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INFINITARY TABLEAU FOR SEMANTIC TRUTH

TOBY MEADOWS

ABSTRACT. We provide infinitary proof theories for three common semantic theories of truth:

strong Kleene, van Fraassen supervaluation and Cantini supervaluation. The value of these

systems is that they provide an easy method of proving simple facts about semantic theories.

Moreover we shall show that they also give us a simpler understanding of the computational

complexity of these definitions and provide a direct proof that the closure ordinal for Kripke’s

definition is ωCK
1 . This work can be understood as an effort to provide a proof-theoretic coun-

terpart to Welch’s game-theoretic [17].

1. INTRODUCTION

In [8], Kripke introduced fixed point theories of truth to the philosophy of language. The

definitions of these truth predicates are conducted using transfinite recursion and the the-

ory of inductive definitions. While such theories are well understood in mathematical logic

[10], the resultant definitions are complicated both in terms of heuristics and computation.

Proofs about membership in these fixed points are conducted informally in the metalan-

guage and are often contingent on a series of lemmas establishing various properties about

the fixed point in question. This sort of reasoning is analogous to the way one may reason

about a modal logic using its semantics. With modal logic, however, we usually also have a

proof theory which, having established soundness and completeness, allows us to establish

claims in a simple and transparent manner.

The aim of this paper is to provide a similarly simple and transparent means of verifying

simple claims about the extension of the truth predicate. To do this we shall make use of

infinitary tableau systems. We shall then establish that each of the systems provided is

sound and complete with respect to their associated fixed points. The paper is broken into

a section for each of the tableau systems developed. After this, we prove that each system

gives a Π1
1-complete set as its intended extension and provide a direct proof showing that

the height of the fixed point is ωCK1 .

1.1. Semantic theories of truth. In this section, we define each of the fixed point truth

definitions used in this paper, although we shall assume some familiarity with the basic

construction [8]. We restrict ourselves to providing a truth definition for the standard model
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helping me learn how to use the tools used in the paper. I would also like to thank Hannes Leitgeb for giving me
the opportunity to present this material and for providing me with valuable feedback. And I would like to thank
Benedict Eastaugh and Marcus Holland for helping make the final sections of this paper more accessible in the
way it was intended.
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of arithmetic, N and we assume that we are in the language LT of arithmetic expanded with

a predicate T intended to represent truth. The language of arithmetic will be denoted as L.

Let SentL and SentLT denote the sentences of L and LT respectively. We assume that we

have a recursive bijection p·q : SentLT
∼= ω. We use ϕ,ψ, χ as variables for sentences from

SentLT in the metalanguage.

1.1.1. Strong Kleene. Let Φ stand for a pair of sets of sentences 〈Φ+,Φ−〉 which we shall

call the extension and anti-extension respectively. These pairs will play the role of guesses
or approximations of the truth predicate’s intended meaning. We let AAtom stand for a

recursive predicate which is satisfied by arithmetic atomic sentences. Let AArith be a

recursive predicate which is satisfied by true arithmetic atomic sentences. We shall write

ψx(n) to mean the sentence obtained by substituting the numeral n (which represents n ∈ ω)

for the variable x in the formula ψ. In most cases, we shall suppress the x as this should

result in no confusion.

Definition 1. We define the partial function V al : (P(SentLT ) × P(SentLT )) × SentLT ⇁ 2 by

recursion on the complexity of sentences as follows:1

V alΦ(ϕ) = 1 iff (ϕ ∈ AAtom ∧ ϕ ∈ AArith) ∨

(ϕ := Tpψq ∧ ψ ∈ Φ+) ∨

(ϕ := (¬ψ) ∧ V alΦ(ψ) = 0) ∨

(ϕ := (ψ ∧ χ) ∧ V alΦ(ψ) = 1 ∧ V alΦ(χ) = 1) ∨

(ϕ := (∀xψ) ∧ ∀n ∈ ω V alΦ(ψx(n)) = 1))

V alΦ(ϕ) = 0 iff (ϕ ∈ AAtom ∧ ϕ /∈ AArith) ∨

(ϕ := Tpψq ∧ ψ ∈ Φ−) ∨

(ϕ := (¬ψ) ∧ V alΦ(ψ) = 1) ∨

(ϕ := (ψ ∧ χ) ∧ (V alΦ(ψ) = 0 ∨ V alΦ(χ) = 0) ∨

(ϕ := (∀xψ) ∧ ∃n ∈ ω V alΦ(ψx(n)) = 0))

Informally speaking, this function takes a guess and a sentence and gives us the semantic

value of that sentence according to that particular guess. Note that the function defined

above is not total. For example, suppose Φ = 〈∅, ∅〉 and consider the sentence Tp0 = 1q.

Since 0 = 1 is in neither the extension nor the anti-extension, V alΦ(Tp0 = 1q) is not defined.

We now define the so-called jump function which provides the inductive engine behind the

definition.

1We shall be somewhat sloppy in the metalanguage. For example, we are using the symbol ‘∧′ in both the object
language and the metalanguage. In an effort to avoid confusion, we shall use parentheses for emphasis. Thus we
write ϕ := (¬ψ) to indicate that the sentence denoted by ϕ is identical to that denoted by ¬ψ.
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Definition 2. Let jsK : P(SentLT )× P(SentLT )→ P(SentLT )× P(SentLT ) be such that

jsK(Φ) = 〈{ϕ | V alΦ(ϕ) = 1}, {ϕ | V alΦ(ϕ) = 0}〉

Intuitively, jsK takes one guess at the extension and anti-extension of the truth predicate

and returns the set of sentences which would be evaluated as true according to that guess.

For example, if 1 = 0 was in Φ, then Tp1 = 0q would be in jsK(Φ). We shall say that a set Φ

is sound if Φ ⊆ jsK(Φ).

Definition 3. We define the intended interpretation, ΓsK for the truth predicate by transfi-

nite recursion:

Γ0 := 〈∅, ∅〉

Γα+1 := jsK(Γα)

Γβ := 〈
⋃
α<β

Γ+
α ,

⋃
α<β

Γ−α 〉 for limit β

Let ΓsK := Γα for the least α such that Γα = Γα+1.

We are guaranteed that a fixed point will exist because it can be shown that the jump

function is monotonic [3, 10]. Moreover, we should note that other, larger fixed points can

be defined by starting with a different (although sound in the sense defined above) set at

the base of the construction. The definition we offer here is known as the minimal fixed
point and it is the only one that we shall be concerned with in this paper.

1.1.2. Supervaluation. We now define the supervaluational truth definitions which employ

the van Fraassen scheme and Cantini schemes. We shall now only consider classical inter-

pretations for the truth predicate for which each Φ = 〈Φ+,Φ−〉 is such that Φ+∪Φ− = SentLT
and Φ+ ∩ Φ− = ∅ [3]. For ease of notation, we now let Φ stand for subsets of SentLT , thus

leaving out the now redundant anti-extension. We let ¬̇Φ = {(¬ϕ) | ϕ ∈ Φ}.

Definition 4. Ψ is a vF -expansion of Φ, abbreviated Ψ wvF Φ if Ψ ⊇ Φ and Ψ ∩ ¬̇Φ = ∅.

We now define a new jump function jvF which exploits the notion of an expansion. Infor-

mally speaking, we are admitting sentences into the extension of the truth predicate if every

safe (in a way which will soon be described) expansion of the current guess agrees on that

sentence. With the van Fraassen expansion, we ensure that we only consider alternative

truth extensions that both expand upon what we already know but do not contradict any-

thing we have already learnt. Once again, it takes one guess and returns another which is

intended to be an improvement.

Definition 5. Let jvF : P(SentLT )→ P(SentLT ) be such that

jvF (Φ) = {ϕ | ∀Ψ wvF Φ V alΨ(ϕ) = 1}.

Our intended extension of the truth predicate is then defined in much the same way as the

strong Kleene definition.
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Definition 6.

Γ0 := ∅

Γα+1 := jvF (Γα)

Γβ :=
⋃
α∈β

Γα for limit β

Finally, let ΓvF be Γα for the first α such that Γα+1 = Γα.

Once again, the jump function is monotonic, so we are guaranteed that there is a fixed

point. ΓvF then forms the intended extension of the truth predicate in our standard model.

The Cantini evaluation scheme is defined in a similar fashion; the difference is that we use

what we call a Ca-expansion as opposed to a vF -expansion. It is defined as follows:

Definition 7. Ψ is a Ca-expansion, abbreviated Ψ wCa Φ of Φ if Ψ ⊇ Φ and for all ϕ it is not

the case that ϕ ∈ Ψ and (¬ϕ) ∈ Ψ.

Informally speaking, we only consider expansions which agree with what we already know

and in addition to this are consistent, in the sense of not containing any sentence and its

negation. The rest of the definition is the same as for van Fraassen supervaluation, except

we use Ca-expansions rather than vF -expansions. The monotonicity results still hold and

we let ΓCa be the least fixed point of the resultant definition [4]. We observe that none of

the definitions are equivalent. Indeed, we have

ΓsK ( ΓvF ( ΓCa.

To see that ΓvF * ΓsK , let λ be a liar sentence such that λ ↔ ¬Tpλq. We observe that

¬(Tpλq ∧ ¬Tpλq) is in ΓvF but not in ΓsK . The reason is that for any sentence (including

λ) every classical interpretation will be such that λ is either in the extension or not. But

on the other hand, there is no point in the strong Kleene induction at which ¬(Tpλq ∧
¬Tpλq) could get into the extension of the truth predicate ΓsK .2 To see that ΓCa * ΓvF ,

consider the sentence ψ := ¬(Tpλq ∧ Tp¬λq). We have ψ ∈ ΓCa but ψ /∈ ΓvF . We demonstrate

this in Examples 21 and 27. We leave the inclusions as an exercise for the reader. The

reasoning here is informal and too brief. There are a number of other claims that should

be established before we reason so informally. This is part of the problem with reasoning

directly with the semantic definition. We shall see that simple proofs of these claims can

easily be established with the tableau systems offered below.

2. STRONG KLEENE

We are now ready to provide the framework for the tableau systems. We commence by

providing an alternative, more fine-grained definition of the minimal strong Kleene fixed

point. This definition can be found in [6] (page 202) and will be easier to work with. In

2We shall see this more clearly later, once the tableau system is in place.
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contrast to the previous approach, we now treat the truth predicate more like one of the

other logical connectives. We thus abandon the V al function and define a jump function

hsK which does all the work for all the connectives (including truth) at once.

2.1. A finer-grained definition. Our revised jump function is defined as follows:

Definition 8. Let hsK : P(SentLT )→ P(SentLT ) be such that χ ∈ hsK(Φ) iff:

• χ ∈ Φ;

• χ ∈ AAtom and χ ∈ AArith;

• there is some ϕ such that pχq = p¬ϕq, ϕ ∈ AAtom and ϕ /∈ AArith;

• there is some ϕ such that pχq = p¬¬ϕq and ϕ ∈ Φ;

• there are ϕ,ψ such that pχq = pϕ ∧ ψq and both ϕ ∈ Φ and ψ ∈ Φ;

• there are ϕ,ψ such that pχq = p¬(ϕ ∧ ψ)q and either (¬ϕ) ∈ Φ or (¬ψ) ∈ Φ;

• there is some ϕ such that pχq = p∀xϕq and for all n ∈ ω, ϕ(n) ∈ Φ;

• there is some ϕ such that pχq = p¬∀xϕq and there is some n ∈ ω such that (¬ϕ(n)) ∈
Φ;

• there is some ϕ such that pχq = pTpϕqq and ϕ ∈ Φ; or

• there is some ϕ such that pχq = p¬Tpϕqq and (¬ϕ) ∈ Φ.

We might see this definition as a generalisation of our ordinary satisfaction definition, in

that it is expanded to incorporate a truth predicate. Then we define our intended interpre-

tation of the truth predicate using an inductive definition. Also note that we have made do

here with just an extension and not an extension/anti-extension pair. The negation clause

ensures that this suffices with fixed points.

Definition 9. We define the intended extension ΞsK by transfinite recursion as follows:

Ξ0 := ∅

Ξα+1 := hsK(Ξα)

Ξβ :=
⋃
α∈β

Ξα for limit β.

Let ΞsK be Ξα for the least α such that Ξα = Ξα+1.

We can verify, by inspection, that this jump function is monotonic and thus that we are

justified in saying the recursion has a fixed point.

2.2. Tableau (`sK ). We now define our first tableau system. Indeed, we can look to the

definition of the hsK to provide us with a guide as to how to do this. The tableau system is

intended to capture ΓsK , the extension of the truth predicate in the least fixed point of the

three-valued strong Kleene evaluation scheme. The tableau is a tree consisting of sentences

from LT as nodes. The system we use is much the same as can be found in [15] or [13]

except that we use an ω-rule to deal with the quantifiers. An example of a similar tableau
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system can be found in [16] although it is a trivial transformation of the more common Tait

calculus which can be seen in [12].

2.2.1. Starting the tableau. To test whether some χ is in Γ, we start a tableau by writing

¬χ. It will form the root of a tree which is constructed downwardly.

2.2.2. Rules. In completing the tableau, we must discharge our responsibilities to all of the

sentences in the tableau. The rules below tells us what sentences must be added to the

tableau in order to discharge those responsibilities.

(∧) ϕ ∧ ψ

ϕ

ψ

(¬∧) ¬(ϕ ∧ ψ)

��HH
¬ϕ ¬ψ

(¬¬) ¬¬ϕ

ϕ

(¬∀) ¬∀xϕ

�
��
�

H
HH

H

¬ϕ(0) ¬ϕ(1) . . .

(∀) ∀xϕ

ϕ(t)

where t is an arbitrary term

(T ) Tpϕq

ϕ

(¬T ) ¬Tpϕq

¬ϕ

For the remainder of the paper, we shall assume that →, ∧, ↔ and ∃ have been defined in

the usual way; although we shall not mention them explicitly in definitions of proof systems

or fixed points. Rules can be provided for them using [15, 16, 13].

Once we have discharged our responsibilities to a sentence, nothing more will be done with

that sentence. Note that there will be no finite stage in the construction of a branch at

which a ∀xϕ(x) will be fully discharged: an infinite branch is required for this. We shall say

that a sentence is discharged if either every rule that can be applied to it has been applied

or it is either an arithmetic atomic or negated arithmetic atomic.

We shall say that a branch of a tableau for ¬ϕ is properly formed for ¬ϕ if every sentence on

the branch is either ¬ϕ or the result of a rule having been applied to a sentence higher on

the branch. A branch is properly formed if it is properly formed for some sentence ψ.

Proposition 10. The set of (finite) branches which are properly formed by the rules is recur-
sive.
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2.2.3. Closing conditions. A branch in a tableau closes if either: a false arithmetic atomic
sentence occurs on the branch; or for some sentence ϕ ∈ L (i.e. not involving the truth

predicate) both ϕ and ¬ϕ occur on that branch.3 Once the branch is closed no further

sentences may be added to the branch. We say that a branch is open if it is fully discharged

and not closed.

If all of the branches in the tableau for ¬ϕ close, then ϕ is in the intended extension of the

truth predicate which we abbreviate `sK ϕ.4

Fact 11. For arithmetic sentences χ ∈ L (i.e., not involving a truth predicate), `sK χ iff χ is
true in the standard model of arithmetic (see [12, 16]).

Given this fact, we shall augment our closing conditions for the tableau by adding that a

branch also closes if a false arithmetic sentence occurs on that branch.

2.3. Examples.

Example 12. `sK Tp1 = 1q.

¬Tp1 = 1q

1 6= 1

×

Let app : ω → ω be defined by primitive recursion in such a way that:

app(0) := p1 = 1q

app(n+ 1) := pT app(n)q

Since app is recursive, there is an arithmetic formula representing it. Rather than using

that formula we shall exploit Fact 11 and take it that the function does what it says it does.

We shall assume that the recursive function is adequately represented by an arithmetic

3We note that if a sequent system were developed then this condition would correspond to a restricted version of
the reflexivity rule ϕ ` ϕ.
4Observe that we can reformulate the tableau system as a game, similar to that of [17]. Player I, Abe, wants to
show that χ is in the extension of the truth predicates. Player II, Elly, wants to show that it is not. Player Abe asks
player Elly a series of questions which are designed to show that this could not occur.
Player Abe commences by asking player Elly if ¬χ is the case. At stage n of the game, Abe must query a sentence
σ played previously by Elly. Elly must then respond by playing according to the table below:

If σ is of the form then Elly must play
¬¬ϕ ϕ

ϕ ∧ ψ ϕ and ψ
¬(ϕ ∧ ψ) either ¬ϕ or ¬ψ

If σ is of the form then Elly must play
∀xϕ(x) ϕ(n) for every term t

¬∀xϕ(x) ¬ϕ(t) for some n ∈ ω
Tpϕq ϕ

¬Tpϕq ¬ϕ
For the case of ∀xϕ(x), Elly must find a way of ensuring that she plays ϕ(t) for all terms by the end of the game.
She obviously cannot do it in one move. Abe wins the game if Elly ever ends up either: having played both ϕ and
¬ϕ for some arithmetic sentence; or a false arithmetic atomic sentence. Otherwise, Elly wins.
The tableau system can thus be understood as a means of tracking all of the different turns that the game could
have taken when a formula is of the form ¬(ϕ ∧ ψ) or ¬∀xϕ(x).
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formula and that our proof theory will only leave open branches in which the correct output

occurs. Thus instead of including this working, we shall incorporate a rule which allows

us to substitute the correct value of recursive functions. The following example illustrates

this.

Example 13. `sK ∀n T app(n).

¬∀nT app(n)

��
�
��

�
��
�

HH
H
HH

H
HH

H

¬Tapp(0)

¬Tp1 = 1q

1 6= 1

×

¬Tapp(1)

¬TpTp1 = 1qq

¬Tp1 = 1q

1 6= 1

×

¬Tapp(2) . . .

¬TpTpTp1 = 1qqq

¬TpTp1 = 1qq

¬Tp1 = 1q

1 6= 1

×

Let D(x, y) be the recursive diagonal predicate, which says that x is the code of a formula

with one free variable and y is the code of the sentence resulting from substituting the value

x for the free variables in the formulae represented by x. For an example see [2] (page 222).

Let µ(x) be the formula ∀y(D(x, y) → ¬T (y)). Let m = p∀y(D(x, y) → ¬T (y))q. We define λ to

be the formula µ(m), or in other words ∀y(D(m, y)→ ¬T (y)). Clearly λ↔ ¬Tpλq.

When using defined sentences on a branch we add a rule that permits us to place the

definiendum at the end of the branch. Thus λ must be replaced by µ(m), which in turn

must be replaced by ∀y(D(x,m)→ ¬T (y)), see [2].

Example 14. 0sK λ.
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¬λ

¬∀y(D(m, y)→ ¬T (y))

��
��

��
�

HH
HH

H
HH

¬(D(m, 0)→ ¬T (0))

D(m, 0)

×

. . . ¬(D(m, pλq)→ ¬T (pλq)) . . .

D(m, pλq)

¬¬T (pλq)

Tpλq

λ

∀y(D(m, y)→ ¬T (y))

D(m, pλq)→ ¬T (pλq)

�
��

H
HH

¬D(m, pλq)

×
¬Tpλq

¬λ
...

Note that at the first fork all of the other branches close because D(m, y) is only true when

pλq is substituted for y. Similarly, when using the formula ∀y... the only substitution worth

making is pλq. This is because for any other n we will get a trivially open branch containing

¬D(m,n). Thus, we see that the tableau will not close since we have just ended up back

where we started and everything before this point has been discharged.

Observe that the right hand branch does not close despite having both λ and ¬λ on it. The

reason for this is that neither λ nor ¬λ are in L the fragment of the language not involving

the truth predicate. Thus the conditions for closure of the branch are not satisfied.

Moreover, we also note that our diagonal predicate did exactly what it ought to have. We

saw that λ is equivalent to ¬Tpλq and that is where the branch leads us. So rather than

write out the above in full, we shall be content with the following, much simpler, tableau:
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¬λ

¬¬Tpλq

Tpλq

λ

¬Tpλq

¬λ
...

in which we feel free to substitute the equivalent sentences resulting from the application

of the diagonal lemma.

2.4. Equivalence. We now show that each of the definitions of the minimal strong Kleene

fixed point are equivalent. We assume that we have a uniform procedure for constructing

tableau. This is just a way of ordering the moves so that we can associate with each

sentence a particular tableau. For each ϕ we shall call this the standard tableau for ϕ.

Definition 15. Let the tableau-rank of a tableau, T , be the least ordinal such that there

is an order preserving map from T into the ordinals where T is considered to be a tree

formed from finite sequences of formula. Let the tableau-rank of ϕ, abbreviated ρTab(ϕ),

be the tableau-rank of the standard tableau for ϕ, if it is closed and ∞ otherwise. For

ϕ ∈ Γ+
sK ∪ Γ−sK (ϕ ∈ ΞsK ), let the Γ-rank (Ξ-rank) of a sentence ϕ, abbreviated ρΓ(ϕ) (ρΞ(ϕ)) be

the least α such that that ϕ ∈ Γ+
α ∪ Γ−α (ϕ ∈ Ξα) and ∞ if there is no such ordinal.

Theorem 16. The following are equivalent:

(1) `sK χ;
(2) χ ∈ Γ+

sK ; and
(3) χ ∈ ΞsK .

Proof. (2.↔3.) is a folk result (see [6]).

(3.→1.) By induction on the Ξ-rank. Suppose χ is a true arithmetic literal. Then `sK χ,

follows by definition. Suppose that for all β ≤ α we have ϕ ∈ Ξβ ⇒`sK ϕ and that χ ∈ Ξα+1.

It suffices to show that `sK χ. Suppose χ is of the form ϕ ∧ ψ. Then both ϕ ∈ Ξα and

ψ ∈ Ξα. By induction hypothesis, `sK ϕ and `sK ψ. Let us take closed tableau Tϕ and Tψ
respectively. Then the following tree closes:

¬χ
��HH
Tϕ Tψ

and thus `sK χ. The other cases are similar. The limit case is trivial. (1.→3.) By induction

on the tableau-rank. �
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3. VAN FRAASSEN SUPERVALUATION

In the introduction, we observed that for the strong Kleene definition, logical truths like

¬(Tpλq ∧ ¬Tpλq) failed to get into the extension of the truth predicate. In this section,

we explore one method of recapturing this. To motivate the approach we attempt some

diagnosis of this problem. With the previous definition we restricted our closure conditions

in such a way that only arithmetic sentences could cause a branch to close. Thus, there

is a sense in which our truth definition is generated upon a basis of arithmetic truths.

The arithmetic basis can be observed more clearly in the finer-grained definition of ΞsK .

Now if arithmetic is the only intended ground of our definition, then it seems as if the

strong Kleene definition is the appropriate one to take up. However, we may also want

to capture the logical truths. Informally speaking, our goal in this section is to provide

a truth definition which takes as its basis both logical and arithmetic truths. We shall

do this in two stages. First we shall make an alternative definition of the van Fraassen

supervaluation truth extension. The goal of this is to make our informal motivation more

transparent. Second, we provide an infinitary tableau for these definitions and show that

all three are equivalent.

We first provide a high-level description of the process we shall use. Given that we want

to capture logical truths, an obvious way of doing this is to use a conception of proof. We

shall thus define an infinitary proof system to ensure that we capture logical truths as well

as arithmetic ones. The proof notion defined will form the engine for induction steps in the

truth definition. It will not be the main tableau system, which gives the intended extension

of the truth predicate; rather it will be a bridging system which allows us to keep improving

our guesses about truth. Intuitively speaking, the natural place to start is with the atomic

arithmetic sentences. They form our pool of axioms and we start off by proving everything

that we can from them. Now since we have proven these sentences, we can, indeed ought

to, throw these into the extension of the truth predicate. Thus, we shall augment our axiom

pool with these new sentences. We then prove everything we can from the new axiom set.

We then repeat the process into the transfinite reaching a fixed point, which we shall call

ΞvF .

3.1. Bridging tableau (
vF ). We now define the conception of proof that will be used for the

induction step. We shall regard it as a bridging system between ΓvF and ΞvF . Intuitively,

the tableau is designed to show that given Φ ⊆ LT , χ ∈ LT is the case in the standard

model of arithmetic expanded with a one place relation T constrained in such a way that

the interpretation of T is both a superset of Φ and does not intersect ¬̇Φ. Or informally,

given the truth-guess Φ, we ought to add χ to the extension of the truth predicate. We shall

write this as Φ 
vF χ.

3.1.1. Starting conditions. To attempt to show that Φ 
vF χ, we commence the tableau by

placing ¬χ at the root.
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3.1.2. Rules. We take the rules (∧), (¬∧), (¬¬), (∀) and (¬∀). These are just the connective

rules and quantifier rules from Section 2.2.2.

In place of the truth rules, we add the following axiom rules. Given a set of axioms Φ we

may apply either of the rules below at any point in the construction of a branch.

(AxT )

Tpϕq

(Ax¬T )

¬Tpϕq
where ϕ ∈ Φ where (¬ϕ) ∈ Φ

Informally speaking, the new truth rules allow us to pull sentences from our stock of ax-

ioms. We are allowing ourselves to add Tpϕq if ϕ is an axiom; thus, cutting off any branches

that attempt to run with its negation.

3.1.3. Closing conditions . A branch B closes if either:

• some formula ϕ and its negation ¬ϕ occurs on B; or

• a false arithmetic sentence occurs on B.

With the proof system defined, we may now define our jump function.

Definition 17. Let hvF : P(Sent)→ P(Sent) be such that

ϕ ∈ hvF (Φ) ⇔ Φ 
vF ϕ.

The jump function takes a set of sentences as axioms and puts everything that can be

proven from those axioms Φ, into the extension of the truth predicate.

Definition 18. The intended extension ΞvF is defined by transfinite recursion as follows:

Ξ0 := ∅

Ξα+1 := hvF (Ξα)

Ξβ :=
⋃
α∈β

Ξα for limit β.

Let ΞvF be Ξα for the least α such that Ξα = Ξα+1.

Clearly hvF is monotonic, so we are justified in our assumption that ΞvF has a fixed point.

3.2. Main tableau (`vF ). We now define an infinitary tableau for ΞvF , which we shall ab-

breviate as `vF . This tableau will give us the intended extension of the truth predicate.

3.2.1. Starting the tableau. The tableau for χ ∈ LT is commenced by placing ¬χ at the root

of the tree.
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3.2.2. Rules . We take the rules (∧), (¬∧), (¬¬), (∀) and (¬∀) from Section 2.2.2.

In place of the truth rules we add the following subtableau rule:

(Sub) If at any point in the construction of a branch B, a formula of the form Tpψq or

¬Tpψq occurs on B, then a subtableau may be constructed which commences

with ψ or ¬ψ respectively. This subtableau is governed by the same rules as

the main tableau.

3.2.3. Closing conditions. A branch B is deemed to close if either:

• for some sentence ϕ ∈ LT (i.e. including truth), both ϕ and ¬ϕ occur on B;

• a false arithmetic sentence occurs on B; or

• a subtableau for one of the sentences on B is closed, where a subtableau is closed if

all of its branches are closed.

If all the branches of a tableau for χ close, then that tableau is closed. We abbreviate this

as `vF χ. Observe that a proof in this system may involve a nested tree of subtableau.

3.3. Examples.

Example 19. `vF λ ∨ ¬λ.

¬(λ ∨ ¬λ)

¬λ
¬¬λ
×

We shall indicate a subtableau by placing a ⇒ between the original tableau and its sub-

tableau. This works well enough for one or two tableau but will quickly become too com-

plex with more subtableau. In these cases, a more elaborate book-keeping system may be

adopted which connects the subtableau to their origin point on an earlier tableau. We shall

not need this here.

Example 20. 0vF λ.

¬λ

¬¬Tpλq

Tpλq

⇒ λ

¬Tpλq

⇒ ¬λ

...

Example 21. 0 ¬(Tpλq ∧ Tp¬λq).
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· · · ⇐ ¬λ

¬¬Tpλq

Tpλq

⇐ ¬¬(Tpλq ∧ Tp¬λq)

Tpλq ∧ Tp¬λq

Tpλq

Tp¬λq

⇒ λ

¬Tpλq

⇒ ¬λ

¬¬Tpλq

Tpλq

⇒ λ

¬Tpλq

⇒ · · ·

3.4. Equivalence. We now prove that each of the definitions of the minimal van Fraassen

fixed point are equivalent. First we state and prove the crucial lemma, which will allow us

to link the original definition ΓvF from the introduction to ΞvF . The following definition is

useful.

Definition 22. The positive complexity of a sentence ϕ ∈ SentLT , abbreviated κ(ϕ) is defined

by recursion as follows:

• κ(ψ ∧ χ) = max(κ(ψ), κ(χ)) + 1

• κ(¬(ψ ∧ χ)) = max(κ(ψ), κ(χ)) + 1

• κ(¬¬ψ) = κ(ψ) + 1

• κ(∀xψ) = κ(ψ(n)) + 1 for some/any n ∈ ω
• κ(¬∀xψ) = κ(¬ψ(n)) + 1 for some/any n ∈ ω

Lemma 23. ∀Ψ wvF Φ, V alΨ(χ) = 1 iff Φ 
vF χ.

Proof. (→) Suppose Φ 1vF χ. Then in any bridging tableau for χ and Φ there will be an open

branch B. It will suffice to show that there is some Ψ wvF Φ such that V alΨ(χ) = 0.

To construct the model, we take the domain ω and let the terms denote their corresponding

numbers. The arithmetic part of the signature is interpreted in the usual way. We then let

Ψ be the set of ϕ such that either: Tpϕq occurs on B; or ϕ is of the form (¬ψ) and ¬Tpψq
occurs on B. Since B is open, every instance of (AxT ) and (Ax¬T ) must be used, so we have

Tpζq and ¬Tpδq on B for all ζ, (¬δ) ∈ Φ. Thus Ψ wvF Φ.

The following claim suffices.

Claim. If σ is on B, then V alΨ(σ) = 1.

Proof. By induction on the positive complexity of sentences. For illustration, we do some of

the cases.

If σ is an arithmetic literal, then σ cannot be false in the standard model, thus V alΨ(σ) = 1.

If σ is of the form ϕ ∧ ψ, then both ϕ and ψ are on B via the tableau rule (∧). Then by

induction hypothesis, V alΨ(ϕ) = 1 and V alΨ(ψ) = 1; and thus, V alΨ(ϕ ∧ ψ) = 1.

If σ if of the form ¬(ϕ ∧ ψ), then either (¬ϕ) or (¬ψ) is on B. Assume the first case. Then by

induction hypothesis, V alΨ(¬ϕ) = 1 and V alΨ(¬(ϕ ∧ ψ)) = 1; similarly if (¬ψ) is on B. The

quantifier cases are similar.
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If σ is of the form Tpψq, then by definition, ψ ∈ Ψ and thus V alΨ(Tpψq) = 1. If σ is of the

form ¬Tpψq, the tableau rules ensure that Tpψq does not occur on B . Thus ψ /∈ Ψ and

V alΨ(¬Tpψq) = 1. �

(←) Suppose there is some Ψ wvF Φ such that V alΨ(χ) = 0. It will suffice to show that there

is a completed open branch in the tableau for χ. We shall do this in two stages. First we

shall construct a tableau T that makes no use of the (AxT ) and (Ax¬T ) rules. Then we

shall show how to find a particular open branch B in T which could not be closed using

applications of (AxT ) or (Ax¬T ).

We use Ψ as guide for the construction of an open branch B such that for every ϕ on B,

V alΨ(ϕ) = 1. The proof proceeds by induction on the length of branches in the tableau. We

look at one case for illustration. Suppose we come to a sentence of the form ¬(ϕ ∧ ψ). Then

by induction hypothesis, we have V alΨ(¬(ϕ ∧ ψ)) = 1. The tableau rules dictate that there

will be branches which fork into a ¬ϕ and a ¬ψ path. By the V al definition, V alΨ(¬ϕ) = 1 or

V alΨ(¬ψ) = 1; and thus, the branch can be continued by selecting one in which the formula

is evaluated to 1. Clearly, this will give us an open branch B.

Now suppose for reductio, that some application of the (AxT ) or (Ax¬T ) could close B. We

first observe that for all sentences ϕ on B, we have V alΨ(ϕ) = 1 by construction. Thus for all

sentences of the form Tpϕq or ¬Tpψq that occur on B, we have ϕ, (¬ψ) ∈ Ψ. But then since

Ψ wvF Φ, it is not possible to find a sentence in Φ which could close B. �

Proposition 24. If B ⊆ Γ and B 
vF χ, then Γ 
vF χ.

In order to prove the equivalence between the three van Fraassen supervaluation defini-

tions, we shall need to place a rank on a tree of tableau which form a proof of some ϕ. We

do this by considering an alternative method of notating the tableau. The change is merely

for bookkeeping purposes and is not particularly visible in the actual proof.

Instead of starting a subtableau on some branch B, we shall continue along the same

branch but tag the sentences that would have occurred on the subtableau with a flag

(some n ∈ ω) which distinguishes them from other sentences on that branch. To deal

with embedded subtableau we shall flag sentences with a sequence of natural numbers,

〈n1, ..., nm〉. Thus, we do not just place sentences ϕ on a branch but rather pairs of the form

ϕ, 〈n1, ..., nm〉. The truth rules thus become:

Tpψq, 〈n1, ..., nm〉

ψ, 〈n1, ..., nm, k〉

¬Tpψq, 〈n1, ..., nm〉

¬ψ, 〈n1, ..., nm, k〉

where k is is the first k ∈ ω such that ϕ, 〈n1, ..., nm, k〉 does not occur on the branch for any ϕ.

We shall call the tuple 〈n1, ..., nm, k〉 a flag. The rules for closure need to be slightly amended

such that a branch B closes when a sentence ϕ and ¬ϕ occur on B and both ϕ and ¬ϕ have

the same flag. Thus if we have ϕ, n and ¬ϕ, n on branch B, then B is closed. It is clear that
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the proof systems are equivalent. We shall call a tableau constructed in this way a flagged
tableau.

Definition 25. We let the vF -rank of ϕ, abbreviated ρvF (ϕ) be the least ordinal α such that

there is an order preserving map from the flagged tableau commencing with ϕ into α, if

`vF ϕ; and ∞ otherwise.

Using this notation, we may also extract from some tableau T a subtableau indexed by

〈n1, ..., nm〉 by removing all the sentence-indexes tagged by sequences which do not com-

mence with 〈n1, ..., nm〉.

We now prove the main theorem. The basic strategy is to use the bridging tableau system

as a means of setting up the induction step for the main tableau. Essentially, we are going

to use the sentences from the axiom pool of a bridging tableau to house the sentences we

could have already proved using a subtableau. Thus, the bridging tableau will form the

lever for the induction argument.

Theorem 26. The following are equivalent:

(1) ϕ ∈ ΓvF ;
(2) ϕ ∈ ΞvF ;
(3) `vF ϕ.

Proof. (3.→1.) By induction on the `vF -rank of the tableau. Suppose for all β < α we have

ρvF (¬ψ) = β ⇒ ψ ∈ ΓvF and ρvF (ψ) = β ⇒ (¬ψ) ∈ ΓvF

Now suppose ρvF (¬ϕ) = α; i.e., `vF ϕ and the closed tableau verifying this has vF -rank α.

Let

B+ = {¬ψ | Tpψq occurs in the tableau for ¬ϕ and a closed subtableau results from ψ}

B− = {ψ | ¬Tpψq occurs in the tableau for ¬ϕ and a closed subtableau results from ¬ψ}

Then clearly, B+ ∪ B− 
vF ϕ. Suppose (¬ψ) ∈ B+. Then since this means there is a closed

subtableau commencing with ψ, there is a β < α such that ρvF (ψ) = β. Thus, by induction

we have (¬ψ) ∈ ΓvF . Similarly, if ψ ∈ B−, we have ψ ∈ ΓvF . Thus B+ ∪ B− ⊆ ΓvF and by

Proposition 24, we have ΓvF 
vF ϕ; and by Lemma 23, we have ϕ ∈ ΓvF since ΓvF is a fixed

point.

Now suppose ρvF (ϕ) = α; i.e., `vF ¬ϕ and the closed tableau verifying this has vF -rank α+1.

The proof is similar to the previous case in that we show B+ ∩B− ⊆ ΓvF , except B+ and B−

are defined relative to a main tableau commencing with ¬¬ϕ rather than ϕ. We note that

for (¬ψ) ∈ B+, the closed subtableau commencing with ψ must be such that ρvF (ψ) = β < α

since the main tableau with vF -rank α+1 commenced with ¬¬ϕ and so the first rule applied

must have been (¬¬). Similarly for ψ ∈ B−.



Rev
isi

on

c ©
INFINITARY TABLEAU FOR SEMANTIC TRUTH 17

(1.→3.) By induction on the Γ-rank of sentences. Suppose that for all β ≤ α we have

ψ ∈ Γβ ⇒`vF ψ and that ϕ ∈ Γα+1. It suffices to show that `vF ϕ. By hypothesis, we know

that for all Ψ wvF Γα, V alΨ(ϕ) = 1. Thus by Lemma 23, Γα 
 ϕ. Let us call this tableau T
.

Now suppose we start the vF -tableau for ϕ and construct it the same way as T
 except that

applications of (AxT ) and (Ax¬T ) from T
 are not performed. Call this tableau TvF . Now

suppose for that some branch BvF is open in TvF . We claim that wherever this occurs it

could have been closed via a subtableau. Thus `vF ϕ.

The only way that BvF could have become closed while its counterpart B
 in T
 remained

open is if for some ψ both Tpψq and ¬Tpψq occur on some branch B
 but only one of them

occurs on BvF . But by definition of T
, we see that either ψ ∈ Γα or (¬ψ) ∈ Γα; i.e., exactly

one of them must have resulted from either the (AxT ) or (Ax¬T ) rules. Assuming the former

case, we then have `vF ψ by the induction hypothesis and thus a subtableau commencing

would ψ close. The latter case is similar.

(2.↔1.) This follows straightforwardly from Lemma 23. �

4. CANTINI SUPERVALUATION

We now discuss a second form of supervaluation as developed by Cantini in [4]. The usual

way of defining it was discussed in the introduction, but like van Fraassen supervaluation,

it can also be defined using a proof theoretic device. In this section, we shall construct a

bridging tableau system like the one from the beginning of the previous section. Then we

construct a tableau for the minimal fixed point and finally, we show that all three definitions

are equivalent.

4.1. Bridging tableau (
Ca).

4.1.1. Starting the tableau. To attempt to show that Φ 
Ca χ, we commence tableau by

placing ¬χ at the root of the tree.

4.1.2. Rules. We take the rules (∧), (¬∧), (¬¬), (∀), (¬∀), (AxT ) and (Ax¬T ).5

4.1.3. Closing conditions. A branch B is deemed to close if either:

• some sentence ϕ ∈ SentLT (i.e. including truth), both ϕ and ¬ϕ occur on B;

• some sentence ϕ ∈ SentLT , both Tpϕq and Tp¬ϕq; or

• a false arithmetic sentence occurs on B.

The key difference from the van Fraassen system is the second condition, which demands

that we close a branch if it exhibits a truth extension that is, in some sense, inconsistent.

If all the branches of the tableau are closed, then that tableau is closed. We abbreviate this

as Φ 
Ca χ.

5Recall the rules (AxT ) and (Ax¬T ) allow us to exploit the set of sentences Φ.
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4.2. Main tableau (`Ca).

4.2.1. Starting condition. We commence a tableau for χ and Φ by placing the sentence ¬χ
at the root of the tree.

4.2.2. Rules. We take the rules (∧), (¬∧), (¬¬), (∀), (¬∀) and (Sub).

4.2.3. Closing conditions. A branch B in a tableau T for some χ is closed if either:

• for some sentence ϕ ∈ SentLT and its negation ¬ϕ occurs on B;

• for some sentence ϕ ∈ SentLT both Tpϕq and Tp¬ϕq occur on B;

• a false arithmetic sentence occurs on B; or

• a truth-subtableau for B closes.

If all the branches of the tableau close, then the tableau is closed and we write Φ `Ca χ.6

4.3. Examples.

Example 27. `Ca ¬(Tpλq ∧ Tp¬λq).

¬¬(Tpλq ∧ Tp¬λq)

(Tpλq ∧ Tp¬λq)

Tpλq

Tp¬λq
×

Example 28. 0Ca ¬(TpTpλqq ∧ Tp¬λq).

. . . λ ⇐ ¬λ

¬¬Tpλq

Tpλq

⇐ ¬¬(TpTpλqq ∧ Tp¬λq)

TpTpλqq ∧ Tp¬λq

TpTpλqq

Tp¬λq

⇒ Tpλq ⇒ λ

¬Tpλq

⇒ ¬λ . . .

6For readers familiar with Cantini’s [4], similarities may be discerned between Cantini’s infinitary Tait calculus,
Definition 4.1, and the tableau system discussed above. Cantini’s AX.3 does much the same work as the second
of our closure conditions above. Moreover, Cantini’s (T ) and (¬T ) rules play a similar role to the subtableau used
in the system above. The fact that we are using a subtableau roughly corresponds to Cantini’s demand that proofs
of sentences of the form Tpϕq and ¬Tpϕq must be established without recourse to auxiliary assumptions.
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4.4. Equivalence. We now establish that the proof theory is sound and complete with re-

gard to fixed point definition provided in Section 1. First we establish that our bridging

tableau links with the jump function used in the introduction.

Lemma 29. For all Ψ wCa Φ, V alΨ(ϕ) = 1 iff Φ 
Ca ϕ.

Proof. (→) Similar to 23. Suppose Φ 1Ca ϕ and use an open branch B to show that there is

some Ψ wCa Φ such that V alΨ(ϕ) = 0. The only difference is that Ψ must also be consistent.

Suppose it was not. Then for some ψ both Tpψq and Tp¬ψq must occur on B contradicting

the fact that it is open. (←) Similar to Lemma 23. �

Theorem 30. ϕ ∈ ΓCa iff `Ca ϕ.

Proof. (←) By induction on `Ca-rank. Suppose that for all β < α we have `βCa ψ ⇒ ψ ∈ ΓCa

and that `αCa ϕ. It suffice to show that ϕ ∈ ΓCa. Similar to Theorem 26, except here we

exploit Lemma 29.

(→) Similar to Theorem 26. �

4.5. Other truth definitions.

4.5.1. Strengthening consistency. The notion of consistency used for Cantini supervalua-

tion is exceedingly weak. To see this, consider the sentence ϕ := λ ∧ λ. This is obviously

logically equivalent to λ. However, while ¬Tpλq ∨ ¬Tpλq ∈ ΓCa, it is not the case that

¬Tpϕq ∨ ¬Tp¬λq is in ΓCa. This is because the notion of a Ca-expansion does not recognise

logical equivalence. It simply rules out those expansions which contain some sentence ϕ

and its negation ¬ϕ: it only respects the syntactic form. Thus, it seems like it would be

more interesting to consider expansions which are genuinely logically consistent.

Definition 31. Ψ is a Con-expansion of Φ, abbreviated Ψ wCon Φ, if

• Ψ ⊇ Φ; and

• Ψ is logically consistent.

The rest of the definition is then carried out in the usual way and we denote the resultant

truth extension ΓCon.

To provide a tableau system for this, we replace the new rule added to the Cantini truth

definition with the following. At any point in the construction of a branch B, a subtableau

may be formed by taking a collection B of sentences of the form Tpϕq and completing an

ordinary first order logic tableau commencing with B. Such a tableau system can be found

in [15] or [13]. If this tableau closes, then B is deemed to have closed.

Finally, we might also consider expansions that are not only consistent but complete.7

7We think of this as an epistemicist approach to truth on the following basis. We start by taking it that there is
some fixed extension of the truth predicate which is both consistent and complete. We take it that while the real
extension is, so to speak, out there, there is no way for us to come to know it. So the holder of such a theory is an
epistemicist in the sense that they believe that the truth predicate, metaphysically speaking, has a fixed extension;
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Definition 32. Ψ is an Ep-expansion of Φ, abbreviated Ψ wEp Φ if

• Ψ ⊇ Φ; and

• for all ψ, ψ ∈ Φ iff (¬ψ) /∈ Φ.

We modify the tableau system by allowing us to pull sets of negated truth sentences from

the tree and start subtableau using them.

5. Π1
1 SETS AND COMPLEXITY

In this section we use the tableau system to give simple and transparent proofs:

• that the definitions provided above are Π1
1-complete; and

• that the height of Kripke’s fixed point is ωCK1 (the supremum of the recursive ordi-

nals).

The first result is not new, having first been claimed by Kripke and presented by Burgess

in [3]. However, the manner in which the result is established is informative because it

clearly illustrates that there is a sense in which our tableau definition just is one of the

canonical representations of a Π1
1-complete set. Moreover the result established below can

be easily generalised to apply to each of the other tableau systems proposed in this paper.8

The second result is a well-known folk theorem from Spector, however, the usual proofs in

the literature require a significant detour through generalised recursion theory, admissible

set theory or proof theory: see [14] page 78; [1] pages 173 and 210; and [12] page 94.9 We

provide a direct proof for the strong Kleene fixed point which, while somewhat technical, is

self-contained. While the proof of complexity is relatively straightforward, it is anticipated

that the reader may want to do some ancillary scribbling for the calculation of the fixed

point.

The following two theorems may help motivate the importance of Π1
1-sets from the point of

view of descriptive set theory and generalised recursion theory.

Theorem 33. (Gödel) For all recursively enumerable subsets A ⊆ ω, there is a Σ1 formula ϕ

of set theory such that
n ∈ A⇔ Lω |= ϕ[n].

This is just a restatement of the result that recursively enumerable functions can be rep-

resented in the language of arithmetic by formulae that use a single unbounded existential

quantifier (see, for example, [2] page 206).

but we are not in an epistemic position to grasp it. However, even with only these constraints we can still say a
great deal about what is true. By supervaluating over all of the extensions which are complete and consistent we
are assured of obtaining sentences which are in the real extension.
8The easiest way to make this generalisation is by avoiding the subtableau and adopting the flagged tableau
discussed above Definition 25.
9The techniques of the next section can be used to obtain more general results overlapping these areas of math-
ematical logic. If the reader is interested in further developing these skills, Barwise’s framework of admissible set
theory is probably the most versatile. However, a background in the constructible hierarchy [5] and descriptive
set theory [11] is also helpful.
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Theorem 34. (Spector-Gandy) For all Π1
1 subsets A ⊆ ω there is a Σ1 formula ϕ of set theory

such that
n ∈ A⇔ LωCK1

|= ϕ[n]

where ωCK1 is the supremum of the recursive well-orderings.

Thus there is a sense a Π1
1 set plays much the same role as a recursively enumerable set:

it is a generalisation of that concept. LωCK1
is the smallest chunk of set theory in which we

can execute our infinitary proofs. Similarly Lω is the smallest chunk of set theory in which

our ordinary finitary proofs can be executed.

We shall use α, β for functions from ω to ω. Let ω<ω denote the set of finite sequences of

natural numbers.10 Let 〈·〉 : ω<ω ∼= ω be a recursive bijection coding finite sequences of

natural numbers using the naturals. We write 〈1, 2, 3〉 = 5 if 5 is the code number of the

sequence consisting of 1, 2 and 3. Write n(i) for the ith element of the sequence coded by

n. Let ·̄ : ω ∼= ω<ω be the inverse of 〈·〉. Let lh : ω → ω be a function taking the code of a

sequence to its length; i.e., for n ∈ ω, lh(n) is the length of n̄. Let ·a· : ω×ω ∼= ω be a function

which takes the codes of two sequences and returns the code of the first concatenated with

the second.11 For α ∈ ωω, we shall write α|n to mean the restriction of α ∈ ωω to its first

n values; and for n ∈ ω we shall write n̄|m to denote the restriction of the finite sequence

n̄ ∈ ω<ω to its first m values assuming it has that many.

A tree S on ωk is a set of k-tuples of finite sequences of natural numbers (i.e. S ⊆ (ω<ω)k)

such that:

• for all (n̄1, ..., n̄k) ∈ S, lh(ni) = lh(n1) for 1 ≤ i ≤ k; and

• if (n̄1, ..., n̄k) ∈ S and i < lh(n1), then (n̄1|i, ..., n̄k|i) ∈ S.

We shall say that the function α represents the tree S ⊆ (ω<ω)k if

∀n1, ..., nk((n̄1, ..., n̄k) ∈ S ↔ α(〈n1, ..., nk〉) = 0).

A tree S is recursively enumerable if it is represented by a partial recursive function. We

shall now consider a particular type of tree on ω2. Suppose S ⊆ (ω<ω)2 is a tree such that

for all (n̄, m̄) ∈ S we have n(i) = n(1) for all i ≤ lh(n). So we always have a constant function

in the first component. This means we lose no information if we take S and form the set

S′ = {(k, m̄) | ∃i ≤ lh(m)(k = n(i) ∧ (n̄, m̄) ∈ S} ∪ {(k, 〈̄〉)}.

We call such a set a p-tree. Given a recursive p-tree S we let Sn = {m̄ | (n, m̄) ∈ S}.

10Note that in this paper we also use α, β to represent ordinals, but we shall take care to ensure that this causes
no confusion.
11We note that the usual practice when defining length and concatenation functions for sequences would be to
define them on the sequences themselves rather than their codes [11]. However, given our need to articulate these
facts in the language of arithmetic, this has the effect of making the syntax unpleasantly cumbersome.
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Definition 35. (See [9] page 35) A ⊆ ω is Π1
1 if there is a recursively enumerable p-tree S

such that n ∈ A iff

∀α∃m (n, α|m) /∈ S.

Remark 36. In other words n ∈ A iff the tree Sn on ω is well founded. Thus to check whether

n ∈ A, we need to show that there are no infinite paths through the tree Sn. We observe that

the set of indices for well-founded recursive trees is a canonical example of a Π1
1-complete

set. It is also worth noting that we could have demanded that the p-tree S was recursive

(and not merely recursively enumerable), but the condition above is more convenient for

our purposes.

Definition 37. A ⊆ ω is Π1
1-complete if A is Π1

1 and A is Π1
1-hard where that means that for

any Π1
1, B ⊆ ω, there is a recursive function f such that

n ∈ B ↔ f(n) ∈ A.

There is a sense in which a Π1
1-complete set is a universal machine for all of the Π1

1 sets.

For any Π1
1 set there is a simple means of figuring out its contents using a Π1

1-complete set.

The proof of the theorem below illustrates this. This result can be generalised to apply to

any tableau system possessing a sufficiently similar truth rule, which is most of them.

5.1. ΓsK is a Π1
1-complete set.

Theorem 38. {pϕq | `sK ϕ} = A is Π1
1-complete.

Remark 39. Showing that A is Π1
1 is quite straightforward. In order to verify Π1

1-hardness,

our strategy will be to use our infinitary tableau to track infinite potential paths through

the trees which represent Π1
1 sets. We shall use the diagonal lemma to construct a sentence

such that the tableau theory forces us to play out all of the possible paths through the tree.

Thus if the tableau closes, then none of the paths could have been infinite and the tree is

well founded. The resultant tableau is, in some sense, the same as the recursive tree; and

once this is seen, the result is obvious. The work of the proof is just the task of making the

correspondence explicit.

Proof. (of Theorem 38) It should be clear that a tableau for ϕ can be construed as a recur-

sively enumerable tree Spϕq.12 Moreover, with a slight tweak, ϕ′s being in A is reducible to

the well-foundedness of Sp¬ϕq.13 Thus, A is Π1
1.

We now verify that A is Π1
1-hard. Take an arbitrary Π1

1 set, B. By Definition 35, there is

some recursively enumerable p-tree S such that

n ∈ B ↔ Sn is well founded.

12See the proof of Lemma 48 for more detail.
13The tweak required is to ensure that an infinite branch ensues when a branch is not closed. For example, the
branch consisting of just 0 = 0 is open but not infinite. To remedy this, we just conjoin the sentence ∀x x = x

to the sentence at the top of the tableau. This new sentence has no effect on the outcome of the tableau but will
ensure that an open branch is infinite.
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By the diagonal lemma,14 let ψ(n,m) be such that

ψ(n,m)↔ ((n, m̄) ∈ S → ∀i Tpψ(n,ma〈i〉)q).

Let f : ω → ω be the recursive function such that

n 7→ pψ(n, 〈〉)q.

It suffices to show that

f(n) ∈ A ⇔ `sK ψ(n, 〈〉) ⇔ Sn is well founded.

The first (⇔) follows by definition, so we concentrate on the second.

(⇒) Suppose Sn is not well founded. Then there is some α such that for all m, (n, α|m) ∈
S. Fix such an α. It will suffice to show that there is an open branch B in the tableau

commencing with ¬ψ(n, 〈〉). We construct B by recursion and show by induction that:

• for all m ∈ ω, Bm is not closed; and

• that B =
⋃
m Bm is fully discharged.

This then gives us an open branch which suffices for the proof.

Let B0 be the branch (indicated in bold) of the tableau commencing as follows:

¬ψ(n, 〈〉)

¬((n, 〈̄〉) ∈ S → ∀iT pψ(n, 〈i〉)q)

(n, 〈̄〉) ∈ S

¬∀i(T pψ(n, 〈i〉)q)

�
��

�
��

�
��
�

H
HH

H
HH

H
HH

H

¬Tpψ(n, 〈0〉)q ¬Tpψ(n, 〈1〉)q . . . ¬T pψ(n, 〈α|1〉)q . . .

The tree branches infinitely here, so we must eventually come to the first initial segment of

α: α|1. Now suppose we are given Bm. Bm+1 is then obtained by extending the branch along

the bold part of the following tableau.

14We are being a little loose with the notation here. First, we shall be somewhat relaxed about the use of numerals.
Thus, we shall mostly just write n instead of the more correct n. Second, we note that it is essential that n,m
and i are free in the diagonal sentence above. We also ought to define a recursive function pψ(·, ·a〈·〉)q : ω3 → ω

which takes m,n and i and returns the code number of the formula ψ(m,na〈i〉) where the numerals for m,n and
i have been simultaneously substituted into the three distinct variable places in ψ(·, ·a〈·〉) respectively. We may
then represent such a function using the language of arithmetic. The reader will see that this is a simple, albeit
tedious, task. Finally, (n, m̄) ∈ S is not part of the object language. However, since S is recursively enumerable
and m represents the sequence m̄, there is no harm in this shorthand.
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¬ψ(n, 〈α|m〉)

¬((n, α|m) ∈ S → ∀iT pψ(n, 〈α|m〉a〈i〉)q)

(n, α|m) ∈ S

¬∀i(T pψ(n, 〈α|m〉ai)q)

��
�
��

�
��

�
��

��

HH
HH

HH
H

HH
H

HH
H

¬Tpψ(n, 〈α|m〉a〈0〉)q ¬Tpψ(n, 〈α|m〉a〈1〉)q . . . ¬T pψ(n, 〈α|m+1〉)q . . .

Again, at every level, we must eventually come to the appropriate initial segment of α: α|m+1.

In this manner, we use α as a guide for the construction of the infinite open branch.

By construction, we see that for all m every sentence on Bm is discharged on the branch

Bm+1. The only truth free sentences on B are of the form (n, α|m) ∈ S for some m, and each

of these are true by our assumption that α is an infinite path through S; thus B is not

closed. Thus B =
⋃
m Bm is open.

(⇐) Suppose 0sK ψ(n, 〈〉). Then for any tableau commencing with ¬ψ(n, 〈〉) there will be an

open (and infinite) branch. It will suffice to find an α such that for all m, (n, α|m) ∈ S. We

use an open branch B of a tableau T to do this. We recursively define a particular tableau

T as follows:

Let T0 be the tableau commencing with ¬ψ(n, 〈〉) and proceeding as follows:

¬ψ(n, 〈〉)

¬((n, 〈̄〉) ∈ S → ∀iTpψ(n, 〈i〉)q)

(n, 〈̄〉) ∈ S
¬∀i(Tpψ(n, 〈i〉)q)

�
��

��

H
HH

HH

¬Tpψ(n, 〈0〉)q ¬Tpψ(n, 〈1〉)q . . .

At stage m we have a tableau Tm such that the final point on each branch is a sentence

of the form ¬Tpψ(n, j)q where j̄ is a sequence of length m + 1. We extend each of these

branches in the following manner:
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¬ψ(n, j)

¬((n, j̄) ∈ S → ∀iTpψ(n, ja〈i〉)q)

(n, j̄) ∈ S
¬∀i(Tpψ(n, ja〈i〉)q)

�
��

��

H
HH

HH

¬Tpψ(n, ja〈0〉)q ¬Tpψ(n, ja〈1〉)q . . .

Call the result Tm+1. Let T be the limit of the Tm’s. Now fix an (infinite) open branch B from

T . We use the sentences on B of the form (n, j) ∈ S to define the appropriate α. Formally,

we let α ∈ ωω be such that

α = {(i, k) | ∃m̄ ∈ ω<ω ‘(n, m̄) ∈ S’ occurs on B and ∃i < lh(m) m(i) = k}.

Clearly α ∈ ωω and α is a path through the tree Sn. Thus Sn is not well-founded. �

We now use the tableau from the proof above to make a definition that will be useful in the

next section.

Definition 40. Let S ⊆ ω<ω be an arithmetic tree. Let S† = {(0, 〈n1, ..., nk〉) ∈ ω×ω<ω | 〈n1, ..., nk〉 ∈
S}. Using the diagonal lemma in the same way as we did in the proof above, let ψS(n,m) be

such that

ψS(n,m)↔ ((n, m̄) ∈ S† → ∀i TpψS(n, m̄a〈i〉)q)).

Let the canonical tableau for S be the tableau commencing with ¬ψS(0, 〈〉) and constructed

exactly as in the second half of the proof of Theorem 38.

Note that the “0” plays no real role. It is just a place filler that allows us to re-use much the

same tableau as in Theorem 38. Also note that below, we shall mostly be concerned with

trees S ⊆ ω<ω that are recursive.

Proposition 41. S is well-founded iff `sK ψS(0, 〈〉) (i.e., the canonical tableau for S is closed).

5.2. Fixed point height. We now prove that the fixed point height for the strong Kleene

truth definition is ωCK1 . Our strategy is to confirm that the ranks of the tableau proofs have

a supremum of ωCK1 and use that fact to show that the closure ordinal for Kripke’s original

definition is also ωCK1 (i.e., Definition 3). There is a sense in which we almost have the

result in our grasp from the beginning. We note the following fact can be easily found or

established [7, 14, 9].

Fact 42. The supremum of the tree-ranks of trees on ω<ω of complexity between ∆0
1 (recursive)

and Σ1
1 is ωCK1 : the supremum of the recursive ordinals.

It should be pretty clear (although we’ll discuss it further) that each of our tableaux is

essentially a recursive tree. Thus, the tableau-ranks of our tableau will be bounded by
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ωCK1 . Moreover, using our canonical tableau from the proof of Theorem 38, it is easy to see

that for every recursive tree there will be a tableau with much the same rank - in fact, a

little greater. Thus, the recursive ordinals are exhausted and we get a lower bound of ωCK1

too.

This sketch does not, however, give us our target result. We want to calculate the closure

ordinal of Kripke’s original definition from [8]. Nonetheless, this sketch does tell us that ωCK1

is the natural conjecture and should guide our intuitions through the proof. In making all

this precise, we shall establish a number of other comparative results. To get a clearer idea

of the strategy, the reader may prefer to work backwards from the main result, Corollary

55.

In this section, we shall make use of a restricted form of our tableau in which we remove the

closure condition which states that a branch containing a sentence ϕ ∈ L and its negation

is closed. This has no effect on the completeness of the system. We shall also assume

that we have a uniform recursive procedure for constructing tableau. This is just a way of

ordering the moves so that we can associate with each sentence a particular tableau. For

each ϕ we shall call this the standard tableau for ϕ.

Given that the stages of Kripke’s inductive definition measure, loosely speaking, the number

of truth predicates that are prefixed to a sentence, it will be useful to make a similar

measure of truth-rank for the tableau system.

Definition 43. Let T be a strong Kleene tableau and let ~ϕ, ~ψ be finite sequences of sentences

which are (not necessarily proper) initial segments of branches in T . Let

~ϕ ≺TT ~ψ ↔ ~ϕ is a proper initial segment of ~ψ and

a truth rule (i.e., (T ) or (¬T )) is applied in the part of ~ψ extending ~ϕ

We first define the truth-rank of some finite branch ~ϕ in tableau T by recursion with a

function ρTT : (SentLT )<ω → On such that:

ρTT (~ϕ) = sup{ρTT (~ψ) + 1 | ~ϕ ≺TT ~ψ}.

The truth-rank of a tableau T is ρTT (〈ϕ〉) where ϕ is at the top of the tableau. We let the

truth-rank of a sentence ϕ, ρT (ϕ), be the truth-rank of the standard tableau commencing

with ϕ if such exists; otherwise ∞.

Remark 44. Observe that the truth-rank of a tableau is a coarser grained measure than

its tableau-rank; i.e., the tableau-rank of a tableau will be greater than or equal to its

truth-rank.

Proposition 45. For all ϕ ∈ SentLT , ρT (ϕ) ≤ ρTab(ϕ).15

15For a couple of examples, we note that: ρT (Tp0 6= 0q) = 1 while ρTab(Tp0 6= 0q) = 2; and ρT (∀nTapp(n)) =

ρTab(∀nTapp(n)) = ω. The discrepancy in the finite cases is caused by a slightly eccentric difference between our
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We now show that the truth-ranks of tableau exhaust the recursive ordinals and are

bounded by their supremum. We let the tree-rank of a tree S ⊆ ω<ω be defined as follows.

Let ρSTree : ω<ω → On be defined by recursion for s ∈ S such that

ρSTree(s) = sup{ρSTree(t) + 1 | t extends s in S}.

We let ρTree(S) = ρSTree(〈〉).

Remark 46. Note that we now have five different ranking functions in play:

(1) ρΓ (Kripke’s original - see Definition 15);

(2) ρΞ (for the finer grained jump - see Definition 15);

(3) ρTab (for tableau - see Definition 15);

(4) ρT (for calculating truth usage in a tableau - see Definition 43); and

(5) ρTree (for trees on ω<ω - see remarks immediately above).

Lemma 47. For any well-founded recursive tree S ⊆ ω<ω of tree-rank α, there is a sentence
ϕ ∈ SentLT such that:

ρT (ϕ) = ρTree(S).

Proof. Let S ⊆ ω<ωbe a well-founded recursive tree. Then it can be seen from the proof of

Theorem 38, that the canonical tableau T for S commencing with ¬ψS(0, 〈〉) is such that

ρT (¬ψS(0, 〈〉)) = ρTree(S).

We leave the proof for the reader noting that it is an induction on the tree-ranks of recursive

trees. �

Lemma 48. For all ϕ ∈ SentLT the standard strong Kleene tableau Tϕ for ϕ is isomorphic to
a recursively enumerable tree S ⊆ ω<ω: i.e., there is a structure preserving bijection between
Tϕ and S as trees.

Proof. Tϕ may be represented by a set of sequences of sentences closed under initial seg-

ments; i.e., Tϕ is a tree on (SentLT )<ω. By using our coding function p·q : SentLT
∼= ω, we

may transform Tϕ into a tree S ⊆ ω<ω. Moreover, if we consider a sequence s ∈ ω<ω we

see (by appeal to the Church-Turing thesis) that a Turing machine could be devised which

verified whether s ∈ S; thus, S is recursively enumerable. �

Theorem 49. The supremum of the truth ranks of ϕ ∈ SentLT is ωCK1 .

Proof. (Lower bound) By Fact 42 and Lemma 47, we see that the recursive ordinals are

exhausted by the truth-ranks of sentences ϕ ∈ SentLT . (Upper bound) By Lemma 48, we

definition of ρTab and ρT . An equivalent definition of ρTab can be provided which has much the same form as
the definition of ρT above. When defining ≺T

Tab we ask for mere proper extensions, rather than also demanding
that a truth-rule has been applied. We then define ρTTab in the same way. However, when we come to define the
tableau-rank of the tableau, we take the rank of a point immediately above the root of the tableau: ρTTab(〈〉). This
is required for the equivalence, but not convenient below. We leave establishing their equivalence as an exercise
for the reader who may wish to consult [9]
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see for any sentence ϕ ∈ SentLT , we may find a recursively enumerable tree S which is

isomorphic as a tree to the tableau Tϕ for ϕ ; thus, ρTree(S) = ρTab(ϕ). Moreover, it is clear

by Proposition 45 that ρTab(ϕ) ≥ ρT (ϕ). Thus, for every sentence ϕ ∈ SentLT there is a

recursively enumerable tree S such that ρTree(S) ≥ ρT (ϕ). Fact 42 then tells us that ωCK1 is

an upper bound on the truth-rank of sentences. �

We shall exploit this fact about truth-ranks to fix the closure ordinal for Kripke’s inductive

definition. We now show that there is a sense in which the T -rank of a sentence is always

greater than its Γ-rank. We shall exploit this to put an upper bound on the Γ-ranks of

sentences.

Lemma 50. For all ϕ ∈ Γ+
sK , ρΓ(ϕ) ≤ ρTab(¬ϕ) + 1.16

Proof. We show that for all ϕ ∈ Γ+
sK :

(1) ρTab(¬ϕ) + 1 ≥ ρΞ(ϕ); and

(2) ρΞ(ϕ) ≥ ρΓ(ϕ).

(1.) By induction on tableau rank. We suppose that for all β < α if ρTab(¬ψ) = β, then

ρΞ(ψ) ≤ ρTab(¬ψ) + 1. Suppose that ρTab(¬ϕ) = α. We show that for all the ways of forming

such a closed tableau, ρΞ(ϕ) ≤ ρTab(¬ϕ) + 1.

Suppose ϕ is a true arithmetic atomic sentence. Then ρTab(¬ϕ) = 1 and ρΞ(ϕ) = 1. Thus

ρTab(¬ϕ) + 1 ≥ ρΞ(ϕ).

Suppose ϕ := ¬¬ψ. Then ρTab(¬ϕ) = ρTab(¬¬¬ψ) = ρTab(¬ψ) + 1, and by the induction

hypothesis we have ρΞ(ψ) ≤ ρTab(¬ψ) + 1. Thus

ρTab(¬¬¬ψ) + 1 = (ρTab(¬ψ) + 1) + 1

≥ ρΞ(ψ) + 1

= ρΞ(¬¬ψ).

Suppose ϕ := ψ ∧ χ. By the induction hypothesis we have ρΞ(ψ) ≤ ρTab(¬ψ) + 1 and ρΞ(χ) ≤
ρTab(¬χ) + 1. Then we see that,

ρTab(¬(ψ ∧ χ)) + 1 = sup{ρTab(¬ψ) + 1, ρTab(¬χ) + 1}+ 1

≥ sup{ρΞ(ψ), ρΞ(χ)}+ 1

= ρΞ(ψ ∧ χ).

Suppose ϕ := ¬(ψ ∧ χ). Then since the tableau commencing with ¬¬(ψ ∧ χ) is closed, it can

be seen that for some ζ ∈ {ψ, χ}, ρTab(¬¬(ψ∧χ)) ≥ ρTab(¬¬ζ)+1. It is here that we require the

16The +1 on the right hand side is caused by a discrepancy between the treatment of limit ordinals in ranking
tableau and running Kripke’s inductive definition: no sentence has Γ-rank β for β a limit ordinal.
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restriction on the closure conditions in the standard tableau.17 Without loss of generality,

suppose ψ is such a ζ. Then using the induction hypothesis, we see that

ρTab(¬¬(ψ ∧ χ)) + 1 ≥ (ρTab(¬¬ψ) + 1) + 1

≥ ρΞ(¬ψ) + 1

≥ ρΞ(¬(ψ ∧ χ)).

Suppose ϕ := ∀xψ(x). Then using the induction hypothesis we see that

ρTab(¬∀xψ(x)) + 1 = sup{ρTab(¬ψ(n)) + 1 | n ∈ ω}+ 1

≥ sup{ρΞ(¬ψ(n)) | n ∈ ω}+ 1

= ρΞ(∀xψ(x) | n ∈ ω}.

Suppose ϕ := ¬∀xψ(x). Then since the tableau commencing with ¬¬∀xψ(x) is closed, it can

be seen that there is some n ∈ ω such that ρTab(¬¬∀xψ(x)) ≥ ρTab(¬¬ψ(n)) + 1. Fix such an

n. Then using the induction hypothesis we have:

ρTab(¬¬∀xψ(x)) + 1 ≥ (ρTab(¬¬ψ(n)) + 1) + 1

≥ ρΞ(¬ψ(n)) + 1

≥ ρΞ(¬∀xψ(x)).

Suppose ϕ := Tpψq. Then

ρTab(¬Tpψq) + 1 = (ρTab(¬ψ) + 1) + 1

≥ ρΞ(ψ) + 1

= ρΞ(Tpψq).

Suppose ϕ := ¬Tpψq. Then

ρTab(¬¬Tpψq) + 1 = (ρTab(¬¬ψ) + 1) + 1

≥ ρΞ(¬ψ) + 1

= ρΞ(¬Tpψq).

(2.) By induction on Ξ-rank. We suppose that for all β ≤ α if ψ ∈ Ξβ+1\Ξβ, then ψ ∈ Γ+
β+1.

We then suppose that ϕ ∈ Ξα+1\Ξα. We must show that ϕ ∈ Γ+
α+1. It will suffice to consider

the ways that ϕ could have entered Ξα+1.

17To see why this is the case, let ϕ be the sentence 0 6= 1 ∧ 0 = 1 and consider the tableaux for ϕ ∧ ¬ϕ which
respectively do and do not include the inconsistency closure rule. With the rule, the former tableau has rank 3;
but without that closure rule, the other tableau has rank 5 (assuming the obvious ordering of moves). However,
the tableau for the first conjunct ϕ has rank 3; thus, with the inconsistency closure condition the claim above
is violated. We leave it to the reader to satisfy themselves that the standard tableau - which omits this closure
condition - satisfies the claim. Similar remarks apply to the ¬∀ case.
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(¬¬) Suppose that ϕ := ¬¬ψ. Then we can see that it must be the case that ψ ∈ Ξγ+1\Ξγ
where α = γ + 1.18 Then by induction hypothesis, we see that ψ ∈ Γ+

γ+1. Thus V alΓγ (ψ) =

V alΓγ (¬¬ψ) = 1; and so (¬¬ψ) ∈ Γ+
γ+1 ⊆ Γ+

α+1.

The other logical cases are similar, so we conclude by looking at the truth cases.

(T ) Suppose ϕ := Tpψq. Then it must be the case that ψ ∈ Ξγ+1\Ξγ where α = γ + 1.

Then by induction hypothesis, we see that ψ ∈ Γ+
γ+1. Thus, V alΓγ+1

(Tpψq) = 1; and so

(Tpψq) ∈ Γ+
γ+2 = Γ+

α+1.

(¬T ) Suppose ϕ := ¬Tpψq. Then it must be the case that (¬ψ) ∈ Ξγ+1\Ξγ where α = γ +

1. By induction, we see that (¬ψ) ∈ Γ+
γ+1 and so it can be seen that ψ ∈ Γ−γ+1. Thus,

V alΓγ+1(Tpψq) = 0, which means that V alΓγ+1(¬Tpψq) = 1; and so, (¬Tpψq) ∈ Γ+
γ+2 = Γ+

α+1.

�

This gives us an upper bound on the strong Kleene fixed point.

Corollary 51. The height of the strong Kleene fixed point is ≤ ωCK1 .

Proof. By Lemma 50, we see that the Γ-rank of any sentence ϕ ∈ Γ+
SK is less than its

tableau-rank +1. Since Lemma 48 and Fact 42 tell us that the tableau ranks are bounded

by a limit ordinal ωCK1 , the result follows. �

Finally, we need to show that the recursive ordinals are exhausted by the Γ-ranks of sen-

tences. To do this we introduce a bridging tableau for the strong Kleene system. We

introduce this for similar reasons as we did in the equivalence proofs for the supervalua-

tion systems. The bridging tableau allows us to cordon off that part of an ordinary tableau

which takes us up to the first application of the truth rules. With this in hand, we have

something much closer to Kripke’s original jump function and a useful tool for the exe-

cution of the inductive proofs that follow. The system is very similar to the van Fraassen

bridging tableau except that we introduce a new predicate U to the language.

5.2.1. Starting conditions (
sK ). To attempt to show that Φ 
sK χ, we commence the tableau

by placing ¬χ at the root.

5.2.2. Rules (
sK ). We take the rules (∧), (¬∧), (¬¬), (∀) and (¬∀). These are just the connec-

tive rules and quantifier rules from Section 2.2.2.

In place of the truth rules, we add the following axiom rules. Given a set of axioms Φ we

may apply either of the rules below at any point in the construction of a branch.

(AxU )

Upϕq

(Ax¬U )

¬Upϕq
where ϕ ∈ Φ+ where ϕ ∈ Φ−

18Note that α could not be a limit ordinal since nothing new is added in the limit stages of the Ξ construction.
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Remark 52. We might think of this new predicate U as the official truth, while T is merely

provisional. This allows us to avoid problems with pathological sentences like the liar

sentence.

5.2.3. Closing conditions (
sK ) . A branch B closes if either:

• for some sentence ϕ, ¬Tpϕq and its negation Upϕq occurs on B;

• for some sentence ϕ, Tpϕq and its negation ¬Upϕq occurs on B;

• for some sentence ϕ, Upϕq and its negation ¬Upϕq occurs on B; or

• a false arithmetic sentence occurs on B.

If all of the branches in the tableau commencing with ¬ψ and axioms 〈Φ+,Φ−〉 close, then

the tableau is closed and we write 〈Φ+,Φ−〉 
sK ψ.

Lemma 53. 〈Φ+,Φ−〉 
sK ψ iff V al〈Φ+,Φ−〉(ψ) = 1.

Remark. The proof is very similar to that of Lemma 23, although care needs to be taken to

deal with the cases when the valuation function is undefined.

Lemma 54. For any recursive tree S ⊆ ω<ω there is a sentence ϕ ∈ SentLT whose Γ-rank is
greater than or equal to the tree-rank of S.

Proof. Let S† = {(0, m̄) | m̄ ∈ S} and ψS(n,m) be as described in Definition 40; and let T
be the canonical tableau commencing with ¬ψS(0, 〈〉). We first claim that the ψS(0, 〈〉) has

Γ-rank greater than or equal to the truth rank of T .

Before we commence the main business of the proof, we make a couple of useful observa-

tions about the canonical tableau. It should be clear that every sentence that appears in

the tableau appears only once. Thus, we may abuse our rank notation and consider the

truth-rank of sentences in T rather than the truth-ranks of finite sequences of sentences.

We shall thus write ρTT (ψS) to mean the truth-rank of ψ in the tableau T .

We also note that the canonical tableau T1 for ¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉) is exactly the

same as that part of the canonical tableau T2 for

¬ψS(0, 〈m1, ...,mp〉)

which proceeds from the point ¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉) occurring in T2. We assume that

¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉) occurs in T2; i.e., the branch has not closed before it gets the

chance to be added. Moreover, it can easily be seen that

¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉)

has the same truth-rank regardless of which tableau we calculate it in; i.e.,

ρT1T (¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉)) = ρT2T (¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉)).

We can thus ignore the tableau superscripts and just write ρT (¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉))
for sentences of the form ¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉) to mean ρTT (¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉))
for some canonical tableau T in which ¬ψS(0, 〈m1, ...,mp, n1, ..., nk〉) occurs.



Rev
isi

on

c ©
INFINITARY TABLEAU FOR SEMANTIC TRUTH 32

We now proceed to establish the lemma by induction on truth-rank. Suppose that for all

sequences (n1, ..., nk) ∈ ω<ω and for all β < α, if

ρT (¬ψS(0, 〈n1, ..., nk〉)) = β,

then

ρT (¬ψS(0, 〈n1, ..., nk〉)) ≤ ρΓ(ψS(0, 〈n1, ..., nk〉)).

Now suppose that ρT (¬ψS(0, 〈m1, ...,ml〉)) = α. Let T † be the closed canonical tableau com-

mencing with ¬ψS(0, 〈m1, ...,ml〉) with truth rank α. We establish that the induction hypoth-

esis also holds for ¬ψS(0, 〈m1, ...,ml〉). Let

D+ = {ψS(0, 〈m1, ...,ml, i〉) | i ∈ ω}.

Then clearly, D+ is the ⊆-minimal set of sentences such that 〈D+, ∅〉 
sK ψS(0, 〈m1, ..,ml〉).
Then for all δ ∈ D+ we have ρT (¬δ) = β < α for some β; and by induction, we have ρT (¬δ) ≤
ρΓ(δ). Let γ = sup(ρΓ“D+) = sup{ρΓ(ψS(0, 〈m1, ...,ml, i〉)) | i ∈ ω}. Then

ρT (¬ψS(0, 〈m1, ...,ml〉)) = sup({ρT (¬ψS(0, 〈m1, ...,ml, i〉)) + 1 | i ∈ ω})

≤ sup({ρΓ(ψS(0, 〈m1, ...,ml, i〉)) + 1 | i ∈ ω})

≤ sup({ρΓ(ψS(0, 〈m1, ...,ml, i〉)) | i ∈ ω}) + 1

= γ + 1.

It will suffice to show that ρΓ(ψS(0, 〈m1, ...,ml〉)) = γ+1. It can be seen that D+ ⊆ Γ+
γ but D+ 6⊆

Γ+
ξ for any ξ < γ. From the first of these facts we see that 〈Γ+

γ ,Γ
−
γ 〉 
sK ψS(0, 〈m1, ...,ml〉); and

by Lemma 53, V alΓγ (ψS(0, 〈m1, ...,ml〉)) = 1; so ψS(0, 〈m1, ...,ml〉) ∈ Γ+
γ+1. We then claim that

ψS(0, 〈m1, ...,ml〉) /∈ Γ+
γ .

Suppose not. Then for some ζ < γ, ψS(0, 〈m1, ...,ml〉) ∈ Γ+
ζ+1. Then by Lemma 53, we see that

〈Γ+
ζ ,Γ

−
ζ 〉 
sK ψS(0, 〈m1, ...,ml〉); but then D+ ⊆ Γ+

ξ 6⊆ Γ+
γ contradicting the minimality of γ.

We have now shown that the Γ-rank of ψS(0, 〈〉) is greater than or equal to the truth rank of

¬ψS(0, 〈〉). But from the proof of Lemma 47 it can be seen that the truth rank of ¬ψS(0, 〈〉)
is equal to the tree-rank of S. �

Corollary 55. The height of the strong Kleene fixed point is ωCK1 .

Proof. (Upper bound) By Corollary 51. (Lower bound) By Lemma 54, we see that the Γ-ranks

of sentences from SentLT exhaust the recursive ordinals. �

6. CONCLUSION

We have provided simple infinitary tableau systems for the minimal fixed points based

on the strong Kleene, van Fraassen supervaluation and Cantini supervaluation schemes.

Moreover, we have indicated how modifications may be made so that other semantic truth

definitions may also be given proof systems. We have used this approach to provide a simple
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proof of the complexity of these definitions and a direct proof that that closure ordinal of

Kripke’s strong Kleene definition is ωCK1 . In the future, it is hoped that these techniques

may be useful in the provision of consistency proofs for axiomatic theories and logics of

truth and as a guide for the development of new axiomatic theories.
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