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UNIFORM DEFINABILITY IN PROPOSITIONAL DEPENDENCE
LOGIC

FAN YANG

Department of Values, Technology and Innovation, Delft University of Technology

Abstract. Both propositional dependence logic and inquisitive logic are expressively complete.
As a consequence, every formula in the language of inquisitive logic with intuitionistic disjunction
or intuitionistic implication can be translated equivalently into a formula in the language of proposi-
tional dependence logic without these two connectives. We show that although such a (noncomposi-
tional) translation exists, neither intuitionistic disjunction nor intuitionistic implication is uniformly
definable in propositional dependence logic.

§1. Introduction. In this paper, we study the uniform definability problem of connec-
tives in propositional dependence logic.

Dependence logic is a logical formalism that characterizes the notion of “dependence” in
science. First-order dependence logic was introduced by Väänänen (2007) as a development
of Henkin quantifier (Henkin, 1961) and independence-friendly logic (Hintikka & Sandu,
1989). Recently, propositional dependence logic was studied and axiomatized by Yang &
Väänänen (2016) and Sano & Virtema (2015). With a different motivation, Ciardelli &
Roelofsen (2011) introduced and axiomatized inquisitive logic, which can be regarded as a
variant of propositional dependence logic with intuitionistic connectives.

Dependency relations are characterized in propositional dependence logic by a new type
of atomic formula =( �p, q), called dependence atoms. Intuitively, the atom expresses that
“the truth value of q is functionally determined by those of �p.” The semantics of the logic
is called team semantics, introduced by Hodges (1997a,b) originally as a compositional
semantics for independence-friendly logic. The basic idea of this new semantics is that
properties of dependence cannot be manifested in single valuations. Therefore unlike the
case of classical propositional logic, formulas in propositional dependence logic are eval-
uated on sets of valuations (called teams) instead.

Both propositional dependence logic and inquisitive logic are expressively complete
with respect to nonempty downward closed team properties, as proved in Yang & Väänänen
(2016) and Ciardelli & Roelofsen (2011). As a consequence, every instance of the intuition-
istic disjunction and the intuitionistic implication can be translated into a formula in the
language of propositional dependence logic (PD) without these connectives. In this paper,
we show that although such a (noncompositional) translation exists, neither of intuitionistic
disjunction and intuitionistic implication is uniformly definable in PD.
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66 FAN YANG

This work is inspired by Galliani (2013), in which the weak universal quantifier ∀1 of
team semantics is shown to be not uniformly definable in first-order dependence logic, even
though it is definable in the logic. Similar results are also found in Ciardelli (2009), where
it is proved that in inquisitive logic conjunction is definable but not uniformly definable in
terms of the other connectives. Another related work is a recent result (but in a different
setting) by Goranko & Kuusisto (2016) that propositional dependence and independence
logic can be translated but not compositionally translated into what the authors call propo-
sitional logics of determinacy and independence, which are logics defined on the basis of
Kripke semantics instead of team semantics.

This paper is organized as follows. In §1, we recall the basics of propositional depen-
dence logic and its variants. In §2, we define the notion of uniform definability of connec-
tives and discuss its connection with compositional translations between logics. In §3, we
study the properties of contexts for PD, which is a crucial notion for the main argument of
the paper. §4 presents the main results: neither intuitionistic implication nor intuitionistic
disjunction is uniformly definable in PD.

§2. Propositional dependence logic and its variants. In this section, we recall the
basics of propositional dependence logic and its variants. For more details of the logics,
we refer the reader to Yang & Väänänen (2016).

For the purpose of this paper, let us start with recalling the following definition of the
syntax of a propositional logic in general.

DEFINITION 2.1 (Syntax of a propositional logic). The language of a propositional logic
L is a pair (AtmL,CntL), where AtmL is a set of atoms, and CntL is a set of connectives
(each with an arity). The set WFFL of well-formed formulas of L is defined inductively as
follows:

• α ∈ WFFL for all α ∈ AtmL;
• if φ1, . . . , φm ∈ WFFL and � ∈ CntL is an m-ary connective, then

�(φ1, . . . , φm) ∈ WFFL.

In this paper, we consider propositional logics of dependence, among which there is one,
known as propositional downward closed team logic, that has the largest set of atoms and
connectives. Below we define its syntax.

DEFINITION 2.2. Fix a set Prop of propositional variables and denote its elements by
p, q, . . . (possibly with subscripts). The language of propositional downward closed team
logic (PT0) is the pair (AtmPT0 ,CntPT0), where

• AtmPT0 = {p,¬p,⊥ | p ∈ Prop} ∪ {=(p1, . . . , pk, q) | p1, . . . , pk, q ∈ Prop},
• CntPT0 = {∧,⊗,∨,→}.

Well-formed formulas of PT0 are also given by the following grammar:

φ ::= p | ¬p | ⊥ |=(p1, . . . , pk, q) | (φ ∧ φ) | (φ ⊗ φ) | (φ ∨ φ) | (φ→ φ).

The formulas p,¬p,⊥ are called propositional atoms, and the formula
=(p1, . . . , pk, q) is called a dependence atom. The connectives ⊗, ∨, and → are called
tensor (disjunction), intuitionistic disjunction and intuitionistic implication, respectively.
Note that unlike in the literature of dependence logic, where negation is usually treated
as a connective that applies only to atomic formulas (i.e., formulas are assumed to be in
negation normal form), for reasons that will become clear in the sequel, in this paper we
regard ¬p as an atomic formula and do not regard negation as a connective of the logic.
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UNIFORM DEFINABILITY IN PROPOSITIONAL DEPENDENCE LOGIC 67

Fragments of PT0 formed by restricting the sets AtmPT0 and CntPT0 are called propo-
sitional logics of dependence. We now define the languages of the propositional logics of
dependence that we study in this paper.

DEFINITION 2.3. The language of propositional dependence logic (PD) is the pair
(AtmPD,CntPD), where

AtmPD = AtmPT0 and CntPD = {∧,⊗}.
The language of inquisitive logic (InqL) is the pair (AtmInqL,CntInqL), where

AtmInqL = {p,⊥ | p ∈ Prop} and CntInqL = {∧,∨,→}.
For the semantics, propositional logics of dependence adopt team semantics. A team X

is a set of valuations, i.e., a set of functions v : Prop → {0, 1}.
DEFINITION 2.4. We define inductively the notion of a PT0-formula φ being true on a
team X, denoted X |� φ, as follows:

• X |� p iff for all v ∈ X, v(p) = 1
• X |� ¬p iff for all v ∈ X, v(p) = 0,
• X |� ⊥ iff X = ∅,
• X |�=(p1, . . . , pk, q) iff for all v, v ′ ∈ X,[

v(p1) = v ′(p1), . . . , v(pk) = v ′(pk)
] �⇒ v(q) = v ′(q),

• X |� φ ∧ ψ iff X |� φ and X |� ψ ,
• X |� φ ⊗ ψ iff there exist teams Y, Z ⊆ X with X = Y ∪ Z such that Y |� φ

and Z |� ψ ,
• X |� φ ∨ ψ iff X |� φ or X |� ψ ,
• X |� φ→ ψ iff for any team Y ⊆ X, Y |� φ implies Y |� ψ .

We write φ(p1, . . . , pn) to mean that the propositional variables occurring in φ are
among p1, . . . , pn . If X is a team and N is a set of propositional variables, then we write
X � N = {v � N | v ∈ X} and call X � N a team on N .

Basic properties of PT0 are listed in the theorem below; see Yang & Väänänen (2016)
for the proof.

THEOREM 2.5. Let φ(p1, . . . , pn) be a PT0-formula, and X and Y two teams.

Locality: If X � {p1, . . . , pn} = Y � {p1, . . . , pn}, then

X |� φ ⇐⇒ Y |� φ.
Downward Closure Property: If X |� φ and Y ⊆ X, then Y |� φ.
Empty Team Property: ∅ |� φ.
Disjunction Property: If |� φ ∨ ψ , then |� φ or |� ψ .

For each formula φ(p1, . . . , p1), we write �φ�N for the set of all teams on
N = {p1, . . . , pn} that satisfies φ, i.e.,

�φ�N := {X ⊆ 2N | X |� φ}. (1)

Write ∇N for the family of all nonempty downward closed collections of teams on N , i.e.,

∇N = {K ⊆ 22N | ∅ ∈ K, and X ∈ K and Y ⊆ X imply Y ∈ K}. (2)

We call a propositional logic L of dependence expressively complete with respect to
nonempty downward closed team properties if for every N = {p1, . . . , pn},
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68 FAN YANG

∇N = {�φ�N : φ(p1, . . . , p1) is an L-formula}.
THEOREM 2.6. PT0, PD, and InqL are expressively complete with respect to nonempty
downward closed team properties.

Proof. See Yang & Väänänen (2016) and Ciardelli & Roelofsen (2011) for the proof.
We only mention here that in Yang & Väänänen (2016) the proof of the expressive com-
pleteness of PD makes heavy use of a formula �X (defined for every team X on N with
|X | ≥ 1) having the property that for any team Y on N ,

Y |� �X ⇐⇒ X � Y. (3)

If N = {p1, . . . , pn} and |X | = k + 1, then

�X :=
k⊗

i=1

(=(p1) ∧ · · · ∧ =(pn))⊗
⊗

v∈2N \X

(pv(p1)
1 ∧ · · · ∧ pv(pn)

n ),

where
⊗∅ := ⊥. We will make use of this formula in the main argument of this paper. �

Sound and complete deduction systems for PD and InqL are defined in Yang &
Väänänen (2016), Sano & Virtema (2015), and Ciardelli & Roelofsen (2011). These sys-
tems do not admit the Uniform Substitution Rule and the logics PD and InqL are not
closed under uniform substitution. For instance, the InqL-formula ¬¬p → p is true
on all teams, whereas its substitution instance ¬¬(p ∨ ¬p) → (p ∨ ¬p) is not; the
PD-formula p ⊗ p implies p, whereas the substitution instance =(p)⊗ =(p) does not
imply=(p). We will see in the sequel that the closure under uniform substitution is closely
related to the uniform definability problem that we study in this paper.

§3. Uniform definability and compositional translations. In this section, we define
the notion of uniform definability of connectives, and discuss its connection with compo-
sitional translations between logics.

Let us start by re-examining the syntax and semantics of propositional logics in general.
We defined in Definition 2.1 the syntax of a propositional logic L in general as a pair
(AtmL,CntL), and we also defined the syntax of propositional logics of dependence in
this fashion (Definitions 2.2 and 2.3). Recall also that the set of atoms of CPL or IPL
consists of the set Prop (of all propositional variables) and the constant ⊥; the set CntCPL
of connectives of CPL contains classical negation and all the other classical connectives,
and the set CntIPL = {∧,∨,→} (recall: ¬φ := φ→⊥). We now give a general definition
also for the semantics of a propositional logic.

DEFINITION 3.1 (Semantics of a propositional logic). To a propositional logic L, we assign
a class (or a set) ∇L (or ∇ for short) as its semantics space. Every atom α ∈ AtmL is
associated with a set �α� ∈ ∇, and every m-ary connective � ∈ CntL is associated with
an m-ary interpretation function ��� : ∇m → ∇. The interpretation of L-formulas is a
function �·�L : WWFL → ∇ satisfying

• �α�L = �α� for every α ∈ AtmL,
• ��(φ1, . . . , φm)�

L = ���(�φ1�
L, . . . , �φm�L).

For a propositional logic of dependence L, such as PT0, PD, and InqL, the set �φ�L

consists of all of the teams that satisfy φ, namely �φ�L := {X ⊆ 2Prop : X |� φ}, and

�φ�L := {K ⊆ 22Prop | ∅ ∈ K, and X ∈ K and Y ⊆ X imply Y ∈ K}.
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UNIFORM DEFINABILITY IN PROPOSITIONAL DEPENDENCE LOGIC 69

Note that �·�N and ∇N defined in equations (1) and (2) in the previous section are restricted
version of �·�L and ∇L here in this setting.

The interpretation �φ�CPL of a CPL-formula φ is the set of all valuations that make φ
true, namely �φ�CPL := {v : Prop → {0, 1} | v(φ) = 1}. For an IPL-formula φ, �φ�IPL is
the class of all pointed Kripke models that satisfy φ, namely

�φ�IPL := {(M, w) |M is an intuitionistic Kripke model with a node w and M, w |� φ}.
A propositional logic L1 = (AtmL1 ,CntL1) is said to be a sublogic or fragment of

L2 = (AtmL2 ,CntL2), written L1 ⊆ L2, if AtmL1 ⊆ AtmL2 , CntL1 ⊆ CntL2 and the
well-formed formulas in the language of both logics have the same interpretations in both
logics (i.e., �φ�L1 = �φ�L2 for all φ ∈ WFFL1 ∩WFFL2 ). In this case, if AtmL1 = AtmL2

and CntL1 = {�1, . . . ,�k} ⊂ CntL2 , then we also write [�1, . . . ,�k]L2 for L1.

DEFINITION 3.2. For any L-formulas φ and ψ , we write φ |� ψ if �φ�L ⊆ �ψ�L. Write
φ ≡L ψ (or simply φ ≡ ψ) if both φ |� ψ and ψ |� φ hold.

Let L1, L2 ⊆ L. The logic L1 is said to be translatable into L2, in symbols L1 ≤ L2, if
for every L1-formula φ, there exists an L2-formula ψ such that φ ≡L ψ . If L1 ≤ L2 and
L2 ≤ L1, then we say that L1 and L2 have the same expressive power, written L1 ≡ L2.

Clearly, for any PT0-formulas φ and ψ , φ ≡ ψ iff X |� φ ⇐⇒ X |� ψ holds for all
teams X . An immediate consequence of Theorem 2.6 is that PD ≡ InqL, namely, InqL
and PD are inter-translatable.

It follows from Definition 3.2 that if L1 ≤ L2 ≤ L, then every (m-ary) connective �
of L1 is definable in L2, in the sense that for every L2-formulas θ1, . . . , θm , there exists an
L2-formula φ such that �(θ1, . . . , θm) ≡L φ. We are, in this paper, however, more inter-
ested in a strengthened notion of definability of a connective, namely the uniform defin-
ability of a connective. Closely related to this notion is a strengthened notion of translation
between logics known in the literature, namely the compositional translation between
logics (see, e.g., Rosetta (1994); Janssen (1998); Peters & Westerståhl (2006)).

To define uniform definability and compositional translation formally, let us first define
the notion of context for a logic L. This definition is inspired by that of the same notion
in the first-order setting given by Galliani (2013). This notion is also very similar to the
notion of “frame” used by Hodges (2012); see also Hodges (2016) for a comparison.

DEFINITION 3.3 (Context). A context for a propositional logic L is an L-formula with
distinguished atoms ri (i ∈ N). We write φ[r1, . . . , rm] to mean that the distinguished
atoms occurring in the context φ are among r1, . . . , rm. For any L-formulas θ1, . . . , θm,
we write φ[θ1, . . . , θm] for the formula φ(θ1/r1, . . . , θm/rm).

DEFINITION 3.4 (Uniform definability). Let L1, L2 ⊆ L. An m-ary connective � of L1 is
said to be uniformly definable in L2 if there exists a context φ[r1, . . . , rm] for L2 such that
for all L2-formulas θ1, . . . , θm,

φ[θ1, . . . , θm] ≡L �(θ1, . . . , θm).

In this case, we say that the context φ[r1, . . . , rm] uniformly defines �.

The distinguished atoms ri in a context should be understood as “place holders” or
“holes,” which mark the places that are to be substituted uniformly by concrete instances
of formulas. For the propositional logics CPL, IPL, PT0, PD, or InqL, a context is a
formula built from the distinguished propositional variables ri (i ∈ N) and other atoms
using the connectives of the logic. For example, the formula
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70 FAN YANG

φ[r1, r2] = (¬p1 ⊗ r1) ∧ (=(p2, p3)⊗ (r1 ∧ r2))

is a context for PD. The formula ψ[r1, r2] = ¬(¬r1 ∨ ¬r2) is a context for CPL that uni-
formly defines the classical conjunction, since for any formulas θ1 and θ2 in the language
of the conjunction-free fragment [¬,∨]CPL of CPL, ψ[θ1, θ2] = ¬(¬θ1∨¬θ2) ≡ θ1∧θ2.

Next, we define the notion of compositional translation in the literature using our
terminology.

DEFINITION 3.5 (Compositional translation). 1Let L1, L2 ⊆ L. A mapping τ : WFFL1 →
WFFL2 is called a compositional translation between L1 and L2, if the following conditions
hold:

(i) α ≡L τ (α) holds for all α ∈ AtmL1 ;

(ii) and for each m-ary connective � of L1, there is a context φ�[r1, . . . , rm] for L2
which uniformly defines � and

τ (�(θ1, . . . , θm)) = φ�[τ (θ1), . . . , τ (θm)]

holds for any L1-formulas θ1, . . . , θm.

The logic L1 is said to be compositionally translatable into L2, in symbols L1 ≤c L2, if
there is a compositional translation τ between L1 and L2.

The above definition implies that the uniform definability of every connective of L1 in
L2 is a necessary condition for the existence of a compositional translation from L1 into L2.

LEMMA 3.6. Let L1, L2 ⊆ L. Then L1 ≤c L2 �⇒ L1 ≤ L2.

Proof. Assume L1 ≤c L2 with τ a compositional translation. It suffices to show that for
each L1-formula ψ , ψ ≡L τ (ψ).

We proceed by induction on ψ . If ψ ∈ AtmL1 , then the required equation follows from
condition (i) of the compositional translation. If ψ = �(θ1, . . . , θm), where θ1, . . . , θm ∈
WFFL1 and the context φ�[r1, . . . , rm] uniformly defines �, then

��(θ1, . . . , θm)�
L =���(�θ1�

L, . . . , �θm�L)

=���(�τ (θ1)�
L, . . . , �τ (θm)�

L) (by induction hypothesis)

= ��(τ (θ1), . . . , τ (θm))�
L

= �φ�[τ (θ1), . . . , τ (θm)]�
L (since φ� uniformly defines �)

= �τ (�(θ1, . . . , θm))�
L (since τ is a compositional translation). �

However, the converse direction of Lemma 3.6, i.e.,

“L1 ≤ L2 �⇒ L1 ≤c L2”, (∗)

is not true in general. The next theorem, due to Ciardelli (2009), is an example of the failure
of (∗) in propositional logics of dependence.

THEOREM 3.7. InqL ≤ [⊥,∨,→]InqL, whereas InqL �≤c [⊥,∨,→]InqL. In particular,
conjunction ∧ is definable but not uniformly definable in [⊥,∨,→]InqL.

1 The author would like to thank Dag Westerståhl for suggesting this definition. See also §12.2.2 in
Peters & Westerståhl (2006) and Hodges (2016) for similar definitions.
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UNIFORM DEFINABILITY IN PROPOSITIONAL DEPENDENCE LOGIC 71

Proof. Follows from Propositions 2.5.2 and 3.5.5 in Ciardelli (2009). �
The main result of this paper is a proof that neither of intuitionistic implication → and

intuitionistic disjunction∨ is uniformly definable in PD. This will then imply that InqL �≤c
PD, even though InqL ≤ PD, providing another example of the failure of (∗).

Nevertheless, (∗) does hold for most familiar logics that admit uniform substitution and
have the (defined) connective ↔ in the language, e.g., CPL and IPL. In fact, for CPL
and IPL, the notion of a connective being definable and its being uniformly definable
coincide. A proof of this fact goes as follows: Say, for example, � is a binary connective
and r1�r2 is equivalent to a formula φ(r1, r2, �p) in the language of a �-free sublogic L0 of
L ∈ {CPL, IPL}, where �p = 〈p1, . . . , pn〉 lists the other propositional variables involved.
Then �L (r1 � r2) ↔ φ(r1, r2, �p), which implies that �L (θ1 � θ2) ↔ φ(θ1, θ2, �p) or
θ1 � θ2 ≡ φ(θ1, θ2, �p) for any L0-formulas θ1, θ2, as L is closed under uniform substation.
From this we conclude that the context φ[r1, r2] for L0 uniformly defines �. It is possible
to extract from the foregoing argument certain general condition under which (∗) will hold.
However, a propositional logic in general may have some unexpected properties that are
very different from those of the familiar logics. For this reason, we leave this issue for
future research and do not make any claim concerning this in this paper.

We end this section by remarking that the definitions of the familiar notion of functional
completeness of a set of connectives and independence of connectives can be rephrased
using the notion of uniform definability. A set {�1, . . . ,�n} of connectives of a proposi-
tional logic L is said to be functionally complete if and only if every connective � ∈ CntL
of L is uniformly definable in the fragment [�1, . . . ,�n]L. For example, some well-known
functionally complete sets of connectives of CPL are {¬,∨}, {¬,∧}, {¬,→}, {| (Sheffer
stroke)}. A connective � of L is said to be independent of a set {�1, . . . ,�n} of connec-
tives of L, if � can not be uniformly defined in the logic [�1, . . . ,�n]L. For example,
all of the intuitionistic connectives ∧,∨,→ are known to be independent of the others
in IPL.

§4. Contexts for PD. In this section, we investigate the properties of contexts for
propositional dependence logic, which will play a crucial role in the proof of the main
results of this paper.

We defined in Definition 3.3 a context for PD as a PD-formula with distinguished
propositional variables ri (i ∈ N) that are to be substituted uniformly by concrete instances
of formulas. A subtle point that needs to be addressed here is that not only is PD not
closed under uniform substitution (as commented at the end of §2), but also substitution is
not even a well-defined notion in PD if the usual syntax is applied, since, e.g., the strings
=(=(p), q) and ¬ =(p) are not well-formed formulas of PD (see Iemhoff & Yang (2016)
for further discussions on substitutions in PD). We have resolved this problem by defining a
slightly different syntax for PD (Definition 2.3) than that in the literature. In particular, we
do not regard negation as a connective, and dependence atoms cannot be decomposed. With
this syntax, the set Sub(φ) of subformulas of a context φ for PD is defined inductively as:

• Sub(ri ) = {ri },
• Sub(p) = {p},
• Sub(¬p) = {¬p},
• Sub(⊥) = {⊥},
• Sub(=(p1, . . . , pk)) = {=(p1, . . . , pk)},
• Sub(ψ ∧ χ) = Sub(ψ) ∪ Sub(χ) ∪ {ψ ∧ χ},
• Sub(ψ ⊗ χ) = Sub(ψ) ∪ Sub(χ) ∪ {ψ ⊗ χ}.
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In this setting, a context for PD cannot have subformulas of the form ¬ri or
= (p1, . . . , pm−1, ri , pm+1 . . . , pk), and thus substitution instances of a context will
always be well-formed formulas of PD.

Two contexts φ[r1, . . . , rm] and ψ[r ′1, . . . , r ′m] for PD are said to be equivalent, in sym-
bols φ[r1, . . . , rm] ≈ ψ[r ′1, . . . , r ′m] or simply φ ≈ ψ , if φ[θ1, . . . , θm] ≡ ψ[θ1, . . . , θm]
holds for any PD-formulas θ1, . . . , θm . A context φ is said to be inconsistent if φ ≈ ⊥;
otherwise it is said to be consistent. An inconsistent context φ[r1, . . . , rm] defines uni-
formly an m-ary connective that we shall call the contradictory connective. The following
lemma shows that we may assume that a context is either inconsistent or it does not contain
a single inconsistent subformula.

LEMMA 4.1. If φ[r1, . . . , rm] is a consistent context for PD, then there exists an equiv-
alent context φ′[r1, . . . , rm] for PD with no single inconsistent subformula (i.e., there is no
ψ[r1, . . . , rm] ∈ Sub(φ′) such that ψ ≈ ⊥).

Proof. Assuming that φ[r1, . . . , rm] is consistent, we find the required formula φ′ by
induction on φ.

If φ[r1, . . . , rm] is an atom, clearly φ �= ⊥ and thus we let φ′ = φ.
If φ[r1, . . . , rm] = (ψ ∧ χ)[r1, . . . , rm], which is χ ′[r1, . . . , rm] such that ψ ′ ≈ ψ ,

χ ′ ≈ χ and none of ψ ′ and χ ′ contains a single inconsistent formula. Let φ′[r1, . . . , rm] =
ψ ′ ∧ χ ′. Clearly, (ψ ∧ χ) ≈ (ψ ′ ∧ χ ′) and (ψ ′ ∧ χ ′) �≈ ⊥ (for (ψ ∧ χ) �≈ ⊥). Thus, by
the induction hypothesis, the set Sub(ψ ′ ∧ χ ′) = Sub(ψ ′) ∪ Sub(χ ′) ∪ {ψ ′ ∧ χ ′} does
not contain a single inconsistent element.

If φ[r1, . . . , rm] = (ψ ⊗ χ)[r1, . . . , rm], which is consistent, then ψ and χ cannot be
both inconsistent. We distinguish the following two cases:

CASE 1. Only one of ψ and χ is inconsistent. Without loss of generality, we may
assume that ψ[r1, . . . , rm] ≈ ⊥ and χ [r1, . . . , rm] ≈ χ ′[r1, . . . , rm] for some context
χ ′ for PD that does not contain a single inconsistent subformula. Clearly, (ψ ⊗ χ) ≈
(⊥⊗ χ ′) ≈ χ ′. Thus, we may let φ′ = χ ′.

CASE 2. ψ[r1, . . . , rm] ≈ ψ ′[r1, . . . , rm] and χ [r1, . . . , rm] ≈ χ ′[r1, . . . , rm] for
some contexts ψ ′ and χ ′ for PD that do not contain a single inconsistent subformula.
Let φ′ = ψ ′ ⊗ χ ′. Clearly, (ψ ⊗ χ) ≈ (ψ ′ ⊗ χ ′) and (ψ ′ ⊗ χ ′) �≈ ⊥ (for (ψ ⊗ χ) �≈ ⊥).
Thus, by the induction hypothesis, the set Sub(ψ ′ ⊗ χ ′) = Sub(ψ ′)∪Sub(χ ′)∪{ψ ′⊗χ ′}
does not contain a single inconsistent element. �

Contexts for PD are monotone in the sense of the following lemma.

LEMMA 4.2. Let φ[r1, . . . , rm] be a context for PD and θ1, . . . , θm, θ
′
1, . . . , θ

′
m PD-

formulas. If θi |� θ ′i for all 1 ≤ i ≤ m, then φ[θ1, . . . , θm] |� φ[θ ′1, . . . , θ ′m].

Proof. Suppose θi |� θ ′i for all 1 ≤ i ≤ m. We prove that φ[θ1, . . . , θm] |� φ[θ ′1, . . . , θ ′m]
by induction on φ.

For the only interesting case φ[r1, . . . , rm] = ri (1 ≤ i ≤ m), if X |� ri [θ1, . . . , θm] for
some team X , then X |� θi |� θ ′i . Thus, X |� ri [θ ′1, . . . , θ ′m]. �

COROLLARY 4.3. For any consistent context φ[r1, . . . , rm] for PD, there exists a
nonempty team X such that X |� φ[�, . . . ,�].

Proof. Since φ[r1, . . . , rm] �≈ ⊥, there exist formulas θ1, . . . , θm and a nonempty team
X such that X |� φ[θ1, . . . , θm]. As θi |� � for all 1 ≤ i ≤ m, by Lemma 4.2, we obtain
that X |� φ[�, . . . ,�]. �

available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020316000459
Downloaded from https:/www.cambridge.org/core. Technische Universiteit Delft, on 28 Mar 2017 at 13:54:22, subject to the Cambridge Core terms of use,

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020316000459
https:/www.cambridge.org/core


UNIFORM DEFINABILITY IN PROPOSITIONAL DEPENDENCE LOGIC 73

In the main proofs of this paper, we will make use of the syntax trees of contexts for PD.
We assume that the reader is familiar with the notion of a syntax tree of a formula and will
therefore only recall its definition in a less formal manner.

The syntax tree of a PD-formula φ is a quadruple Tφ = (T,≺, w, f) (see Figure 1 for an
example) such that (T,≺, w) is a (finite) full binary tree with root w (i.e., a tree in which
every node has either 0 or 2 children) and f : T → Sub(φ) is a labelling function satisfying
the following conditions:

(i) f(w) = φ
(ii) f[T ] = Sub(φ)

(iii) If x is a node with f(x) = ψ � χ (� ∈ {∧,⊗}), then x has two children y and z
with f(y) = ψ and f(z) = χ .

As usual, we call a node x an ancestor of a node y if x ≺ y. The depth d(x) of a node x
in the tree is defined inductively as follows: d(w) = 0; if y is a child of x , then d(y) =
d(x)+ 1.

The value f(x) ∈ Sub(φ) of a node x is also called the label of the node x or (the
occurrence of) the (sub)formula associated with x . Clearly, the leaf nodes (i.e., nodes with
no children) are always labelled with atoms, and the labelling function f is in general
not one-to-one since the same subformula ψ of a formula φ may have more than one
occurrences in φ.

If X |� φ[θ1, . . . , θm], then each occurrence of a subformula of φ[θ1, . . . , θm] is satisfied
by a subteam of X . This can be described explicitly by a function τ , called truth function,
which maps each node in the syntax tree Tφ to a subteam of X satisfying the formula
associated with the node.

DEFINITION 4.4 (Truth function). Let φ[r1, . . . , rm] be a context for PD with the syntax
tree Tφ = (T,≺, w, f), and θ1, . . . , θm PD-formulas. Let N be the set of all propositional
variables occurring in the formula φ[θ1, . . . , θm]. A function τ : T → ℘(2N ) is called a
truth function for φ[θ1, . . . , θm] if the following conditions hold:

(i) τ (x) |� f(x)[θ1, . . . , θm] for all x ∈ T ;

(ii) if f(x) = ψ ∧ χ and y, z are the two children of x, then τ (x) = τ (y) = τ (z);
(iii) if f(x) = ψ ⊗ χ and y, z are the two children of x, then τ (x) = τ (y) ∪ τ (z).

(¬p1 ⊗ r1) ∧
(=(p2, p3)⊗ (r1 ∧ r2)

)

¬p1 ⊗ r1

¬p1 r1 =(p2, p3)

=(p2, p3)⊗ (r1 ∧ r2)

r1 ∧ r2

r1 r2

w

Fig. 1. The syntax tree of (¬p1 ⊗ r1) ∧ (=(p2, p3)⊗ (r1 ∧ r2)).
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A truth function τ such that τ (w) = X is called a truth function over X.

LEMMA 4.5. Let τ be a truth function for φ[θ1, . . . , θm]. If x, y are two nodes in the
syntax tree Tφ with x ≺ y, then τ (y) ⊆ τ (x). In particular, if τ is a truth function over a
team X, then for all nodes x in Tφ , τ (x) ⊆ X.

Proof. A routine proof by induction on d(y)− d(x). �
First-order dependence logic has a game-theoretic semantics with perfect information

games played with respect to teams (see §5.2 in Väänänen (2007)). With obvious adaptions,
one can define a game-theoretic semantics for propositional dependence logic.2 A truth
function defined in Definition 4.4 corresponds to a winning strategy for the Verifier in
the game. An appropriate semantic game for PD has the property that X |� φ if and
only if the Verifier has a winning strategy in the corresponding game. The next theorem
states essentially the counterpart of this property for truth functions. Cf. Lemma 5.12,
Proposition 5.11 and Theorem 5.8 in Väänänen (2007).

THEOREM 4.6. Let φ[r1, . . . , rm] be a context for PD, θ1, . . . , θm PD-formulas and N the
set of all propositional variables occurring in the formula φ[θ1, . . . , θm]. For any team X
on N, X |� φ[θ1, . . . , θm] iff there exists a truth function τ for φ[θ1, . . . , θm] over X.

Proof. The direction “⇐�” follows readily from the definition. For the other direction
“�⇒,” suppose X |� φ[θ1, . . . , θm]. Let Tφ = (T,≺, w, f) be the syntax tree of φ. We
define the value of τ on each node x of Tφ and verify conditions (i)–(iii) of Definition 4.4
by induction on the depth of the nodes.

If x the root, then define τ (x) = X . Since X |� φ[θ1, . . . , θm], condition (i) is satisfied
for the root x .

Suppose x is not a leaf node, τ (x) has been defined already and conditions (i)–(iii) are
satisfied for x . Let y, z be the two children of x with f(y) = ψ and f(z) = χ for some
subformulas ψ, χ of φ. We distinguish two cases.

CASE 1. f(x) = ψ ∧ χ . Define τ (y) = τ (z) = τ (x). Then condition (ii) for y, z
is satisfied. By the induction hypothesis, τ (x) |� (ψ ∧ χ)[θ1, . . . , θm]. Thus τ (y) |�
ψ[θ1, . . . , θm] and τ (z) |� χ [θ1, . . . , θm], namely condition (i) is satisfied for y, z.

CASE 2. f(x) = ψ ⊗ χ . By the induction hypothesis, we have τ (x) |� (ψ ⊗ χ)
[θ1, . . . , θm]. Thus there exist teams Y, Z ⊆ τ (x) on N such that τ (x) = Y ∪ Z , Y |�
ψ[θ1, . . . , θm] and Z |� χ [θ1, . . . , θm]. Define τ (y) = Y and τ (z) = Z . Then, condi-
tions (i) and (ii) for y, z are satisfied. �

The next lemma shows that a truth function is determined by its values on the leaves of
the syntax tree.

LEMMA 4.7. Let φ[r1, . . . , rm] be a context for PD with the syntax tree Tφ =
(T,≺, w, f), θ1, . . . , θm PD-formulas and N the set of all propositional variables occur-
ring in the formula φ[θ1, . . . , θm]. If τ : T → ℘(2N ) is a function satisfying conditions (ii)
and (iii) in Definition 4.4 and condition (i) with respect to θ1, . . . , θm for all leaf nodes,
then τ is a truth function for φ[θ1, . . . , θm].

Proof. It suffices to prove that τ satisfies condition (i) with respect to θ1, . . . , θm for all
nodes x of Tφ . We show this by induction on the depth of x .

2 In Definition 5.10 in Väänänen (2007), leave out the game rules for quantifiers and make obvious
modifications to the game rules for the atoms.
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Leaf nodes satisfy condition (i) by the assumption. Now, assume that x is not a leaf.
Then x has two children y, z with f(y) = ψ and f(z) = χ for some subformulas ψ, χ of
φ. Since d(y), d(z) > d(x), by the induction hypothesis, we have

τ (y) |� ψ[θ1, . . . , θm] and τ (z) |� χ [θ1, . . . , θm]. (4)

If f(x) = ψ ∧ χ , then by condition (ii), τ (x) = τ (y) = τ (z), and τ (x) |� (ψ ∧ χ)
[θ1, . . . , θm] follows from (4). If f(x) = ψ⊗χ , then by condition (iii), τ (x) = τ (y)∪τ (z),
and τ (x) |� (ψ ⊗ χ)[θ1, . . . , θm] follows again from (4). �

§5. Nonuniformly definable connectives in PD. In this section, we prove that neither
intuitionistic implication nor intuitionistic disjunction is uniformly definable in PD.

Contexts for PD are monotone (by Lemma 4.2), thus PD cannot define uniformly non-
monotone connectives. Below we show that intuitionistic implication is not uniformly
definable in PD as it is not monotone.3

THEOREM 5.1. Intuitionistic implication → is not uniformly definable in PD.

Proof. Suppose that there was a context φ[r1, r2] for PD which defines the intuitionistic
implication uniformly. Then for any PD-formulas ψ and χ , we have

φ[ψ, χ ] ≡ ψ → χ. (5)

Clearly X |� ⊥ → ⊥ and X �|� � → ⊥ hold for any nonempty team X . It follows from
(5) that X |� φ[⊥,⊥] and X �|� φ[�,⊥]. But this contradicts Lemma 4.2 as ⊥ |� �. �

We now proceed to give another sufficient condition for a connective being not uniformly
definable in PD, from which it will follow that intuitionistic disjunction is not uniformly
definable in PD. We start with a simple lemma whose proof is left to the reader.

LEMMA 5.2. Let φ[r1, . . . , rm] be a context for PD and θ1, . . . , θm PD-formulas. Let τ
be a truth function for φ[θ1, . . . , θm] over a team X. In the syntax tree Tφ of φ, if a node x
has no ancestor node with a label of the form ψ ⊗ χ , then τ (x) = X.

Proof. Easy, by induction on the depth of x . �
Since, e.g., ⊥ ∨ � �|� ⊥ and � ∨ ⊥ �|� ⊥, from the above lemma it follows that in the

syntax tree of a context φ[r1, r2] for PD that defines ∨ (if exists) every leaf node labeled
with r1 or r2 must have an ancestor node labeled with ⊗. Below we prove this observation
in a more general setting.

LEMMA 5.3. Let � be an m-ary connective such that for every 1 ≤ i ≤ m, there are
some PD-formulas θ1, . . . , θm satisfying

�(θ1, . . . , θm) �|� θi . (6)

If φ[r1, . . . , rm] is a context for PD which uniformly defines �, then in the syntax tree
Tφ = (T,≺, w, f), every leaf node labeled with ri (1 ≤ i ≤ m) has an ancestor node with
a label of the form ψ ⊗ χ .

Proof. Suppose there exists a leaf node x labeled with ri which has no ancestor node
with a label of the form ψ ⊗ χ . By the assumption, there exist PD-formulas θ1, . . . , θm

satisfying (6) for i . Let N be the set of all propositional variables occurring in the formula

3 The author would like to thank Samson Abramsky for pointing out this proof idea.
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φ[θ1, . . . , θm]. Take a team X on N such that X |� �(θ1, . . . , θm) and X �|� θi . Since
φ[r1, . . . , rm] uniformly defines �, we have �(θ1, . . . , θm) ≡ φ[θ1, . . . , θm], implying
X |� φ[θ1, . . . , θm]. By Theorem 4.6, there is a truth function τ for φ[θ1, . . . , θm] over X .
By the property of x and Lemma 5.2, τ (x) = X . Thus X |� ri [θ1, . . . , θm], i.e., X |� θi ; a
contradiction. �

The following elementary set-theoretic lemma will be used in the proof of Lemma 5.5.

LEMMA 5.4. Let X, Y, Z be sets such that |X | > 1, Y, Z �= ∅ and X = Y ∪ Z. Then
there exist Y ′, Z ′ � X such that Y ′ ⊆ Y , Z ′ ⊆ Z and X = Y ′ ∪ Z ′.

Proof. If Y, Z � X , then taking Y ′ = Y and Z ′ = Z , the lemma holds. Now, assume
that one of Y, Z equals X .

CASE 1. Y = Z = X . Pick an arbitrary a ∈ X . Let Y ′ = X \ {a} � X and Z ′ = {a}.
Since |X | > 1, we have that Z ′ � X . Clearly, X = (X \ {a}) ∪ {a}.

CASE 2. Only one of Y and Z equals X . Without loss of generality, we assume that
Y = X and Z � X . Let Y ′ = X \ Z and Z ′ = Z . Clearly, X = (X \ Z) ∪ Z and
Y ′, Z ′ � X , as ∅ �= Z � X . �

Next, we prove a crucial technical lemma for the main theorem (Theorem 5.6) of this
section.

LEMMA 5.5. Let φ[r1, . . . , rm] be a consistent context for PD such that in the syntax
tree Tφ = (T,≺, w, f) of φ, every leaf node labeled with ri (1 ≤ i ≤ m) has an ancestor
node labeled with a formula of the form ψ ⊗ χ . Let N be the set of all propositional
variables occurring in the formula φ[�, . . . ,�]. If 2N |� φ[�, . . . ,�], then there exists a
truth function τ for φ[�, . . . ,�] over 2N such that τ (x) � 2N for all leaf nodes x labeled
with ri (1 ≤ i ≤ m).

Proof. By Lemma 4.1, we may assume that φ[r1, . . . , rm] does not contain a single
inconsistent subformula. Suppose 2N |� φ[�, . . . ,�]. The required truth function τ over
2N is defined inductively on the depth of the nodes in the syntax tree Tφ in the same way
as in the proof of Theorem 4.6, except for the following case.

For each leaf node labeled with ri , consider its ancestor node x with f(x) = ψ ⊗ χ of
the minimal depth, where ψ, χ ∈ Sub(φ) (the existence of such x is guaranteed by the
assumption). Let y, z be the two children of x with f(y) = ψ and f(z) = χ . Assuming that
τ (x) has been defined already, we now define τ (y) and τ (z).

By the induction hypothesis, τ (x) |� (ψ ⊗ χ)[�, . . . ,�]. The minimality of x implies
that x has no ancestor node labeled with θ0 ⊗ θ1 for some θ0, θ1. Thus τ (x) = 2N by
Lemma 5.2, and there exist teams Y0, Z0 ⊆ τ (x) = 2N such that 2N = Y0 ∪ Z0, Y0 |�
ψ[�, . . . ,�] and Z0 |� χ [�, . . . ,�].

CLAIM. There are nonempty teams Y, Z such that 2N = Y ∪ Z and

Y |� ψ[�, . . . ,�] and Z |� χ [�, . . . ,�]. (7)

Proof of claim. If Y0, Z0 �= ∅, then taking Y = Y0 and Z = Z0 the claim holds. Now,
suppose one of Y0, Z0 is empty. Without loss of generality, we may assume that Y0 = ∅.
Then let Z := Z0 = 2N . Since ψ[r1, . . . , rm] �≈ ⊥, by Corollary 4.3 and the locality of
PD, there exists a nonempty team Y ⊆ 2N such that Y |� ψ[�, . . . ,�], as required. �

Now, since |2N | > 1, by Lemma 5.4, there are teams Y ′, Z ′ � 2N such that Y ′ ⊆ Y ,
Z ′ ⊆ Z , and Y ′ ∪ Z ′ = 2N . Define τ (y) = Y ′ and τ (z) = Z ′. Clearly, condition (iii) of
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Definition 4.4 for y, z is satisfied. Moreover, by the downwards closure property, it follows
from (7) that condition (i) for y and z is also satisfied. Hence, such defined τ is a truth
function for φ[�, . . . ,�] over 2N .

It remains to check that τ (x) � 2N for all leaf nodes x labeled with ri (1 ≤ i ≤ m).
By the assumption, there exists an ancestor y of x labeled with ψ ⊗ χ of the minimal
depth. One of y’s two children, denoted by z, must be an ancestor of x or z = x . Thus, by
Lemma 4.5 and the construction of τ , we obtain that τ (x) ⊆ τ (z) � 2N . �

Now, we give the intended sufficient condition for a noncontradictory connective being
not uniformly definable in PD. In the proof, we will make use of the formula �X from
the proof of Theorem 2.6 which has the property (3). The conditions in the statement of
the next theorem are all generalized from the corresponding properties of intuitionistic
disjunction, which are given in the proof of Theorem 5.7. The reader is recommended to
consult the proof of Theorem 5.7 for a better understanding of the conditions.

THEOREM 5.6. Every noncontradictory m-ary connective � satisfying the following
conditions is not uniformly definable in PD:

(i) For every 1 ≤ i ≤ m, there exist PD-formulas θ1, . . . , θm such that
�(θ1, . . . , θm) �|� θi .

(ii) There are PD-formulas δ1, . . . , δm such that |� �(δ1, . . . , δm).

(iii) For any finite set N of propositional variables, there exist 1 ≤ j1 < · · · < jk ≤ m
such that

2N �|� �(α1, . . . , αm), (8)

where for each 1 ≤ i ≤ m,

αi =
{
�2N , if i = ja for some 1 ≤ a ≤ k,

�, otherwise.
(9)

Proof. Suppose that � was uniformly definable in PD by a context φ[r1, . . . , rm] for
PD such that for all PD-formulas θ1, . . . , θm ,

φ[θ1, . . . , θm] ≡ �(θ1, . . . , θm). (10)

Since � satisfies condition (i), by Lemma 5.3, in the syntax tree Tφ = (T, <,w, f) of
φ[r1, . . . , rm], each node labeled with ri (1 ≤ i ≤ m) has an ancestor node labeled with a
formula of the form ψ ⊗ χ .

Let δ1, . . . , δm be the PD-formulas with |� �(δ1, . . . , δm) as given by condition (ii). By
(10), we have |� φ[δ1, . . . , δm]. Since δi |� � for all 1 ≤ i ≤ m, by Lemma 4.2, we have
|� φ[�, . . . ,�]. Let N be the set of all propositional variables occurring in φ[�, . . . ,�].
We have that 2N |� φ[�, . . . ,�]. Since � is a noncontradictory connective, φ[r1, . . . , rm]
is a consistent context. Then, by Lemma 5.5, there exists a truth function τ for φ[�, . . . ,�]
over 2N such that τ (x) � 2N for all leaf nodes x labeled with ri (1 ≤ i ≤ m) in Tφ .

By condition (iii), there exist 1 ≤ j1 ≤ · · · ≤ jk ≤ m such that (8) holds for the
set N . On the other hand, for each ja (1 ≤ a ≤ m), as 2N � τ (x) holds for every
leaf node x labeled with r ja , we have that τ (x) |� �2N , i.e., τ (x) |� f(x)[α1, . . . , αm],
where each αi is defined as in equation (9). Thus, by Lemma 4.7, τ is also a truth function
for φ[α1, . . . , αm] over 2N , thereby 2N |� φ[α1, . . . , αm]. Thus, by (10), we obtain that
2N |� �(α1, . . . , αm), which contradicts (8). �

Finally, we are in a position to derive the main result of the paper as a corollary of the
above theorem.
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THEOREM 5.7. Intuitionistic disjunction ∨ is not uniformly definable in PD.

Proof. It suffices to check that intuitionistic disjunction satisfies conditions (i)–(iii)
of Theorem 5.6. Condition (i) is satisfied, since, e.g., ⊥ ∨ � �|� ⊥ and � ∨ ⊥ �|� ⊥.
Condition (ii) is satisfied since, e.g., |� �∨�. Lastly, for any finite set N of propositional
variables, 2N �|� �2N ∨�2N , giving condition (iii). �

We have already proved that intuitionistic implication is not uniformly definable in PD
in Theorem 5.1 by observing that intuitionistic implication is not monotone. In fact, the
nonuniform definability of intuitionistic implication in PD also follows from Theorem 5.6,
as intuitionistic implication also satisfies conditions (i)–(iii). Indeed, we have that (i) ⊥→
⊥ �|� ⊥, (ii) |� � → �, and (iii) 2N �|� � → �2N .

Finally, we summarize the results obtained in this section as a corollary concerning
compositional translatability between InqL and PD. One may compare this corollary with
Theorem 3.7.

COROLLARY 5.8. InqL ≤ PD, whereas InqL �≤c PD.

Proof. By Theorems 2.6, 5.1 and 5.7. �

§6. Concluding remarks. Team semantics was originally devised (in the context of
independence-friendly logic) by Hodges (1997a,b) to meet one of the fundamental require-
ments of logic and language, namely “compositionality” (see, e.g., Janssen (1997); Hodges
(2001); Pagin & Westerståhl (2010) for an overview). However, the result of this paper,
as well as those in Ciardelli (2009) and Galliani (2013), show that there is a distinction
between definability and uniform definability, and between translatability and composi-
tional translatability in team semantics, which seem to indicate that the compositionality
or uniformity on another level is lost in team semantics. Although it is commented in
Hodges (2016) that the results of this paper and of Ciardelli (2009) and Galliani (2013) are
not actually in conflict with the notion of compositionality given in Hodges (2012), in the
author’s opinion, there are yet a lot more to be clarified regarding this subtle issue.

We finish by mentioning that whether, on the other hand, PD is compositionally trans-
latable into InqL is an open problem. The dependence atoms are uniformly definable in
InqL, since

=(p1, . . . , pk, q) ≡ (p1 ∨ ¬p1) ∧ · · · ∧ (pk ∨ ¬pk)→ (q ∨ ¬q).

But whether the tensor ⊗ is uniformly definable in InqL is open. We conjecture that it is
not, and note that the argument in this paper does not seem to work for the logic InqL, as
contexts for InqL, especially those that contain intuitionistic implication, are not in general
monotone in the sense of Lemma 4.2 (cf. the proof of Theorem 5.1).
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