym) be

h∧
g=1

∧
i,j∈Sg

ρ(yi, yj) ∧
∧

u∈Nm−Sg

¬ρ(yi, yu)

 , (12)

and for Θ(x1, . . . , xm) a state formula let

Θ
~S(x1, . . . , xm) = (Θ(x1, . . . , xm) ∧ υ~S(x1, . . . , xm)).

Lemma 15. Let w be a homogeneous probability function on language L. Then for
a partition ~S = S1, . . . , Sh of Nm, and Θ(x1, . . . , xm), Ψ(x1, . . . , xm, xm+1) state

formulae such that Ψ |= Θ and Ψ
~S,{m+1}(x1, . . . , xm+1) consistent,

w(∀x1, . . . , xm (Θ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1))) = 1.
(13)

Proof. By Theorem 14 it is sufficient to show the result for w = up̄,L where p̄ ∈ B∞.
Given p̄ ∈ B∞, consider the following process for constructing a sequence of pairs,
each consisting of a state description Φk(a1, . . . , ak) and a sequence of ‘colours’
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~ck ∈ Nk. At stage k = 0 choose ~c0 = ∅, the empty sequence and Φ0 = >,
a tautology. At stage k + 1 pick ck+1 from N with probability pck+1

, and then
pick Φk+1 from among those state descriptions consistent with ~ck+1 (i.e. those
in C(~ck+1, 〈a1, . . . , ak, ak+1〉)) which extend Φk, according to the uniform distribu-
tion, i.e. with probability |C(~ck, 〈a1, . . . , ak〉)||C(~ck+1, 〈a1, . . . , ak, ak+1〉)|−1. (Note
that, where ck+1 = 0 or is previously unseen in ~ck there is a free choice of all those
extensions Φk+1 of Φk consistent with ~ck, while if ck+1 > 0 has occurred previously
in ~ck, so that ck+1 = cr, say, then Φk+1 must be the unique extension of Φk such
that ak+1 is a clone of ar, meaning that ak+1 ∼Φk+1

ar.)

It is straightforward to show (as for example in [15, chapter 30]) that the prob-
ability that this process results at stage n in a particular pair 〈~cn,Φn〉 is given
by

|C(~cn,~a)|−1
n∏
i=1

pci .

Therefore, the value of

up̄,L(Φn(a1, . . . , an)) =
∑

〈c1,...,cn〉∈Nn
Φn∈C(~c,~a)

|C(~c,~a)|−1
n∏
i=1

pci

is the sum, over all ~c ∈ Nn consistent with Φn, of the probability of obtaining the
pair ~c,Φn by the process described.

Now suppose that this process has produced the pair 〈~c,Θ(a1, . . . , am)〉 with prob-
ability

|C(~c,~a)|−1
m∏
i=1

pci (14)

and ~S,Ψ are as in the statement of the lemma.

If it is the case that ci = cj 6= 0 just if i, j are in the same Sg, then for any new
(previously unseen in ~c) colour cm+1, or 0, there is a fixed probability 1/C of pick-
ing Ψ(a1, . . . , am, am+1) as the next state description, where C ≥ SD(1, 2) > 1
is the number of extensions allowed by the process. Similarly there is this same
probability at each further choice where cm+s is new, or 0, that the chosen state
description will imply Ψ(a1, . . . , am, am+s). Since p0 > 0 or there are infinitely
many non-zero pn, such a sequence of choices will, with probability 1, eventu-
ally produce a witness to ∃xm+1 Ψ(a1, . . . , am, xm+1) which is assigned a different
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colour from those occurring in ~c. Furthermore, with probability 1, any pair of con-
stants assigned different colours become distinguishable from each other eventually.

Hence this probability (14) will all contribute to

up̄,L(∃xm+1 (Ψ(a1, . . . , am, xm+1) ∧
m∧
j=1

¬ρ(aj , xm+1))).

On the other hand, if for some i, j in different Sg we have ci = cj 6= 0 then
no extension of 〈~c,Θ(a1, . . . , am)〉 can ever witness (12), while if for some i, j in
the same Sg we have ci 6= cj , by this process ai and aj must eventually become
distinguishable. In either case, the probability (14) will all contribute to

up̄,L(¬υ~S(a1, . . . , am)).

Combining all of these probabilities now gives

up̄,L(Θ
~S(a1, . . . , am)→ ∃xm+1 Ψ

~S,{m+1}(a1, . . . , am, xm+1)) = 1 (15)

and by Ex this also holds for any distinct ai1 , . . . , aim in place of a1, . . . , am. Where
b1, . . . , bm ∈ {a1, a2, . . .}m are not all distinct, we may consider the restriction of
Θ(b1, . . . , bm) to its distinct arguments Θ[bj1 , . . . , bjs ], and find that (15) holds also
with b1, . . . , bm in place of a1, . . . , am. The result now follows.

Let ∆ be the set of all sentences of the form (13) with ~S,Θ etc. as in Lemma 15.
It follows immediately from the previous result that if ∆ |= φ then w(φ) = 1 for
any homogeneous w. We now prove the converse to this.

Lemma 16. If φ ∈ SL is such that w(φ) = 1 for some homogeneous probability
function w on SL then ∆ |= φ.

Proof. Suppose that w, a homogeneous probability function on SL, and φ ∈ SL
are such that w(φ) = 1. Let L(m) be L but with constant symbols ai only for
i ≤ m. By a simple adaption of a well known back-and-forth argument of Fagin
[2] (or see [11, Theorem 11.10] for a proof in the setting of this paper), for any

state description Θ(a1, . . . , am) and partition ~S, ∆∪{Θ~S(a1, . . . , am)} is complete
for L(m), i.e. decides any sentence of SL(m).

Hence if for any Θ, ~S,

∆,Θ
~S(a1, . . . , am) 2 φ
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then it must be the case that υ
~S is consistent with Θ and

∆,Θ
~S(a1, . . . , am) |= ¬φ. (16)

Let p̄ ∈ B∞. It follows from the definition of the up̄,L functions given in (3) that

up̄,L(Θ
~S(a1, . . . , am)) > 0 whenever υ

~S is consistent with Θ. Therefore, from (16),
up̄,L(¬φ) > 0, so up̄,L(φ) < 1. Hence by the first part of Theorem 14, w(φ) < 1, a
contradiction.

From this it follows that for every Θ, ~S

∆,Θ
~S(a1, . . . , am) |= φ.

Hence
∆,
∨
Θ,~S

{Θ~S(a1, . . . , am)} |= φ,

giving
∆ |= φ(a1, . . . , am), (17)

since ∨
Θ,~S

Θ
~S(a1, . . . , am)

is a tautology.

From the previous two results we can now obtain the main theorem of this section:

Theorem 17.

Th(hom) = {θ ∈ SL | ∆ |= θ} = {θ ∈ SL | w(θ) = 1 for some homogeneous w}.

Corollary 18. If w is a homogeneous probability function then w satisfies the
Finite Values Property, FVP.

Proof. The proof is essentially a repeat of that of Corollary 9, using the notation
of Lemma 16. Suppose that w is a homogeneous probability function on SL. For

any φ(a1, . . . , am) ∈ SL, since ∆ ∪ {Θ~S(a1, . . . , am)} is complete for L(m), the

consistent sentences Θ
~S may be partitioned into Aφ and A¬φ, where Aφ is the set

of Θ
~S(a1, . . . , am) such that

∆,Θ
~S(a1, . . . , am) |= φ(a1, . . . , am)
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(etc.). Since by Lemma 15, w(ψ) = 1 for ψ ∈ ∆, and since

w

∨
Θ~S

Θ
~S(a1, . . . , am)

 = 1,

we must have

w(φ) = w

 ∨
Θ~S∈Aφ

Θ
~S(a1, . . . , am)

 ,

and the result follows as there are only finitely many possible Aφ as φ ranges over
SL(m).

The Theory of Sx

By the Ladder Theorem 1 it is clear that the Theory of Sx must be equal to the
intersection of Th(hom) and Th(t-het) for each t ∈ N+. By Theorem 13 this is
equal to Th(hom)∩ Th(Fin), and over the course of the next few lemmas we shall
show that in fact this is just Th(Fin).

Lemma 19. When L is not purely unary,

lim
t→∞

N (∅,1t)
SD(t)

= 1.

Proof. Suppose a state description Φ(a1, . . . , at) is chosen at random from among
all state descriptions for t constants. Then for any distinct 1 ≤ i, j ≤ t, the
probability that ai ∼Φ aj is at most 21−2t (with equality when L consists of a
single binary relation). The number of ways of choosing a distinct pair i, j is
t(t−1)/2, so that the proportion of all state descriptions for a1, . . . , at where some
pair of constants is indistinguishable is bounded above by

t(t− 1)

22t
.

This value tends to zero as t tends to infinity, and the result follows.

The next two lemmas are aimed at showing that as t → ∞ the vp̄,L for p̄ ∈ Bt
get closer and closer to giving the sentences in ∆ probability 1, and so also giving
probability 1 to the (complete set of) logical consequences of ∆. This fact will
then be used to derive the main theorem of this paper, Theorem 22.
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Lemma 20. For any δ > 0 there exists N ∈ N such that for any t ≥ N , any
p̄ ∈ Bt and any θ ∈ SL

|up̄,L(θ)− vp̄,L(θ)| < δ.

Proof. Let δ > 0 be fixed and let θ ∈ SL. By a result of Landes [6, Theorem 12]
(or see [15, Lemma 34.4]), for t ∈ N+ and any p̄ ∈ Bt

up̄,L(θ) =
N (∅,1t)
SD(t)

vp̄,L(θ) +
∑
G

N (∅, 1|G|)
SD(t)

vG(p̄),L (18)

where G = {E1, . . . , E|G|} runs over the set of partitions of {1, . . . , t} with |G| < t
and G(p̄) ∈ B|G| has coordinates

∑
s∈Ei ps. Since

N (∅,1t) +
∑
G

N (∅, 1|G|) = SD(t),

by Lemma 19, for t sufficiently large,

N (∅,1t)
SD(t)

= 1−
∑
G

N (∅, 1|G|)
SD(t)

> 1− δ

and the result follows by (18).

Lemma 21. Let ~S,Θ,Ψ etc. be as in Lemma 15 and δ > 0. Then for t sufficiently
large and any p̄ ∈ Bt

vp̄,L(∀x1, . . . , xm (Θ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1))) > 1− δ.

Proof. By Lemma 20 it is enough to prove the result for up̄,L in place of vp̄,L.

The proof is a refinement of that for Lemma 15, the main difference being that
where we had probability 1 in that lemma we will now only have probability close
to 1. As a result we need to estimate just how close as we proceed.

Let t be fixed and large. As in the proof of Lemma 15 we can construct state
descriptions Φk(a1, . . . , ak) and sequences ~ck, this time from (Nt)k since p̄ ∈ Bt is
used, the probability that this process results at stage r in a particular pair ~cr,Φr

being given by

|C(~cr,~a)|−1
r∏
i=1

pci , (19)
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and

up̄,L(Φr(a1, . . . , ar)) =
∑

〈c1,...,cr〉∈(Nt)r
Φr∈C(~c,~a)

|C(~c,~a)|−1
r∏
i=1

pci

is the sum, over each ~c ∈ (Nt)r consistent with Φr, of the probability of obtaining
the pair ~c,Φr by the process described.

Let r be sufficiently large that

∑
~c∈(Nt)r

{c1,...,cr}⊂Nt

r∏
i=1

pci =
t∑

j=1

(1− pj)r ≤
δ

3
. (20)

holds.

Suppose that this process has produced the pair ~c,Φr where ~c = 〈c1, . . . , cr〉 ∈ (Nt)r
and {c1, . . . , cr} = Nt, and Φr(a1, . . . , ar) ∈ C(~c,~a). Notice that since all the avail-
able colours 1, 2, . . . , t occur in ~c, any continuation of this process can only produce
clones of constants previously seen in Φr, so that Φk+1 is uniquely determined by
ck+1 and Φk for k ≥ r.

Therefore, there is some state formula Υ(z1, . . . , zt) and some distinct g1, . . . , gt ≤ r
such that cgu = u for 1 ≤ u ≤ t and Φr |= Υ(ag1 , . . . , agt). Let χ be the sentence

∃z1, . . . , zt Υ(z1, . . . , zt) ∧ ∀y1, . . . , ys(t)
∨

σ:{y1,...,ys(t)}→{z1,...,zt}

Υσ(y1, . . . , ys(t)) (21)

where the notation is as defined in Section 3.1. Then any structure in T L which
models this process for these particular ~c and Φr is a model of χ. (The only
difference between χ and the ζjt considered in the previous section is that Υ here
has spectrum length at most t, not necessarily equal to t). It can be shown, exactly
similarly as in the discussion around Lemma 8, that the sentence

χ ∧ Φr(a1, . . . , ar)

is complete for SL(r). So in the case that

χ ∧ Φr(a1, . . . , ar) |= φ(a1, . . . , ar),

we say φ is fixed by Φr, and all of the probability (19) will contribute to up̄,L(φ).
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We now consider cases. If Φr(a1, . . . , ar) 2 Θ(a1, . . . , am) or ci = cj for some

1 ≤ i, j ≤ m in different Sg then ¬Θ
~S(a1, . . . , am) is fixed.

Otherwise, if ci 6= cj for some 1 ≤ i, j ≤ m in the same Sg, then each time a new
colour ck, m < k ≤ r, was chosen there was a probability at most C−1, where
C = SD(1, 2) > 1 depends only on L, that the choice of Φk(a1, . . . , ak) would
not witness the failure of ρ(ai, aj) (i.e. would not make ai and aj distinguishable).

Hence the probability that such ~c,Φr would not fix ¬Θ
~S(a1, . . . , am) is at most(

m

2

)(
1

C

)t−m
.

Otherwise, if Φr |= Θ(a1, . . . , am) and ~c is consistent with ~S, with every choice
of a new colour ck, m < k ≤ r, there is a probability at least D−1, where D =
SD(m,m+ 1) > 1 depends only on m and L, that

Φk(a1, . . . , ak) |= Ψ(a1, . . . , am, ak)

and a probability of at most C−1 that ak is indistinguishable from ai for 1 ≤ i ≤ m.
This gives a probability of at most(

D − 1

D

)t−m
+m

(
1

C

)t−m
of ~c,Φr not fixing ∃xm+1 Ψ

~S,{m+1}(a1, . . . , am, xm+1).

These estimates have been obtained for the specific constants a1, . . . , am. However,
as discussed above, according to Φr there are at most t distinguishable constants
among a1, . . . , ar, and for each of the tm choices of these (including those with
repeated arguments) we have the same estimates as obtained for a1, . . . , am. Al-
together then, the probability that Φr does not fix

∀x1, . . . , xm (Θ
~S(x1, . . . , xm)→ ∃xm+1 Ψ

~S,{m+1}(x1, . . . , xm, xm+1))

is at most

tm

((
m

2

)(
1

C

)t−m
+

(
D − 1

D

)t−m
+m

(
1

C

)t−m)
. (22)

Hence to within the δ/3 from (20), this same upper bound holds for up̄,L and the
result follows since (22) tends to zero as t→∞.
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Theorem 22.
Th(Sx) = Th(Fin).

Proof. Since we already know by earlier remarks and Theorem 13 that

Th(Sx) = Th(hom) ∩
⋂
t∈N+

Th(t-het) = Th(hom) ∩ Th(Fin),

it is enough to show that Th(Fin) ⊆ Th(hom). So suppose η(ai1 , . . . , aim) ∈
Th(Fin). Then by Theorem 13, w(η(ai1 , . . . , aim)) = 1 for every t-heterogeneous
w for each t ∈ N+. Therefore by Corollary 11, w(∀x1, . . . , xm η(x1, . . . , xm)) = 1
for each such w. Hence

∀x1, . . . , xm η(x1, . . . , xm) ∈ Th(Fin)

and
η(aj1 , . . . , ajm) ∈ Th(Fin) (23)

for any j1, . . . , jm, not necessarily distinct.

Again ∆ is complete for sentences which do not contain constants so either

∆ |= ∀x1, . . . , xm η(x1, . . . , xm) or ∆ |= ¬∀x1, . . . , xm η(x1, . . . , xm).

Suppose it was the latter. Then by Compactness there would be a finite subset
{φ1, . . . , φr} of ∆ such that

φ1, . . . , φr |= ¬∀x1, . . . , xm η(x1, . . . , xm). (24)

By Lemma 21 for large enough t and p̄ ∈ Bt,

vp̄,L(φi) > 1− (2r)−1

for each 1 ≤ i ≤ r, so

vp̄,L

(
r∧
i=1

φi

)
= 1− vp̄,L

(
r∨
i=1

¬φi

)
≥ 1−

r∑
i=1

vp̄,L(¬φi) > 1−
r∑
i=1

(2r)−1 = 1/2.

From (24) then
vp̄,L(¬∀x1, . . . , xm η(x1, . . . , xm)) > 1/2

so
vp̄,L(¬η(aj1 , . . . , ajm)) > 0

28



for some aj1 , . . . , ajm , which contradicts (23) and Theorem 13.

Hence it must be that

∆ |= ∀x1, . . . , xm η(x1, . . . , xm),

so
∆ |= η(ai1 , . . . , aim)

and η(ai1 , . . . , aim) ∈ Th(hom) by Theorem 17, as required.

In fact Th(hom) is a strict superset of Th(Fin) since, for example, the sentence
∀x(Θ{1}(x) → ∃yΨ{1},{2}(x, y)), where Ψ is an extension of Θ with spectrum
length 2, is in Th(hom) but is given probability 0 by any 1-heterogeneous proba-
bility function.

It is interesting to note that Th(Sx) contains more than just tautologies. For
example where L contains a binary relation (a similar example can be constructed
for any polyadic relation), the conjunction φ of

∀x1¬R(x1, x1), ∀x1∃x2R(x1, x2),

∀x1, x2, x3((R(x1, x2) ∧R(x2, x3))→ R(x1, x3))

expresses that R is a strict partial ordering of the universe with no top element and
therefore no finite model. Then ¬φ ∈ Th(Sx) and w(φ) = 0 for any w satisfying
Sx. This gives the following

Corollary 23. For w a probability function on a not purely unary language L, if
w satisfies Sx then w does not satisfy Super-Regularity.

Concerning the status of the FVP and Sx, let w satisfy Sx and have the Ladder
Theorem 1 representation

w = η0w
[0] +

∞∑
t=1

ηtw
[t],

where the η0, ηt ≥ 0, η0 +
∑∞

t=1 ηt = 1, w[0] is homogeneous and for t ≥ 1 w[t] is
t-heterogeneous. Then by Corollaries 9 and 18, w will satisfy FVP if only finitely
many of the ηt are non-zero. On the other hand, if infinitely many of the ηt are non-
zero then, since their sum is bounded by 1, they must take infinitely many distinct
values. Therefore, since w(ζt) = ηt for each t ∈ N+, the set {w(ζt) | t ∈ N+} is
infinite, and w does not satisfy FVP.
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