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INFINITARY PROPOSITIONAL RELEVANT LANGUAGES WITH ABSURDITY

GUILLERMO BADIA

Abstract. Analogues of Scott’s isomorphism theorem, Karp’s theorem as well as results on lack of compactness

and strong completeness are established for infinitary propositional relevant logics. An “interpolation theorem” (of a

particular sort introduced by Barwise and van Benthem) for the infinitary quantificational boolean logic L8ω holds.

This yields a preservation result characterizing the expressive power of infinitary relevant languages with absurdity

using the model-theoretic relation of relevant directed bisimulation as well as a Beth definability property.

Keywords: relevant logic, model theory, infinitary logic, interpolation, Routley-Meyer semantics.

§1. Introduction. In these pages we explore the model theory of a twofold non-classical

logic: infinitary relevant propositional logic. By extending the language of relevant logic by

adding infinitary conjunctions and disjunctions, we naturally gain some expressive power.

Such extensions have been toyed with from time to time in the context of relevant logic

in an unsystematic and informal way (cf. [25, 15, 16]). In [25] (p. 336), Routley reports

some unpublished (and, according to him, not overly successful) attempts to study infinitary

relevant logic.

We will be working in the well-known Routley-Meyer semantics [27, 28, 29, 26, 13]. This

is the more or less standard non-algebraic semantics for relevant logic ([30, 24] are examples

of quite recent applications). The reader can find a survey of the alternatives in [13], though.1

Though the heyday of infinitary logic seems to be long gone, important results remain. In

the next sections, we will obtain relevant analogues of some of them such as Karp’s theorem

or Scott’s isomorphism theorem. Karp’s theorem (Corollary 3.5.3 in [17]) is the claim that

for any two models, L8ω-equivalence is the same as the existence of a family of partial

isomorphisms with the back and forth properties. Scott’s isomorphism theorem (Corollary

3.5.4 in [17]) says that, for denumerable models, making a single special formula true suffices

to characterize a structure up to isomorphism.

The main problem we will solve here, though, is that of characterizing the expressive

power of infinitary relevant logic. This will be accomplished by establishing a generalized

interpolation result for the classical infinitary logic L8ω, from which the desired characteri-

zation will follow in the form of a preservation theorem involving relevant directed bisimula-

tions. On a historical note, directed bisimulations were introduced in [20] and though it was

hinted there, it seems like [22] is the first time they were applied to the study of substructural

logics in print. Recently, they have been shown to have a fundamental place in the model

theory of relevant logic in the Routley-Meyer semantic framework (cf. [2], where the finitary

case has been studied) analogous to bisimulations in the Kripke semantics for modal logic.

1[21] is a recent contender for the quantificational case, where incompleteness had been found by Fine [16].
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The results on expressive power in this paper can be seen as a continuation of the work in

[2], turning our attention this time to the realm of infinitary languages. There are certain dif-

ferences in method worth mentioning, though. In [2], there was an appeal to the machinery of

saturated models in order to establish a preservation theorem characterizing relevant formu-

las as a fragment of first order logic. This was, in fact, unnecessary for a much direct proof

through a simple application of the compactness theorem of first order logic was possible.

It would have simply require to introduce the notion of a relevant directed n-bisimulation,

a finite approximation of a relevant directed bisimulation.2 This approach is so basic that

generalizes to logics having some minimal forms of compactness such as L8ω. That is the

main motivation behind our introduction of relevant directed α-bisimulations in Definition 3.

In §2, we introduce the Routley-Meyer semantics for infinitary propositional relevant lan-

guages with absurdity. In §3, we show that infinitary relevant languages with absurdity are,

in general, lacking compactness and most reasonable formal systems based on them are not

strongly complete. In §4, we define relevant directed bisimulations establishing some basic

propositions, including a relevant Karp theorem while in §5, we prove a relevant analogue

of Scott’s isomorphism theorem. In §6, we prove an interpolation theorem for the infinitary

quantificational boolean logic L8ω which implies a preservation theorem saying that the for-

mulas of L8ω preserved under relevant directed bisimulations are exactly infinitary relevant

formulas, as well as a Beth definability result. Finally, in §7 we briefly summarize our work.

§2. Routley-Meyer Semantics. In this section, we will review the Routley-Meyer se-

mantics for propositional infinitary relevant languages with absurdity and their embeddability

in more traditional infinitary languages.

Let κ be some infinite cardinal. An infinitary relevant language with absurdity LÑ
κω con-

tains a possibly finite list PROP of propositional variables p, q, r . . . and the logical symbols

K (an absurdity constant), ∼ (negation),
Ź

(conjunction),
Ž

(disjunction) and Ñ (implica-

tion). Formulas are constructed as expected:

φ ::“ p | K | ∼φ |
Ź

iPI φi |
Ž

iPI φi | φÑ ψ ,

where p P PROP and |I| ă κ. The infinitary relevant language with absurdity LÑ
8ω comes

from letting the index I of a disjunction or a conjunction take any cardinality whatsoever.

LÑ
ωω is just an ordinary finitary relevant language.

A comment on the presence of K in our languages is in place here, given that K is not

standardly part of the languages of relevant logic (cf. [1]). The results in these pages cannot

dispense with K, since languages without K have no reasonable model-theoretic characteri-

zation. The interested reader is advised to consult §4 in [2].

Note that implications are still finitary in the sense that we can only build formulas of the

form

φ0 Ñ pφ1 Ñ pφ2 Ñ p¨ ¨ ¨ Ñ φλq . . . q

when λ is finite. This is the reason for writing ω in LÑ
κω, it basically bounds the possible

number of iterations of aÑ symbol in a formula. This notation should not be confused with

2Incidentally, this is how the main result of [3] characterizing the expressivity of propositional bi-intuitionistic

languages was obtained.
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the classical notation where the second subscript is used to bound the possible length of a

string of quantifiers.3

An example of a connective definable in LÑ
8ω (but not in LÑ

ωω) is
ω
ÝÑ (iterated entailment),

which was introduced by Humberstone (see [10], p. 36). The formula φ
ω
ÝÑ ψ means that for

some natural number n ą 1,

φÑ pφÑ p. . . pφ
looooooooomooooooooon

n´φs

Ñ ψq . . . qq

holds. This, of course, boils down to an infinitary disjunction of finitary implications:
Ž

ną1
φÑ pφÑ p. . . pφ
looooooooomooooooooon

n´φs

Ñ ψq . . . qq.

As we announced in §1, we will be working in the Routley-Meyer semantic framework.

In this setting, a model for LÑ
κω will be a structure M “ xW,R, ˚, T, V y, where W is a

non-empty set, T P W , ˚ is an operation ˚ : W ÝÑ W (the so called Routley star),

R Ď W ˆW ˆW and V is a valuation function V : PROP ÝÑ ℘pW q. In what follows we

frequently omit T from the presentation of our models since nothing essential hinges on that

(given that we will not be considering any connectives involving T in its semantics) and the

reader can easily fill in the omitted details.

We define satisfaction at w in M recursively as follows:

M,w , K never

M,w , p iff w P V ppq
M,w , p∼φq iff M,w˚ . φ

M,w , p
Ź

iPI φiq iff M,w , φi for every i P I .

M,w , p
Ž

iPI φiq iff M,w , φi for some i P I .

M,w , φÑ ψ iff for every a, b such that Rwab,

if M,a , φ then M, b , ψ.

Note that as K gives us a means to define the empty class of models, J “df p∼Kq allows

defining the class of all models since it is invariably true (for recall that K invariably fails at

w˚ for any w).

The basic semantic units in relevant logic are (as in modal logic) pointed models, that is,

pairs pM,wq where w is some distinguished element of W . This is simply due to the fact

that formulas are evaluated locally, at worlds.

By considering restricted classes of Routley-Meyer structures where the relation R has

certain properties and only some valuations are admitted, we can get classes of models cor-

responding to a number of formal systems of relevant logic like B,T or R. Next we will

consider some famous examples from [26].

3It is opaque whether there is a connection here. For instance, φ Ñ pφ Ñ p. . . pφ
loooooooooomoooooooooon

ω´φs

Ñ ψq . . . qq could be naı̈vely

translated ´without the intervention of infinitely long strings of quantifiers´ into a “classical infinitary” language

with the appropriate signature, using the translation function given below, as @y0z0pRxy0z0 ^ Txpφqy0{x Ą

@y1, z1pRz0y1z1 ^ Txpφqy1{x Ą p. . .@vupRzωvu ^ Txpφqv{x Ą Txpψqu{xq . . . qqq. The problem is

that this is not a formula of any classical infinitary language Lκλ. The reason is that it violates the well-

foundedness of the subformula relation (Lemma 1.3.3 from [12]). To see this note that the collection of for-

mulas @yizipRzi´1yizi ^ Txpφqyi{x Ą @yi`1, zi`1pRziyi`1zi`1 ^ Txpφqyi`1{x Ą p. . .@vupRzωvu ^

Txpφqv{x Ą Txpψqu{xq . . . qqq (0 ă i ă ω) has no minimal element according to the subformula relation.
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Consider a relevant language with absurdity L. A structure xW,R, ˚, T, V y is called a

B-model if for any x, y, z, v PW :

(i) RTxx

(ii) RTxv and Rvyz implies that Rxyz

(iii) x “ x˚˚

(iv) RTxy only if RTy˚x˚.

(v) x P V ppq and RTxy implies that y P V ppq.

An R-model is a B-model where condition (iv) is strengthened to

(iv)1 Rzxy only if Rzy˚x˚,

and, furthermore (abbreviating the claim that there is a u such that Rxyu and Ruzv as

R2pxyqzv, and the claim that there is an u such that Rxuv and Ryzu as R2xpyzqv), for

any x, y, z, v PW :

(v) R2pxyqzv only if R2xpyzqv
(vi) Rxxx

(vii) Rxyz only if Ryxz.

An RM-model is an R-model such that and for any x, y, z PW :

(v) Rxyz only if either RTxz or RTyz.

When $ is the deducibility relation of some formal system S of relevant logic, a syntactic

claim of the form φ $ ψ is to be interpreted on the class of corresponding models VS as

saying that M,T , φ only if M,T , ψ for every model M P VS. In what follows we

will use the symbol VS as a variable for the class of models corresponding to any system S

described in [26] between B and RM.4

Next we give an example of the increased expressive power of infinitary relevant lan-

guages. Suppose Φ and Ψ are sets of formulas. We speak of the pair pΦ,Ψq as being sat-

isfiable or having a model in a class K of pointed models if there is a model pM,wq P K
such that M,w , φ for each φ P Φ and M,w . ψ for every ψ P Ψ. These pairs are called

tableaux in [11] (pp.37-38).5 Let V be a class of pointed models. A class of pointed models

K Ď V is said to be axiomatizable in LÑ
ωω with respect to V if there is a set of formulas

Γ of LÑ
ωω such that K “ ModpΓq ´where ModpΓq the class of pointed model satisfying Γ.

Let pM,wq be a model for LÑ
ωω. We say that pM,wq is inconsistent if for some p P PROP,

M,w , pp^ p∼pqq.
Inconsistency is definable by a sentence of a propositional relevant language with absur-

dity LÑ
ωω if PROP is finite, for in this case

Ž

pPPROPpp ^ p∼pqq expresses that a model is

inconsistent. If the signature is not finite, inconsistency is not in general a property axioma-

tizable in LÑ
ωω. This has been pointed out for LP essentially in [14] with an argument using

a version of Łoś’s theorem on ultraproducts.

4A caveat is in place here. The variable sharing property is a folklore requirement from any formal system of

relevant logic. The property states that whenever φ Ñ ψ is a theorem then φ and ψ must share some propositional

variable in common. When our language has K, the principle fails quite easily since K Ñ θ (for arbitrary θ)

would be a theorem, tempting one to claim that no system involving K should qualify as a system of relevant logic.

However, Yang [31] has suggested recently the strong implicit relevance property as a nice substitute of the variable

sharing property that would allow for systems containing K.
5See also the bi-theories in [23].
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PROPOSITION 1. If |PROP| ě ω, inconsistency is not a property of models axiomatizable

in LÑ
ωω with respect to any VS.

PROOF. Suppose it were. Say the theory Θ axiomatizes the class of inconsistent models.

Now, the pair pΘ,Φq where Φ “ tpp ^ p∼pqq : p P PROPu is finitely satisfiable in VS. To

see this take a finite subset tp0, . . . , pnu Ă PROP. Consider the model xW,R, ˚, V, T y (in VS
since it is in VRM) such that

W “ tt, su
˚ “ txt, sy, xs, tyu
R “ txt, t, ty, xt, s, ty, xt, s, sy, xs, t, ty, xs, t, sy, xs, s, ty, xs, s, syu
T “ t

V ppiq “W (for i “ 0, . . . , n)

V pqq “ ttu (for q P PROP, and q ‰ pi for i “ 0, . . . , n)

We see that if q P PROP but q ‰ pi for i “ 0, . . . , n, then M, t , pq ^ p∼qqq. On the

other hand, M, t . ppi ^ p∼piqq pi “ 0, . . . , nq since t˚ “ s P V ppiq, which means that

M, t . p∼piq.
Finally, by Proposition 2.5 of [2], the pair pΘ,Φq is satisfiable in VS, which is a contradic-

tion since by definition Θ says that at least one of φ P Φ must hold. %

When |PROP| ě ω, inconsistency is expressible by a single formula in the extension

LÑ
|PROP|`ω

of LÑ
ωω. Again,

Ž

pPPROPpp ^ p∼pqq expresses that a model is inconsistent. This

fact shows that LÑ
|PROP|`ω

is a proper expressive extension of LÑ
ωω.

Consider an infinitary language with equality and boolean negation admitting conjunctions

and disjunctions of size at most κ (the standard reference for the study of such laguages is

[12]) and quantifications over at most finitely many variables that comes with an individual

constant symbol T , one function symbol ˚, a distinguished three place relation symbol R,

and a unary predicate P for each p P PROP. Following the tradition in modal logic, we might

call this a correspondence language Lcorrκω for LÑ
κω (cf. [9]). Now we can read a model M

as a classical model for Lcorrκω in a straightforward way: W is taken as the domain of the

structure, the constant T denotes the obvious distinguished world, V specifies the denotation

of each of the predicates P,Q, . . . , while ˚ is the denotation of the function symbol ˚ of

Lcorr, and R the denotation of the relation R of Lcorrκω .

Where t is a term in the correspondence language, we write φt{x for the result of replacing

x with t everywhere in the formula φ. As expected, it is easy to specify a translation from

the formulas of the basic relevant language with absurdity to the correspondence language as

follows:

TxpKq =  Rxxx^Rxxx
Txppq = Px

Txp∼φq =  Txpφq
x˚{x

Txp
Ź

iPI φiq =
Ź

iPI Txpφiq
Txp

Ž

iPI φiq =
Ž

iPI Txpφiq
TxpφÑ ψq = @y, zpRxyz ^ Txpφq

y{x Ą Txpψq
z{xq.

The symbols andĄ appear here representing boolean negation and material implication in

quantificational infinitary logic (which should not be confused with the relevant ∼ andÑ).



6 GUILLERMO BADIA

The following proposition gives a bridge between the satisfaction relation , for relevant

propositional languages we just defined and the standard satisfaction relation ( from classi-

cal logic (where when φ is a classical formula, we write M ( φrws to mean that the object

w satisfies φ in the usual Tarskian sense).

PROPOSITION 2. For any w, M,w , φ if and only if M ( Txpφqrws.

PROOF. We simply need to note that, according to the Routley-Meyer semantics, each

propositional relevant formula φ says the same about w as Txpφq does in the Tarskian se-

mantics.

%

The existence of a satisfaction preserving translation function allows us to study relevant

languages with absurdity as fragments of model-theoretically better understood creatures.

§3. Failure of compactness and strong completeness. In this section, we study briefly

a phenomenon pervasive in infinitary logic even at the propositional level: the loss of com-

pactness. This quickly leads to a loss of strong completeness for any reasonable infinitary

formal system (cf. [18]). Such seems to be the price to pay for having infinitely long con-

junctions and disjunctions around. Here we will focus our attention on specific classes of

models since we will be discussing questions sensitive to the choice of formal system such

as incompleteness.

DEFINITION 1. Let LÑ
κω be a relevant language with absurdity, K a class of Routley-

Meyer structures for it and pΦ,Ψq a pair of collections of relevant formulas. LÑ
κω is said to

be λ-compact with respect to K if for every Φ0 Ď Φ and Ψ0 Ď Ψ such that |Φ0|, |Ψ0| ă λ,

the pair pΦ0,Ψ0q has a model in K only if pΦ,Ψq has a model in K .

PROPOSITION 3. Let |PROP| ě κ. LÑ
κω is κ-compact with respect to some VS only if κ is

a regular limit cardinal.

PROOF. Suppose κ is a sucessor cardinal ξ ` 1. Without loss of generality, assume PROP

is composed of double indexed propositional variables pλγ (λ ă ξ ` 1, γ ă ξ). Consider the

set of formulas

∆ “ t
Ž

γ ă ξ pλγ : λ ă ξ ` 1u Y tpλγ ^ pµγ Ñ K : µ ‰ λ, µ, λ ă ξ ` 1, γ ă ξu.

Take any ∆0 Ă ∆ such that |∆0| ď ξ. By the axiom of choice, there is a one-to-one

mapping f from the set of all λ such that pλγ for some γ appears in a formula of ∆0 into

ξ. We build the model where W “ ttu, R “ txt, t, tyu, ˚ “ txt, tyu, and we define V as

follows: V ppλfpλqq “W , and V ppλγq “ H if γ ‰ fpλq. It is clear that M, t ,
Ž

γ ă ξ pλγ
for all disjunctions in ∆0 with γ ă ξ ` 1. Now take any pλγ ^ pµγ Ñ K P ∆0 such that

µ ‰ λ, µ, λ ă ξ ` 1, and γ ă ξ. Since f is an injection we have that fpµq ‰ fpλq, so pλγ
and pµγ will never hold simultaneously at any world in W by our definition of V . Hence,

M, t , pλγ^pµγ Ñ K by antecedent failure. However, ∆ itself has no model, contradicting

κ-compactness.

Suppose on the other hand that κ is singular. In [12] (p. 85) it is noted that the infini-

tary languages Lκω where κ is singular are exactly as expressive as languages Lκ`ω. The

argument holds for LÑ
κω as well. Hence, without loss of generality, we can take

∆ “ t
Ž

γ ă κ pλγ : λ ď κu Y tpλγ ^ pµγ Ñ K : µ ‰ λ, µ, λ ď κ, γ ă κu
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to be a perfectly good collection of formulas of LÑ
κω. As before every subset ∆0 Ă ∆ such

that |∆0| ă κ has a model in VS but ∆ does not. %

A Hilbert-style formal system H for a language LÑ
κω with respect to the class of models

for a standard system for relevant logic will be formed by a set of formulas of LÑ
κω taken as

the collection of axioms and a collection of rules of inference each with less than κ premises.

If Γ is a collection of formulas of LÑ
κω and φ a formula of LÑ

κω, we will write Γ $H φ if

there is a sequence of formulas S of length less than κ such that every formula in S is either

an axiom, one of the formulas in Γ or it follows from previous formulas in S using one of

the inference rules.

PROPOSITION 4. Let |PROP| ě κ`. Let H be a formal system for LÑ
κ`ω

sound with

respect to some VS. Then H is not strongly complete.

PROOF. Take ∆ in the proof of Proposition 3. Since every ∆0 Ď ∆ with |∆0| ă κ has a

model in VS, by the soundness of H , we see that ∆0 &H K, but that means that ∆ &H K.

However ∆ semantically implies K over VS, since it has no model. %

§4. Relevant directed bisimulations and Karp’s Theorem. In this section, we intro-

duce relevant directed bisimulations, establish some basic facts that will be needed in §6 and

prove the relevant analogue of Karp’s theorem. The present section as well as §6 focuses on

the infinitary relevant language with absurdity LÑ
8ω.

DEFINITION 2. The degree of an infinitary relevant formula φ, in symbols, dgpφq, is

defined inductively in the following way:

dgpKq = 0,

dgppq = 0,

dgp
Ź

iPI φiq = suptdgpφiq : i P Iu,
dgp

Ž

iPI φiq = suptdgpφiq : i P Iu,
dgp∼φq = dgpφq,

dgpφÑ ψq = suptdgpφq, dgpψqu ` 1.

We will say that two formulas φ and ψ are equivalent if for any model pM,wq, M,w , φ

iff M,w , ψ.

PROPOSITION 5. For each ordinal α, there are only set-many non-equivalent formulas of

LÑ
8ω with degreeď α.

PROOF. Consider first Lcorr8ω . Define the quantifier rank of a formula of Lcorr8ω following

[4] (Definition 10. 4) which deals appropriately with the presence of functions in the lan-

guage. According to Corollary 10.9 in [4], for κ some fixed point of the function i with

cardinality bigger than the cardinality of the signature of Lcorr8ω (there is always some such

κ given that i is normal), every formula of Lcorr8ω with quantifier rank ď α is equivalent

to a disjunction of size smaller than κ of formulas of a certain class ∆ with fewer than κ

non-equivalent members. Clearly, there are only set-many non-equivalent such disjunctions.

Hence, there are only set-many non-equivalent formulas of Lcorr8ω with quantifier rank ď α.

Finally since relevant formulas of degree ď α can be seen via the translation as formulas

of Lcorr8ω with quantifier rank ď β for sufficiently big β, we have established the result. %
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Relevant directed bisimulations ´as bisimulations in modal logic´ are “non-classical”

analogues of back and forth games from classical model theory. In this sense, the next

definition introduces the analogue of Definition 5.3.3 from [12].

DEFINITION 3. Let M1 “ xW1, R1, ˚1, V1y and M2 “ xW2, R2, ˚2, V2y be two models.

A relevant directed α-bisimulation for PROP between M1 and M2 is a system of pairs of

non-empty relations xZ01, Z02y, . . . , xZα1, Zα2y where

Zβ1 ĎW1 ˆW2 and Zβ2 ĎW2 ˆW1 p0 ď β ď αq

such that

Zα1 Ď ¨ ¨ ¨ Ď Z01

Zα2 Ď ¨ ¨ ¨ Ď Z02

and when i, j P t1, 2u, 0 ď β ă α and 0 ď γ ď α,

(1) xZγiy only if y˚jZγjx
˚i

(2) If xZpβ`1qiy and Rjybc for some b, c P Wj , there are b1, c1 P Wi such that Rixb
1c1,

bZβjb
1 and c1Zβic.

(3) If xZγiy and p P PROP,

Mi, x , p only if Mj, y , p.

PROPOSITION 6. Let pM1, w1q and pM2, w2q be two arbitrary Routley-Meyer models, α

an ordinal and i, j P t1, 2u. Then, (i) for each relevant formula φ of LÑ
8ω with degree

ď α, Mi, wi , φ only if Mj, wj , φ iff (ii) there is a relevant directed α-bisimulation

pxZβi, Zβjyqβďα such that wiZβjwj for each β ď α.

PROOF. piiq ñ piq: Assume that (ii). We argue for (i) for all α simultaneously, by

induction on the complexity of φ.

The atomic cases as well as K are obvious from (3) in Definition 3 and the fact that K is

never true. For negation, let φ “ p∼ψq and suppose that Mi, wi , p∼ψq, so Mi, w
˚i

i . ψ.

But w
˚j

j Zαjw
˚i

i by (1) in Definition 3 since wiZαjwj by assumption, and, by inductive

hypothesis, Mj, w
˚j

j . ψ, so Mj , wj , p∼ψq as desired. Conjunction and disjunction are

routine exercises.

The only remaining case is when φ “ ψ Ñ χ. By Definition 2, say that dgpφq “ β`1 ď α

where β “ suptdgpψq, dgpχqu. Suppose that Mi, wi , ψ Ñ χ, which means that if

Riwib
1c1 for some b1, c1, andMi, b

1 , ψ, thenMi, c
1 , χ. Now, let Rjwjbc for arbitrary b, c.

We need to show that Mj, b , ψ only if Mj , c , χ. To get the contrapositive, we will sup-

pose that Mj , c . χ. By the assumption (ii), wiZβ`1iwj , so using property (2) in Definition

3, there are b1, c1 such thatRiwib
1c1, bZβjb

1 and c1Zβic. Note that xZ0i, Z0jy, . . . , xZβi, Zβjy
is a directed β-bisimulation between Mi and Mj . This follows readily from our assump-

tion that xZ0i, Z0jy, . . . , xZαi, Zαjy is a relevant directed α-bisimulation between Mi and

Mj by verifying (1)-(3) in Definition 3. By inductive hypothesis, since Mj , c . χ and

dgpχq ď β, Mi, c
1 . χ. Given that Mi, wi , ψ Ñ χ, it must be that Mi, b

1 . ψ. But by

inductive hypothesis again using the fact that bZβjb
1 and dgpψq ď β, Mj, b . ψ. Hence,

Mj , wj , ψ Ñ χ.

piq ñ piiq: For a model S, and world w from S, we denote by relďγ-tpSpwq the relevant

type up to degree γ of w, i.e., the set of all infinitary relevant formulas such that S,w , φ

and dgpφq ď γ. We claim that, on the assumption that (i), the following system of relations

defines a relevant directed α-bisimulation between Mi and Mj:
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xZβiy iff relďβ-tpMi
pxq Ď relďβ-tpMj

pyq (0 ď β ď α)(i ‰ j, i, j P t1, 2u).

Let us first note that Zαm Ď ¨ ¨ ¨ Ď Z0m (m P t1, 2u). By the asumption (i), Zαi is non-

empty, since wiZ0iwj , but the latter also implies that w
˚j

j Zαjw
˚i

i as we will see below, so

Zαj is non-empty. Hence, Zαm (m P t1, 2u) has to be non-empty.

Let 0 ď β ď α, i, j P t1, 2u. If xZβiy, i.e., relďβ-tpMi
pxq Ď relďβ-tpMj

pyq, we see that

relďβ-tpMj
py˚j q Ď relďβ-tpMi

px˚i q, i.e., y˚jZβjx
˚i . It suffices to show that if Mj, y

˚j ,
φ then Mi, x

˚i , φ for every φ with dgpφq ď β. We prove the contrapositive. Suppose that

Mi, x
˚i . φ, so Mi, x , p∼φq and since dgp∼φq “ dgpφq and relďβ-tpMi

pxq Ď relďβ-

tpMj
pyq, also Mj , y , p∼φq. Consequently, Mj, y

˚j

. φ as we wanted. This takes care of

(1) in Definition 3.

For clause (2) in Definition 3, suppose that xZpβ`1qiy pβ ` 1 ď αq, i.e., relďβ`1-

tpMi
pxq Ď relďβ`1-tpMj

pyq, and Rjybc for some worlds b, c from Mj . Where Fmla(LÑ
8ω)

stands for the class of propositional relevant formulas of LÑ
8ω, consider

nrelďβ-tpMj
pcq “ tφ :Mj , c . φ, φ P FmlapLÑ

8ωq, dgpφq ď βu.

By Proposition 5 we see that relďβ-tpMj
pbq as well as nrelďβ-tpMj

pcq can be taken as

sets. It is clear that

Mj , y .
Ź

relďβ-tpMj
pbq Ñ

Ž

nrelďβ-tpMj
pcq

since Rjybc, Mj , b ,
Ź

relďβ-tpMj
pbq but Mj, c .

Ž

nrelďβ-tpMj
pcq. Observe that

dgp
Ź

relďβ-tpMj
pbq Ñ

Ž

nrelďβ-tpMj
pcqq “ suptdgp

Ź

relďβ-

tpMj
pbqq, dgp

Ž

nrelďβ-tpMj
pcqqu ` 1,

but

dgp
Ź

relďβ-tpMj
pbqq “ suptdgpδq : δ P relďβ-tpMj

pbqu ď β

and

dgp
Ž

nrelďβ-tpMj
pcqq “ suptdgpσq : σ P nrelďβ-tpMj

pcqqu ď β,

so

dgp
Ź

relďβ-tpMj
pbq Ñ

Ž

nrelďβ-tpMj
pcqq ď β ` 1.

Thus, since relďβ`1-tpMi
pxq Ď relďβ`1-tpMj

pyq, contraposing,

Mi, x .
Ź

relďβ-tpMj
pbq Ñ

Ž

nrelďβ-tpMj
pcq,

which means that there are b1 and c1 such that Rixb
1c1, Mi, b

1 ,
Ź

relďβ-tpMj
pbq, and

Mi, c
1 .

Ž

nrelďβ-tpMj
pcq. Hence, relďβ-tpMj

pbq Ď relďβ-tpMi
pb1q, i.e., bZβjb

1. On the

other hand, we have that if Mj , c . φ then Mi, c
1 . φ whenever dgpφq ď β. Contraposing,

relďβ-tpMi
pc1q Ď relďβ-tpMj

pcq, i.e., c1Zβic.

Condition (3) in Definition 3 follows given that atomic formulas have degree 0.

%

DEFINITION 4. Let M1 “ xW1, R1, ˚1, V1y and M2 “ xW2, R2, ˚2, V2y be two mod-

els. A relevant directed bisimulation for PROP between M1 and M2 is a pair of non-empty

relations xZ1, Z2y where

Z1 ĎW1 ˆW2 and Z2 ĎW2 ˆW1

such that when i, j P t1, 2u,

(1) xZiy only if y˚jZjx
˚i

(2) If xZiy and Rjybc for some b, c P Wj , there are b1, c1 P Wi such that Rixb
1c1, bZjb

1

and c1Zic.
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(3) If xZiy and p P PROP,

Mi, x , p only if Mj, y , p.

Next we show an analogue of Karp’s celebrated theorem characterizing L8ω-equivalence

in terms of partial isomorphisms. The corresponding result for modal logic is regarded as a

“folklore” theorem.

THEOREM 7. (Relevant Karp’s Theorem) Let pM1, w1q and pM2, w2q be two models and

i, j P t1, 2u. Then the following are equivalent:

(i) for every formula φ of LÑ
8ω, Mi, wi , φ only if Mj , wj , φ

(ii) there is a relevant directed bisimulation xZi, Zjy between M1 and M2 such that

wiZiwj .

PROOF. piiq ñ piq: This direction follows from Proposition 6, and the facts that xZi, Zjy
can be taken to be a relevant directed α-bisimulation for any α and that every formula of

LÑ
8ω has some degree α.

piq ñ piiq: We claim that

xZiy iff rel-tpMi
pxq Ď rel-tpMj

pyq (i ‰ j, i, j P t1, 2u).

defines a relevant directed bisimulation where rel-tpMi
pxq (i “ 1, 2) is the collection of all

formulas of LÑ
8ω holding at x in Mi.

For clause (1) in Definition 4, suppose xZβiy, i.e., rel-tpMi
pxq Ď rel-tpMj

pyq. We

have that that rel-tpMj
py˚j q Ď rel-tpMi

px˚i q, i.e., y˚jZβjx
˚i . It suffices to show that if

Mj , y
˚j , φ then Mi, x

˚i , φ for every φ. We prove the contrapositive. Suppose that

Mi, x
˚i . φ, so Mi, x , p∼φq and since rel-tpMi

pxq Ď rel-tpMj
pyq, also Mj, y , p∼φq.

Consequently,Mj, y
˚j

. φ as we wanted.

Now we have to take care of clause (2) in Definition 4. Assume that xZiy, i.e., rel-

tpMi
pxq Ď rel-tpMj

pyq, and Rjybc for some worlds b, c from Mj . Suppose for reductio

that there are no b1, c1 P Wi such that Rixb
1c1, bZjb

1 (i.e., rel-tpMj
pbq Ď rel-tpMi

pb1q) and

c1Zic (i.e., rel-tpMi
pc1q Ď rel-tpMj

pcq). We first notice that tb1, c1 P Wi : Rixb
1c1u ‰ H,

for otherwise Mi, x , J Ñ K, so Mj, y , J Ñ K, which implies that Mj , c , K, which

is impossible. Now, for any b1, c1 PWi such that Rixb
1c1 there are formulas φb1 and φc1 such

that either (i) Mj, b , φb1 and Mi, b
1 . φb1 or (ii) Mi, c

1 , φc1 and Mj, c . φc1 . For any

b1, c1 PWi such that Rixb
1c1 define the transformation τ as follows:

τpφb1 q “

#

J if (i) does not hold

φb1 otherwise.

τpφc1q “

#

K if (ii) does not hold

φc1 otherwise.

Next, it suffices to consider the formula
Ź

DvRxb1v
b1PWi

τpφb1 q Ñ
Ž

DvRixvc1

c1PWi

τpφc1q.

A moments reflection shows that

Mj, y .
Ź

DvRixb1v

b1PWi

τpφb1 q Ñ
Ž

DvRixvc1

c1PWi

τpφc1q

but

Mi, x ,
Ź

DvRixb1v

b1PWi

τpφb1 q Ñ
Ž

DvRixvc1

c1PWi

τpφc1 q,
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contradicting the assumption that rel-tpMi
pxq Ď rel-tpMj

pyq.
Finally, clause (3) in Definition 4 is immediate. %

Theorem 7 is nothing but the infinitary version of Theorem 13.5 from [22]. Quite fre-

quently in infinitary logic we are able to obtain counterparts to results provable for finitary

languages with the restriction that the models under consideration be finite.

§5. Scott’s theorem. Next we establish a result implying a corollary analogous to Scott’s

isomorphism theorem in classical infinitary logic. The corresponding theorem for modal

logic was proven in [8].

Since the finitary relevant logic is considerably weaker than first order logic and modal

logic in terms of expressive power, it only seems natural that to get a version of Scott’s

isomorphism theorem one has to go beyond the expressive power gained by merely adding

countable conjunctions. In fact, Corollary 9 requires us to add conjunctions of cardinality at

most |2ω|.
There is another difference between the following result and Scott’s isomorphism theorem

or van Benthem’s modal version of it. Scott’s theorem gives a formula φM characterizing

up to isomorphism a given countable model M among the class of all countable models, so

Scott’s formula only depends on the modelM . In contrast, we give a formula that implies that

there is a relevant directed bisimulation between two arbitrary countable models but which

depends on both. This difference is due to the nature of relevant directed bisimulations.

Contrary to isomorphism or bisimulation, a relevant directed bisimulation between M1 and

M2 demands things from both models. Recall that it is not a relation from W1 ˆW2 but a

pair of relations from W1 ˆW2 and W2 ˆW1 respectively.

THEOREM 8. Let pM1, w1q and pM2, w2q be two models in some K such that K Ď VB,

κ the least infinite cardinal ě supt|W1|, |W2|u, and λ “ supt|PROP|, 2κu. Then, when i, j P
t1, 2u, there is a formula θwi of LÑ

λ`ω
such that (1) Mi, wi , θwi , and (2) Mj , wj , θwi iff

there is a relevant directed bisimulation pZi, Zjq between Mi and Mj such that wiZiwj .

PROOF. We start by defining for each world a of Mi the formula φ
ηa
Mj
´simultaneously

with φ
ηb
Mi

for b PWj´ by induction on the ordinal η ă λ` as follows:

φ0aMj
“ the set of all literals satisfied by pMi, aq,

φ
ηa
Mj

“
Ź

ξ ă η φ
ξa
Mj

if η is a limit ordinal,

φ
η`1 a
Mj

“ φ
ηa
Mj
^

Ź

bPWj,

XĎWi,

Mi,a,φ
ηb
Mi

Ñ
Ž

dPX φ
ηd
Mj

φ
ηb
Mi
Ñ

Ž

dPX φ
ηd
Mj

^
Ź

bPWj,

XĎWi,

Mi,a,p∼pφ
ηb
Mi

Ñ
Ž

dPX φ
ηd
Mj

qq

p∼pφηbMi
Ñ

Ž

dPX φ
ηd
Mj
qq.

Observe that when γ ă β ă λ`,

Mj, a
1 , φ

βa
Mj

implies that Mj , a
1 , φ

γa
Mj

.

This can be seen by induction on β. The case when β “ 0 is true by antecedent failure. If

β “ η ` 1, either η “ γ or γ ă η. If the first, since

Mj, a
1 , φ

γa
Mj
^

Ź

bPWj,

XĎWi,

Mi,a,φ
γb
Mi

Ñ
Ž

dPX φ
γd
Mj

φ
γb
Mi
Ñ

Ž

dPX φ
γd
Mj

implies that Mj, a
1 , φ

γa
Mj

,
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we have that

Mj, a
1 , φ

βa
Mj

implies that Mj , a
1 , φ

γa
Mj

.

If the second, since

Mj, a
1 , φ

βa
Mj

implies that Mj , a
1 , φ

ηa
Mj

,

and, by inductive hypothesis,

Mj, a
1 , φ

ηa
Mj

implies that Mj , a
1 , φ

γa
Mj

,

we get what we needed.

Now let us define a map f :W1 ˆW2 ÝÑ λ` in the following way:

fpa, a1q “

#

the least ordinal ξ ă λ` such that M2, a
1 . φ

ξa
M2

if there is some

0 otherwise.

Given that |W1 ˆW2| “ κă cfpλ`q “ λ`, we see that there must be ξ0 ă λ` such that the

range of f is a subset of ξ0. Consequently, for every β such that ξ0 ă β ă λ`,

M2, a
1 , φ

ξ0a
M2

implies that M2, a
1 , φ

βa
M2

,

for otherwise we have that there is an ordinal γ with ξ0 ă γ ď β which is the smallest ordinal

such that M2, a
1 . φ

γa
M2

, contradicting the fact that the range of f is a subset of ξ0.

Similarly, we define g :W2 ˆW1 ÝÑ λ` as

fpa, a1q “

#

the least ordinal ξ ă λ` such that M1, a
1 . φ

ξa
M1

if there is some

0 otherwise,

and obtain ξ1 ă λ
` such that the range of g is a subset of ξ1. As before, for every β such that

ξ1 ă β ă λ`,

M1, a
1 , φ

ξ1a
M1

implies that M1, a
1 , φ

βa
M1

.

Choose ξ to be suptξ0, ξ1u. By the above, when ξ ă β ă λ`,

M2, a
1 , φ

ξa
M2

implies that M2, a
1 , φ

βa
M2

,

and

M1, a
1 , φ

ξa
M1

implies that M1, a
1 , φ

βa
M1

.

We claim that the relations uZ1v iff M2, v , φ
ξu
M2

and uZ2v iff M1, v , φ
ξu
M1

satisfy all

clauses in Definition 4.

For (1) in Definition 4, we will show by induction that when i, j P t1, 2u, for all β, if

u is a world of Mi and Mj , v , φ
βu
Mj

then Mi, u
˚i , φ

βv
˚j

Mi
. In particular, if uZiv, i.e.,

Mj , v , φ
ξu
Mj

then Mi, u
˚i , φ

ξv
˚j

Mi
, i.e., v˚jZju

˚i .

Let β “ 0, and assume that Mj , v , φ0uMj
. We need to show that every literal satisfied by

v˚j at Mj is also satisfied by u˚i at Mi, that is: (a) Mj , v
˚j , p only if Mi, u

˚i , p, and

(b) Mj, v
˚j , p∼pq only if Mi, u

˚i , p∼pq. To prove the contrapositive of (a) assume that

Mi, u
˚i . p, so Mi, u , p∼pq, but Mj, v , φ0uMj

, hence Mj , v , p∼pq, i.e, Mj , v
˚j . p.

Now, for the contrapositive of (b) assume that Mi, u
˚i . p∼pq, so Mi, u

˚i˚i , p but

u˚i˚i “ u, so Mi, u , p. However, Mj, v , φ0uMj
, which implies that Mj , v , p, i.e.,

Mj , v
˚j˚j , p, hence Mj, v

˚j . p∼pq as desired.

If β is a limit ordinal andMj, v , φ
βu
Mj

, thenMj, v , φ
γu
Mj

for all γ ă β, and by inductive

hypothesis,Mi, u
˚i , φ

γv
˚j

Mi
for all γ ă β, which implies that Mi, u

˚i , φ
βv

˚j

Mi
.
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If β “ γ ` 1 and Mj , v , φ
γ`1u
Mj

, Mj, v , φ
γu
Mj

, and by inductive hypothesis, Mi, u
˚i ,

φ
γv

˚j

Mi
. Recall that

φ
γ`1 v

˚j

Mi
“ φ

γ v
˚j

Mi
^

Ź

bPWi,

XĎWj,

Mj,v
˚j ,φ

γb
Mj

Ñ
Ž

dPX φ
γd
Mi

φ
γb
Mj
Ñ

Ž

dPX φ
γd
Mi

^
Ź

bPWi,

XĎWj,

Mj,v
˚j ,p∼pφ

γb
Mj

Ñ
Ž

dPX φ
γd
Mi

qq

p∼pφγbMj
Ñ

Ž

dPX φ
γd
Mi
qq.

Hence, it remains to show that (a) Mj , v
˚j , φ

γb
Mj

Ñ
Ž

dPX φ
γd
Mi

for some world b of Mi

and X Ď Wj only if Mi, u
˚i , φ

γb
Mj

Ñ
Ž

dPX φ
γd
Mi

, and (b) Mj , v
˚j , p∼pφγbMj

Ñ
Ž

dPX φ
γd
Mi
qq for some world b of Mi and X Ď Wj only if Mi, u

˚i , p∼pφγbMj
Ñ

Ž

dPX φ
γd
Mi
qq. These two follow similarly to (a) and (b) in the case when β “ 0.

The proof of (2) in Definition 4 requires us to notice first that for i P t1, 2u, Mi, u , φ
βu
Mj

for all β. We argue by induction on β. The case β “ 0 is trivial. If β is a limit ordinal and,

by inductive hypothesis, Mi, u , φ
γu
Mj

for all γ ă β, then clearly Mi, u , φ
βu
Mj

. Finally let

β “ γ ` 1. By inductive hypothesis, Mi, u , φ
γu
Mj

. But trivially both (a) Mi, u , φ
γb
Mi
Ñ

Ž

dPX φ
γd
Mj

for some world b of Mj and X Ď Wi only if Mi, u , φ
γb
Mi

Ñ
Ž

dPX φ
γd
Mj

,

and (b) Mi, u , p∼pφγbMi
Ñ

Ž

dPX φ
γd
Mj
qq for some world b of Mj and X Ď Wi only if

Mi, u , p∼pφ
γb
Mi
Ñ

Ž

dPX φ
γd
Mj
qq. Hence, Mi, u , φ

βu
Mj

.

Now, suppose that uZiv, i.e., Mj , v , φ
ξu
Mj

, which implies that Mj, v , φ
ξ`1u
Mj

by choice

of ξ. Assume further that Rjvbc and consider the disjunction
Ž

dPX φ
ξd
Mj

where d P Wi

is such that Mj, c . φ
ξd
Mj

. By a previous observation, Mj , b , φ
ξb
Mi

and clearly Mj, c .
Ž

dPX φ
ξd
Mj

, so Mj, v . φ
ξb
Mi
Ñ

Ž

dPX φ
ξd
Mj

. Hence, given that Mj , v , φ
ξ`1u
Mj

, Mi, u .

φ
ξb
Mi

Ñ
Ž

dPX φ
ξd
Mj

. Thus, there are b1, c1 P Wi such that Riub
1c1, Mi, b

1 , φ
ξb
Mi

, i.e.,

bZib
1 and Mi, c

1 .
Ž

dPX φ
ξd
Mj

. The latter means that if d P Wi and Mj , c . φ
ξd
Mj

then

Mi, c
1 . φ

ξd
Mj

. Again by a previous observation Mi, c
1 , φ

ξc1

Mj
, so we see that Mj, c , φ

ξc1

Mj

contraposing the previous sentence, i.e., c1Zic.

Clause (3) in Definition 4 follows as if i, j P t1, 2u and uZiv, i.e., Mj, v , φ
ξu
Mj

then

Mj , v , φ0uMj
, so every propositional variable satisfied at u in Mi is also satisfied at v in Mj .

The right to left direction of the theorem follows since if Mj , wj , φ
ξwi

Mj
then Z1 and Z2

are both non-empty, so we have the required relevant directed bisimulation between Mi and

Mj .

For the other direction if there is one such relevant directed bisimulation Mj, wj , φ
βwi

Mj

for all β, so in particular, Mj, wj , φ
ξwi

Mj
. This can be be seen by recalling that for any

β, Mi, wi , φ
βwi

Mj
and since wiZiwj by assumption, Mj , wj , φ

βwi

Mj
since all formulas of

LÑ
λ`ω

are preserved under relevant directed bisimulations. %

COROLLARY 9. (Relevant Scott’s Theorem) Let pM1, w1q and pM2, w2q be two models

in someK such thatK Ď VB, and suppose LÑ
|2ω|`ω

has at most |2ω| propositional variables.
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Then, when i, j P t1, 2u, there is a formula θwi of LÑ
|2ω|`ω

such that Mj , wj , θwi iff there

is a relevant directed bisimulation pZi, Zjq between Mi and Mj such that wiZiwj .

§6. Interpolation, preservation and Beth definability. In this section, following the

analogous case for modal logic [5, 7], we obtain a preservation theorem for relevant infinitary

formulas as a corollary to a generalized interpolation result. Interpolation theorems have a

history of implying preservation results (some examples in infinitary logic can be found in

[19]).

Let M be a structure for a language L8ω, if X Ď dompMq and X is closed under all

the functions in the signature of M , then rXsM is the submodel obtained by restricting all

the relations in the signature of M to X . Note that if X fails to be closed closed under the

required functions, then rXsM is not defined.

LEMMA 10. (Relativization Lemma) Let L8ω be a language with a unary predicate P .

Then for any formula φpxq L8ω not containing P there is a first order formula φP such

that if M is a structure where rPM sM is defined then for every sequence a of elements from

rPM sM ,

M ( φP ras iff rPM sM ( φras.

PROOF. This is just Theorem 5.1.1 from [17]. %

Given a language L, by Σ1
1pLq and Π1

1pLq we will mean the languages resulting from

admitting, respectively, second order existential quantifications in front of a formula of L

and second order universal quantifications in front of a formula of L.

LEMMA 11. If L8ω has a signature containing a binary symbol ă, φpxq and ψ are for-

mulas of L8ω and Σ1

1
pL8ωq respectively such that for each ordinal α there is a model M

such that ăM is a linear ordering on φpMq in order type ě α, then ψ has a model N such

that ăN is a linear ordering on φpNq which is not well-ordered.

PROOF. This is essentially Theorem 11.5.4 in [17] or Theorem 1. 8 in [6]. %

Lemma 11 is known as the property of the model-theoretic language L8ω of being

bounded, a substitute for compactness when establishing that a property is not expressible in

L8ω ([17], p. 581). It is a useful property that can be seen to characterize L8ω in terms of

expressive power via a Lindström theorem (cf. [4]).

Let xR,Sy be a pair of binary relations between two structures M1 and M2, while φ

and ψ are formulas of Lcorr8ω . Following [5, 7] we say that φ implies ψ along xR,Sy if

whenever M1RM2, M1 ( φ only if M2 ( ψ and if M2SM1, M2 ( φ only if M1 ( ψ.

This can be seen as a generalization of the usual notion of consequence (note that standard

consequence is the case when R and S are the identity). When the relation in question is

relevant directed bisimulations, φ implies ψ along relevant directed bisimulations if when

xZ1, Z2y is a relevant directed bisimulation between two models M1 and M2, and aZib

(i, j P t1, 2u) for elements a, b of the domains of Mi and Mj respectively, then Mi ( φras
only if Mj ( φrbs.

If φ is a formula of Lcorr8ω , we will write PROPφ for the collection of predicates appearing

in φ corresponding to propositional variables in PROP.
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LEMMA 12. Let φ, ψ be formulas of Σ1

1
pLcorr8ω q,Π

1

1
pLcorr8ω q respectively. Suppose φ im-

plies ψ along relevant directed bisimulations for PROPφXPROPψ over some class of Routley-

Meyer structures K defined by some formula σ of Lcorr8ω . Then there is an ordinal α such that

for every M,N P K if M ( φrws and u satisfies in N all the infinitary relevant formulas of

degreeď α satisfied by w in M , then N ( ψrus.

PROOF. Suppose for reductio that for each α there are pM1, w1q and pM2, w2q such that

M1 ( φrw1s and M2 * ψrw2s while w2 satisfies in M2 all the infinitary relevant formulas

of degree ď α satisfied by w1 in M1. Hence, by Proposition 6, there is a relevant directed

α-bisimulation pxZβ1, Zβ2yqβďα such that w1Zβ1w2 for each β ď α.

Suppose for simplicity that PROPφ X PROPψ has a single non-logical symbol p. So the

correspondence language Lcorr8ω has signature K “ t˚, R, P,Q0, Q1, . . . u where Qi (i “
0, 1, . . . ) are the predicates corresponding the propositional variables not in PROPφXPROPψ.

Expand this signature by adding the set of symbols tU1, U2,ă, O,B1, B2, I, Gu, where

U1, U2, , B1, B2 and O are unary predicates, ă and I are binary predicates, while G is a

ternary predicate.

Consider the infinitary formula
Ź

Θ, where Θ is the theory containing the following for-

mulas:

σU1 , σU2

“There are x, y such that U1x, U2y, φ
U1x, ψU2y and for all z, u such that Oz,B1u

and Izu, we have that Guxy ”

“ă is a discrete total ordering with first and last elements ”

“O is the field of ă ”

“If Uix, then Uix
˚” (i P t1, 2u)

“If Uix and Rxyz, then Uiy and Uiz” (i P t1, 2u)
“If Biz,Ou, Iuz and Gzxy, then Uix and Ujy” (i P t1, 2u)
“For all z such that Oz, there is u with Biu and Izu” (i P t1, 2u)
“If Biz,Ou, Iuz and Gzxy, then there is v such that Bjv, Iuv, and Gvy˚x˚” (i P
t1, 2u)
“If Biz,Ou, Iuz and Gzxy, then Px only if Py” (i P t1, 2u)
“If Uix, Ujy, Ujb, Ujc, Oz, Iuz,Biz,Gzxy,Rybc,Ov and v ă u, then there are w,w1

such that Ivw, Ivw1, Bjw,Biw
1 and there are b1c1 such that Uib

1, Uic
1, Rxb1c1, Gwbb1

and Gw1c1c” (i P t1, 2u)

The last three classes of sentences described in our presentation of Θ are simply re-

statements in first order logic of conditions appearing in the definition of a directed α-

bisimulation.

For each ordinal α,
Ź

Θ has a model Mα such that the ordering ăMα on OMα has order

type ě α. To see this consider pM1, w1q and pM2, w2q as given by our reductio assumption,

that is, M1 ( φrw1s and M2 * ψrw2s while there is a relevant directed α-bisimulation

pxZβ1, Zβ2yqβďα such that w1Zβ1w2 for each β ď α.

We can suppose without loss of generality that W1 X W2 “ H (if this is not the case

already simply take isomorphic copies ofM1 andM2 satisfying the proviso). LetMα be any

model M3 such that:

W3 “W1 YW2 Y α` 1Y tZβi : β ď α, i P t1, 2uu,
R3 “ R1 YR2,

˚3 “ ˚1 Y ˚2,
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UM3

i “Wi (i P t1, 2u),
PM3 “ PM1 Y PM2 ,

QM3

i “ QM1

i YQM2

i (i “ 0, 1, . . . ),

BM3

i “ tZβi : β ď αu (i P t1, 2u),
OM3 “ α` 1,

ăM3 is the natural ordering on α` 1,

IM3βy iff β ď α and y “ Zβi for some i P t1, 2u,
GM3xab iff x “ Z P tZβi : β ď α, i P t1, 2uu and aZb.

It follows that M3 (
Ź

Θ. The sentences σU1 , σU2 hold in M3 by Lemma 10, the fact that

both M1 and M2 make ψ true, and that rUM3

1
sM3 “M1 and rUM3

2
sM3 “M2.

Since for each ordinal α,
Ź

Θ has a model Mα such that the ordering ăMα on OMα has

order type ě α, by Lemma 11,
Ź

Θ has a model M4 such that ăM4 is a linear ordering

which is not well ordered. This means that OM4 being the field of ăM4 contains an infinite

descending sequence:

p˚q . . . e3 ă
M4 e2 ă

M4 e1 ă
M4 e0.

Let M4|K be the restriction of M4 to the signature K . Now, since M4 makes
Ź

Θ hold,

there are a P UM4

1
and b P UM4

2
such that M4 ( φU1 ras (i.e., rUM4

1
sM4|K ( φras),

M4 * ψU2 rbs (i.e., rUM4

2
sM4|K * ψrbs) and for all z, u such that z P OM4 , u P BM4

1
and

M4 ( Irzus, we have that M4 ( Gruabs.
The pair xZ1, Z2y defines a relevant directed bisimulation for PROPφ X PROPψ between

rUM4

1
sM4|K and rUM4

2
sM4|K where

xZ1y iff there is en (n P ω) in the sequence p˚q such that there is u P BM4

1
,M4 (

Irenus and M4 ( Gruxys,

xZ2y iff there is en (n P ω) in the sequence p˚q such that there is u P BM4

2
,M4 (

Irenus and M4 ( Gruxys.

First note that Z1 ‰ H ‰ Z2. For all u and arbitrary en such that u P BM4

1
and M4 (

Irenus, we have that M4 ( Gruabs, and given that there is such a u, we have that aZ1b.

But one of the formulas in Θ implies that there is also v P BM4

2
such M4 ( Irenvs and

M4 ( Grvb˚4a˚4 s. Hence, aZ1b and b˚4Z2a
˚4 , i.e., b

˚
rU

M4
2

sM4|K
Z2a

˚
rU

M4
1

sM4|K
.

To show (1) in Definition 4 suppose that i P t1, 2u and xZiy. By essentially the argument

in the above paragraph it follows that y
˚

rU
M4
j

sM4|K

Zjx
˚

rU
M4
i

sM4|K
.

For clause (2) in Definition 4, suppose that i P t1, 2u and xZiy, so there is en (n P ω)

in the sequence p˚q such that there is u P BM4

i ,M4 ( Irenus and M4 ( Gruxys. Now

let R
rU

M4

j
sM4|Kybc for some b, c P UM4

j , i.e., R4ybc by Lemma 10. But since en`1 ă en,

there is formula in Θ which implies that there are w,w1 such that M4 ( Iren`1ws,M4 (

Iren`1w
1s, w P BM4

j , w1 P BM4

i and there are b1c1 such that b1, c1 P UM4

i , R4xb
1c1(so, by

Lemma 10, R
rU

M4

i
sM4|Kxb

1c1),M4 ( Grwbb1s andM4 ( Grw1c1cs (hence bZjb
1 and c1Zic).

Condition (3) in Definition 4 follows as if i P t1, 2u and aZib, there is formula in Θ

implying that M4 ( P ras only if M4 ( P rbs, and, by the Lemma 10, rUM4

i sM4|KP ras only

if rUM4

j sM4|KP rbs.

Finally, since the pair xZ1, Z2y defines a relevant directed bisimulation for PROPφXPROPψ

between rUM4

1
sM4|K and rUM4

2
sM4|K with aZ1b, rU

M4

2
sM4|K * ψrbs and rUM4

1
sM4|K (
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φras we have a contradiction with the assumption that φ implies ψ along relevant directed

bisimulations. Also, rUM4

1
sM4|K and rUM4

2
sM4|K are in the class of modelsK since ψ holds

in both by Lemma 10.

%

THEOREM 13. (Interpolation) Let φ, ψ be formulas of Σ1

1pL
corr
8ω q, Π

1

1pL
corr
8ω q respectively

andK a class of Routley-Meyer structures axiomatizable by some formula σ of Lcorr8ω . Then,

φ implies ψ along relevant directed bisimulations for PROPφ X PROPψ over K iff there is a

relevant interpolant θ for φ and ψ over K according to the standard consequence relation,

with propositional variables in PROPφ X PROPψ.

PROOF. For the right to left direction of the theorem suppose that there is a relevant infini-

tary interpolant θ for φ and ψ over K with propositional variables in PROPφ X PROPψ. That

φ implies ψ along relevant directed bisimulations for PROPφ X PROPψ over K follows from

Theorem 7 and the fact that θ is an interpolant for φ andψ according to the usual consequence

relation.

For the converse, by Lemma 12, we know that there is an ordinal α such that for ev-

ery M,N P K if M ( φrws and u satisfies in N all the infinitary relevant formu-

las of degree ď α satisfied by w in M , then N ( ψrus. Consider the disjunction
Ž

M(φrwsp
Ź

relďαpM,wqq, where relďα is the set of all translations of formulas of LÑ
8ω

of degree ď α with propositional variables in PROPφ X PROPψ . The class of all non-

equivalent formulas of LÑ
8ω of degree ď α is a set according to Proposition 5. Thus,

Ž

M(φrwsp
Ź

relďαpM,wqq is a perfectly good formula of Lcorr8ω . This formula is the de-

sired interpolant of φ and ψ. It is easy to see that φ implies
Ž

M(φrwsp
Ź

relďαpM,wqq,

while the latter implies ψ by choice of α. %

COROLLARY 14. (Preservation) Let φ be a formula of Lcorr8ω and K a class of Routley-

Meyer structures defined by some formula ψ of Lcorr8ω . Then, φ is preserved under directed

bisimulations in K iff φ is equivalent to an infinitary relevant formula over K .

PROOF. Right to left follows from Theorem 7. For the converse, just set φ “ ψ in Theo-

rem 13. %

COROLLARY 15. (Beth definability) Let P be a unary predicate not in Lcorr8ω , φpP q a

formula of Lcorr8ω Y tP u and K a class of Routley-Meyer structures defined by some formula

ψ of Lcorr8ω Y tP u. Then the following are equivalent:

(i) There is a relevant formula θpxq ofLcorr8ω such that θpxq ” Px is a logical consequence

of φpP q in the standard classical sense.

(ii) If pM1, w1, P
M1q and pM2, w2, P

M2q are models of φpP q such that xZ1, Z2y is a

relevant directed bisimulation between the restrictions pM1, w1q and pM2, w2q of

pM1, w1, P
M1q and pM2, w2, P

M2q to Lcorr8ω , then xZ1, Z2y is a relevant directed

bisimulation betweenpM1, w1, P
M1q and pM2, w2, P

M2q.

PROOF. (i) ñ (ii): It suffices to show that when pM1, w1, P
M1q and pM2, w2, P

M2q are

models of φpP q such that xZ1, Z2y is a relevant directed bisimulation between the restrictions

pM1, w1q and pM2, w2q of pM1, w1, P
M1q and pM2, w2, P

M2q to Lcorr8ω , if x P PMi and

xZiy then y P PMj . The result follows by the assumption (i) and the easy direction of

Proposition 6.
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(ii) ñ (i): It is enough to establish that DP pφpP q ^ Pxq implies @P pφpP q Ą Pxq along

relevant directed bisimulations for PROPDP pφpP q^PxqXPROP@P pφpP qĄPxq overK , since then,

by Theorem 13, it follows that there is a relevant formula θpxq of Lcorr8ω which is an inter-

polant for DP pφpP q ^ Pxq and @P pφpP q Ą Pxq over K according to the standard conse-

quence relation. Consequently, (i) holds. %

§7. Conclusion. We have shown that many facts from the model theory of classical infini-

tary logic have analogues in the context of relevant logic and the Routley-Meyer semantics.

In particular, versions of Karp’s theorem and Scott’s isomorphism theorem can be obtained.

Also, most infinitary relevant languages with absurdity are incompact, from which we can

derive incompleteness of most Hilbert systems based on them (in the sense of there being a

semantic consequence of a certain set of formulas which cannot be deduced from the set in

the formal system).

We have also showed that the formulas of classical infinitary relevant logic corresponding

to infinitary relevant formulas are exactly those preserved under relevant directed bisimula-

tions. This was obtained as a consequence of a certain interpolation result, from which a

Beth definability theorem followed as well.
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